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Abstract 

PV installations in buildings can utilize different on-site flexibility resources to balance mismatch in 

electricity production and demand. This paper studies cost-optimal and rule-based control for 

buildings with PV, employing a heat pump, thermal and electrical storage and shiftable loads as 

flexibility sources to increase the value of PV for the prosumer. The cost-optimal control minimizes 

variable electricity cost employing market data on electricity price and optionally constrains grid 

feed-in to zero; the rule-based control aims at maximizing PV self-consumption. The flexibility 

strategies are combined into a simulation model to analyze different system configurations over a full 

year. 

The applicability of the new model is demonstrated with a case study with empirical data from a real 

low-energy house in Southern Finland. Compared to inflexible reference control with a constant price 

for bought electricity, cost-optimal control employing hourly market price of electricity achieved 13‒

25% savings in the yearly electricity bill. Moreover, 8‒88% decrease in electricity fed into the grid 

was obtained. The exact values depend on PV capacity and the flexibility options chosen. Limiting 

grid feed-in to zero led to less energy efficient control. The most effective flexibility measures in this 

case turned out to be thermal storage with a heat pump and a battery, whereas shiftable appliances 

showed only a marginal effect. 

 

Keywords: photovoltaics, intelligent building, demand side management, prosumer, energy storage, 

system control 

 



 

 

 

 

Highlights:   

• A new model of a heat pump with storage, a battery and shiftable appliances. 

• Both fixed and variable condensing modes of the heat pump. 

• A case study with a Finnish low-energy house. 

• Cost-optimal control decreased cost by 13‒25% and grid feed-in by 8‒88%. 

• Heat pump with storage and a battery were more effective than shiftable appliances. 

 

Nomenclature 

Symbols 

C specific heat 

Co Courant number 

E energy 

g time-step cost 

J cost function 

𝑚̇𝑚 mass flow 

i general integer step variable 

k time step 

l log of shiftable appliance runs 

n number 

N end of optimization horizon 

P power 

r number of started shiftable appliance runs 

T temperature, daily number of turnovers 

u control vector 

u* cost-optimal control 

U overall heat transfer coefficient, set of feasible controls 

w external data vector 

x state vector 

X set of feasible states 

ε heat exchanger effectiveness 

η efficiency 



 

 

 

π electricity price 

ρ density 

 

 

Abbreviations 

AC alternating current 

CHP combined heat and power 

COP coefficient of performance 

DHW domestic hot water 

DC direct current 

DP dynamic programming 

DSM demand side management 

FIT feed-in tariff 

GSHP ground-source heat pump 

PV photovoltaics 

TES thermal energy storage 

VRE variable renewable electricity 

 

Subscripts 

battery battery 

C, comp compressor 

Ca Carnot 

cons consumption 

const constant 

curtailed curtailed 

CW cold water 

E earth 

el electricity 

fixed fixed 

h hour 

H hot 

HE heat exchanger 

heater heater 



 

 

 

I input 

inverter inverter 

l low 

L load 

m medium 

min minimum 

max maximum 

net net 

O outdoor 

P constant pressure 

runs runs 

s side 

S storage 

SH space heating 

shift, shiftable shiftable 

syst system 

R return 

tb top and bottom 

 

1. Introduction 

The penetration of photovoltaics (PV) is increasing rapidly worldwide, with a 26% increase of 

installed capacity to 177 GW from 2013 to 2014 [1], and the trend is expected to continue [2]. 

Residential, commercial or industrial buildings represent a major segment of the PV market, with a 

66% share of total installed capacity in Europe in 2013 [3]. Unlike conventional electricity 

production, PV electricity production is variable and uncertain, therefore the increasing capacity 

brings an additional challenge to balancing the demand and supply of electricity [4–9]. 

Power system flexibility measures to balance PV production can be classified into flexible generation, 

storage, interconnections, and demand-side management (DSM) [4,9–14]. In addition, turning 

surplus PV into thermal energy for heating and/or cooling, possibly including thermal energy storage 

(TES), may offer significant additional flexibility [9,15–23]. Buildings with PV can provide on-site 

flexibility in all these classes except interconnections. The potential flexibility sources comprise 

flexible distributed generation (e.g. micro-CHP), electrical storage (e.g. batteries), shiftable and 

curtailable electrical loads, and thermal conversion in building heating and cooling, possibly coupled 



 

 

 

with thermal storage. The focus of this paper is on thermal conversion including TES, electrical 

storage and DSM with controllable loads. Dispatchable local distributed generation (e.g. micro-CHP) 

is not included here as it would incur extra investments in local energy production and the need for 

fuels. 

Local DSM, thermal conversion and storage in a building with a PV installation can benefit the whole 

energy system by balancing the variable and uncertain PV feed-in. They can also benefit the prosumer 

(electricity consumer and producer) through increased self-consumption as well as price-responsive 

consumption, PV feed-in and arbitrage with electrical storage. Maximizing self-consumption is 

naturally incentivized in markets without a feed-in-tariff (FIT), such as Finland, or with FIT lower 

than electricity retail price, such as Germany [24], as the price paid for electricity fed to the grid is 

always lower than the retail price. Moreover, e.g. Germany and Italy have set separate self-

consumption incentives [24]. Limitation of active power feed-in to 70% of maximum power output 

has also been imposed as grid integration regulation in some regions in Germany with high PV 

penetration [24,25]. Self-consumption is a more energy-efficient way to adhere to this limit than 

curtailment. 

This paper presents a model for studying cost-optimal and self-consumption maximizing rule-based 

control of energy flexibility in a building with PV. The included flexibility sources are a ground-

source heat pump (GSHP) with an auxiliary electric resistance heater and a water tank TES, a battery, 

and shiftable loads, such as washing machines. The selected flexibility sources are interesting in light 

of GSHP proliferation for energy efficiency [26], low cost of water tank TES [27,28], and the 

decreasing trend in Li-ion battery cost [29]. Shiftable appliances allow for lossless load shifting with 

no investment to storage capacity and only a limited effect to the activities in the building [9]. The 

potential of these flexibility sources to lower the electricity costs of the prosumer and to balance the 

variable and uncertain PV feed-in to the grid can be studied with the model. 

The three control modes studied in this paper correspond to different market roles. In rule-based 

control, the building acts as a consumer which actively tries to avoid selling PV electricity by 

maximizing self-consumption and sells only when this is unsuccessful; selling is prohibited altogether 

in cost-optimal control with grid feed-in constrained to zero. In contrast, the building takes an active 

prosumer role in cost-optimal control, taking advantage of market price changes in both buying and 

selling. 



 

 

 

There is a substantial body of literature on DSM and storage in PV integration to buildings.  Many 

studies optimize DSM or storage control with PV and present results over a short time horizon, e.g. 

1 day or 1 week [30–36]. In this paper, however, a full year is simulated with a 1-h time step. While 

studies with a short time horizon demonstrate optimal control in a realistic optimization horizon, the 

effect of seasonal and inter-day variations in PV production, price and load on the presented results 

is limited. Hence, the long-term performance in actual application is not evaluated. The seasonal 

effects are especially pronounced in northern locations with PV production concentrated to 

summertime and space heating demand to wintertime, such as Finland where the case study in this 

paper is situated. Inter-day PV production variations due to varying cloud coverage are significant 

worldwide. Moreover, a full-year simulation is less sensitive to the initial conditions of the system, 

such as initial storage state-of-charge. Hence, studies on rule-based and optimal control with time 

horizon of a full year or at least several months are reviewed here, starting with rule-based control 

studies. 

Cao et al. [37] studied thermal storage with electrically heated DHW storage and a battery for PV and 

micro-wind production matching. Charging the DHW storage was found technically and 

economically more effective than a battery to reduce annual mismatch. In [38] and [39], a heat pump 

with thermal energy storage (TES) and a battery is used to increase self-consumption and lower peak 

grid injection from a PV system. Ref. [40] presents TES setpoint controls to match heat pump 

operation with PV production. Widén et al. [41] studied electrical storage, load shifting and PV array 

orientation for load matching. Kootstra et al. [42] studied a partially degraded second life battery with 

a PV system. More studies on rule-based control with PV can be found e.g. in a recent review [43]. 

Our paper adds to these studies by combining thermal storage, battery and shiftable appliances to a 

single model. Moreover, the performance of the rule-based control is compared directly to the cost-

optimal one. 

