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Abstract—Photovoltaics (PV) is well suited for clean, 
renewable energy provision in urban areas, which also offer 
demand side management possibilities to mitigate PV 
variability. This paper investigates the importance of 
electricity-to-thermal (E2T) strategies and electric load 
shifting for large-scale PV integration in an urban 
environment, with Helsinki, Finland as the case city. The 
study was conducted as an hourly simulation with detailed 
input data. An increase of 26‒99% in PV self-use limit was 
obtained with the considered measures, with E2T measures 
more effective than load shifting. E2T with electric resistance 
heaters was the single most effective of the studied measures: 
it could increase the PV self-use limit to 1000 MWp, or by 81% 
compared to the reference case with no flexibility, with a 
corresponding increase in PV share of electricity from 10.1% 
to 17.4%. Spatial analysis was also conducted to identify 
possible network bottlenecks during the hours when all 
electricity in the city is produced by PV. With a scheme 
combining distributed and central E2T with electric resistance 
heaters, the full city-level self-use limit of 1000 MWp could be 
integrated without network congestion problems. 

Keywords—Photovoltaics; urban energy system; demand 
side management; electricity-to-thermal; residual load; power 
system; district heating; spatial analysis 

I.  INTRODUCTION 
Urban areas will be increasingly important in climate 

change mitigation, as they already represent around half of 
all energy use and carbon emissions [1], and the growing 
population in the world is concentrating in cities [2]. 
Fulfilling the energy requirements of cities with renewable 
energy sources instead of conventional fossil fuel based 
production would therefore have a major impact for climate 
change mitigation, and requires urgent solutions. 

Photovoltaics (PV) is a very suitable renewable and 
clean energy source for use in urban areas: it can be easily 
integrated to buildings, is silent and has no moving parts [3]. 
However, its variability presents challenges to the flexibility 
of the urban energy systems [4]. Loads in urban areas offer 
possibilities to provide this flexibility with demand-side 
management (DSM) instead of dispatchable power plants 
that are often fossil fuel based, investing in energy storage 

or stressing the regional energy system outside of the city 
through interconnections [4]. 

Heating, cooling and shiftable appliances, such as 
dishwashers, offer high flexibility potential in urban 
environments while interfering only slightly with human or 
business activities. Thermal loads can be leveraged for 
power system flexibility with electricity-to-thermal (E2T) 
strategies [4,5], i.e. replacing other sources of thermal 
energy, such as combustion, with electric resistance heating 
or heat pumps. The thermal masses of heating or cooling 
loads can provide additional flexibility. 

This paper investigates the importance of DSM to 
provide flexibility for large-scale PV integration in an urban 
environment, focusing on the middle-size high-latitude (60 
°N) city Helsinki, Finland. Good-quality and diverse input 
data is available for this city, enabling a detailed analysis. 
The population of the city is 0.6 million. 

E2T strategies to produce heat to the district heating 
network are analyzed, along with leveraging the thermal 
mass in refrigeration loads in households, grocery stores and 
refrigerated warehouses. District heating covers over 90% of 
the heat load in the city [6]. Shiftable wet appliances in 
households, namely dishwashers, washing machines and 
tumblers, are also included. The analysis is conducted for a 
full year as an hourly simulation, including an intra-city 
spatial analysis at district level to take possible network 
bottlenecks into account. 

II. DATA AND METHODS 

A. Energy Consumption and PV Production 
The annual electricity and heat consumption in Helsinki 

in 2006 [7] is presented in Figures 1 and 2, respectively. 
Figure 1 also shows the shiftable loads considered in this 
paper, which range in total from 27 MW to 215 MW or 5‒
38% of the total load. 

Figure 3 presents the production of a 1-kWp PV system 
in Helsinki in the corresponding year [7]. The total 
production is 836 kWh/kWp. Due to the northern location, 
PV production is concentrated to the summer season. 



 
Figure 1.  Electricity load in Helsinki [7] with the shiftable components. 

 
Figure 2.  Heat load in Helsinki [7]. 

 
Figure 3.  PV power production in Helsinki [7]. 

B. Electricity-to-thermal (E2T) 
A simple E2T scheme is considered in this paper in 

which electricity is converted to heat and distributed with 
the district heating network without using thermal storages. 
The conversion is done with electric boilers (coefficient of 
performance COP=1) or heat pumps (assuming constant 
COP=3). 

