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ABSTRACT

We use the complete MOJAVE 1.5]Jy sample of active galactic nuclei (AGNs) to examine the gamma-ray
detection statistics of the brightest radio-loud blazars in the northern sky. We find that 23% of these AGNs were
not detected above 0.1 GeV by the Fermi-LAT during the four-year 3FGL catalog period partly because of an
instrumental selection effect and partly due to their lower Doppler boosting factors. Blazars with synchrotron peaks
in their spectral energy distributions located below 10'3# Hz also tend to have high-energy peaks that lie below the
0.1 GeV threshold of the LAT, and are thus less likely to be detected by Fermi. The non-detected AGNs in the
1.5 Jy sample also have significantly lower 15 GHz radio modulation indices and apparent jet speeds, indicating
that they have lower than average Doppler factors. Since the effective amount of relativistic Doppler boosting is
enhanced in gamma-rays (particularly in the case of external inverse-Compton scattering), this makes them less
likely to appear in the 3FGL catalog. Based on their observed properties, we have identified several bright radio-
selected blazars that are strong candidates for future detection by Fermi.
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1. INTRODUCTION

The Fermi space telescope is a powerful broadband gamma-
ray facility that has continuously scanned the entire sky every
3 hr since 2008. One of its major discoveries has been that
away from the galactic plane, the gamma-ray sky is dominated
by the blazar class of active galactic nuclei (AGNs; Abdo
et al. 2010a). These relatively rare AGNs harbor powerful jets
of relativistically moving plasma that are oriented close to our
line of sight. Their overall spectral energy distribution (SED)
tends to be dominated by relativistically boosted emission from
the jet and typically consists of two broad peaks in a plot of
log vE, versus log v, where F, is the observed flux density at
frequency v (Abdo et al. 2010e). The lower-frequency peak is
associated with synchrotron emission from relativistic electrons
in the jet plasma, while the high-frequency peak is widely
believed to be created by inverse-Compton (IC) up-scattering
of photons from the jet, accretion disk, and/or broad-line
region (e.g., Dermer & Schlickeiser 1993; Sikora et al. 1994).

Since the same population of jet electrons is responsible for
these two peaks, we might expect the synchrotron and gamma-
ray emission from individual blazars to be correlated, and this
has proven to be the case. Many studies have found statistical
correlations between the radio/submillimeter band and the
>0.1 GeV time-averaged fluxes measured by the Fermi-LAT
instrument (e.g., Kovalev et al. 2009; Ackermann et al. 2011,
Lister et al. 2011; Giommi et al. 2012; Fuhrmann et al. 2014;
Mufakharov et al. 2015). Mahony et al. (2010) have also shown

that the fraction of radio-loud AGNs detected by Fermi steadily
increases with increasing 20 GHz flux density.

Despite these well-established correlations, it is still not fully
understood why a substantial fraction of the brightest, most
compact blazars in the GHz band have not been detected at
energies above 0.1 GeV, despite the four years of continuous
observations included in the most recent Fermi catalog (3FGL;
Acero et al. 2015). In this Letter, we investigate the properties
of a complete, flux density-limited, 15 GHz AGN sample of the
northern sky, the MOJAVE 1.5 Jy survey, where 23% of the
AGNs have no Fermi detections. We show that these non-
detected AGNs have a lower than average jet speed and radio
variability index (indicative of a lower Doppler boosting factor)
and a synchrotron component that peaks below ~10'34Hz.
The latter causes their secondary SED peak to be located well
below the lower-energy cutoff of the LAT instrument, resulting
in a low LAT gamma-ray flux and non-detection by Fermi. We
discuss the 1.5 Jy sample and observational data in Section 2,
present our analysis in Section 3, and summarize our
conclusions in Section 4.

2. OBSERVATIONAL DATA

In order to properly evaluate the statistics of gamma-ray
detections of bright radio-loud blazars, it is essential to use
well-defined, complete samples. The GeV and radio bands
above ~10GHz are ideal in this respect due to the lack of
foreground obscuration (away from the galactic plane) and little
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Table 1
1.5 Jy MOJAVE AGN Sample Properties
J2000 Alias Fermi Catalog Name Sext Snax Sted a Up,obs Vp,rest
@ (@) 3) ) (6) N ®) €)) (10)
J0006—0623 NRAO 005 0.3467 0.08 2.69 2.09 0.78 13.0 13.1
JOO10+1058 I Zw 2 0.0893 1.82 0.72 0.81 13.3 13.3
JOO19+7327 S5 0016+73 1.781 . 1.48 1.10 0.66 12.3 12.7
JO050—0929 PKS 0048—09 3FGL J0050.6—0929 0.635 0.04 2.33 0.82 1.10 14.3 14.5
J0102+5824" TXS 0059+581 3FGL J0102.8+5825 0.644 5.41 2.49 1.21 12.7 12.9

