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a b s t r a c t 

Transcranial magnetic stimulation (TMS)-evoked potentials (TEPs) allow one to assess cortical excitability and 

effective connectivity in clinical and basic research. However, obtaining clean TEPs is challenging due to the 

various TMS-related artifacts that contaminate the electroencephalographic (EEG) signal when the TMS pulse 

is delivered. Different preprocessing approaches have been employed to remove the artifacts, but the degree 

of artifact reduction or signal distortion introduced in this phase of analysis is still unknown. Knowing and 

controlling this potential source of uncertainty will increase the inter-rater reliability of TEPs and improve the 

comparability between TMS–EEG studies. The goal of this study was to assess the variability in TEP waveforms 

due to of the use of different preprocessing pipelines. To accomplish this aim, we preprocessed the same TMS–EEG 

data with four different pipelines and compared the results. The dataset was obtained from 16 subjects in two 

identical recording sessions, each session consisting of both left dorsolateral prefrontal cortex and left inferior 

parietal lobule stimulation at 100% of the resting motor threshold. Considerable differences in TEP amplitudes 

and global mean field power (GMFP) were found between the preprocessing pipelines. Topographies of TEPs 

from the different pipelines were all highly correlated ( 𝜌> 0.8) at latencies over 100 ms. By contrast, waveforms 

at latencies under 100 ms showed a variable level of correlation, with 𝜌 ranging between 0.2 and 0.9. Moreover, 

the test–retest reliability of TEPs depended on the preprocessing pipeline. Taken together, these results take us 

to suggest that the choice of the preprocessing approach has a marked impact on the final TEP, and that further 

studies are needed to understand advantages and disadvantages of the different approaches. 

1. Introduction 

Over the last decade, transcranial magnetic stimulation (TMS) cou- 

pled with electroencephalography (EEG) has been an increasingly 

popular tool for investigating cortical excitability and connectivity. 

TMS-evoked potentials (TEPs), i.e., the cortical responses time-locked 

to the TMS pulse, provide information on the cortical excitability 

( Ilmoniemi and Ki či ć, 2010 ; Komssi and Kähkönen, 2006 ; Veniero et al., 

2013 ) and effective connectivity, i.e., patterns of signal spread through 

the network in which the stimulated area is embedded ( Bortoletto et al., 

2015 ). TEPs can provide information about the status of the stimu- 

lated cortical location and about its causal relationships with connected 

areas, without the similar need for a priori assumptions as with func- 

tional magnetic resonance imaging (fMRI) or EEG alone. For these rea- 

sons, TEPs are used in clinical research to investigate neurophysio- 

logical alterations related to several psychiatric and neurological dis- 

eases (for review, see Tremblay et al., 2019 ), e.g., in disorders of con- 
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sciousness to distinguish between different clinical subtypes of patients 

( Rosanova et al., 2012 ) and in Alzheimer’s disease as a marker of disease 

progression ( Bagattini et al., 2019 ). Therefore, TEPs have been proposed 

as biomarkers that could improve diagnosis and monitor treatment- 

induced neuronal changes. 

A crucial step for the development of a useful biomarker is demon- 

strating high reliability, usually equated with reproducibility, i.e., the 

degree to which a measurement is free from variable measurement er- 

ror ( Mokkink et al., 2010 ). High reliability allows one to reliably detect 

meaningful changes in the signals of interest. Reliability can be assessed 

in a population under stable conditions by taking the same measure with 

different instruments (internal consistency), by different raters (inter- 

rater reliability) and by the same rater over time (intra-rater reliability 

or test–retest reliability) ( Beaulieu et al., 2017 ; Mokkink et al., 2010 ). 

Up to now, only test–retest reliability of TEPs has been assessed in 

a few studies, which found overall high reliability and replicability for 
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TEP components ( Casarotto et al., 2010 ; Lioumis et al., 2009 ), mainly 

at late latencies ( Kerwin et al., 2018 ; Ozdemir et al., 2020 ). 

However, these studies quantified the test–retest reliability using the 

same data-analysis pipeline, while reproducibility of TEPs may be af- 

fected by the preprocessing steps. Indeed, TMS–EEG signals are often 

heavily contaminated by various TMS-related artifacts, which can be 

an order of magnitude higher than the neuronal signal and time-locked 

with the TMS pulse, reducing the signal-to-noise ratio (SNR). To deal 

with this issue, several methodologies and algorithms have been devel- 

oped to remove the artifacts while sparing the neuronal signal. On one 

side, the preprocessing phase allows the extraction of TEPs, but on the 

other side it could also affect their reproducibility. Specifically, the use 

of different approaches to reduce artefacts by different experimenters 

could affect the inter-rater reliability of TEPs. Moreover, the results of 

the test–retest reliability could vary across studies, due to the use of 

different approaches. 

The goal of this study is to determine the amount of variability 

brought in the TEPs by the use of different preprocessing pipelines. 

To this end, we processed the same TMS–EEG dataset with four pub- 

lished pipelines: ARTIST ( Wu et al., 2018 ), TMSEEG ( Atluri et al., 2016 ), 

TESA ( Rogasch et al., 2017 ), and SOUND/SSP–SIR ( Mutanen et al., 

2018 , 2016 ), and compared the resulting TEPs. Although these pipelines 

share the common goal of removing artifacts while sparing the neu- 

ronal signal from TMS–EEG recordings, they employ different strategies. 