C. Shiftable Load Modelling and Disaggregation 
The shiftable loads considered in this study are 

refrigerators and freezers in households and grocery stores, 
freezer warehouses, and dishwashers, washing machines and 
tumblers in households. The loads have been selected for 
their high potential for DSM and the possibility to control 
them with minimal effect on human or business activities. 
The whole populations of the aforementioned loads in 
Helsinki are aggregated to the modelling for an analysis of 
the full potential. 

The shiftable loads are modelled as aggregate time series 
shiftable for max. n hours. That is, the loads are assumed 
linear systems, that require the same total amount of energy 
whether shifted or not. Hence, the effect of the temperature 
change due to shifting on the energy consumption of cold 
appliances due to change in thermal losses and refrigerator 
COP are neglected. As the temperature changes are small as 
food quality has to be preserved, these effects do not 
considerably affect the large-scale DSM potential of the 
loads, which is the focus of this paper. Moreover, the loads 
are assumed continuously controllable at the aggregate level, 
owing to large population sizes and the possibility to 
actually control cold appliances continuously. 

The residential cold and wet appliance consumption was 
obtained based on data from an appliance-level 
measurement campaign conducted in Sweden in 2005-2008 
on 201 detached houses and 188 apartments [8].  As the 
time use in Sweden and Finland is very similar [9,10], 
appliance use patterns can be assumed the same. Average 
consumption time series of the considered appliances for 
detached houses and apartments were calculated separately 
from the sample data for the year 2007. Appliance 
ownership in the sample was scaled to the average 
ownership in Helsinki [11], and the total consumption in 
Helsinki was obtained by scaling with the number of 
detached houses and apartments in the city [12]. Due to lack 
of data, the distribution of device properties in Helsinki and 
the sample had to be assumed the same. The cold appliances 
are assumed shiftable for 1 h due to their thermal mass 
[13,14] and wet appliances for max. 8 h. 

Empirical time series at hourly resolution of annual 
electricity consumption of refrigerators and freezers in a 
supermarket, and three freezer warehouses were obtained 
from SEAM Group, a Finnish demand response company 
[15]. Dimensioning of refrigerators and freezers in grocery 
stores in three size classes [16] was combined with the 
numbers of the stores in the size classes in Helsinki [17–23], 
219 in total, to obtain the total capacity of these loads in the 
city. The available data from a single supermarket was 
assumed representative and scaled to the total capacity. The 
time that these loads can shift their consumption ranges 
from 1 h to 25 h, depending on the controlled power and 
state of the devices [24,25]. As control of the full capacity is 
allowed here and information on device states is not 
available, a conservative value of 1 h is used. Because the 
data shows mainly diurnal and seasonal variations and the 
dynamics of the load is in the order of the time resolution, 
no smoothing of the data was done. The data available from 
the three freezer warehouses was assumed representative of 
the nine freezer warehouses in Helsinki [26] and scaled 
accordingly. These loads were assumed shiftable for max. 4 
h [27,28]. 



D. DSM Control Strategy 
The rule-based control strategy of E2T and shiftable 

loads used in this paper aims at hourly matching of the 
electricity load in the city (Qel) with the PV production (Pel). 
E2T is given priority over load shifting because it can be 
produced and controlled centrally as part of the district 
heating system with a considerably simpler control system 
than the distributed shiftable loads and without any effect on 
human or business activities, affected to a minor extent by 
load shifting. 

For each hour i in the forward simulation: 

1. Add previously postponed consumption that reaches 
its maximum shifting time at hour i to Qel(i), and subtract 
consumption previously shifted backwards from the hour i 
from it. 

2. If E2T is used and Pel(i)>Qel(i), convert electricity to 
heat: QE2T,el(i) = max(Pel(i)-Qel(i), Qth(i)/COP). 

3. If load shifting is used and Pel(i)>Qel(i), first use 
previously postponed shiftable consumption that has not 
reached the maximum number of hours it can be shifted. If 
that is not enough, shift future consumption backwards to 
the current hour. 

4. If load shifting is used and Pel(i)<Qel(i), postpone 
shiftable consumption from the current hour. 

III. RESULTS 

A. PV share of energy demand and overproduction 
The PV capacity range 0‒2000 MW is considered in this 

paper. 2000 MW of capacity corresponds to a 70% 
utilization of the rooftop area in the city assuming that the 
capacity of the PV systems is 150 Wp/m2. A 50% rooftop 
utilization which can be assumed not to be limited by 
shading [1] corresponds to around 1400 MW. 

