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a b s t r a c t

A key aspect for the forklifts is the state-of-health (SoH) assessment to ensure the safety and the
reliability of uninterrupted power source. Forecasting the battery SoH well is imperative to enable
preventive maintenance and hence to reduce the costs. This paper demonstrates the capabilities of
gradient boosting regression for predicting the SoH timeseries under circumstances when there is
little prior information available about the batteries. We compared the gradient boosting method
with light gradient boosting, extra trees, extreme gradient boosting, random forests, long short-term
memory networks and with combined convolutional neural network and long short-term memory
networks methods. We used multiple predictors and lagged target signal decomposition results as
additional predictors and compared the yielded prediction results with different sets of predictors
for each method. For this work, we are in possession of a unique data set of 45 lithium-ion battery
packs with large variation in the data. The best model that we derived was validated by a novel
walk-forward algorithm that also calculates point-wise confidence intervals for the predictions; we
yielded reasonable predictions and confidence intervals for the predictions. Furthermore, we verified
this model against five other lithium-ion battery packs; the best model generalised to greater extent
to this set of battery packs. The results about the final model suggest that we were able to enhance
the results in respect to previously developed models. Moreover, we further validated the model for
extracting cycle counts presented in our previous work with data from new forklifts; their battery
packs completed around 3000 cycles in a 10-year service period, which corresponds to the cycle life
for commercial Nickel–Cobalt–Manganese (NMC) cells.

© 2021 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).

1. Introduction

Efficient transportation systems can improve the flow of goods
and diminish the amount of energy used. In this regard, electric
vehicles (EVs) have gained attention, especially in the area of
forklifts, that now are not only energy-efficient but also safer for
the drivers as they produce no fumes, vibrate less and are qui-
eter than combustion-engine-powered forklift trucks. Lithium-
ion batteries are widely employed to power these EVs. A battery’s
ability to store and deliver electrical energy is expressed by a
measure, battery state of health (SoH), that is used for moni-
toring and for controlling these batteries in order to maximise
their availability for operation. Heat generation in battery packs
increases as they age. If unchecked, it can cause internal short
circuits and compromise the safety of EV passengers and first
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responders. Therefore, battery packs in EVs are replaced when
their SoH decreases below 80% [1]. However, these lithium-ion
batteries can still be used for less-demanding grid-connected en-
ergy storage applications, i.e., the batteries can have a second-life
use as components of an energy storing system for the sustainable
energy management of a Smart City [2–4].

Overall, making battery related forecasts remains difficult in
such manner that it generalises well [5]. For data-based ap-
proaches, there is a trade-off between complex hypotheses that
fit the training data well, and simpler hypotheses that may gener-
alise better [6,7]. For this paper, we are in possession of a unique
data set of 45 lithium-ion battery packs with large variation in the
data [8]. We compared five regression methods for making pre-
dictions for the SoH timeseries: gradient boosting (GB) [9], light
gradient boosting (LGB) [10], random forests (RF) [9], randomised
extra trees (ETR) [11], extreme gradient boosting (XGB) [12].
We also compared two other methods: long short-term memory
networks (LSTM) [13] and long short-term memory network and
convolutional neural network (LSTM–CNN) method [14]. Based
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on these methods, several models were grid searched to yield
the best hyperparameters and the best model for each of the
methods. Then the models yielded were back-tested in walk-
forward manner [15]. We created a novel walk-forward algorithm
for the data set that was re-framed as a supervised learning prob-
lem, that can utilise less steps and is therefore computationally
lighter than the one-step-ahead walk-forward algorithm [16,17];
furthermore, the novel algorithm can be utilised to calculate the
point-wise confidence intervals for the predictions. With this
novel algorithm, we examined several prediction-period related
parameters to detect the best time-span to utilise in order to yield
reliable predictions. Moreover, as there is data available from
several battery packs, we assessed the applicability of this data
to the finally yielded best model, and then we verified the final
model against five similar lithium-ion battery packs.

In the selection of the machine learning methods, we wanted
to use methods that adapt well to timeseries regression, which,
e.g., do not shuffle or split the data in such manner that the time-
series sequence is broken. Secondly, we aimed at using a method
with a fairly good record of speed and model performance in the
field of machine learning, such as XGB [12]. Thirdly, we applied
empirical mode decomposition to the SoH signal to determine if
the decomposition data enhances the model performance [18].
Little research exists related to battery packs’ state-of-health pre-
dictions; therefore, we have identified a few research gaps, based
on which we have formulated the following research questions:

1. How can we obtain a robust SoH estimation model for
lithium-ion battery packs with low error margins?

2. How can we validate the correctness of the used model?

Contributions

This paper contributes to the literature by introducing a novel
GB model for SoH prediction based on real-world application of
lithium-ion battery packs in forklifts and implementation of a
novel walk-forward algorithm [9,19] for validating the models.
The implementation of the novel walk-forward algorithm was
first tested against a public data set on household power con-
sumption [20]. Moreover, we further validated the model for
extracting cycle counts presented in our previous work [21] with
data from new forklifts; their battery packs completed around
3000 cycles in a 10-year service period, which corresponds to the
cycle life for commercial Nickel–Cobalt–Manganese (NMC) cells
published in [1].