As for the optimal control studies, Wang et al. [44] presented robust optimization of household 

appliance and water heater scheduling with uncertain PV production. Guo et al. [45] solved stochastic 

optimization problems of scheduling a battery and shiftable loads. Widén  and Munkhammar [46,47] 

studied optimal scheduling of shiftable loads with rule-based control of battery storage for PV self-

consumption. The potential without extensive battery storage was found limited. Masa-Bote et al. 

[48] also combined optimal scheduling of shiftable loads with rule-based battery control, reducing 

the uncertainty of energy exchange with the grid due to forecast error from 40% to 2%. Li and Danzer 

[49] and Schreiber and Hochloff [50] solved optimal control of a battery with PV, the latter with a 



 

 

 

capacity-dependent tariff to incentivize grid-benefiting operation. Ref. [51] presents model predictive 

control of a battery and TES with a heat pump, however without a detailed enough account on the 

employed models and optimization methods required for reproducibility or judging research 

limitations. 

The flexibility sources studied in this paper, namely a GSHP with TES, a battery and shiftable loads, 

have not been combined in a simulation model with PV in a building for cost-optimal and rule-based 

control over a full year previously. Both variable and fixed condensing operating modes of a GSHP 

are included to such a model for the first time here as well. Moreover, contrary to previous work on 

cost-optimal control of a GSHP and TES with PV in a building over a full year, actual contract prices 

based on the electricity spot market price are employed in this paper instead of hypothetical prices, 

and the models and methods are documented to such an extent that the research limitations are clear 

and the study could be reproduced. Overall, physical realism has been strived for in the model, e.g. 

the modeling of the GSHP and TES is based on fundamental energy balances with explicit 

temperature modeling avoiding violations of the second law of thermodynamics, and includes the 

effect of temperature on the COP of the heat pump explicitly. 

To demonstrate the new model and to verify the benefits from the controls with the different flexibility 

options, a case study on a Finnish low-energy house is also presented in this paper. Annual optimal 

control in sequential 24-h horizons is studied along with rule-based control. Different combinations 

of the flexibility sources and dimensions of the PV system, TES and battery are evaluated. The effects 

of heating system temperature level and variable vs. fixed condensing mode of the heat pump are also 

included.  The 24-h horizon is a realistic optimization horizon in terms of day-ahead electricity price 

and weather forecast availability. 

2. System model 

The system model includes the flexibility sources, namely a ground-source heat pump with an 

auxiliary electric resistance heater and thermal storage, a Li-ion battery and shiftable appliances, 

along with DHW storage and an electric DHW heater. Fig. 1 depicts the energy flows and controls in 

the model. The heating and electrical system models are described in the following sections. Overall, 

physical realism has been strived for in the model. Some simplifications have been necessary to allow 

for solving cost-optimal control: 

- Battery aging is neglected. 



 

 

 

- The water tank TES is modeled as fully mixed, resulting in conservative performance with a 

heat pump compared to a stratified TES. 

- The shiftable appliances are modeled with a single average demand cycle. 

 

Figure 1. Energy flows and controls in the modeled system. 

 

The model is designed for determining hourly energy balances: for mathematical tractability and to 

limit the computational burden in solving cost-optimal control over a full year, hourly data is used 

and control decisions are hourly. Even though solar radiation can vary abruptly and a sub-hourly time 

step is hence required for detailed grid interaction studies [52,53], the hourly time step is used for the 

following reasons: 

- The time constant of hydronic radiators, used in the model as the heating system, is 

approximately 0.5 h [54]. Direct modeling of this dynamics is challenging as the heat transfer 

from radiators is affected by the geometry, surface temperatures and materials of the radiator 

and installation site, and the local air flow conditions that are affected by structures such as 

curtains and furniture [55]. Even if an idealized model was used for the radiator heat transfer, 

the situation is complicated by the time constant of the water flow control based on inside air 

temperature, which is less than 30 minutes [55], and the lag time of the heating system due to 

water transport in the pipes, which is in the order of 10 minutes [54]. With the 1-h time step, 



 

 

 

this dynamics can be neglected and the radiator heating system can be modeled as direct heat 

input to the inside air, an approach that has passed validation by building experts and 

comparison with TRNSYS simulations [56]. 

- The computation time of the dynamic programming (DP) algorithm with the shiftable 

appliance model scales asymptotically as 𝑂𝑂(�𝑛𝑛ℎ,𝑠𝑠ℎ𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖

Δ𝑡𝑡
�
𝑛𝑛𝑠𝑠ℎ𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖+1

), hence the 

computational burden becomes high with a short time step and many shiftable appliances. 

Excluding shiftable appliances, the computation time scales linearly with the number of time 

steps, so the computation time is not as large an issue in that case, provided the time step is 

long enough so that the model doesn’t have to be complicated because of validity. 

- Electricity spot market prices are hourly. The hourly energy balances correspond to billing 

with hourly net metering, which is in use in e.g. Denmark [57], and the required legislation is 

under preparation in Finland [58], where the case study in this paper is situated. 

- The variable condensing operating mode of a heat pump is considerably simpler to model 

when the time step is long compared to the time that a heat pump takes to stabilize to steady 

state, which is several minutes [59]. 

- The time scale of hours is relevant in the study of thermal dynamics of buildings. 

- Hourly input data is often available. For example in the case study in this paper, the coarsest 

input data resolution is hourly. This is the case for representative domestic hot water (DHW) 

consumption data. 

Because of the hourly time step, all the control variable values obtained from the model are hourly 

averages. Hence, the energy storage response to sub-hourly solar radiation variations is not directly 

considered. As the employed battery model is linear, the battery could partially smooth the sub-hourly 

variations without any effect on the model results. However, this is not the case for the TES and 

GSHP, which form a non-linear system as the COP of the GSHP depends on the TES temperature. In 

practice, both these storages could be used for smoothing of abrupt PV production variations with 

lower-level controllers which are not considered in this paper. 

  

2.1. Heating system model 

The modeled heating system (Fig. 2) consists of a GSHP with an auxiliary electric heater, a water 

tank as TES, and a hydronic system for space heating. This kind of system is typical in residential 

houses in Nordic countries and is also used in other kinds of buildings. In addition, DHW is heated 

with a heat exchanger in the TES and an auxiliary electric water heater in the fixed condensing mode, 



 

 

 

or with the GSHP and a heat exchanger in a DHW storage in variable condensing mode. In variable 

condensing, GSHP heating is alternated between space heating and DHW heating with the three-way 

valve in Fig. 2 to optimize the coefficient of performance (COP) of the heat pump; in fixed 

condensing, the GSHP is connected directly to the TES. In the reference system with no TES, the 

GSHP is connected directly to the hydronic system and DHW is heated without preheating in the 

DHW storage. 

The numerical model is based on calculating the mass and energy balances in the subsystems. 

Temperatures are modeled explicitly. The TES is modeled as fully mixed to enable reasonable 

computation time with the Dynamic Programming (DP) algorithm used for solving cost-optimal 

control. A detailed description of the model is given in Supplementary Information. 

 

 

 



 

 

 

Figure 2. Model of the heating system (𝑚̇𝑚 = mass flows, T = temperatures, P = power flows). For 

details, see Supplementary Information. Symbols are in accordance with [60,61]. 

 

 

2.2. Electrical system model 

An electrical topology in which all the loads, the battery and PV are connected to the same AC bus 

is employed (Fig. 3). This AC coupling is one of the two main layouts for battery connection with 

PV, the other being DC coupling with a common inverter for PV and the battery [43]. The battery is 

connected with a bidirectional inverter to allow for arbitrage in cost-optimal control in addition to 

storage of PV electricity. Single-phase powers are assumed small enough to comply with fuse current 

limits, and the electricity meter is assumed to perform net metering on all the three phases. The total 

three-phase power Pnet is limited by the design grid connection capacity 𝑃𝑃𝑚𝑚𝑚𝑚𝑥𝑥. 

 

Figure 3. Electrical system layout. 

 

The appliance electricity use is divided to a constant and a shiftable part (Fig. 3). Shiftable appliances 

(e.g. washing machines, dishwashers, tumblers) are modeled with an average demand cycle 

representing all the shiftable appliances in the building. The battery is modeled with a simple storage 

model. Detailed descriptions of the models are given in Supplementary Information. 

3. System control algorithms for cost minimization and PV self-consumption maximization 

The control of the flexible energy system is the key for capitalizing on the potential benefits from the 

different flexibility options available. Two control approaches are studied in this paper: cost-optimal 

control and rule-based control for PV self-consumption maximization. Fig. 4 shows a schematic of 

the control principles. 