Notes. Columns are as follows: (1) J2000 name, (2) other name, (3) Fermi catalog name, (4) redshift, (5) arcsecond-scale flux density at 15 GHz in Jy, (6) maximum
15 GHz VLBA flux density in Jy during 3FGL time window, (7) median 15 GHz VLBA flux density in Jy during 3FGL time window, (8) radio activity index, (9) log
of observed synchrotron peak frequency in Hz (observer frame), (10) log of observed synchrotron peak frequency in Hz (rest frame).

# Low galactic latitude (b] < 10°).

(This table is available in its entirety in machine-readable form.)

contamination from non-active galaxies. In these bands, the
AGN emission is dominated by that of the jet, with little
contribution from the extended lobes. In this section, we
describe the radio-selected MOJAVE 1.5Jy AGN sample and
the supporting data from our own studies and the literature.

2.1. Radio Data

In the GHz band, there have been many large sky surveys
carried out over the last few decades, e.g., FIRST (Becker
et al. 1995), NVSS (Condon et al. 1998), GB6 (Gregory
et al. 1996), AT20G (Murphy et al. 2010), such that virtually
every radio-loud AGN above 1Jy has been identified and
cataloged. Nevertheless, a major challenge in obtaining
complete samples of radio-loud blazars has been their highly
variable flux densities, which over the course of several years
can change by factors exceeding ~10 in the GHz band
(Richards et al. 2014) and ~200 in the GeV band (Abdo
et al. 2010c; Fuhrmann et al. 2014). Any single-epoch flux-
limited survey therefore stands to miss a substantial portion of
the population.

As part of a Very Long Baseline Array (VLBA) key project
to study the parsec-scale structure and evolution of AGN jets
(Lister et al. 2009b), we have constructed a complete, flux
density-limited sample, based on all available GHz band flux
density data on bright radio AGNs over a 16 year period from
1994.0 to 2010.0 (Lister et al. 2013). The MOJAVE 1.5Jy
sample includes all AGNs (excluding gravitational lenses)
located north of J2000 declination —30° that are known to have
exceeded 1.5 Jy in compact (milliarcsecond-scale) 15 GHz flux
density at least once during that period. We were able to
estimate the milliarcsecond-scale flux density from single-dish
measurements by using near-simultaneous VLBA /single-dish
observations of each source at several epochs. The difference of
these near-simultaneous measurements represents the amount
of arcsecond-scale emission resolved out by the VLBA, which
is expected to be non-variable due to its size. Given the
measurement errors, we were able to detect any extended
emission above 0.02 Jy.

Using newly obtained data from the OVRO 15 GHz AGN
monitoring program (Richards et al. 2011), we have refined our
extended flux density estimates and subsequently dropped two
AGNs (MG1 J021114+1051 and OP—050) from the original
1.5 Jy sample list. We list the properties of all 181 AGNs in the
revised sample in Table 1. For the purposes of this paper, we

consider only the 163 AGNs that are located at least 10° away
from the galactic plane. This ensures that issues related to
galactic gamma-ray foreground subtraction do not affect the
LAT detection statistics of our sample.

2.2. Gamma-Ray Data

The Third Fermi Gamma-ray Catalog (3FGL; Acero
et al. 2015) is based on LAT data collected between 2008
August 4 and 2012 July 31 and contains 3033 high-confidence
detections above 0.1 GeV. The Third LAT AGN Catalog
(BLAC; Ackermann et al. 2015) associates 1563 of these
sources with AGNs. Because of the relatively large sky
position errors (~several arcmin) of the 3FGL sources, true
counterpart identification has only been achieved in 12% of the
cases. The remainder of the 3FGL associations were estab-
lished using extensive statistical likelihood tests and a variety
of celestial source catalogs. The 3LAC list consists of only
high-confidence 3FGL AGN associations. For brevity, we will
refer to these AGNs as “LAT-detected” throughout this paper.
Although a large number (992) of 3FGL gamma-ray sources
remain unassociated, virtually all of the brightest ones have
associations (see, e.g., Lister et al. 2011; Acero et al. 2015).