Organisation

The remainder of the paper proceeds as follows. First, the
related literature in presented Section 2 and the materials and
methods in Section 3. The model development steps are described
in Section 4. Subsequently, the main findings are presented in
Section 5, followed by the discussion in Section 6. The conclusions
and future work are discussed in Section 7.

2. Literature review

The lithium-ion battery packs in EVs and grid storage sys-
tems can benefit from the added reliability and safety assurance
provided by a fast, yet accurate, SoH prediction. Traditionally,
SoH forecasting has relied on equivalent-circuit models; how-
ever, more recently statistical and machine-learning techniques
have been proposed, including ARIMA based statistical meth-
ods [22–24], neural networks [22,25,26], Gaussian processes [27,
28], support vector machines [29–31], ensemble machine learn-
ing methods [32,33] and the XGB [22,34]. The success of the

Table 1
Summary of the basic signals.
Basic signals

Time stamp of the data, 1 min interval
Measured voltage V
Measured current A
SOC %
Ambient temperature ◦C

studies cited above demonstrates the capabilities of these ap-
proaches. Nevertheless, it is also known that the relationship
between the basic signals and the SoH is complex under real
conditions [35,36]. In addition, these studies focus on single cells,
although the voltages available through the state-of-the-art single
cells are insufficient for supporting an electric driveline. There-
fore, many cells needs to be combined in series and in parallel to
build up battery packs that are then used as energy sources in the
EVs. Due to the manufacturing inconsistencies and differences in
working environments, the behavior of each battery pack varies
in real-life applications. Furthermore, this variation will become
even larger as the cells age. As a result, an estimation based on the
unit cell model will be inaccurate for real-world applications [37].

Therefore, in this study, in contrast to several recent studies
that model a battery pack based on unit cells (e.g., [38–40]),
we employed a battery data set from lithium-ion battery packs
that are used in electric forklifts [8]. The data was obtained from
one of the companies in the industry. This data is unique to our
knowledge, as we have not found data repositories related to the
forklift battery data, except on the cell level [41].

3. Materials and methods

3.1. Data set description

For this study, the data set consists of 45 three-year timeseries
that are derived from lithium-ion battery packs used in electric
forklifts. The nominal capacity of the battery packs is 220 kW. We
were told that the data was collected from different countries and
continents. From the data we observed that the mean monthly
ambient temperature for the forklifts ranged from 21.5 ◦C to 32.3
◦C with instantaneous temperatures beyond this range. The data
was collected using sensors selected by the battery manufacturer
that were attached to the batteries. The raw data was sent to
a local hub according to the date of the data collection and the
serial number of the battery. The selected data points, comprised
of current, voltage, and the ambient temperature, were taken
every minute (Table 1). Based on these data points, we extracted
more features using our feature extraction method [21].

In this study, the number of timeseries available was greater
than in our previous study [21]; however, the new data supported
our previous findings. We observed that the median number of
occurrences of the charging pulses was two in a day; here a
charging pulse is defined as a period between 5–30 min when
the battery’s state-of-charge increases. However, there were days
when there were no charging pulses (timeseries are irregular). For
more information on the basic and on the derived signals, see our
previous paper [21].

3.2. Proposed methodology

Although there are several statistical methods [42] or neu-
ral network based methods [43] to compose a solution for in-
complete or irregular timeseries, in this paper we wanted to
utilise regression methods that require regular timeseries. Fur-
thermore, we wanted to compare the results with our previ-
ous ARIMA based results with results that are directly com-
parable [21]. For these reasons, the irregular timeseries based
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on one-minute measurements was aggregated to regular daily
timeseries; the number of resulting timesteps was around 1000
for the battery packs.

The overall prediction target, state-of-health, is defined as the
ratio of current capacity to the initial capacity of a battery; the
SoH is denoted as timeseries in this paper [21]:

SoH(t) =
Cn(t)
C0(t0)

(1)

The empirical mode decomposition is a mathematical time
domain decomposition method, which can convert a group of
timeseries into locally narrow band components, the intrinsic
mode functions [44]. This method is applied to, e.g., asserting
power quality [45], or predicting remaining useful lifetime of
lithium-ion batteries [22].

A timeseries can be transformed by using an empirical mode
decomposition, which in this case is denoted as:

SoH(t) =
N∑
i=0

ci(t)+ rN (t) (2)

where ci(t) are the intrinsic mode functions (IMFs) separated by
instantaneous frequencies, rN (t) is the residue and N is the finite
amount of decompositions obtained [44]. In this paper, for the
needs of the model, the residue is used as the trend [46], although
there are more refined trend extraction methods available [47].

The IMFs can be transformed by using the Huang–Hilbert
transform. This is used to obtain the analytic signal, which can
be presented in polar form [48], neglecting the residue. In this
case this yields:

SoH(t) =
n∑

j=1

aj(t)ei(θ)j(t) (3)

where aj(t) are the analytic signals [49]. The synthesised signal
models a non-stationary and non-linear system analytically, i.e.,

SoH(t) = a(t)cosθ (t) (4)

where a(t) is the instantaneous amplitude and θ (t) the instan-
taneous phase. The optimal values for the parameters of the
synthesised signal models are tuned according to the signal in
question; i.e, the IMFs and residue change as the data set changes,
and decomposing parameters needs to be set accordingly to yield
an accurate decomposition [18]. Finally, the instantaneous fre-
quency is obtained through the derivative of the instantaneous
phase, i.e.,

f (t) =
1
2π

dθ (t)
dt

(5)

The derived f (t) is a tool for analyzing transient signals, such
as battery pack SoH, whose constituent frequencies may change
over time [50,51]. The lagged instantaneous frequency, f (t − 1),
was used as one of the predictors for our models.