ARTIST is a fully automatic pipeline, developed to minimize the vari- 

ability brought by the experimenter. Conversely, TMSEEG is operated 

via a fully manual graphical user interface (GUI) that guides the user 

through the steps needed to clean TMS–EEG signals. TESA, TMSEEG and 

ARTIST use two steps of independent component analysis (ICA) as a core 

function to isolate and remove artifacts, although employing different 

algorithms. SOUND-SSP–SIR employs ICA only for the removal of ocular 

artifacts, while its core functions are the source-estimate-utilizing noise- 

discarding algorithm (SOUND) ( Mutanen et al., 2018 ) and signal-space 

projection–source-informed reconstruction (SSP–SIR) ( Mutanen et al., 

2016 ). Taken together, these processing differences may impact ampli- 

tude and topography of TEP components and ultimately their repro- 

ducibility. 

2. Materials and methods 

The dataset used in this study was acquired as a part of a larger 

TMS–EEG study to investigate brain connectivity. The study followed 

the Helsinki Declaration guidelines and was approved by the Hu- 

man Research Ethical Committee of the University of Trento (pro- 

tocol number 2017–014). BIDS-formatted data ( Pernet et al., 2019 ) 

and code from this study are available on gin.g-node.org/CIMeC/TMS- 

EEG_brain_connectivity_BIDS . 

2.1. Participants 

Sixteen healthy volunteers (age 24.5 ± 2.8, 7 females) were enrolled 

in the experiment. Each participant gave a written informed consent 

for participating in this study and was screened for MRI and TMS com- 

patibility ( Rossi et al., 2009 ; Sammet, 2016 ). Each subject underwent 

three experimental sessions: in the first session, MRI and fMRI were ac- 

quired to obtain individualized structural and functional localization of 

the default-mode network (DMN); the other two identical sessions (test–

retest) were 72.3 ± 35.8 days apart and involved TMS–EEG coregistra- 

tion during DMN stimulation. 

2.2. MRI data acquisition 

High-resolution anatomical images were acquired with two T 1 - 

weighted anatomical scans (MP-RAGE; 1 × 1 × 1 mm 

3 ; FOV, 

256,224 mm 

2 ; 176 slices; GRAPPA acquisition with an acceleration fac- 

tor of 2; TR, 2700/2500 ms; TE, 4.18/3.37 ms; inversion time (TI), 

1020/1200 ms; 7°/12° flip angle), through a 4T Siemens MedSpec 

Synco MR scanner and a birdcage transmit 8-channel receive head 

radiofrequency coil. Single shot T 2 
∗ -weighted gradient-recalled echo- 

planar imaging (EPI) sequence was used to acquire functional images. 

A 30-slice protocol was used, acquiring each slice in ascending inter- 

leaved order, within a repletion time (TR) of 2000 ms (voxel resolution, 

3 × 3 × 3 mm 

3 ; echo time (TE), 28 ms; flip angle (FA), 73°; field of view 

(FOV), 192 × 192 mm 

2 ). Each run consisted of 200 volumes. 

2.3. TMS protocol and targeting 

Subjects were seated in a comfortable armchair in a dimly illumi- 

nated room, while fixating a fixation cross in front of them and wearing 

earplugs. 

Single-pulse TMS was delivered through a Magstim Rapid magnetic 

stimulator (Magstim, Whitland, UK) and a 70-mm figure-of-eight coil. In 

each session, the coil location corresponding to the hotspot for the right 

first dorsal interosseous muscle was identified and the resting motor 

threshold (rMT) was measured as the lowest intensity producing motor- 

evoked potentials of over 50 μV in a minimum of 5 out of 10 trials in the 

electromyogram recorded with bipolar montage (Rossini et al., 2015). 

Thereafter, the stimulator intensity was set at 100% of the rMT. Four 

nodes of the DMN extracted from functional maps (see supplementary 

materials for details) were stimulated: left and right dorsolateral pre- 

frontal cortex (DLPFC) and left and right inferior parietal lobule (IPL). 

The Talairach coordinates of the point of local maxima in each node and 

the structural MRI images were input to the SofTaxic Neuronavigation 

system (E.M.S., Bologna, Italy) to guide an accurate and consistent posi- 

tioning of the TMS coil. The order of stimulation target was randomized 

across participants. On each site, 120 biphasic TMS pulses were deliv- 

ered with an inter-stimulus interval of 2–10 s. The coil was placed by 

the experimenter in a position tangential to the scalp, with an angle 

of approximately 45° between the interhemispheric sulcus and the coil 

handle, with the handle pointing backwards, for the DLPFC and 10° for 

the IPL. 

For the purposes of this study, we limited our analyses to the left 

DLPFC and the left IPL, from both the test (T1) and retest session (T2). 

2.4. EEG data acquisition 

EEG signals were acquired with a BrainAmp DC TMS-compatible 

system (BrainProducts GmbH, Germany), with a continuous record- 

ing from BrainCap 62 TMS-compatible Ag/AgCl-coated Multitrode elec- 

trodes (BrainProducts GmbH, Germany) positioned on the scalp accord- 

ing to the 10/10 International System. One electrode was placed to the 

left-eye temporal canthus to detect horizontal eye movements, and an- 

other electrode was placed beneath the left eye to detect vertical eye 

movements and blinks. TP9 was used as online reference. The ground 

electrode was placed at FPz. Signals from all channels were band-pass 

filtered at 0.1–1000 Hz and digitized at the sampling rate of 5 kHz. The 

skin–electrode impedance was kept below 5 k Ω . Trigger marks at the 

TMS pulse delivery were sent to the EEG system using a customized 

MATLAB script (MathWorks®, Inc., Massachusetts, USA). 