 

 

 

The purpose of cost-optimal control is to minimize total electricity cost to the building, and it 

represents an advanced control case in which the building takes the role of an active prosumer which 

both buys and sells electricity actively. The electricity cost is minimized over sequential 24-hour 

horizons, taking advantage of variations in PV production and hourly electricity market price. The 

additional constraint of zero grid infeed is also included as a separate case to study how a conventional 

unidirectional energy system, with the building acting as a conventional consumer, could be achieved 

with PV in flexible buildings and advanced control. In this case, any PV production that the flexible 

energy system of the building doesn’t consume is curtailed. It has to be noted that the grid infeed 

limit is imposed on the energy balance over the 1-h time step in this study, and instantaneous infeed 

might occur even if the balance is zero. 

The rule-based control maximizes PV self-consumption each hour by storing any surplus PV 

production to the electric and thermal storages and shiftable appliance runs. That is, the building 

attempts to avoid selling PV electricity and sells only when self-consumption fails due to limited 

flexibility of the energy system. As the price paid for sold electricity is lower than the cost of bought 

electricity in many markets, rule-based maximization of PV self-consumption can be expected to 

decrease the total electricity cost. Rule-based control is studied with two control modes: with and 

without an auxiliary electric resistance heater in the heat pump. The resistance heater allows for 

increased self-consumption, but lowers energy efficiency as it replaces heat production with the 

GSHP. Achieving a unidirectional energy system with the rule-based control is studied by 

dimensioning the storages sufficiently to allow for zero grid infeed. 



 

 

 

 

Figure 4. Schematic of the control principles for the building energy system. The cost-optimal 

control minimizes electricity cost over a 24-h time horizon and the rule-based control maximizes 

PV self-consumption on each time step. 

3.1 Cost-optimal control 

The cost-optimal control minimizes the total electricity cost in a 24-h horizon. In the full-year 

simulations, it is solved in sequential daily horizons from midnight to midnight. The arising optimal 

control problem is relatively challenging: The system equation of the thermal storage is nonlinear due 

to the temperature dependency of the COP of the heat pump, and the optimal control problem contains 

integer states and controls when shiftable loads are included. Moreover, the non-linear programming 

problem obtained by integrating the system equations is nonconvex. Hence, approximate global cost-

optimal control u* is solved with the deterministic Dynamic Programming (DP) algorithm [62] as a 

minimization problem of the objective function J which denotes total cost over the time horizon: 

 𝐽𝐽𝑁𝑁(𝑥𝑥𝑁𝑁) = 𝑔𝑔𝑁𝑁(𝑥𝑥𝑁𝑁),  𝑥𝑥𝑁𝑁 ∈ 𝑋𝑋𝑁𝑁 
(1) 

 



 

 

 

 

𝐽𝐽𝑘𝑘(𝑥𝑥𝑘𝑘) = min
𝑢𝑢𝑘𝑘∈𝑈𝑈𝑘𝑘(𝑥𝑥𝑘𝑘)

[𝑔𝑔𝑘𝑘(𝑥𝑥𝑘𝑘,𝑢𝑢𝑘𝑘,𝑤𝑤𝑘𝑘) + 𝐽𝐽𝑘𝑘+1(𝑥𝑥𝑘𝑘+1) ], 

𝑢𝑢𝑘𝑘∗ (𝑥𝑥𝑘𝑘) = arg min
𝑢𝑢𝑘𝑘∈𝑈𝑈𝑘𝑘(𝑥𝑥𝑘𝑘)

[𝑔𝑔𝑘𝑘(𝑥𝑥𝑘𝑘,𝑢𝑢𝑘𝑘,𝑤𝑤𝑘𝑘) + 𝐽𝐽𝑘𝑘+1(𝑥𝑥𝑘𝑘+1) ], 

𝑘𝑘 = 0,1, … ,𝑁𝑁 − 1,  𝑥𝑥𝑘𝑘 ∈ 𝑋𝑋𝑘𝑘, 

(2) 

 

 𝑥𝑥𝑘𝑘+1 = 𝑓𝑓𝑘𝑘(𝑥𝑥𝑘𝑘,𝑢𝑢𝑘𝑘 ,𝑤𝑤𝑘𝑘). 
(3) 

 

The energy system state vector 𝑥𝑥𝑘𝑘 = �𝑇𝑇𝑆𝑆,𝑘𝑘, 𝑟𝑟𝑘𝑘−(𝑛𝑛ℎ,𝑠𝑠ℎ𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖−1), … , 𝑟𝑟𝑘𝑘−1, 𝑙𝑙𝑘𝑘,𝐸𝐸𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏,𝑘𝑘�
𝑇𝑇
 and the control 

vector 𝑢𝑢𝑘𝑘 = �𝑃𝑃𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐,𝑘𝑘,𝑃𝑃ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒,𝑘𝑘,𝑃𝑃𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏,𝑘𝑘, 𝑚̇𝑚𝐶𝐶,𝑘𝑘, 𝑟𝑟𝑘𝑘�
𝑇𝑇
. The vector 𝑤𝑤𝑘𝑘 =

�𝜋𝜋𝑘𝑘,𝑃𝑃𝑃𝑃𝑃𝑃,𝑘𝑘,𝑃𝑃𝑆𝑆𝑆𝑆,𝑘𝑘, 𝑚̇𝑚𝐷𝐷𝐷𝐷𝐷𝐷,𝑘𝑘,𝑃𝑃𝑒𝑒𝑒𝑒,𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐,𝑘𝑘�
𝑇𝑇
 contains external data, which is deterministic in this work as 

weather and consumption forecasts are assumed ideal. That is, exact information of the future weather 

and consumption data is assumed to be available prior to the optimization horizon. The obtained 

results represent the best possible case. The feasible sets of states 𝑋𝑋𝑘𝑘 and controls 𝑈𝑈𝑘𝑘(𝑥𝑥𝑘𝑘) are defined 

by the constraints in Table 1, where 𝑇𝑇𝑆𝑆,𝑚𝑚𝑚𝑚𝑚𝑚,𝑘𝑘 is the input temperature of the hydronic system, or the 

cold water temperature when there is no space heating demand. As the feasible compressor power 

interval is continuous, an inverter-controlled heat pump is modeled here; in fixed condensing, the 

heat pump can be modeled without inverter control by allowing only on-off control of compressor 

power. Fig. 5 shows a flowchart description of the algorithm. 



 

 

 

 

Figure 5.  A flowchart of the DP algorithm. 

Jk is the total cost function from the end of the horizon to the time step k. The cost incurred on time 

step k is 

 𝑔𝑔𝑘𝑘(𝑥𝑥𝑘𝑘,𝑢𝑢𝑘𝑘 ,𝑤𝑤𝑘𝑘) = �
𝜋𝜋𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝,𝑘𝑘𝑃𝑃𝑛𝑛𝑛𝑛𝑛𝑛,𝑘𝑘,𝑃𝑃𝑛𝑛𝑛𝑛𝑛𝑛,𝑘𝑘 ≤ 0
𝜋𝜋𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐,𝑘𝑘𝑃𝑃𝑛𝑛𝑛𝑛𝑛𝑛,𝑘𝑘, otherwise, 

(4) 

 

where the net power balance of the building with the grid is 

 𝑃𝑃𝑛𝑛𝑛𝑛𝑛𝑛,𝑘𝑘 = 𝑃𝑃𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐,𝑘𝑘 − 𝑃𝑃𝑃𝑃𝑃𝑃,𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐,𝑘𝑘, 
(5) 

 

 𝑃𝑃𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐,𝑘𝑘 = 𝑃𝑃𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐,𝑘𝑘 + 𝑃𝑃ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒,𝑘𝑘 + 𝑃𝑃𝐷𝐷𝐷𝐷𝐷𝐷,ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒,𝑘𝑘 + 𝑃𝑃𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏,𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠,𝑘𝑘

+ 𝑃𝑃𝑒𝑒𝑒𝑒,𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐,𝑘𝑘

+ � 𝑟𝑟𝑘𝑘−(𝑛𝑛ℎ,𝑠𝑠ℎ𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖−𝑖𝑖)𝑃𝑃𝑒𝑒𝑒𝑒,𝑠𝑠ℎ𝑖𝑖𝑖𝑖𝑖𝑖,𝑖𝑖

𝑛𝑛ℎ,𝑠𝑠ℎ𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖

𝑖𝑖=1
. 