3.3. Selected SoH prediction methods

Extreme gradient boosting (XGB) is an ensemble of gradient
boosted decision trees algorithm [9,52]. It uses decision trees
where new trees improve the model consisting of those trees that
are already part of the model. It is used, for example, for fore-
casting energy load [53] and for forecasting the battery cell state-
of-charge (SoC) as represented in [54]. As for the other methods
utilised, gradient boosting (GB) is described in [9], extremely ran-
domised trees (ETR) in [11], random forests (RF) in [9], long short-
term memory networks (LSTM) e.g. in [10] and convolutional
neural networks (CNN) in [14].

3.4. Data preprocessing methods and performance metrics

The outliers in the initial data for each battery pack were
eliminated by the interquartile range (IQR) method [55]. After
removing the outliers, we imputed some missing daily data. The
missing values were the mean of the daily values above and
below the missing values.

After creating the predictors and targets for the models, we
re-framed the multivariate timeseries as a supervised learning
problem [9] in order to define the number of past time steps
used for making a forecast and to define the number of prediction
timesteps for the prediction horizon. In the model tuning phase,
we split this re-framed data to training data and test data (more
details on splitting methods and on numerical values utilised
for the test and train sets is in the next section in Table 7).
We evaluated the used prediction methods using four different
metrics: the root-mean-squared error (RMSE) [56], the mean
absolute error (MAE) [57], coefficient of determination, R2 [58]
and the explained variance (EVAR) as in Eq. (6). In this paper, the
MAE and the RMSE are related to the SoH range 0–100(+) %. E.g.,
a MAE 1 implies that, on average, the forecast’s distance from the
true SoH value is 1. For this data set, a MAE value of 1 is significant
as, e.g., the yearly degradation of SoH for battery (a) is around 2.2
percentage points [21].

EVAR = 1−
Var{y− ŷ}
Var{y}

(6)

For EVAR and R2 evaluation methods, the best possible score is
1.0; a baseline model predicting the mean (ȳ) has score 0; models
with less skill than the baseline model will have negative scores.

3.5. Validation of models and calculation of the point-wise confi-
dence intervals for the estimates by a novel walk-forward algorithm

We executed a basic comparison of models with walk-forward
method to predict and to find the best model in terms of MAE [15,
16]. A basic walk-forward method, that utilises expanding win-
dow and proceeds one-step-ahead at each iteration round, can
be utilised for all comparisons [17]. Nevertheless, we wanted to
find an approach that utilise computational resources sparingly as
the timeseries can grow long (10-years or more) or there can be
several models to be evaluated at the same time for a fleet of fork-
lifts. The following parameters can be set for the novel algorithm:
sample size (number of the latest observation windows used
by the algorithm) and roll size (number of windows stepped
over in an iteration) 1; these functionalities are not part of the
standard machine learning (sklearn) library timeseries split for a
multivariate data set re-framed as supervised learning problem
in a simple manner. For the implementation of the algorithm, we
used Pandas’s append and del functions and sklearn’s regression
methods (GB, RF, XGB and ETR) [59]. It is noteworthy that the
window size (number of past observations and future observation
in the prediction window) was set in the model tuning phase;
furthermore, each window size requires a model of its own [60].

As the algorithm utilises the sliding window method, the
successive training sets are not super-sets of those coming before
them, and this yields models that have more variation; however,
at the same time, some of the training data is lost.

Moreover, the algorithm yields point-wise confidence inter-
vals (CI) that quantify the uncertainty for the predictions [16,61].
In this paper, we added upper and lower confidence intervals (CI)
to each of the point-wise predictions for the selected final model
(Fig. 7). The standard error (SESoH) that is needed for yielding a
confidence interval was calculated as:

ŜESoH(µ̂t (n)) =
σ̂t (n)
√
n

(7)
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Fig. 1. The selected SoH prediction model development steps 1–2: data preparation. Steps 3–5: SoH decomposition and decomposition related predictions. Steps
6–7: the final model predicting the SoH with the model evaluation.