2.5. EEG signal preprocessing 

Preprocessing pipelines 

Next, we give a brief introduction to the preprocessing pipelines 

employed in this study. For a detailed description, please refer to the 

respective original papers, i.e., ARTIST ( Wu et al., 2018 ), TMSEEG 

( Atluri et al., 2016 ), TESA ( Rogasch et al., 2017 ), SOUND/SSP–SIR 

( Mutanen et al., 2018 , 2016 ). 

2.5.1. TMSEEG v4.0 

The TMSEEG ( Atluri et al., 2016 ) pipeline is run via a GUI from 

which the user can call, in a fixed order, all the functions needed to 
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Table 1 

Steps order in each processing pipeline. Exact values for each parameter are described in the “Preprocessing parameters 

and steps ” paragraph. 

ARTIST TMSEEG (4.0) TESA (v1.0.1) SOUND-SSP–SIR 

1 EOGs removal Epoching EOGs removal EOGs removal 

2 TMS-pulse interpolation Demeaning # Channel rejection + High-pass filter 

3 Downsampling) EOGs removal Epoching Epoching 

4 Detrending TMS-pulse removal ∗ Demeaning # TMS-pulse interpolation 

5 Epoching Channels and trials rejection -1 TMS-pulse interpolation Baseline correction 

6 ICA -1 ICA -1 Downsampling SOUND 

7 Bandpass – Notch filters Bandpass – Notch filters Trials rejection + Trials rejection 

8 Channels and trials rejection + ICA -2 ICA -1 § ICA @ 

9 Bad-channels interpolation Channels and trials rejection - 2 Bandpass – Notch filters SSP–SIR §

10 ICA -2 Rereferencing ICA -2 § Bandpass – Notch filters 

11 Rereferencing Bad-channels interpolation Bad-channels interpolation Rereferencing 

12 Baseline correction TMS-pulse interpolation ∗ Rereferencing Downsampling 

13 Baseline correction × Baseline correction Baseline correction 

14 Downsampling ×

∗ TMS-pulse artifact was removed, but not interpolated. Instead, the signal was cut and pasted. In the end of the pipeline, 

the removed TMS-pulse latencies where replaced with NaNs and then interpolated. 
# Demeaning was applied when suggested to improve performance of the ICA. 
+ Automatic. 
§ Priori to this step, TMS-pulse interpolation was replaced with constant amplitude values. After this step, it was inter- 

polated again. 
× This step was added after the pipeline to allow comparability. 
@ Only for ocular artifacts. 

process the TMS–EEG signal. It was designed to provide an easy-to-use 

streamline to guide the user (novice or advanced) through all the steps 

needed to clean raw TMS–EEG data. TMSEEG is an ICA-based pipeline 

( fastICA algorithm, Hyvärinen and Oja, 2000 ), with two ICA steps: the 

first aims at removing the large-amplitude artifacts, while the second 

removes the other TMS-related and common EEG artifacts. TMSEEG is 

fully manual: trials/channels and ICA-components’ rejection are choices 

made by the user. 

2.5.2. TMS–EEG signal analyser, tesa v1.0.1 

The TESA ( Rogasch et al., 2017 ) toolbox is a set of functions 

that works as an extension of the EEGlab software ( Delorme and 

Makeig, 2004 ). Here the user can choose to run the functions from the 

EEG lab GUI or directly script the pipeline, calling the functions from 

MATLAB command window. The TESA toolbox was designed to pro- 

vide multiple tools to the user that could be combined and used as pre- 

ferred. For this reason, it has multiple core functions to remove artifacts 

from the signal (ICA, principal component analysis, enhanced deflation 

method, etc.); therefore, it does not have a unique pipeline. In this work, 

we chose the default pipeline suggested in ( Rogasch et al., 2017 ). In this 

case, TESA is used to build an ICA-based pipeline ( fastICA algorithm), 

with two ICA steps: the first aims to remove the large-amplitude artifacts 

(TMS-related muscle, decay and movement) and the second aims to re- 

move the remaining artifacts. TESA can be used manually through the 

EEGlab GUI, semi-automatically (using automatic bad trials/channels 

rejection and supervised ICA-component rejection) or automatically (au- 

tomatic bad trials/channels and ICA-component rejection), calling the 

functions through MATLAB command window. We employed the semi- 

automatic mode. 

2.5.3. Automated aRTIfact rejection for Single-pulse TMS–EEG Data, 

artist 

The idea behind ARTIST ( Wu et al., 2018 ) is to remove the variabil- 

ity introduced by the user, by delegating most of the choices to an auto- 

matic algorithm. The user sets the necessary parameters for the cleaning 

(epoch length, TMS-pulse interpolation period etc.) and calls the main 

function from the MATLAB command window. The algorithm then per- 

forms all the necessary steps automatically. Like TMSEEG and TESA, it is 

an ICA-based pipeline ( Infomax algorithm ( Makeig et al., 1997 )). It em- 

ploys the first ICA run to remove the big decay artifact and the second 

ICA run to remove the remaining artifactual data. Bad trials/channels 

and ICA-components are labelled and rejected by specific algorithms 

and trained classifiers. 