(6) 

 

 



 

 

 

The end cost is zero for all feasible end states, as no end state incurs any cost outside the optimization 

horizon: 

 𝑔𝑔𝑁𝑁(𝑥𝑥𝑁𝑁) = 0,∀𝑥𝑥𝑁𝑁 ∈ 𝑋𝑋𝑁𝑁. 
(7) 

 

The state equation 𝑥𝑥𝑘𝑘+1 = 𝑓𝑓𝑘𝑘(𝑥𝑥𝑘𝑘,𝑢𝑢𝑘𝑘,𝑤𝑤𝑘𝑘) contains the discretized state equation of the fully mixed 

TES model and the discrete state equations of the shiftable appliances and battery (see models in 

Supplementary Information). An hourly time step is used, with a sub-hourly integration time step for 

the TES model (see Supplementary Information for details). 

  



 

 

 

Table 1. Constraints for the optimal control problem. See Supplementary Information for 

explanation of numerical values. 

Physical temperature limits 
Storage 𝑇𝑇𝑆𝑆,𝑘𝑘 ∈ �𝑇𝑇𝑆𝑆,𝑚𝑚𝑚𝑚𝑚𝑚,𝑘𝑘, 95 °C�,∀𝑘𝑘 (8) 
Heat pump condenser 𝑇𝑇𝐶𝐶 ∈ [0,95] °C (9) 
Heat pump condenser 𝑇𝑇𝐶𝐶 ∈ [0,65] °C if 𝑃𝑃𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 > 0 (10) 
Heat pump output after auxiliary 
electric heater 

𝑇𝑇𝐻𝐻 ∈ [0,95] °C (11) 

Maximum mass flow through 
the heat pump condenser 

𝑚̇𝑚𝐶𝐶 ∈ [0, 0.5 ] kg/s. 
 

(12) 

Battery, heat pump compressor and auxiliary heater dimensioning 
Battery capacity 𝐸𝐸𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 ∈ [0,𝐸𝐸𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏,𝑚𝑚𝑚𝑚𝑚𝑚] (13) 
Battery power 𝑃𝑃𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 ∈ �−𝐸𝐸𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏,𝑚𝑚𝑚𝑚𝑚𝑚,𝐸𝐸𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏,𝑚𝑚𝑚𝑚𝑚𝑚� (14) 
Heat pump compressor power 𝑃𝑃𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 ∈ �0,𝑃𝑃𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐,𝑚𝑚𝑚𝑚𝑚𝑚� (15) 
Heat pump auxiliary heater 
power 

𝑃𝑃ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 ∈ �0,𝑃𝑃ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒,𝑚𝑚𝑚𝑚𝑚𝑚� (16) 

No heating is allowed if there is 
no mass flow to transfer heat 

𝑃𝑃𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 = 0 and 𝑃𝑃ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 = 0 if 𝑚̇𝑚𝐶𝐶 = 0 (17) 

Design grid connection capacity 𝑃𝑃𝑛𝑛𝑛𝑛𝑛𝑛 ∈ [−𝑃𝑃𝑚𝑚𝑚𝑚𝑚𝑚,𝑃𝑃𝑚𝑚𝑚𝑚𝑚𝑚] (18) 
PV production after curtailment 
If no grid feed-in allowed 𝑃𝑃𝑃𝑃𝑃𝑃,𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 = min(𝑃𝑃𝑃𝑃𝑃𝑃,𝑃𝑃𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐) (19) 

Otherwise 𝑃𝑃𝑃𝑃𝑃𝑃,𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 = 𝑃𝑃𝑃𝑃𝑃𝑃 (20) 
Shiftable appliances 
Integer number of shiftable 
appliances up to the number 
available in the building can be 
started on each time step 

𝑟𝑟𝑘𝑘−�𝑛𝑛ℎ,𝑠𝑠ℎ𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖−𝑖𝑖� ∈ �0,1, . . ,𝑛𝑛𝑠𝑠ℎ𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖�,  𝑖𝑖 = 1, . .𝑛𝑛ℎ,𝑠𝑠ℎ𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 (21) 

Not more simultaneously 
running appliances than 
available in the building 

� 𝑟𝑟𝑘𝑘−(𝑛𝑛ℎ,𝑠𝑠ℎ𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖−𝑖𝑖)

𝑛𝑛ℎ,𝑠𝑠ℎ𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖

𝑖𝑖=1
≤ 𝑛𝑛𝑠𝑠ℎ𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 (22) 

Appliances cannot be started so 
that they would run outside the 
optimization horizon 

𝑟𝑟𝑘𝑘 = 0, 𝑘𝑘 = 𝑁𝑁 − 𝑖𝑖, 𝑖𝑖 = 1, . .𝑛𝑛ℎ,𝑠𝑠ℎ𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 − 1 (23) 

Appliance run log takes integer 
values and cannot exceed total 
number of runs in the 
optimization horizon 

𝑙𝑙𝑘𝑘 ∈ �0,1, … ,𝑛𝑛𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟,𝑠𝑠ℎ𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖,𝑘𝑘 − 1,𝑛𝑛𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟,𝑠𝑠ℎ𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖,𝑘𝑘�,∀𝑘𝑘 (24) 

Appliance run log is zero in the 
beginning of the horizon 

𝑙𝑙𝑘𝑘 = 0, 𝑘𝑘 = 0 (25) 

All appliance runs in the horizon 
have to be performed 

𝑙𝑙𝑘𝑘 = 𝑛𝑛𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟,𝑠𝑠ℎ𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖,𝑘𝑘, 𝑘𝑘 = 𝑁𝑁 (26) 



 

 

 

 

The continuous states and controls are discretized with the following step sizes in the case study in 

this paper: ΔEbattery = 0.5 kWh, ΔPbattery = ΔPcomp = ΔPheater = 0.5 kW, ΔTS = 2 °C, 𝛥𝛥𝑚̇𝑚𝐶𝐶 = 0.125 kg/s. 

The power discretization steps are equal so that they are comparable options for PV balancing in the 

optimization. Only minor improvement in the total electricity cost was noticed in tests with finer 

power and battery energy discretization. Discretized state and control vectors related to the flexibility 

sources left out of the studied configuration are replaced by zero-valued singletons (except 𝑇𝑇𝑆𝑆,𝑚𝑚𝑚𝑚𝑚𝑚,𝑘𝑘-

valued singleton in case of 𝑇𝑇𝑆𝑆). The arising look-up tables are interpolated bilinearly in the continuous 

states TS and Ebattery. 

The computation time is highly dependent on the included flexibility sources (TES, battery, appliance 

shifts), as the computation time of the DP algorithm scales in the product of discrete states in each 

dimension. With the dimensions of the case study in this paper and TES as the only flexibility source, 

annual optimal control in sequential 24-h horizons is solved in 30 seconds with a parallel 

implementation in C with a four-core Intel Xeon E3-1230 V2 3.3 GHz processor. Including more 

flexibility sources rapidly increases the computation time and high-performance computing is 

required in the high end. 

3.2 Rule-based control 

The simple rule-based control aims at maximizing the PV self-consumption directly and via battery 

and thermal storage. The same constraints as in the optimal control problem are satisfied as they are 

physical constraints of the studied system, with the exception of (23), which is due to the finite 

horizon in the cost-optimal control. 

With a fixed condensing heat pump, the reference control for heating the TES with the heat pump 

keeps the TES temperature at a given constant setpoint. This control requires no forecasts. With 

variable condensing, the setpoint is 𝑇𝑇𝑆𝑆,𝑚𝑚𝑚𝑚𝑚𝑚,𝑘𝑘, obtained from the input temperature of the hydronic 

system. That is, ideal 1-h ahead forecasts of the outdoor temperature and space heating demand are 

assumed available in this case. Shiftable loads are run according to the original schedule and the 

battery is unused in the reference control. The mass flow through the heat pump condenser follows 

on/off control between zero and the maximum value depending on heating power. 

If there is surplus PV power available after the reference control at each time step, the energy is self-

consumed in the following priority: 



 

 

 

1. Shiftable appliances in the shifting time window (24 h, between midnights) are moved to consume 

the surplus; 

2. The remaining surplus is stored in the battery; 

3. The remaining surplus is converted to heat and stored in the TES by increasing 𝑃𝑃𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 by the 

surplus; 

4. If the auxiliary electric heater of the heat pump is used in the control in addition to the heat pump, 

the remaining surplus is converted to heat and stored in the TES by increasing 𝑃𝑃ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 by the 

surplus. 