Algorithm 1 Walk-forward: sample predictions with point-wise confidence intervals

1: inputs:
2: Obs: timeseries’ observations that are re-framed as supervised learning problem (re-framed

to windows)
3: nS : sample of windows utilised for testing
4: nroll: number of windows stepped over in a window roll
5: local variables:
6: Te: a sample of timeseries’ windows
7: Tr: timeseries’ windows preceding Te
8: RTe: a rolled sample of timeseries’ windows
9: Wp: consequent predictors utilised for making predictions

10: outputs:
11: ŜoH: SoH predictions for the sample
12: CI: point-wise confidence interval for these SoH predictions
13: Wt : consequent targets (ground truth)
14: require:
15: |Obs|> 1
16: nS > 0
17:
18: Tr ,Te ← split Obs to train and test sets according to nS
19: RTe ← [ ]
20: for R← 0 to |Te| mod nroll do
21: RTe ← append window (Te[R])
22: end for
23: ŜoH ,CI ← [ ], [ ]
24: for T ← 0 to |RTe| do
25: Wp,Wt ← RTe[T ] separate predictors and targets for this iteration step
26: ŜoH ← fit the model with Tr and predict with Wp
27: CI ← append ±1.98*SE(ŜoH) ▷ Eq. (8)
28: Tr ← append windows from Te until and including window RTe[T ]
29: if sliding window then
30: Tr ← delete |nroll| windows from head of Tr
31: end if
32: end for
33: return ŜoH , Wt , CI

where n are the prediction made by the novel Algorithm 1.
We used the 95% significance level for the point-wise confi-

dence intervals, which corresponds to the Gaussian distribution
critical value 1.96. Hence, a confidence interval was calculated as:

CI = 1.96ŜESoH(µ̂t (n)) (8)

for a point-wise SoH prediction (Algorithm 1 above) [16,61].

4. Development of models

The overall flow of the model development is depicted in
Fig. 1. In the steps 1–2, we cleaned the basic signals and extracted
new ones [21]. Initially, we had to eliminate the adverse effect
of severe transient failures, where, e.g., a sensor had sent erratic
values. Furthermore, for selecting the battery packs for the model
development, we scrutinised the ambient temperatures. On one
hand, ambient temperature below zero may have had an adverse
effect on the SoH of the battery [62]. On the other hand, relatively
high ambient temperatures (> 32 ◦C) also have an adverse effect
on the SoH [1,63,64]. Moreover, for the batteries used in forklifts,
the ambient temperature fluctuation showed some seasonality
for all battery packs; an example of this is in Fig. 3. For these
reasons, for the model development, we used a set of battery
packs with the same 32-month data record and the mean ambient
temperature between the range mentioned above.

For the remaining battery packs, the following physical quan-
tities were extracted: charging time, charging voltage, charging
current and difference in state-of-charge (SOC) during chargings.
From these we derived charging energy and charging cycles as
described in [21].

For verifying that the cycle count calculation method devel-
oped in the previous paper was valid for the new battery packs
available for the study this time, we selected batteries’ (a–f)
timeseries randomly from the suite of 45 batteries for making
graphs and for making initial reasoning based on those graphs;
these new results supported the findings of our previous study.
In the monthly averaged SoH data, there were some obvious
outliers; moreover, there was remarkable fluctuation day-to-day.
Overall, the SoH values for a typical battery showed a linearly
fitted trend downwards. However, small increases in the capacity
after a slow cycle or a rest period may result in the SoH exceeding
100% [32]. This can be visually confirmed from the plots for the
selected six batteries in Fig. 2. We decided to use the battery (a) in
the further development of the model in more detail; however all
of the six batteries are taken into account in the final verification.
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Fig. 2. State-of-health trends for batteries (a) – (f).

Fig. 3. Ambient temperature for battery (a).

From this initial data the outliers were detected and removed
by the interquartile range selection method; any observations
that were more than 1.5 × IQR below the Q1 or more than 1.5 ×
IQR above the Q3 were considered as outliers [55]; some 3%–5%
of the data was discarded. Then the missing daily values were
imputed by taking the average of the values before and after the
missing values. As the next step for the model generation, the
step 3 in Fig. 1, we selected the complete empirical mode decom-
position (CEEMDAN) implementation [18], which fundamentally
implements the method as described in the methodology Sec-
tion 3.2 (an example of decomposition’s results is in Fig. 4). To
obtain the instantaneous frequency for the SoH, we performed
the Huang–Hilbert transform at this stage (example in Fig. 9),
lagged it by one time step (t-1), and added it as a predictor. The
summary of the features after the feature extraction is in Table 2.

For the IMF and residue predictions, in the model tuning and
validation phases (steps 4 – 5 in Fig. 1), 70% of the data set
was used for tuning and 30% for validation. We selected XGB
randomly as the method to use, albeit proven one in the field
of batteries [22,34]. For the tuning, we used the predictors pre-
sented in Table 2 and tuned the model using 10-fold timeseries
cross-validation; the tuning results are presented in Table 3. The
best models were verified with the test set. Finally, the resulted
predictions for each of the IMFs and for the residue were added

Table 2
Selected features used by a model. The ticks represent the features used by a
model.
Signals/Target (predictors) IMFs SoH (basic) SoH

(basic+IMFs)

Time stamp of the data ✓ ✓ ✓

Voltage V ✓ ✓ ✓

Current A ✓ ✓ ✓

SOC % ✓ ✓ ✓

Ambient temperature ◦C ✓ ✓ ✓

Charging length in minutes ✓ ✓ ✓

Energy Wh ✓ ✓ ✓

Voltage difference ∆V ✓ ✓ ✓

Cycle ✓ ✓ ✓

(t-1) lagged instantaneous frequency ✗ ✓ ✓

Prediction for residue N/A ✗ ✓

Prediction for IMFs N/A ✗ ✓

to the final data set as additional predictors maintaining the train
and test split for avoiding data leakage.