2.5.4. Source-estimate-utilizing noise-discarding algorithm (SOUND) 

and signal-space projection–source-informed reconstruction (SSP–SIR) 

The SOUND-SSP–SIR approach substitutes ICA largely with the 

SOUND ( Mutanen et al., 2018 ) and SSP–SIR ( Mutanen et al., 2016 ) al- 

gorithms as core functions to remove TMS–EEG artifacts. The SOUND 

algorithm reconstructs the signal in the source volume. Then, it attenu- 

ates artifactual segments of data in each sensor, by estimating how well 

that segment of signal is predicted by all other sensors. This process runs 

automatically and does not require the user to choose the signal to be re- 

moved. SSP–SIR, instead, is specifically designed to attenuate the TMS- 

related muscle artifacts, using their time-frequency features. The signal 

components that capture the TMS-related muscle activity can be rejected 

manually by the user, or automatically by setting an appropriate thresh- 

old. We chose to use SSP–SIR manually. The SOUND-SSP–SIR approach, 

applied here, is a combination of methods that have been unified in a 

coherent pipeline in previous studies ( Bagattini et al., 2019 ; Bortoletto 

et al., 2020 ). Finally, an ICA step is also present in this pipeline ( Infomax 

algorithm), but it is confined to removing ocular artifacts as these can 

be assumed to appear relatively independently from TMS-evoked brain 

signals. The SOUND-SSP–SIR pipeline does not have a GUI and it can be 

used by calling the functions through the MATLAB command window. 

2.5.5. Preprocessing parameters and steps 

Raw TMS–EEG signals were processed with the above-mentioned 

pipelines. Table 1 illustrates the workflow for each pipeline. Epoching 

was set to -/ + 1 s. Electrooculography (EOG) electrodes were removed 

using the built-in EEGlab function for channel removal. Given that TMS- 

pulse artifact lasts up to 5 ms with the employed recording settings 

( Veniero et al., 2009 ), data were removed and interpolated from –1 to 

6 ms, which was sufficient to capture the full TMS-pulse artefact in our 

data. The recorded TMS-pulse artifact is depicted in Fig. 1 S. Data were 

downsampled to 1000 Hz. When suggested, demeaning was applied us- 

ing the whole epoch (TMSEEG and TESA). Baseline correction was set 

from –1000 to –2 ms. Channel and trial rejection was done either manu- 

ally (TMSEEG) or automatically (ARTIST and TESA) employing built-in 

functions in EEGlab ( Delorme and Makeig, 2004 ). The SOUND-SSP–SIR 
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pipeline requires only manual trial rejection, as bad channels are au- 

tomatically corrected by the SOUND step. Data were bandpass filtered 

at 1–90 Hz and notch filtered at 48–52 Hz. When high-pass filtering 

was applied alone, the passband started at 1 Hz. Rereferencing was ap- 

plied using the average of all electrodes. ICA and SSP–SIR component 

selection was performed either manually (TMSEEG, TESA, SOUND-SSP–

SIR) or automatically (ARTIST). When run manually, ICA component 

selection was done independently by authors G.B. and R.E. and SSP–SIR 

component selection by G.B. and M.B. Components that were selected 

by just one author were discussed and a joint decision was made. For sta- 

tistical analysis, the epoch was reduced to –100…+ 350 ms and baseline 

correction from –100 to –2 ms was performed. 

2.6. Statistical analysis 

First, we investigated the between-pipelines differences in trials, 

channels and ICA components removed during the preprocessing. Chan- 

nels rejected and components removed in the ICA were summarized to- 

gether using the data rank. The data rank represents the number of in- 

dependent components that can be individuated in the data. The higher 

the rank, the “richer ” are the data in terms of sources that compose the 

signal. In raw TMS–EEG signal, the rank is equal to the number of record- 

ing channels and it decreases by one unit during the preprocessing for 

each channel interpolated and ICA-component removed (minus one for 

the rereferencing). Depending on the preprocessing strategy, different 

pipelines interpolate a different number of bad channels and remove or 

attenuate a different number of components, hence impacting the rank 

in different ways. With methods like ICA or SSP, the decrease in rank 

corresponds to exactly the number of removed artifact components (sig- 

nal dimensions). SOUND, however, weighs different signal dimensions 

based on the noise estimates. This means that while SOUND theoreti- 

cally conserves the rank, it can effectively squash the noisiest dimen- 

sions close to zero. To allow a fair comparison between the different 

pipelines, we estimated the effective rank of the data as follows: We 

formed the singular-value decomposition of the data and defined the ef- 

fective rank as the number of dimensions having singular value greater 

than 1% of the biggest singular value. Differences in data rank after 

the preprocessing were assessed with a separated one-way ANOVA per 

each condition (IPL session 1, IPL session 2, DLPFC session 1 and DLPFC 

session 2). Similarly, differences in trial removal were assessed with a 

Kruskal–Wallis test, to account for the non-normal distribution of the 

data. Post-hoc tests were applied when appropriate with alpha thresh- 

old 0.0042, for a series of six two-tailed tests with Bonferroni correction. 

Reproducibility, i.e., the reliability of TEPs derived by different pre- 

processing pipelines, was assessed by testing for (1) differences between 

TEPs derived by different preprocessing pipelines, (2) similarities be- 

tween TEPs derived by different preprocessing pipelines, and (3) com- 

paring the test–retest reliability between TEP components in session 1 

and session 2 across pipelines. Moreover, we took into account that some 

studies measure the TEPs traces over electrodes and some studies fur- 

ther calculate the global mean field power (GMFP). Therefore, the same 

three analyses described above were run on the GMFP as calculated in 

fieldtrip ( Oostenveld et al., 2011 ). 