At times when the PV power does not cover all consumption, the battery is discharged and only the 

deficit is drawn from the grid. 

4. Case study and input data 

The simulations made to test the model are based on measured total and appliance-level electricity 

consumption and building properties of a real residential low-energy detached house located in 

Porvoo, Finland (60.4° N, 25.7° E) [63]. The simulations are run over a full year from January 2013 

to January 2014. 

4.1 External data 

Meteorological data comprising direct and diffuse solar radiation on a horizontal plane, temperature 

and 10-minute-average wind speed was obtained from the Finnish Meteorological Institute [64]. Data 

from the Kumpula weather station (60.20° N, 24.96° E) was used, with missing values in temperature 

and wind speed filled with data from the close-by Kaisaniemi station (60.18° N, 24.94° E). Missing 

values in the solar radiation data were interpolated linearly. 

Two types of pricing schemes are used in this paper: real-time pricing following the stock market 

price of electricity for optimal control and constant pricing for rule-based and reference controls. 

Hourly electricity stock market prices for Finland in the day-ahead market Elspot [65] are used with 

a utility margin [66], averaging 5.4 c/kWh in total. For the constant energy price, a representative 

value of 6.7 c/kWh is used, obtained as the average price of permanent contract offers for a detached 

house in Finland in 2013 [67]. In addition to the energy price, the consumer has to pay distribution 

cost [68] and excise tax and supply security charge [69], totaling 5.1 c/kWh in 2013 and 5.3 c/kWh 

in 2014. Value added tax is included in the consumption costs. The price paid by Finnish utilities for 

residential electricity production fed to the distribution grid is the hourly stock market price subtracted 



 

 

 

by utility commission [70]. The prosumer has to pay the distribution cost of production [71]. The 

average net value in this case is 3.8 c/kWh. 

4.2 Building and heating system properties and energy consumption 

The space heating load PSH of the building and the electricity production of a 1-kWp PV system were 

simulated with ALLSOL [72,73] in 1-hour time steps with hourly averages of the meteorological 

data. The PV system produces 873 kWh/kWp annually. The inclination of the PV array was 30° and 

the azimuth due south. U values and dimensions were obtained from energy inspection results, and 

measured electricity consumption was used for appliance heat generation.  

An annual time series of DHW use was constructed from a representative average daily DHW 

consumption in a Finnish single-family house [74], scaled to total annual consumption in the house 

(6833 kWh) [63]. Country-specific data is necessary here as the daily consumption profile in Finland 

is markedly different from other countries [75]. 

Hourly total electricity consumption over the full year (annual total 7918 kWh), and the 8‒9-day 

appliance-level consumption time series of three of the four available shiftable appliances, namely 

washing machine, tumbler and one of the two dishwashers in the house were measured on-site [76]. 

The appliance demand cycles lasted 3 hours at maximum, so the data was averaged to a 3-hour 

demand cycle to avoid overlaps in the optimized appliance schedules. Runs of the shiftable appliances 

were identified in the annual total consumption data with the algorithm described in Supplementary 

Information. 

The design grid connection capacity is assumed 𝑃𝑃𝑚𝑚𝑚𝑚𝑚𝑚 = 24.15 kW, from three-phase power with 

typical 35 A fuses. The GSHP compressor power is dimensioned at 2.5 kW in the model to fully 

cover the space heating and domestic hot water load with the medium-temperature heating system. 

The auxiliary electric heater of the GSHP is dimensioned at 10 kW. 

5. Results 

Flexibility of the residential energy system to integrate PV is studied with two PV system sizes in the 

size range of typical commercial systems [77]. 3 kWp is three times the hourly self-use limit and 

allows for considerable increase in PV production from the self-use limit with complete self-

consumption with small-size storage. 9 kWp covers the whole annual appliance electricity 

consumption of the building. 



 

 

 

Fixed condensing heat pump operation with a medium-temperature heating system is studied with 

both PV sizes. Even though variable condensing is more energy efficient, fixed condensing 

installations are also used [78], and always include storage for space heating and domestic hot water 

that can be used for flexibility. The medium-temperature heating system (max. 60 °C) matches the 

DHW temperature in fixed condensing, and requires less radiator area than a lower temperature 

system. The effect of a low-temperature heating system and variable condensing are also studied with 

the 9-kWp PV system. The lower temperature in the heating system allows for more flexibility with 

the TES, and variable condensing is more energy-efficient than fixed condensing. Fig. 6 shows the 

cases in graphical form. The 0.3 m3 TES used in the reference cases for fixed condensing heat pump 

connection is a typical size for a small commercial thermal storage [79]. 

 

Figure 6. Cases studied in this paper. 

Three parameters are used to judge the annual operation of the system: total electricity cost, total grid 

feed-in, and total annual electricity balance. The last metric is the total PV production after possible 

curtailment subtracted by the total annual consumption, and it indicates the effects that the controls 

have on energy consumption and PV curtailment. 

5.1. Case: 3-kWp PV system 

With the 3-kWp PV system, the reference case is a 0.3 m3 TES used for DHW production with the 

heat pump. The reference control is simple and inflexible: the TES temperature is kept at 60 °C 

setpoint, and no battery or appliance shifts are used. This configuration can cover the space heating 

and DHW consumption with the heat pump. The 3-kWp system produces annually 2620 kWh, which 

corresponds to 33% of the total appliance electricity consumption or 19% of the total electricity 

consumption including heating in the reference case. 20% of the PV production need to be fed to the 

grid due to production and consumption mismatch. 



 

 

 

The annual electricity cost, grid feed-in and electricity balance relative to the reference case are 

presented in Fig. 7. The four storage dimensions are selected to show the effect of an increase in TES 

size from the reference configuration and adding substantial short-term battery storage. The heat 

pump and resistance heater can bring grid feed-in to zero with this PV system size already with a 0.3 

m3 TES. Increasing the TES size and including a 1 kWh/kWp battery decreases considerably the grid 

feed-in if the auxiliary resistance heater is not used. 

The cost-optimal control provides a 13‒15% decrease in the yearly electricity cost, along with a 36‒

88% decrease in the grid feed-in compared to the reference case. If no electricity is allowed to be fed 

into the grid, the cost-optimal control can provide almost equal cost savings. The battery and 

increasing the TES size affect the electricity cost very little in this case. While adding appliance shifts 

can decrease grid feed-in by 11% at maximum in these cases, its effect on the electricity cost is minor. 

 



 

 

 

Figure 7. Simulation results with a 3-kWp PV system: (a) Annual electricity cost relative to the 

reference case (1344 €), (b) grid feed-in relative to the reference case (537 kWh) and (c) electricity 

balance relative to the reference case (-11039 kWh). The heating system is medium-temperature 

and the heat pump is connected in fixed condensing. 

 

5.2 Case: 9-kWp PV system 

Two heating system temperature levels (max. 60 °C and max. 40 °C, see full control curves in 

Supplementary Information) are studied with the 9-kWp PV system, the former with a heat pump 

connected in fixed condensing and the latter with variable condensing. The medium-temperature 

heating system (max. 60 °C) matches the DHW temperature in fixed condensing. The lower 

temperature in the max. 40 °C heating system allows for more flexibility with the TES, and variable 

condensing is more energy-efficient than fixed condensing. 

5.2.1 Medium-temperature heating system with fixed condensing 

The reference case is the same as in the 3-kWp case: a 0.3 m3 TES used for DHW production with 

the heat pump, with TES temperature kept at 60 °C setpoint in the reference control, no battery, and 

no appliance shifts. The 9-kWp PV system produces annually 7860 kWh, corresponding to 99% of 

the total appliance electricity consumption or 58% of the total electricity consumption including 

heating in the reference case, with 60% of the PV electricity fed to the grid. 

Fig. 8 shows the annual cost, grid feed-in and annual total electricity balance relative to the reference 

case for several system configurations with 9 kWp PV. The system parameters have been selected to 

represent the range of storage sizes from the base case configuration to storages required to bring grid 

feed-in to zero without curtailment; they are not intended for systematic comparison between storage 

sizes. 

The cost-optimal control provides a 17‒25% cost reduction, along with 8‒52% decrease in grid feed-

in. When constrained to zero grid feed-in, cost savings drop to 2‒15%, and the decrease in annual 

electricity balance is substantial due to PV curtailment, storage losses and GHSP heating being 

replaced by resistance heating. 