4.1. Model tuning and initial model comparison for predicting the
SoH of a battery pack

Next, we generated the models for predicting SoH (steps 6–
7 in Fig. 1). We selected seven different up-to-date methods to
ensure that we find a good model for the prediction. We tuned the
GB, LGB, RF, ETR and XGB models with the predictors presented
in Table 2. For this purpose, we re-framed the timeseries to
windows with size seven (six past observations and prediction
horizon of one) and utilised 10-fold timeseries cross-validation
in the grid search of the best hyperparameters. For each of the
methods, we tuned two models with SoH as the target: the
first model utilised basic predictors and the second utilised ba-
sic predictors together with intrinsic mode function (IMF) and
residue prediction values (i.e., SõH(t)). The summary of the tuned
hyperparameters is provided in Table 4.

Furthermore, two simple LSTM and CNN–LSTM models were
grid searched (network structure in Table 5) for finding the
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Fig. 4. SoH, trend and two first IMFs obtained from complete empirical mode decomposition transformation for battery (a).

Table 3
Overview of the selected models for predicting intrinsic mode function and
residue values.
Target IMF1 IMF2 IMF3 Residue

Method XGB XGB XGB XGB

Number of estimators 1000 500 250 250

Maximum depth 2 2 2 3

Column samples
By level 0.8 0.8 0.8 0.8
By node 0.8 0.5 0.5 0.8
By tree 0.8 0.8 0.8 0.5

best hyperparameters for them. In the evaluation phase, we
normalised the used data (each predictor variable and the target
variable), and repeated each model evaluation 10 times and
averaged the results after inverting the normalisation for the final
results. All of the predictors were used for these models (Table 2).
This grid search method was used as an initial attempt to yield a
network structure for this data set as no prefitted neural network
model exists for this data.

For the five methods with the best EVAR yielded (in Table 7),
we expanded the number of models. We utilised the same meth-
ods but increased the number of window sizes utilised. For each
new window size, we tuned a model of its own. After tuning,
we made a comparison between all the yielded models with the
novel algorithm 1 for finding the optimal values for samples sizes,
rolling window sizes and roll step sizes for the models for this
data set (Section 4.3).

4.2. Verification of the novel walk-forward algorithm and calculating
the point-wise confidence intervals with an external data set

We verified the novel walk-forward method for yielding the
point-wise confidence intervals against a public data set (the
household power consumption data set [20]); this data was ag-
gregated to monthly values. The model that was used to predict
the monthly power consumption was a simple XGB model (num-
ber of estimators: 50, maximum depth: 2); it yielded the RMSE
0.08, which exceed the naïve model’s RMSE 0.11. For the verifica-
tion, the number of observation windows used for walk-forward
was 30, the size of the sliding window was 7 and the number of
rolled over windows was 4. The yielded prediction results with
the corresponding point-wise confidence intervals are in Fig. 5.
The CI does not fluctuate significantly nor show a clear trend;
the model seems to be stabile [16]. As these results supported
the theoretical basis [9] for its use as a verification method, the

Fig. 5. The graph of the household power consumption predictions with the
XGB model and the point-wise CI for the predictions. Notice that the confidence
interval varies due to, e.g., the used aggregation method, the rolling window size
and the underlying model’s stability.

point-wise confidence interval calculation method was used in
our model development as well.

4.3. Verification of the novel walk-forward method and calculating
the point-wise confidence intervals with battery data set

For the finally selected methods (in Section 4.1), we used the
predictors presented in Table 2 and tuned the models using 10-
fold timeseries cross-validation; the tuning results are presented
in Table 6. After the tuning, the yielded models were verified with
the novel algorithm with both expanding and sliding windows.
As a summary, the following sizes were utilised for samples: 14,
30 and 90 days, for windows: 7, 14 and 30 days (with prediction
horizon 1 included in these figures), and for window rolls: 1, 2, 7,
and 14 days. In order to make enough repetitions, the algorithm
parameters were set so that sample size > window size > 2 x
roll size, except for one case where roll and window sizes were
set to be equal. It can be noted that sample size determines the
initial test set, from which walk-forward starts to roll the window
towards the newest observations in the test set.
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Table 4
Overview of the selected regression models for predicting SoH (window size 7).
Target SoH SoH SoH SoH SoH SoH SoH SoH SoH SoH

Method GB EMD-GB LBG EMD-LGB RF EMD-RF XGB EMD-XBG ETR EMD-ETR

Number of estimators 1000 1000 250 500 500 1000 1000 1000 500 1000

Maximum depth 4 4 8 6 6 5 2 2 6 6

Column samples
By level N/A N/A N/A N/A N/A N/A 0.8 0.8 N/A N/A
By node N/A N/A N/A N/A N/A N/A 0.8 0.8 N/A N/A
By tree N/A N/A 0.8 0.8 N/A N/A 0.8 0.8 N/A N/A

Subsamples 0.8 0.8 0.8 0.8 N/A N/A 1 1 N/A N/A

Subsample frequency N/A N/A 5 5 N/A N/A N/A N/A N/A N/A

Table 5
Overview of the LSTM and CNN–LSTM models for predicting SoH (window size 7).
LSTM CNN–LSTM