Differences between TEPs derived by different preprocessing 

pipelines were investigated separately for the two areas (IPL, DLPFC) 

and sessions 1–2; in total, four separate one-way repeated measure 

ANOVAs with “preprocessing pipeline ” as a four-level factor were used 

to test the hypothesis that there were differences in TEP amplitudes 

across preprocessing pipelines in some channels and time points after 

the TMS pulse (IPL session 1, DLPFC session 1, IPL session 2 and DLPFC 

session 2) . For controlling the familywise error rate, we used cluster- 

based permutation tests ( Oostenveld et al., 2011 ). This strategy is com- 

monly used when there is no a priori hypothesis on where or when the 

effect will be. The ANOVA with cluster-based correction was ran at each 

time point after the TMS-pulse interpolation (6 to 350 ms, SR: 1000 Hz) 

in each channel (63). Time points with significant test statistics (alpha 

level was set at 0.05) were clustered together, constrained to those that 

involved at least 3 neighboring channels. Post-hoc tests were applied as 

a series of cluster-based two-tailed t -tests for paired samples between all 

possible combinations of pipelines, with alpha < 0.0042 (0.025 divided 

for six comparisons) to correct for multiple comparisons. 

Similarities between TEPs derived by different preprocessing 

pipelines, were investigated through pairwise Spearman correlations in 

both temporal and spatial dimensions. The spatial correlation of TEPs for 

each pair of preprocessing pipelines was computed at each time point, by 

correlating voltage values of all channels in a specific pair of conditions, 

i.e., two preprocessing pipelines, for each individual. The resulting cor- 

relation values were then z -transformed and averaged across subjects. 

The z -coefficients were tested at each time point against zero using a 

two-tailed t -test, to assess the significance of the correlation. For each 

test, alpha level was set at 0.025 (two-tailed t -test). Since each contrast 

comprised a series of 344 t -tests (one for each time point) we controlled 

the False Discovery Rate (FDR) with the Benjamini–Hochberg correction 

( Benjamini and Hochberg, 1995 ; Martínez-Cagigal, 2020 ). The average 

z -coefficients were transformed back into correlation values using the 

inverse Fisher z -transformation. The temporal correlation between two 

TEPs derived by different preprocessing pipelines was computed at each 

channel with the same logic of the spatial correlation, i.e., by correlating 

the voltage values in a specific interval between two conditions. Inter- 

vals were the whole epoch (–100 + 350 ms) and smaller time windows 

(6–80 ms, 81–150 ms and 151–350 ms). For interpretation of correla- 

tion values, we employed the scale of Shrout et al. 1998 ( Shrout, 1998 ) 

( Table 5 S). 

Lastly, we assessed the test–retest reliability of the TEPs for each pre- 

processing pipeline with three analyses: First, we assessed the difference 

in TEPs between session 1 and 2 for each preprocessing pipeline using 

a series of paired-sample cluster-based t-tests. Alpha level was set at 

0.0063 (two-tailed t -test Bonferroni corrected for four tests); Second, the 

similarities of TEPs between session 1 and 2 were investigated through 

pairwise Spearman correlations in both temporal and spatial dimen- 

sions and statistic of the correlations were computed as described for 

the between-pipelines tests; Third, we estimated the test–retest agree- 

ment between sessions 1 and 2, for each preprocessing pipeline, through 

the concordance correlation coefficient (CCC). CCC measures the agree- 

ment between two variables x and y , i.e., the test and retest measures, 

as distance from the line x = y ( Kerwin et al., 2018 ; King et al., 2007 ; 

Lin, 1989 ). Therefore, for this analysis, TEP components were individu- 

ated and their peak amplitudes and latencies were extracted following 

the collapsed localizer strategy suggested in Luck 2014 ( Luck, 2014 ). 

To this end, TEPs of session 1 and 2 were averaged, followed by the 

choice of the time windows in which peaks were present in these grand- 

average signals. The identified time windows were then used separately 

in each condition to look for peak amplitudes and latencies. CCC was 

computed between sessions 1 and 2 for both peak-amplitude and peak- 

latency values. CCCs were considered significantly different from zero 

when their bootstrapped 95% confidence intervals (CI) did not include 

zero. Differences across preprocessing pipelines’ CCCs were assessed us- 

ing the percentile bootstrap method ( Wilcox, 2009 ) within each peak. 

This method involves the calculation of the bootstrap distribution for 

the CCC difference between two conditions with its relative CI. If the CI 

of the CCC difference does not contain the zero, then the two conditions’ 

CCCs are significantly different. 

3. Results 

In Fig. 1 , TEPs with relative topographies are shown as obtained after 

being processed with the four pipelines, in both IPL ( Fig. 1 A) and DLPFC 

( Fig. 1 B) for session 1. TEPs for session 2 are shown in supplementary 

results ( Fig. 2 S). 

The motor threshold did not significantly differ between the two 

sessions (session 1: 66.3 ± 8.8%, session 2: 66.4 ± 8.2% of the maxi- 

mum stimulator output). The Kruskal–Wallis test on of the number of 
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Fig. 1. TEPs recorded after IPL (A) and DLPFC 

(B), processed with different pipelines (rows). 

The leftmost column depicts TEPs time-series, 

color-coded for each preprocessing pipeline. 