The rule-based control including the auxiliary electric resistance heater in the heat pump can 

effectively self-consume the PV production, with increased cost compared to the reference case if a 



 

 

 

battery is not used, and a substantial decrease in the annual electricity balance due to storage losses 

and heat pump heating being replaced by the resistor. The decrease in grid feed-in achieved with the 

rule-based control without the resistance heater is approximately the same as with cost-optimal 

control. 

Increasing the TES size decreases the optimal electricity cost in small storage sizes, but with the 2.5 

m3 TES the cost increases due to increased losses. Increasing the battery size decreases the electricity 

cost. Grid feed-in decreases with increasing storage size. The effect of the appliance shifts is minor. 

 

Figure 8. Simulation results with a 9-kWp PV system: (a) Annual electricity cost relative to the 

reference case (1041 €), (b) grid feed-in relative to the reference case (4763 kWh) and (c) electricity 



 

 

 

balance relative to the reference case (-5799 kWh). The heating system is medium-temperature and 

the heat pump is connected in fixed condensing. 

The effect of cost-optimal control on the power duration of the dwelling is demonstrated in Fig. 9. 

The cost-optimal control shifts draws and feed-in of electricity towards peak hours as it takes 

advantage of price changes. With a battery, the shift is more dramatic and peak import and export 

powers are increased as well. As shown in Fig. 10, the peak power draws occur during low-price 

hours and peak feed-in during high-price hours, hence the control contributes to balancing energy 

system operation despite increases in peak power magnitudes. 

 

Figure 9. Power duration curve with a 9-kWp PV system, a medium-temperature heating system and 

a fixed-condensing heat pump. Positive power is drawn from the grid and negative fed to the grid. 



 

 

 

 

Figure 10. Scatter plot of the hourly power balance with a 9-kWp PV system, a medium-temperature 

heating system and a fixed-condensing heat pump. Positive power is drawn from the grid and 

negative fed to the grid. 

5.2.2. Low-temperature heating system with variable condensing 

The reference case of a variable condensing system has no TES, as it is not needed for DHW 

provision. Moreover, there is no battery and no appliance shifts are used. 7860 kWh, corresponding 

to 64% of the total electricity consumption is provided with a 9-kWp PV system in the reference case, 

and 62% of the PV production is fed to the grid. A 1 m3 TES is added to the system for flexibility 

provision, dimensioned for comparison with the results for a medium-temperature heating system. 

Variable condensing with a low-temperature system provides 14% reduction in annual electricity cost 

and 22 % increase in annual electricity balance in the reference case compared to fixed condensing 

and a medium-temperature system, demonstrating the increase in energy efficiency. 

With the TES for flexibility, optimal control provides a 19% cost decrease and decreases grid feed-

in by 16% compared to the reference case (Figure 11). Constrained to zero grid feed-in, the cost 

decrease drops to 3%, with a substantial decrease in annual electricity balance due to increased 

curtailment and electricity consumption. 



 

 

 

Compared to fixed condensing with a medium-temperature heating system, the annual costs in the 

control cases are 11-20% lower and annual electricity balances 11-22% higher. The effect of 

increased flexibility with the heat pump and TES is especially visible in rule-based control without 

the resistance heater, which achieves 17% lower grid feed-in. Cost-optimal control feeds 9% more 

electricity to the grid, however. 

All DHW heating can be done with the GSHP in the variable condensing mode, therefore the DHW 

consumption affects the cost-optimal control less than in the fixed condensing mode. This is 

demonstrated through the correlation between the absolute TES temperature and the DHW mass flow, 

which is 0.32 in fixed condensing with a medium-temperature heating system, and 0.20 in variable 

condensing. 

 

Figure 11. Simulation results with a 9-kWp PV system: (a) Annual electricity cost relative to the 

reference case (896 €), (b) grid feed-in relative to the reference case (4869 kWh), and (c) electricity 

balance relative to the reference case (-4512 kWh). The heating system is low-temperature and the 

heat pump is connected in variable condensing. 



 

 

 

 

6. Conclusions 

A physically realistic model has been presented for cost-optimal and self-consumption maximizing 

rule-based control analysis of a flexible residential energy system with photovoltaics. The flexibility 

sources in the system are a ground-source heat pump with an auxiliary electric resistance heater and 

thermal energy storage, a battery and shiftable appliances. 

The model is generic and applicable for an arbitrary condition. A case study of a Finnish low-energy 

house was conducted to demonstrate the use of the model and to investigate the effects of the controls. 

Significant electricity cost savings of 13‒25%, along with 8‒88% decrease in electricity fed to the 

grid with cost-optimal control were found, depending on PV capacity and the chosen flexibility 

sources. For 3 kWp PV, the studied storage capacities were 0.3 and 1 m3 TES, and 0 and 1 kWh/kWp 

battery. For 9 kWp PV, the storage capacities were in the ranges 0.3-2.9 m3 and 0-1 kWh/kWp. Most 

of the storage combinations were studied with and without appliance shifts. 

Grid feed-in could also be effectively limited to zero at hourly level with cost-optimal or rule-based 

control, at the expense of smaller savings or even an increase in electricity cost, and less energy-

efficient control due to increased electricity use and PV curtailment. The decrease in energy efficiency 

was minor with a 3-kWp PV system (3x self-use limit), but substantial with a 9-kWp PV system that 

could cover the total annual appliance electricity use of the building. 

The heat pump with thermal storage and a battery were found more effective to provide flexibility 

than the shiftable appliances in the case study with a residential building. As their potential was found 

significant, further work will be done to study more thoroughly the effect of their dimensioning on 

the achieved cost savings and grid interaction. Moreover, further model and controller development 

including the effect of forecast error could be motivated. Heuristics responsive to price and PV 

production could be fruitful in achieving part of these benefits will less computational complexity 

than mathematical optimization. 

The requirements of the power grid and energy system could be included explicitly in further work. 

Adequate but not excessive feed-in limitations based on system requirements would be beneficial as 

limiting grid feed-in to zero was noticed to give rise to considerably less energy-efficient control with 

a substantial PV installation. Even though cost-optimal control increases peak powers, peak feed-in 



 

 

 

occurs during high-price periods and peak draws during low-price periods, hence the effect to the 

operation of the whole energy system is stabilizing in principle. 
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This supplementary information contains detailed descriptions of the models and the appliance 

run identification algorithm used in this study. 

S1. Model for the heating system 
The modeled heating system consists of a ground-source heat pump (GSHP) with an auxiliary 

electric heater, a water tank as thermal energy storage (TES), and a hydronic system for space 

heating. In addition, domestic hot water (DHW) is heated with a heat exchanger in the TES 

and an auxiliary electric water heater in the fixed condensing mode, or with the GSHP and a 

heat exchanger in a DHW storage in variable condensing mode. In variable condensing, GSHP 

heating is alternated between space heating and DHW heating with a three-way valve to 

optimize the coefficient of performance (COP) of the heat pump; in fixed condensing, the 

GSHP is connected to space heating. See Fig. 2 in the main text for a graphical depiction of the 

system. 

S1.1. Ground source heat pump 

The temperature dependency of the coefficient of performance (COP) of the GSHP is modeled 

with the COP of a corresponding ideal Carnot heat pump cycle, with the Carnot efficiency 

parameter η𝐶𝐶𝐶𝐶to account for cycle nonideality, and temperature differences δ𝑇𝑇𝐸𝐸 and δ𝑇𝑇𝐶𝐶  due 

to heat exchangers [1–3]: 



 

 

 𝐶𝐶𝐶𝐶𝐶𝐶(𝑇𝑇𝐶𝐶 ,𝑇𝑇𝐸𝐸) = η𝐶𝐶𝐶𝐶
𝑇𝑇𝐸𝐸 − δ𝑇𝑇𝐸𝐸

𝑇𝑇𝐶𝐶 + δ𝑇𝑇𝐶𝐶 − (𝑇𝑇𝐸𝐸 − δ𝑇𝑇𝐸𝐸)
+ 1, (S1) 

with η𝐶𝐶𝐶𝐶 = 0.55 [2] and δ𝑇𝑇𝐸𝐸  = δ𝑇𝑇𝐶𝐶= 5 °C [3]. In addition, the output temperature of the GSHP 

is limited to 𝑇𝑇𝐶𝐶,𝑚𝑚𝑚𝑚𝑚𝑚= 65 °C, corresponding to currently available commercial devices [4–6]. A 

minimum time step of Δ𝑡𝑡𝑚𝑚𝑚𝑚𝑚𝑚 = 10 min is used to model steady-state operation of the GSHP, on 

the basis that a GSHP takes several minutes to stabilize to steady-state operation after start of 

the compressor [7]. A constant TE = 1 °C is used, approximately corresponding to the yearly 

average obtained from a typical 150 m deep borehole in Finland [8].  