A total of 122 AGNs in our sample are listed as associations
in the 3LAC. Additionally, PKS 0539—057 and 4C+06.69
appeared in the 1FGL catalog (Abdo et al. 2010a), and the LAT
detection of 3C 120 was announced by Abdo et al. (2010b).
The latter three AGNs likely do not appear in the 3FGL catalog
since they experienced at most only a brief period of gamma-
ray flaring; thus, their four-year averaged fluxes were below the
3FGL significance cutoff. We checked the remaining non-LAT
detected AGNs in our sample, and in all cases the closest 3FGL
source was at least 17 arcmin away. There are also no Fermi
associations for any of these AGNs in the refined list published
by Massaro et al. (2015).

2.3. SED Peak Data

As discussed previously by Finke (2013), there are
considerable inconsistencies in the SED synchrotron peak
locations of blazars reported in the literature. Since the peaks
for most of our sample lie between 10'? and 10' Hz, where
there is typically a paucity of observational data, considerable
interpolation-based errors are present. Since our AGNs are
highly core dominated, any contribution from extended lobe
emission to the SED is negligible above ~10!0 Hz; however,



THE ASTROPHYSICAL JOURNAL LETTERS, 810:L9 (6pp), 2015 September 1

some authors have included the (non-jet) IR and optical big
blue bump components in their polynomial fits to the
synchrotron SED component, resulting in overestimates of
the true peak location.

In order to minimize these errors, we have used the ASDC
SED builder Version 3.1.6 tool” to estimate the peak location
using a third-degree polynomial fit to flux densities published
in the literature. For most of the AGNs in our sample, there
were hundreds of available measurements at numerous
frequencies; however, we only considered data up to 10'* Hz
and extended this up to 10'> Hz only for clear cases where the
SED remained parabolic and there was no significant blue
bump component. In some instances, there were insufficient
flux density data or too much confusion from non-jet emission
in the 10''°~10"* Hz region to reliably estimate the location of
the synchrotron peak. Based on comparisons to other published
values in the literature for our AGNs, we estimate a typical
error of +0.3 dex in our values.

3. DISCUSSION
3.1. Fermi Detection and Synchrotron Peak Location

The passband of the LAT instrument covers photon energies
in the approximate range of 100 MeV-300GeV (Atwood
et al. 2009). At the highest energies, AGN detections are
typically limited by low photon fluxes since they typically have
steep gamma-ray spectra with power-law energy indices
ranging from —1.5 to —3 (Acero et al. 2015). The LAT’s
fixed passband tends to discriminate against AGNs with IC
peaks located below 1 GeV and those with very steep gamma-
ray spectra. If the IC peak shapes of blazars are similar, then the
LAT’s fixed passband should create a correlation between the
LAT energy index and the IC peak location. Unfortunately, the
latter are often difficult to measure due to a lack of
observational data in the soft gamma-ray and hard X-ray
bands. However, we would also expect the locations of the
synchrotron and IC peaks to be correlated since the same
population of jet electrons is responsible for both features. This
has been shown to be the case in the form of a relatively tight
correlation between LAT energy index and synchrotron peak
location (Abdo et al. 2010d). Therefore, since the two SED
peaks track each other, AGNs with low synchrotron peak
locations should have IC peaks located well below the LAT
bandpass, and consequently a smaller chance of detection by
Fermi.

In Figure 1, we show histograms of synchrotron peak
frequency for the LAT and non-LAT detected sub-samples. All
of the non-detected AGNs have synchrotron peak frequencies
below 10134 Hz (in both the rest and observer frames). We
performed two commonly used non-parametric statistical tests
to look for differences in the distributions. The Kolmogorov—
Smirnov test evaluates possible differences in the cumulative
distribution functions, while the Wilcoxon rank-sum test
evaluates whether the data points of one sample are generally
higher valued (or lower valued) than the other. We list the test
results in Table 2. The LAT and non-LAT AGNs have
significantly different synchrotron peak distributions, both in
the observed and rest frames. Figure 2 shows that as predicted,
the AGNs in our sample with higher synchrotron peak
frequencies are more likely to be detected by Fermi.

? https://tools.asdc.asi.it/
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Figure 1. Top panel: distributions of observed synchrotron peak frequency for
LAT detected (blue dashed line) and non-LAT detected (red solid line) sub-

samples. Lower panel: same as the top panel, but for rest-frame synchrotron
peak frequency.