Layer (type) Output shape Number of parameters Layer (type) Output shape Number of parameters

lstm_10 (LSTM) (None, 200) 172800 conv1d_2 (Conv1D) (None, 12, 64) 2944
repeat_vector_5 (RepeatVecto) (None, 7, 200) 0 conv1d_3 (Conv1D) (None, 10, 64) 12352
lstm_1 (LSTM) (None, 7, 200) 416800 max_pooling1d_1 (MaxPooling1) (None, 5, 64) 0
time_distributed_2 (TimeDist) (None, 7, 50) 10050 flatten_1 (Flatten) (None, 320) 0
time_distributed_3 (TimeDist) (None,7,1) 51 repeat_vector_1 (RepeatVecto) (None, 7, 320) 0

lstm_1 (LSTM) (None, 7, 200) 416800
time_distributed_2 (TimeDist) (None, 7, 50) 10050
time_distributed_3 (TimeDist) (None,7,1) 51

Table 6
Overview of the further selected regression models for predicting SoH (window sizes 14–90).
Target SoH SoH SoH SoH SoH

Method GB EMD-GB RF EMD-RF EMD-ETR

Window 14
Number of estimators 250 250 250 1000 1000
Maximum depth 4 4 5 6 6
Subsamples 0.8 0.8 N/A N/A N/A

Window 30
Number of estimators 1000 1000 500 500 500
Maximum depth 5 5 5 6 6
Subsamples 0.8 0.8 N/A N/A N/A

Window 90
Number of estimators 1000 1000 250 250 500
Maximum depth 4 4 5 5 6
Subsamples 0.8 0.8 N/A N/A N/A

Table 7
Summary of the model comparisons (EVAR is the explained variance). The five
best grid searched models are in boldface.
Battery Model Samples EVAR MAE RMSE

Battery (a) GB 70%–99% of data 99.9 0.21 0.28
Battery (a) EMD-GB 70%–99% of data 99.9 0.20 0.28
Battery (a) RF 70%–99% of data 99.9 0.22 0.31
Battery (a) EMD-RF 70%–99% of data 99.9 0.24 0.32
Battery (a) LGB 70%–99% of data 99.2 0.48 0.81
Battery (a) EMD-LGB 70%–99% of data 99.3 0.45 0.75
Battery (a) EXT 70%–99% of data 99.6 0.51 0.59
Battery (a) EMD-EXT 70%–99% of data 99.7 0.43 0.53
Battery (a) XGB 70%–99% of data 99.3 0.53 0.76
Battery (a) EMD-XGB 70%–99% of data 99.6 0.44 0.59
Battery (a) EMD-LSTM 70% of data – 7.70 9.47
Battery (a) EMD-CNN LSTM 70% of data – 8.09 10.27

5. Results and discussion

5.1. Results for battery pack (a) and comparison with the previous
methods

The best initial model for the battery (a) was yielded by gra-
dient boosting with additional predictors (i.e., SõH(t)) and with
window size 7. (See (EMD-GB) and the rest of the results in
Table 7). This model yielded mean absolute error 0.20 and RMSE
of 0.28 that are in the low error ranges. Furthermore, it can be
noted that all of the four best regression models were close-by

each other in terms of MAE. For the LSTM and LSTM–CNN it can
be noted that the results indicate that an optimal neural network
structure and parameters were not found this time.

In the further validation, we tuned new models, and then we
back-tested them with the novel walk-forward method using the
battery (a). The results (two of the best scores and the worst score
for each model) are presented in Table 8. The best initial model
for the battery (a) was gradient boosting without the additional
predictors (i.e., without SõH(t)) and with window size 14.

This model yielded mean absolute error 0.18 and RMSE of 0.20,
and is the final best result for this paper. Furthermore, for gradi-
ent boosting and for random forests models, the overall difference
between the best and the worst MAE for all of the submodels was
narrow (< 0.1). The best models were yielded without the addi-
tional predictors (i.e., without SõH(t)). In contrast to these results,
for the light gradient boosting, extreme boosting and extra trees,
the overall difference between the best and the worst MAE for all
of the submodels was typically wider than 0.1. The best models
were yielded utilising the additional predictors (i.e., with SõH(t)).
A conclusion is that the decomposed SõH(t) predictions used
as predictors slightly enhanced some models’ overall prediction
accuracy. The expanding window method yields, in majority of
the cases, slightly smaller MAE and RMSE values for this data set
than the sliding window method. This is according to the general
findings in the industry for data with relatively few samples [17].
The window roll sizes 1–7 yielded models that had the best and
the worse MAE results close by each other with the same window
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Table 8
The two best results and the worst result for SoH predictions for the models with SõH(t) predictors (EMD-) and without them for battery (a). All models are verified
with both expanding and sliding window. The best model yielded, is in boldface.
Roll type Expanding window Sliding window