The heat pump heats water pumped from the storage tank to temperature 𝑇𝑇𝐶𝐶: 

 𝑚̇𝑚𝑐𝑐𝑃𝑃(𝑇𝑇𝐶𝐶 − 𝑇𝑇𝑆𝑆) =  𝑃𝑃𝑐𝑐𝑐𝑐𝑐𝑐𝑝𝑝𝐶𝐶𝐶𝐶𝐶𝐶(𝑇𝑇𝐶𝐶 ,𝑇𝑇𝐸𝐸). (S2) 

An electric heater functions as an auxiliary heat source after the heat pump, with maximum 

output temperature 𝑇𝑇𝐻𝐻,𝑚𝑚𝑚𝑚𝑚𝑚= 95 °C: 

 𝑚̇𝑚𝑐𝑐𝑃𝑃(𝑇𝑇𝐻𝐻 − 𝑇𝑇𝐶𝐶) = 𝑃𝑃ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 . (S3) 

 

S1.2. Water storage tank 

The water tank is modeled as fully mixed with a 1-node model [9,10]. Stratification modeled 

with multiple nodes could improve the performance of the modeled TES through better 

preservation of the temperature required for DHW and space heating loads, obtained from the 

heat pump with decreasing temperature dependency in COP. However, a fully mixed storage 

model is employed here for reasonable computation times with the dynamic programming (DP) 

algorithm, which suffers from the well-known curse of dimensionality [11]. The following state 

equation for the storage temperature is obtained: 

 

 
𝑚𝑚𝑆𝑆

𝑑𝑑𝑇𝑇𝑆𝑆
𝑑𝑑𝑑𝑑

=
𝑈𝑈𝑡𝑡𝑡𝑡𝐴𝐴𝑡𝑡𝑡𝑡 + 𝑈𝑈𝑠𝑠𝐴𝐴𝑠𝑠

𝑐𝑐𝑃𝑃
(𝑇𝑇𝑎𝑎 − 𝑇𝑇𝑆𝑆) + 𝑚̇𝑚𝐶𝐶(𝑇𝑇𝐻𝐻 − 𝑇𝑇𝑆𝑆)

+ 𝑚̇𝑚𝐿𝐿,𝑆𝑆(𝑇𝑇𝑅𝑅 − 𝑇𝑇𝑆𝑆) − 𝑚̇𝑚𝐷𝐷𝐷𝐷𝐷𝐷,𝐻𝐻𝐻𝐻ε𝐻𝐻𝐻𝐻(𝑇𝑇𝑆𝑆 − 𝑇𝑇𝐶𝐶𝐶𝐶). 
(S4) 

 

Water density and specific heat are assumed constant, with values ρ = 1000 kgm-3 and cP = 4.2 

kJkg-1K-1. The insulation U values for the side 𝑈𝑈𝑠𝑠 (0.3-0.4 W m-2K-1, depending on TES size) 

and top and bottom 𝑈𝑈𝑡𝑡𝑡𝑡 (0.3 W m-2K-1) of the storage, modeled as a cylinder, were calculated 

with equivalent thermal circuits [12] for steel walls and 10 cm polyurethane insulation, the heat 

conductivities of which were obtained from [12,13], and the convection heat transfer 



 

 

coefficients of water (forced convection, 50 Wm-2K-1) and air (free convection, 5 Wm-2K-1) 

obtained from [12]. The heat transfer can be modeled in steady state as the heat capacity of the 

wall is small. Radiative heat transfer at the surface was neglected. The heat loss from the tank 

is decoupled from the inside air temperature of the building; this corresponds to the tank 

situated in e.g. a basement with the heat loss not being well distributed in the dwelling. A 

constant 𝑇𝑇𝑎𝑎 = 21 °C for the surroundings of the TES is assumed. 

 

The stability condition for the 1-node model is given in terms of the Courant number [14]: 

 

 𝐶𝐶𝐶𝐶 =  
𝑚̇𝑚𝑚𝑚𝑚𝑚𝑚𝑚

𝑚𝑚𝑆𝑆
Δ𝑡𝑡𝑇𝑇𝑇𝑇𝑇𝑇 ≤ 1. 

(S5) 

 

 

The maximum mass flow 𝑚̇𝑚𝑚𝑚𝑚𝑚𝑚𝑚 is set to 0.5 kg/s, approximately corresponding to a currently 

available commercial device [6], and a corresponding integration time step Δ𝑡𝑡𝑇𝑇𝑇𝑇𝑇𝑇  ∈

[Δ𝑡𝑡𝑚𝑚𝑚𝑚𝑚𝑚, 1 h] is used for the TES model in the simulations. 

 

Validation of the modeling approach in terms of stratification is conducted with an empirical 

formula for the minimum number of nodes to achieve satisfactory validity [10]. The formula 

depends on flow conditions characterized by the daily number of turnovers  𝑇𝑇, and hence 

approximately matches the mixing due to numerical diffusion with too few nodes [15] to 

physical mixing due to the flows. For fixed inlets [10] 

 

 𝑁𝑁𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 =  45.8𝑇𝑇−1.218, 
(S6) 

 

where the daily number of turnovers is 

 𝑇𝑇 =  
1
𝑚𝑚𝑠𝑠

�(𝑚̇𝑚𝑐𝑐 + 𝑚̇𝑚𝐿𝐿,𝑆𝑆)
𝑑𝑑𝑑𝑑𝑑𝑑

𝑑𝑑𝑑𝑑. 
(S7) 

 

In the 3-kWp PV case, empirical minimum number of nodes is 1 in all studied cases for 0.3 m3 

TES. With the larger storage, it is 1 for rule-based controls; for cost-optimal control, its mean 

value is 1 and maximum 3. Hence, the fully mixed storage model is sufficient in this case 

except in some parts of the optimal control simulations with 1 m3 TES. 

 



 

 

In the 9-kWp PV case with a medium-temperature heating system, mean minimum number of 

nodes is 1 for rule-based control and 1-3 for cost-optimal control for the lower end of TES sizes 

(0.3 m3, 1 m3); for the larger storages, the number ranges 1-4 for rule-based controls and 3-6 

and above for optimal control. Improved TES performance through stratification could thus be 

expected in this case especially at the high end of TES sizes. 

 

With a 9-kWp PV system, low-temperature heating system and variable condensing, the mean 

value of minimum number of nodes is 1‒2 for rule-based control; for cost-optimal control it is 

3‒5. Maximum values are higher. Some improvement due to stratification could hence be 

expected. 

 

Several technologies to improve stratification in water tanks have been developed, such as inlet 

diffusers and baffle plates [16]. These were not employed in the measurements that were used 

to devise the aforementioned validation formula [10,17]. However, to the best of the authors’ 

knowledge, an experimentally validated dynamic system model suitable for optimal control 

studies to account for these devices has not been presented. 

 

S1.3. Hydronic heating system 

The time constant of radiators is approx. 0.5 h [18], fast enough to neglect their dynamics in 

hourly energy balance. The integration time steps (Eq. (S5)) can be shorter than 0.5 h; the 

effect of radiator dynamics on the hourly temperature and mass flow values is considered small 

and neglected. Depending on how it is laid out, floor heating may have significantly larger 

thermal inertia [18,19] and this model may hence not be directly applicable to it. The thermal 

dynamics of water in the heating system when it is inactive [19] is neglected. Hence, heat 

transfer from the water in the hydronic system to the dwelling space is modeled simply as 

 

 

 
𝑃𝑃𝑆𝑆𝑆𝑆 = 𝑚̇𝑚𝐿𝐿𝑐𝑐𝑃𝑃(𝑇𝑇𝐼𝐼 − 𝑇𝑇𝑅𝑅). 

(S8) 

 

   

The input temperature of the radiators 𝑇𝑇𝐼𝐼 is controlled by the shunt valve depending on outdoor 

temperature 𝑇𝑇𝑂𝑂 according to a given control curve, resulting in the mass flow from and to the 

storage 

 



 

 

 𝑚̇𝑚𝐿𝐿,𝑆𝑆 =
𝑇𝑇𝐼𝐼 − 𝑇𝑇𝑅𝑅
𝑇𝑇𝑆𝑆 − 𝑇𝑇𝑅𝑅

𝑚̇𝑚𝐿𝐿 . 
(S9) 

 

The control curves of a medium and low-temperature heating system in Table 1 are used. 