3.2. Fermi Detection and Doppler Boosting Indicators

A main prediction of the external seed photon model for high-
energy blazar emission is that the IC radiation should be more
highly Doppler boosted than the synchrotron emission due to a
blueshifting of the external photons in the rest frame of the jet
electrons (Dermer 1995). The gamma-rays will also experience
more effective boosting (via a k-correction) since their emission
spectrum is much steeper than that of the flat-spectrum radio jet.
There is already ample evidence that Fermi preferentially
detects highly Doppler-boosted jets; the very small number of
misaligned (low Doppler factor) jets in the 3LAC (only 2% of
the catalog) is a prime example. Other studies showing this
Fermi selection bias include those by Kovalev et al. (2009),
Abdo et al. (2010d), and Savolainen et al. (2010).

The Doppler factors of AGN jets are difficult to measure
accurately due to the featureless power-law nature of the jet
emission and a lack of a good means with which to estimate the
jet viewing angle. Some studies (e.g., Léhteenmiki &
Valtaoja 1999; Jorstad et al. 2005; Hovatta et al. 2009) have
used light-crossing time arguments and variability timescales of
individual flares to derive Doppler factors, but only for a
relatively small number of AGNs. However, the overall
variability level of a blazar is also a good indicator of its
Doppler factor since any intrinsic variability will be signifi-
cantly shortened and increased in amplitude by Doppler
boosting (e.g., Lister 2001). The OVRO monitoring program
has published 15 GHz modulation indices for nearly 1500
blazars, covering the time period 2008 January 1-2011
December 31. These indices are estimates of the standard
deviation of the flux density of a source divided by its mean
(Richards et al. 2011).

The gamma-ray detected AGNs in the OVRO sample are
significantly more radio variable than the non-detected ones
(Richards et al. 2014), and we find this same trend for the 142
OVRO AGNSs in our sample. Richards et al. (2014) also found
the level of AGN radio variability to decrease with increasing
synchrotron peak frequency, but their sample includes
significant numbers of AGNs with observed synchrotron peaks
above 10 Hz, whereas there are only four such AGNs in our
sample.
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Table 2
Statistical Tests on LAT and Non-LAT Sub-samples

LISTER ET AL.

Property

Kolmogorov—Smirnov

Wilcoxon Rank Sum

Synchrotron peak location (observed)
Synchrotron peak location (rest frame)
Maximum observed jet speed

15 GHz modulation index

Redshift

Radio activity index”

Median VLBA radio flux density®
Maximum VLBA radio flux density”
Median VLBA radio luminosity®
Maximum VLBA radio luminosity®

1x107* 3 x 1075
1 x107* 1 x 1075
2 x 107°° 3 x 1075
5% 107 9 x 1075
0.50 0.45
0.10 0.14
0.86 0.50
0.04 0.05
0.86 0.80
0.76 0.73

Notes. The tabulated values indicate the probability of obtaining the observed distributions in the LAT and non-LAT detected sub-samples under the null hypothesis

that they came from the same parent distribution.
 During the 3FGL time window.
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Figure 2. Left panel: LAT detection fraction vs. synchrotron peak frequency. The vertical error bar for each bin assumes a binomial distribution with variance equal to
N x f x (f — 1), where N is the number of AGNs in the bin and fis the LAT detection fraction. Right panel: same as the left panel, but for rest-frame peak frequency.

Another method of estimating the amount of relativistic
boosting comes from measurements of apparent jet speeds.
Although it is possible for a jet to have a low apparent speed if
it is aligned exceedingly close to the line of sight (i.e., a
viewing angle <1/T', where T is the bulk Lorentz factor), for
large flux-limited jet samples, the apparent speed will on
average be well correlated with Lorentz factor (Lister
et al. 2001). The MOJAVE program has published maximum
apparent jet speeds for 133 AGNs in our sample (Lister
et al. 2013) and is currently obtaining multi-epoch VLBA data
on the remainder.

In an earlier study using the first three months of Fermi data,
we showed that the gamma-ray detected AGNs in the original
MOJAVE sample had higher apparent jet speeds (Lister
et al. 2009a). This is also the case for our 1.5Jy sample, at
an even higher level of statistical confidence (Table 2). Taken
together with the trend in modulation index, this indicates that
the Doppler factor also plays an important role in determining
which radio-loud blazars will be detected by Fermi.