Model Sample Win Roll MAE RMSE Sample Win Roll MAE RMSE

GB
30 14 1 0.18 0.23 14 7 1 0.20 0.24
30 14 2 0.19 0.23 30 7 1 0.20 0.25
14 7 2 0.26 0.33 14 7 2 0.25 0.33

EMD-GB
30 14 2 0.19 0.23 30 14 1 0.20 0.25
90 30 1 0.20 0.22 90 14 1 0.21 0.25
14 7 2 0.26 0.33 90 30 7 0.25 0.32

RF
30 7 2 0.20 0.27 30 7 2 0.20 0.27
30 7 1 0.22 0.27 30 7 1 0.22 0.28
90 30 7 0.29 0.39 90 30 2 0.29 0.45

EMD-RF
30 14 1 0.21 0.27 30 14 2 0.20 0.27
30 14 2 0.21 0.27 30 14 1 0.21 0.27
90 30 7 0.30 0.42 14 7 2 0.29 0.33

EMD-ETR
90 30 7 0.39 0.49 90 30 7 0.41 0.50
90 7 1 0.46 0.55 30 14 1 0.42 0.51
14 7 2 0.54 0.63 14 7 2 0.57 0.66

Table 9
The GB model comparative analysis with previous ARIMA model results [21].

GB model ARIMA

RMSE 1.56 2.68
R2 0.91 −0.26

size (e.g. 0–0.08 difference in MAE in Table 8), i.e., a roll size of 7
can be applied to this data set without affecting the MAE results.
Moreover, we spot-tested some roll sizes that do not have overlap
with the previous window (e.g. window of size 14 and window
roll of size 14); however, the MAE deviated in random manner,
and in many cases by 50% from the results with the same window
size but with a smaller roll. This indicates that a window roll that
is up to 23%–28% of the utilised window size is applicable to this
data set for yielding reliable results.

The best model (GB) was refitted to battery (a), after which
we made predictions anew (Fig. 8). We yielded the MAE loss
function value of 1.52 and the goodness of the fit, R2, 0.91; the
model outperformed the ARIMA model that we introduced in
our previous paper (Table 9), although neither of these models
perform well over the entire 32-month period.

Furthermore, as this timeseries model development setup was
designed to predict SoH for the near future (sample sizes used
were the newest 14–90 days and window sizes were 7–30 days),
we refitted the model to the 3 nearest months (Fig. 7). We yielded
the MAE loss function value of 0.21 and the goodness of the fit,
R2, 1, which indicates that the model predicts well over three-
month-period. Moreover, it should be noted that the model can
be overconfident in its predictions indicated by a R2 score that is
one. Therefore, in order to set confidence intervals for estimating
model stability, the novel walk-forward method was applied to
yield point-wise confidence intervals. (See Section 5.3).

5.2. Results for a set of batteries

For testing the timeseries of all batteries, we evaluated them
with the Wilcoxon signed-rank test [65,66]. The test results were
used to assess if a uniform forecast model can be applied to the
set of batteries or not. Our hypothesis was that we can apply our
model to the set of battery packs, as they come from the same
factory, have the same calendar age and are used in the similar
forklifts. The hypothesis (H0) was set as follows: the sample
distributions from different batteries were related to the battery
(a). Wilcoxon yielded that 65% of the batteries had the same

Table 10
Evaluation results of verifying the GB model with data from batteries b-e.
Battery (b) (c) (d) (e) (f)

EVAR 99.9% 99.8% 98.8% 99.8% 99.9%
MAE 0.18 0.29 0.20 0.15 0.27
RMSE 0.26 0.39 0.90 0.27 0.30
R2 1.0 1.0 0.99 1.0 1.0

distribution as battery (a) (failed to reject H0), and consequently
35% had different distribution (rejected H0).

Amongst the batteries in the same distribution, the batteries
(b–f) were scrutinised in more detailed manner. For the verifica-
tion, the best model extracted for battery (a) was applied to the
five battery packs. The verification yielded MAE between 0.15–
0.29 and goodness of the fit, R2, between 0.99–1.00 (Table 10
and Fig. 6). The overall evaluation results for the set of batteries
are promising; however, there is a need for further analysis on,
e.g., the environmental factors and the length of the battery data
on the battery SoH forecast; these may make a difference for
enhancing the model and its reliability.

5.3. Results for calculating the point-wise confidence intervals for
battery (a)

We calculated the confidence intervals for the SoH predictions
for battery (a) in order to evaluate the overall model behavior. As
depicted in Figs. 7 and 8, we used sample size of 3 and 30 months;
we refitted the best GB model to the data and depicted the results.
For the 3-month sample size the point-wise confidence intervals
varied so that, at its narrowest, the range 88.0–91.9 covered the
true prediction with the 95% likelihood and, at it widest, the range
103.6–126.6 covered the true prediction with the 95% likelihood;
overall, for a 3-month period this GB model yielded reasonable
predictions.

As a final remark on the results, calculating the predictions
with confidence intervals with data re-split and model refit at ev-
ery walk-forward iteration step is computationally heavy; how-
ever for the relatively small number of observations (around 1000
for 3-year period and 3700 for the 10-year period for one battery
pack), this is tolerable; furthermore the window roll diminishes
the number of calculations.

5.4. Results for instantaneous frequency

As a second but last result for this paper, the analytic signal
derived from the decomposed SoH provides means to detect
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Fig. 6. Battery (b–f) GB predicted SoH values. The blue line is the predicted and the orange is the observed SoH. The shadowed area is +/− two standard deviations.