Constant return temperatures 𝑇𝑇𝑅𝑅 = 30 °C and 𝑇𝑇𝑅𝑅 = 25 °C are assumed, respectively. This 

corresponds to inverter-controlled circulation pumps. 

Table S1. Heating system control curves. 

𝑇𝑇𝑂𝑂 (°C) 𝑇𝑇𝐼𝐼,𝑚𝑚 (°C) 𝑇𝑇𝐼𝐼,𝑙𝑙 (°C) 

-26 60 40 

5 40 30 

30 40 30 

 

S1.4. Domestic hot water 

The domestic hot water heat exchanger in the storage tank is modeled with a constant 

effectiveness heat exchanger model 

 𝑇𝑇𝐷𝐷𝐷𝐷𝐷𝐷,𝐻𝐻𝐻𝐻 = 𝑇𝑇𝐶𝐶𝐶𝐶 + 𝜖𝜖𝐻𝐻𝐻𝐻(𝑇𝑇𝑆𝑆 − 𝑇𝑇𝐶𝐶𝐶𝐶), 
(S10) 

 

with εHE = 0.9. As the model is designed for use with hourly DHW consumption data, more 

sophisticated heat exchanger models with dependency on instantaneous mass flow are not 

applicable. A constant cold water temperature 𝑇𝑇𝐶𝐶𝐶𝐶 = 6 °C is assumed in the Finnish case study 

in this paper. 

 

A constant set point 𝑇𝑇𝐷𝐷𝐷𝐷𝐷𝐷 = 55 °C is used in this work, in compliance with Finnish building 

code [20]. In fixed condensing heat pump operating mode, the DHW storage is controlled to 

keep this temperature with an electric heater and is large enough to provide hourly consumption 

(maximum approx. 50 l in the case study in this paper). In this size scale, its losses are 

negligible. The tank averages DHW heater power over the hourly time step. 

 

In variable condensing mode, DHW is heated to the setpoint with the GSHP and a heat 

exchanger in the DHW storage. Typical size for a DHW storage in this setup is 200 l [21], the 

losses of which are negligible. A temperature drop δ𝑇𝑇𝐷𝐷𝐷𝐷𝐷𝐷 = 5 °C is assumed in the heat 

exchanger in the DHW storage, resulting in the following compressor power required for DHW 

heating: 

 



 

 

 𝑃𝑃𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐,𝐷𝐷𝐷𝐷𝐷𝐷 =
𝑚̇𝑚𝐷𝐷𝐷𝐷𝐷𝐷𝑐𝑐𝑃𝑃(𝑇𝑇𝐷𝐷𝐷𝐷𝐷𝐷 − 𝑇𝑇𝐷𝐷𝐷𝐷𝐷𝐷,𝐻𝐻𝐻𝐻)
𝐶𝐶𝐶𝐶𝐶𝐶(𝑇𝑇𝐷𝐷𝐷𝐷𝐷𝐷 + δ𝑇𝑇𝐷𝐷𝐷𝐷𝐷𝐷 ,𝑇𝑇𝐸𝐸)

. 
(S11) 

 

 

S1.5. Variable condensing 

Variation between space heating (SH) and DHW with the GSHP in variable condensing mode 

is modeled inside the hourly time step. The hourly average compressor power is  

 

 𝑃𝑃𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 = 𝑃𝑃𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐,𝑆𝑆𝑆𝑆 + 𝑃𝑃𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐,𝐷𝐷𝐷𝐷𝐷𝐷. 
(S12) 

 

Shares of the time step required to deliver these hourly averages, along with hourly average 

𝑃𝑃ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒, are solved. The system is integrated with corresponding instantaneous powers and 

integration time steps ∆𝑡𝑡𝑆𝑆𝑆𝑆, ∆𝑡𝑡𝐷𝐷𝐷𝐷𝐷𝐷 ∈ [∆𝑡𝑡𝑚𝑚𝑚𝑚𝑚𝑚,∆𝑡𝑡𝑇𝑇𝑇𝑇𝑇𝑇]. DHW and TES heating take turns until 

either one is delivered, after which the remaining one is finished. In the variable condensing 

case, the modeled heat pump has to be inverter controlled as the instantaneous power varies 

depending on the time step division to TES and DHW heating. 

 

  



 

 

S2. Model for the electrical system 
The flexibility electrical energy system in the model comprises shiftable appliances and a 

battery. 

S1.6. Shiftable electrical appliances 

Shiftable appliances are modeled with an average nhours,shiftable-hour demand cycle representing 

all the shiftable appliances in the building to simplify the model in order to keep computation 

times for optimal control reasonable. The model requires as input data the nhours,shiftable-hour 

demand cycle, the original appliance starting times and the number of shiftable appliances 

nshiftable. 

The following discrete state equation, compatible with the DP algorithm, counts the number of 

shiftable runs in the system model: 

 𝑙𝑙𝑘𝑘+1 = 𝑙𝑙𝑘𝑘 + 𝑟𝑟𝑘𝑘, 
(S13) 

 

where 𝑙𝑙𝑘𝑘 is the log of performed runs and 𝑟𝑟𝑘𝑘 is the number of runs started in the simulation at 

time step k. Shifting of the appliance runs is allowed during each day between midnights. 

S1.7. Battery 

The Li-ion battery is modeled with a simple storage model to limit the number of dimensions 

in the optimal control problem. The energy content of the battery is 

 𝐸𝐸𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏,𝑘𝑘+1 = 𝐸𝐸𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏,𝑘𝑘 + 𝑃𝑃𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏,𝑘𝑘𝛥𝛥𝛥𝛥, 
(S14) 

 

and for the system comprising the battery and bidirectional inverter, 

 𝑃𝑃𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏,𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 =  �
1

𝜂𝜂𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖
𝑃𝑃𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏,  𝑃𝑃𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 ≥ 0,

η𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝜂𝜂𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑃𝑃𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏, otherwise.
 

(S15) 

 

 

80% of the nominal capacity is used for increased cycle life. In the corresponding capacity 

range 10‒90%, the used linear model is a good approximation. Battery aging is not considered 

in the model. Constant values η𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 = 0.95 [22] and η𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 = 0.9 [23] are used. Self-

discharge of Li-ion batteries is only 3‒5% per month [24], thus negligible compared to the 

cycle efficiency as the battery is used relatively often in the considered control strategies. 



 

 

S3. Shiftable appliance identification algorithm 

The simple algorithm decribed below was used for identifying shiftable appliance runs in this 

work. It is based on the observation that in all but one of the measured cases, a run of a shiftable 

appliance occurred when the total consumption was at least 900 W in excess of the base load. 

1. For all hours of the year, find the base load as the minimum consumption of the 25 

hours centered at the hour. Label the hour as containing shiftable load if the power is 

over baseload + 900 W. 

2. Find the hour of peak power of the intervals labeled as containing shiftable load, by 

finding the time when the sign of power difference to the previous hour changes from 

positive to negative. Label each peak as start of a shiftable 3-hour demand cycle. 

3. In decreasing order of magnitude of the peaks, add additional cycle until the total 

electricity consumption of the appliances over the year corresponds to total yearly 

consumption of the appliances. The time period in which the shiftable appliances were 

measured is assumed representative of their use over the year. 

Figures 1 and 2 show the results achieved with this algorithm in the time periods with measured 

appliance-level data. The algorithm results in only one false negative. 4 false positives are 

identified in the washing machine and tumbler time series and 12 in the dishwasher time series. 

False positives are expected as the appliances were not measured simultaneously. The 12 false 

positives in the 211-h dishwasher time series correspond approximately to the 10 measured 

runs in the 192-h washing machine and tumbler series. Similarly, the 4 false positives in the 

washing machine and tumbler series correspond approximately to the 3 runs in the dishwasher 

time series; as only one of the two dishwashers in the house was measured, more dishwasher 

runs are expected to have occurred. 

It can be concluded that the simple algorithm performs reasonably well. Throughout the year, 

the algorithm identifies four coincidental shiftable runs at maximum, hence not exceeding the 

number of four shiftable appliances available in the house. 



 

 

 

Figure S1. The modeled shiftable loads with measured washing machine and tumbler loads. 

 

Figure S2. The modeled shiftable loads with measured dishwasher load. 
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