3.3. Fermi Detection and Other Jet Properties

In addition to Doppler factor and synchrotron peak location,
there are potentially other properties that can also influence the
gamma-ray flux of a blazar. These include redshift, intrinsic jet

luminosity, and the activity state of the jet during the 3FGL
observation period. The latter is particularly important when
considering the Fermi detection statistics of the 1.5 Jy sample,
which was selected over a time period that only partially
overlaps that of the 3FGL catalog.

We have compiled maximum and median 15 GHz VLBA
flux densities of the 1.5 Jy AGNs during two time periods: (a)
between the start of the 1.5 Jy sample selection window (1994
January 1) and the start of Fermi operations (2008 August 4),
and (b) during the 3FGL observation window. We use the ratio
of the maximum flux density in these two periods as a Fermi-
era radio activity indicator, as was done by Kovalev et al.
(2009) in their analysis of the Fermi LBAS list (Abdo
et al. 2009). There were 51 AGNs with insufficiently sampled
flux density data in the pre-Fermi era to determine a reliable
activity index.

The OVRO program does not include any AGNs below
declination —20°, and 10 other 1.5 Jy sample AGNs were only
added to its monitoring list after the end of the 3FGL period. In
all of these cases, we had at least four epochs of VLBA'"C or
UMRAO 14.5 GHz (Aller et al. 2014) observations during the
3FGL period with which to calculate maximum and median
values.

10 http: //www.astro.purdue.edu/MOJAVE
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Figure 3. Left panel: plot of maximum measured jet speed vs. rest-frame synchrotron SED peak frequency. The blue filled circles represent LAT-detected AGNs,
while the open red circles represent non-LAT-detected AGNs. Right panel: same as the left panel, but for 15 GHz OVRO modulation index.

We find no statistically significant differences in the activity
indices of the LAT and non-LAT sub-samples. This is also the
case for the median radio flux density during the 3FGL time
period. There is a mild indication that the maximum radio flux
densities of the LAT-detected AGNSs are higher on average than
the non-detected ones. This is likely because the majority of the
LAT-detected AGNs are highly variable in gamma-rays and
were detectable by Fermi only during a small fraction of the
3FGL time window (Acero et al. 2015).

There is no significant dependence of AGN LAT detection
on redshift, maximum 3FGL-era radio luminosity, or median
3FGL-era radio luminosity. Our sample, being selected on
radio jet emission, is dominated by high-luminosity, high-
redshift jets and contains only 11 AGNs located closer than
redshift 0.1. Consequently, it does not uniformly sample a wide
range of jet luminosity and is not ideally suited for probing the
gamma-ray detection statistics of lower luminosity AGNS.

4. SUMMARY AND CONCLUSIONS

We have examined the Fermi-LAT detection statistics
during the time period covered by the 3FGL catalog (2008
August 4 to 2012 July 31) of the MOJAVE 1.5y complete,
flux density-limited sample of radio-loud blazars with J2000
declination >—30° and |b| > 10°. We conclude that 23% of
these AGNs were not detected above 0.1 GeV by the Fermi-
LAT in part due to an instrumental selection effect and partly
due to lower relativistic boosting of their jet emission.

The LAT-detected blazars have significantly higher radio
variability levels and apparent jet speeds than the non-detected
ones. Both of these properties are positively correlated with the
Doppler boosting factor of the radio emission. Since the
effective amount of relativistic flux boosting is enhanced in
gamma-rays (especially in the case of the external IC model),
radio-selected blazars with lower than average Doppler factors
are less likely to be detected by Fermi. In Figure 3, we plot
apparent jet speed and modulation index, respectively, versus
the rest-frame synchrotron peak frequency. In both scatterplots,
there is a clear tendency for the non-LAT-detected AGNs to
cluster in the lower left corner. In Figure 3, we have identified
three AGNs (IIl Zw 2, PKS 0119411, and 4C+69.21), which
based on their locations in the plots, are likely candidates for
future LAT detection. The LAT’s selection effects are clearly

evident in the differences in the SED synchrotron peak
locations of the detected and non-detected blazars in our
sample. Bright radio-loud blazars with synchrotron peaks in
their SEDs located below 10'3* Hz have high-energy peaks that
lie well below the lower-energy cutoff of the LAT, resulting in
a low gamma-ray flux. Future space telescopes such as Astro-
H, which cover the hard X-ray/soft gamma-ray regime below
100 MeV, therefore offer great potential for detecting these
blazars.
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