Figures 4‒6 show the surplus PV production in the city, 
and PV shares of total electricity and heat consumption, 
respectively. Even without any flexibility measure, the 
surplus PV production is minor slightly above the self-use 
limit. The studied flexibility measures can increase the self-
use limit by 26‒99%. E2T measures have a larger effect 
than load shifting. 

The PV share of electricity increases linearly above the 
self-use limit until 800 MWp regardless of flexibility 
measure or lack of one. The increase is lower than linear 
above that. Load shifting can provide a minor increase 
compared to no flexibility or only E2T. The PV share of 
heat increases slowly above the self-use limit when E2T is 
used. Even though the increase is considerable at higher PV 
capacities, the total share of heat is minor: less than 8% at 
all the studied capacities. 

E2T with electric resistance heaters is the most effective 
single measure to increase the amount of PV in the city 
without surplus production or curtailment. At the self-use 
limit obtained this way, 1000 MWp, PV share of electricity 
is 17.4%, a considerable increase from the 10.1% at the 
conventional self-use limit. The heat production lost 
compared to using heat pumps is minor, around 1% of the 
whole annual heat demand. 315.3 MW of resistor capacity is 
required. With the approximate cost of electric boilers 0.15 
M€/MWe [29] and PV systems 2 M€/MWe [30], the E2T 

capacity investment would be 2% of the PV capacity 
investment. 

 
Figure 4.  Surplus PV production that would be exported out of the city or 

curtailed away. The vertical grey line denotes the original self-use limit. 

 
Figure 5.  PV share of electricity. The vertical grey line denotes the 

original self-use limit. 

 
Figure 6.  PV share of heat. The vertical grey line denotes the original 

self-use limit. 

B. Effect of PV on the residual load 
The effect of PV on the control of conventional power 

plants is not directly considered in this paper; this effect is 



analyzed via the residual load. The average magnitude 
(absolute value) and average 24-h standard deviation of the 
residual electricity and heat load are used as metrics, 
presented in Figures 7‒10.  

Increasing PV capacity decreases linearly the mean 
electricity residual load magnitude (Fig. 7) up to the self-use 
limit and above it until the capacity of 700 MWp, as the PV 
production covers an increasing share of the load. Above 
that capacity, the decrease becomes lower than linear. The 
magnitude shows a minimum which is the lower the more 
effective flexibility measures are in place. Above the 
minimum, increasing PV capacity increases the residual 
load magnitude as the negative residual load increases.  

Interestingly, the standard deviation of electricity 
residual load (Fig. 8) shows a minimum below the self-use 
limit, an effect enhanced by load shifting. Above the self-
use limit, the standard deviation increases approximate 
linearly when E2T is not used, with load shifting decreasing 
its value. E2T can further decrease the value and the rate of 
increase with PV capacity. 

 
Figure 7.  Mean magnitude of the electricity residual load. The vertical 

grey line denotes the original self-use limit. 

 
Figure 8.  Mean 24-h standard deviation of the electricity residual load. 

The vertical grey line denotes the original self-use limit. 

The heat residual load (Fig. 9) shows a decrease and its 
standard deviation (Fig. 10) an increase with increasing PV 
capacity above the self-use limit when E2T is used as more 
heat is produced by E2T. The changes with reference to the 

case with no E2T are minor slightly above the self-use limit, 
as the PV share of heat is small. Load shifting has a minor 
decreasing effect to the changes. 

 
Figure 9.  Mean magnitude of the heat residual load. The vertical grey 

line denotes the original self-use limit. 

 
Figure 10.  Mean 24-h standard deviation of the heat residual load. The 

vertical grey line denotes the original self-use limit. 

C. Spatial analysis 
Intra-city spatial analysis is conducted to take into 

account possible bottlenecks caused by the electricity and 
heat distribution networks in the city. The spatial analysis in 
this paper focuses on E2T with resistance heaters, as it is the 
most effective single measure studied in this paper. 

The employed spatio-temporal simulation tool [5,31] 
calculates electricity and heat consumption and production 
at district level and the resulting flows in the electricity and 
heat networks. Figure 11 presents the power system 
topology in Helsinki, with the three combined heat and 
power (CHP) plants marked with yellow disks. Two E2T 
strategies are considered: one with all E2T produced 
centrally at the CHP plants and fed to the district heating 
network, and the other with also distributed E2T for local 
use in some nodes. Spatial allocation of the PV capacity is 
done according to the E2T scheme to maximally leverage 
the possibilities of E2T for PV integration. 

As all the E2T-produced heat that is fed to the district 
heating network is produced at the CHP plant sites in our 
scenarios, heat network congestion will not occur as the 
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