The other columns represent the scalp topogra- 

phies of TEPs in five selected intervals. The to- 

pographies represent the mean voltage on the 

scalp in each interval. “SOUND ” refers at the 

full SOUND-SSP–SIR pipeline. 

5 



G. Bertazzoli, R. Esposito, T.P. Mutanen et al. NeuroImage 239 (2021) 118272 

Fig. 2. Data rank after each preprocessing 

pipeline for IPL and for DLPFC in session 1. 

Each violin plot depicts the distribution of 

individual subject rank after the preprocess- 

ing. Horizontal black lines represent the me- 

dian. Black lines, with starts asterisks, connects 

conditions significantly different in the post- 

hoc analysis ( p threshold = 0.0042). “SOUND ”

refers at the full SOUND-SSP–SIR pipeline. 

Table 2 

IPL post-hoc paired t-tests, session 1. Cluster polarity reveals the direction of 

the significant cluster of differences. Cluster p report the specific probability of 

the cluster statistic. Cluster latency depict the extent in time of the significant 

cluster. 

Comparison Cluster Polarity Cluster p Cluster Latency (s) 

ARTIST vs TMSEEG + < 0.001 0.007 to 0.350 

– 0.002 0.015 to 0.350 

ARTIST vs TESA + < 0.001 0.009 to 0.350 

– 0.003 0.147 to 0.350 

ARTIST vs SOUND-SSP–SIR + < 0.001 0.006 to 0.350 

– 0.002 0.172 to 0.350 

– 0.002 0.006 to 0.149 

TMSEEG vs TESA + 0.002 0.010 to 0.343 

TMSEEG vs SOUND-SSP–SIR + 0.002 0.173 to 0.350 

– < 0.001 0.191 to 0.350 

TESA vs SOUND-SSP–SIR – < 0.001 0.134 to 0.350 

removed trials in session 1 ( Table 1 S) showed significant differences for 

IPL ( 𝜒2 = 13.7499, p = 0.0033) and DLPFC ( 𝜒2 = 12.7422, p = 0.0052). 

Post-hoc tests ( p threshold = 0.0042) revealed significant differences in 

DLPFC where TMSEEG removed significantly more trials than SOUND- 

SSP–SIR ( t = 23.2813, p = 0.0022). Data rank in session 1 was signif- 

icantly different across pipelines for IPL ( F = 135.884, p < 0.001) and 

for DLPFC ( F = 182.728, p < 0.001). Post-hoc analyses showed that the 

rank for ARTIST was significantly smaller than the rank for the other 

pipelines, while TMSEEG rank was significantly higher than the others 

( Fig. 2 and Table 2 S). Trial and rank analysis for session 2 are shown in 

the supplementary materials ( Fig. 3 S and Table 1-2 S). 

3.1. Differences in TEPs amplitude 

In IPL, TEPs derived from the four preprocessing pipelines were sig- 

nificantly different in amplitude (IPL: p = 0.001, cluster window = 6–

350 ms), as shown by the cluster-based ANOVA. In post-hoc tests 

( Fig. 3 ), differences were found in all contrasts and spanned for the 

whole epoch for all the comparisons with ARTIST and TMSEEG vs TESA. 

In TMSEEG vs SOUND-SSP–SIR and TESA vs SOUND-SSP–SIR the differ- 

ences remained confined to late latencies ( Table 2 ). 

Similarly, TEPs for DLPFC stimulation were different across process- 

ing pipelines (DLPFC: p = 0.001, cluster window = 26–350 ms), as shown 

by the cluster-based ANOVA. Post-hoc tests ( Fig. 4 ) showed significant 

Table 3 

DLPFC post-hoc paired t-tests, session 1. 

Comparison Cluster Polarity Cluster p Cluster Latency (s) 

ARTIST vs TMSEEG + 0.004 0.199 to 0.350 

ARTIST vs TESA + 0.002 0.124 to 0.350 

ARTIST vs SOUND-SSP–SIR + 0.002 0.055 to 0.149 

TMSEEG vs TESA / 

TMSEEG vs SOUND-SSP–SIR – 0.004 0.065 to 0.230 

TESA vs SOUND-SSP–SIR + < 0.001 0.033 to 0.325 

– 0.003 0.045 to 0.304 

differences in five contrasts out of six. The contrasts between TMSEEG 

vs TESA did not show significant differences ( Table 3 ). 

ANOVAs with related post-hocs between TEPs for session 2 are 

shown in the supplementary materials ( Fig. 4 S- 5 S, Tables 3 S- 4 S). 

3.2. TEP correlations 

Despite the marked differences in the cluster-based t -tests, TEPs de- 

rived by different preprocessing pipelines were positively correlated in 

most of the time points of the epoch in both IPL and DLPFC ( Fig. 5 - 6 

A). As expected, spatial correlations in the baseline period were high for 

both areas (moderate-to-substantial, 𝜌 = 0.6–0.9), since all preprocess- 

ing pipelines shared the same raw signal. This is different from previous 

studies where different conditions (raw signals) were correlated (e.g., 

Conde et al., 2019 ). In our case, we expected the baseline to be equal to 

one if not affected by the preprocessing steps, because the same dataset 

is used across pipelines. Spatial correlation dropped around the TMS 

pulse, and then slowly recovered. Correlation values at latencies under 

100 ms were the most variable across comparisons ranging from approx- 

imately 𝜌 = 0.2–0.9, while correlations at latencies over 100 ms were 

consistently moderate-to-substantial ( 𝜌> 0.6) in all pairs. 