Fig. 7. Battery (a) EMD-LGB model predicted SoH values for three months (90
days) with confidence interval. The blue line is the predicted and the orange
is the observed SoH. The shadowed area indicated point-wise 95% confidence
interval for predictions.

changes i.e., it provides means to analyze if the SoH starts to
deteriorate, or, to change less frequently or more frequently than
before; this information alleviates the decision to initiate an
inspection of the battery in the field, or, to change the model.
For example, the persistent drop in the instantaneous frequency
(Eq. (5)) around the day 900 may indicate a general trend that
may require revamping the model if this change is permanent
(Fig. 9). Furthermore, there is a peak around day 380 in the figure.
Inspecting the corresponding data file revealed that the SoH
values fluctuated 30% between consequent days during several
days; this indicated some kind of transient failure, and revealing
its root cause would require a further inspection.

Fig. 8. Battery (a) SoH values for 30 months with the confidence interval; the
blue line is the predicted and the orange is the observed SoH. The shadowed
area indicates point-wise 95% confidence interval for predictions.

5.5. Results for the equivalent cycles

Extrapolating from the equivalent cycle count graph, if the
usage behavior remained unchanged, the model estimated the
truck’s battery pack to complete around 3000 cycles in a 10-
year service period (Fig. 10). The estimated cycle life corresponds
to the published cycle life for the commercial Nickel–Cobalt–
Manganese (NMC) cells [1], and support the findings in our pre-
vious study [21].

6. Discussion

In this paper, we have demonstrated the applicability of GB
method for model development for battery state of health (SoH)
predictions under circumstances when there is little prior infor-
mation available about the batteries. It demonstrates how the
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Fig. 9. The used Hilbert–Huang transformed instantaneous frequency for battery
(a).

Fig. 10. The equivalent cycles for the batteries a, b, c, d and e.

supervised-learning-enabled SoH prognosis can effectively ex-
ploit the data from multiple cells in lithium-ion batteries from 45
EV forklifts and significantly improve the forecasting performance
compared to previous models.

In the model development work we could verify the results
from the previous study with new data; e.g., the cycle life-time
produced values that matched well with the values published
by the cell manufacturers. This indicated that we were fairly
successful in the development of the basic features and extracting
their values. Furthermore, the developed GB model predicts the
SoH well with the loss function value of MAESoH 0.18 and with
goodness of the fit, R2 score 1 over a period of month.

Furthermore, we have shown that for a set of batteries, the
Wilcoxon test yielded that the set of batteries come from the
same distribution; this and the results using a common prediction
model showed some promising loss function (MAE) and goodness
of fit results for the set of batteries. However, it may well be
that the different operating environments for the batteries result
in SoH patterns that are not reliably enough captured by our
GB model. Moreover, in the field of batteries, non-availability of
more data sets with relatively long timeseries has is a known
issue [67]. This was also the case with our unique set of data as
the timeseries were relatively short (32 months), which in turn
indicates a drawback in our models. For example, the battery
timeseries may show seasonality in the long run that we were
unable to capture.

With the GB mode, utilising the novel walk-forward algorithm
for battery (a) over a period of three months, we yielded the
MAESoH loss function value 0.21 including the 95% point-wise
prediction confidence intervals. As for the environmental factors,
the battery aging is known to be non-linear process, and the SoH

deteriorates rapidly towards the end-of-life. For this reason, we
introduced intrinsic frequency method to detect changes in the
target SoH behavior for defining the point when the underlying
GB model needs changes; the exact process how to implement
this into the model needs further introspect. More data is needed
to model end-of-lifetime behavior for the batteries, especially
when taking into account that our model covered 3-year life-span
out of around 10 years of expected life-time for the lithium-
ion batteries for the EVs and for the 2nd life use. Although the
model was developed with the data from EVs, it can be applied
to the lithium-ion batteries that do not meet any longer the
requirements of an EV application. It can still be used for the
less-demanding grid-connected energy storage applications such
as the battery energy storage system (BESS) for the sustainable
energy management [68].

7. Conclusions & future work

In this paper, we have demonstrated the applicability of the
gradient boosting model for predicting battery state of health
(SoH) timeseries under circumstances when there is little prior
information available about the batteries. It demonstrates how
supervised-learning-framed SoH prognosis can effectively exploit
data from multiple cells in lithium-ion batteries from 45 EV fork-
lifts to significantly improve the forecasting performance. The GB
model predicts SoH well with the loss function value of MAESoH
= 0.21 and with goodness of the fit, R2 score 1 over a period of
three months, which is a reasonable time horizon in the context
of preventive maintenance. Furthermore, we validated the model
and rectified the symptoms of the overfit by utilising the novel
walk-forward algorithm; we yielded SoH predictions and the 95%
point-wise confidence intervals for the predictions. Moreover, the
Huang–Hilbert transformation of the data provides some means
to analyze if the SoH starts to deteriorate, or, to change less
frequently or more frequently than before, which may indicate
point-of-time to change the model; the transformation needs
to be performed dynamically as the length of the data series
changes.

The future work could advance to extracting some user behav-
ior patterns from the data as the number of the defined charging
pulse timesteps (1000–2000) for each battery pack establish a
basis for this kind of study. Also, an extension to this paper could
be the further verification and development of the model for the
battery SoH predictions with longer timeseries data, for example
with the help of a relevant simulation, and further develop the
model to make more robust predictions.
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