Accordingly, whole-epoch temporal correlations ( Fig. 5 , 6 B) were 

moderate-to-substantial ( 𝜌> 0.6) for both areas. Correlations at window 

6–80 ms were the most variable, showing slight-to-moderate correla- 

tion (0.3 <𝜌< 0.6) over frontal and temporal electrodes. TEPs at 80–

150 ms showed slight-to-moderate correlations over frontal electrodes 

in most comparisons (0.2 <𝜌< 0.9), while the rest of the channels were 

substantially correlated ( 𝜌> 0.8). At the 150–350-ms window, TEPs were 

moderately-to-substantially correlated in all pairs ( 𝜌> 0.6). 

Correlations between TEPs derived by different preprocessing 

pipelines for session 2 are shown in the supplementary materials 

( Fig. 6 S- 7 S). 
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Fig. 3. A: Global Mean Field Power (GMFP, 

y axes) over time (ms, x axis) of TEPs result- 

ing from IPL stimulation, cleaned with the four 

preprocessing pipelines (color-coded). Shaded 

area around each colored line represents SEM. 

Shaded grey column around zero represents the 

TMS-pulse interpolation interval. B: scalp to- 

pographies of the voltage differences (color- 

coded) for each condition contrast (rows) in 

five selected time windows (columns). White 

dots represent significant channels. The right- 

most column represents the time-series of the 

voltage differences over time in each con- 

trast. Colored bars at the bottom of each time- 

series represent the temporal extend of signif- 

icant cluster(s). Orange positive clusters, pur- 

ple negative cluster. “SOUND ” refers at the full 

SOUND-SSP–SIR pipeline. 

3.3. Test–retest reliability of preprocessing pipelines 

Difference in TEP amplitude between session 1 and session 2 were 

found only for the TESA pipeline for DLPFC stimulation being sig- 

nificantly different in amplitude in the first session compared to the 

second session (Significant cluster: p = 0.005, cluster window = 153–

319 ms) ( Fig. 8 S- 9 S). No other significant differences were found for 

other pipelines in DLPFC and for IPL stimulation. 

Analyses on TEPs spatial similarities revealed that TEPs across ses- 

sions were positively correlated, in most of the time points of the epoch, 

in both IPL and DLPFC (Fig. 10S-11S A). Spatial correlations showed 

an increasing trend from virtually-none-to-fair (0.1 <𝜌< 0.6) around the 

TMS pulse toward 180 ms, in which it reaches moderate-to-substantial 

values ( 𝜌> 0.6). ARTIST in IPL was the only pipeline deviating from this 

trend, with slight correlation (0.2 <𝜌< 0.4) around 80 ms. 

Whole-epoch temporal correlations (Fig. 10S-11S S B) were slight-to- 

fair (0.2 <𝜌< 0.6) for both areas, with a trend of lower values in frontal 

areas. Correlations at window 6–80 ms were the most variable, show- 

ing slight-to-moderate correlation (0.2 <𝜌< 0.6) over frontal and tempo- 

ral electrodes and substantial correlation ( 𝜌> 0.8) around Cz. Similarly, 

TEPs at 80–150 and 150–350 ms showed slight-to-moderate correlations 

over frontal electrodes in most comparisons (0.2 <𝜌< 0.6), while the rest 

of the channels were substantially correlated ( 𝜌> 0.8). 

For the test–retest agreement estimation, we identified seven peaks 

on TEPs for the IPL (P15, P/N20, P50, N100, P120, P200 and P300) 

and five peaks for the DLPFC (P20, P50, N100, P200 and N300). No- 

tably, the same peaks were not identifiable in all TEPs: P15 in IPL was 

found only for SOUND, P120 in IPL only for ARTIST, P50 in IPL was 

found for ARTIST and TMSEEG while P50 in DLPFC was found only 

for ARTIST. Fig, 7 and Tables 4 , 5 represent the amplitude and latency 

CCCs in session 1 vs session 2, for all preprocessing pipelines. CCCs were 

considered significant when the corresponding bootstrapped CIs did not 

include zero. 

As in the above section, for the interpretation of CCC values we em- 

ployed the scale in Shrout, 1998 ( Shrout, 1998 ) ( Table 5 S). 

For IPL, CCCs for amplitude were virtually-none-to-fair (-0.03 – 0.59) 

in early peaks (P15, P/N20, P50) and virtually-none-to-moderate (-0.10 

– 0.79) in late peaks (N100, P120, P200 and P300). Notably, the CCC 

of N100 was significantly smaller for ARTIST compared to the other 

preprocessing pipelines (ARTIST vs TMSEEG p = 0.002, ARTIST vs TESA 
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Fig. 4. A: Global Mean Field Power (GMFP, y 

axes) over time (ms, x axis) of TEPs resulting 

from DLPFC stimulation, cleaned with the four 

preprocessing pipelines (color-coded). Shaded 

area around each colored line represents SEM. 

Shaded grey column around zero represents the 

TMS-pulse interpolation interval. B: scalp to- 

pographies of the voltage differences (color- 

coded) for each condition contrast (rows) in 

five selected time windows (columns). White 

dots represent significant channels ( p thresh- 

old = 0.0042, cluster based corrected). The 

rightmost column represents the time-series of 

the voltage differences over time in each con- 

trast. Colored bars at the bottom of each time- 

series represent the temporal extend of signif- 

icant cluster(s). Orange positive clusters, pur- 

ple negative cluster. “SOUND ” refers at the full 

SOUND-SSP–SIR pipeline. 

Table 4 

CCCs (CIs) for amplitude across pipelines in both IPL and DLPFC. Significant values in bold. 

CCC Amplitude 

IPL 

P15 P/N20 P50 N100 P120 P200 P300 

ARTIST 0.46 ( − 0.01, 0.77) 0.37 ( − 0.12, 0.72) − 0.10 ( − 0.46, 0.28) 0.64 (0.24, 0.86) 0.73 (0.41, 0.89) 0.55 (0.10, 0.82) 

TMSEEG 0.59 (0.22, 0.81) 0.41 (0.03, 0.69) 0.68 (0.30, 0.87) 0.72 (0.39, 0.89) 0.59 (0.16, 0.83) 

TESA 0.46 ( − 0.02, 0.77) 0.54 (0.09, 0.81) 0.77 (0.47, 0.91) 0.48 (0.05, 0.76) 

SOUND SSP–SIR 0.20 ( − 0.20, 0.55) − 0.03 ( − 0.47, 0.42) 0.37 ( − 0.03, 0.66) 0.73 (0.40, 0.90) 0.69 (0.33, 0.88) 0.47 ( − 0.01, 0.78) 

DLPFC 

P20 P50 N100 P200 N300 

ARTIST − 0.02 ( − 0.48, 0.45) 0.43 ( − 0.04, 0.75) 0.49 (0.04, 0.77) 0.85 (0.63, 0.94) 0.66 (0.27, 0.87) 

TMSEEG 0.42 ( − 0.04, 0.73) 0.48 (0.09, 0.74) 0.83 (0.59, 0.93) 0.80 (0.53, 0.92) 

TESA 0.14 ( − 0.35, 0.53) 0.64 (0.24, 0.86) 0.83 (0.61, 0.93) 0.77 (0.50, 0.90) 

SOUND SSP–SIR 0.10 ( − 0.38, 0.53) 0.87 (0.70, 0.95) 0.78 (0.50, 0.91) 0.32 ( − 0.17, 0.68) 
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Fig. 5. IPL, TEPs spatial and temporal correla- 

tion. (A) Each colored line represents the spa- 

tial correlation ( y axis) over time ( x axis) of 

all condition contrasts. Shaded grey column 

around zero represent the TMS-pulse interpo- 

lation interval. Horizontal dotted line repre- 

sent threshold for moderate (0.6) and substan- 

tial (0.8) correlation, according to Shrout et al. 

(1998 ). Horizontal colored lines represent in- 

stant in time in which the correlation resulted 

significantly different from zero ( p thresh- 

old = 0.0042, FDR corrected). On the top, 

are depicted three representative instantaneous 

scalp topographies in the four conditions. Volt- 

age on the scalp topographies is color-coded. 

(B) Temporal correlation of each contrast 

(rows) in four time intervals (columns). Corre- 

lation values are color-coded. Channels signif- 

icantly different from zero are highlighted in 

white ( p threshold = 0.0042, FDR corrected). 

“SOUND ” refers at the full SOUND-SSP–SIR 

pipeline. 
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Fig. 6. DLPFC, TEPs spatial and temporal cor- 

relation. (A) Each colored line represents the 

spatial correlation ( y axis) over time ( x axis) 

of all condition contrasts. Shaded grey column 

around zero represent the TMS-pulse interpo- 

lation interval. Horizontal dotted line repre- 

sent threshold for moderate (0.6) and substan- 

tial (0.8) correlation, according to Shrout et al. 

(1998 ). Horizontal colored lines represent in- 

stant in time in which the correlation resulted 

significantly different from zero ( p thresh- 

old = 0.0042, FDR corrected). On the top, 

are depicted three representative instantaneous 

scalp topographies in the four conditions. Volt- 

age on the scalp topographies is color-coded. 

(B) Temporal correlation of each contrast 

(rows) in four time intervals (columns). Corre- 

lation values are color-coded. Channels signif- 

icantly different from zero are highlighted in 

white ( p threshold = 0.0042, FDR corrected). 

“SOUND ” refers at the full SOUND-SSP–SIR 

pipeline. 
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Table 5 

CCCs for latency across pipelines in both IPL and DLPFC. Significant values in bold. 

CCC Latency 

IPL 

P15 P/N20 P50 N100 P120 P200 P300 

ARTIST 0.48 (0.02, 0.77) 0.59 (0.16, 0.83) 0.77 (0.48, 0.91) 0.18 ( − 0.29, 0.59) 0.72 (0.38, 0.89) 0.36 ( − 0.12, 0.70) 

TMSEEG 0.58 (0.14, 0.83) 0.52 (0.05, 0.80) 0.91 (077, 0.97) 0.77 (0.46, 0.91) 0.33 ( − 0.17, 0.69) 

TESA 0.09 ( − 0.36, 0.51) 0.72 (0.37, 0.89) 0.74 (0.40, 0.90) 0.26 ( − 0.23, 0.65) 

SOUND SSP–SIR 0.39 ( − 0.02, 0.69) 0.39 ( − 0.07, 0.72) 0.47 (0.05, 0.74) 0.76 (0.47, 0.90) 0.76 (0.44, 0.91) 0.28 ( − 0.23, 0.67) 

DLPFC 

P20 P50 N100 P200 N300 

ARTIST − 0.06 ( − 0.49, 0.39) 0.26 ( − 0.21, 0.63) 0.90 (0.74, 0.96) 0.83 (0.62, 0.93) 0.44 ( − 0.03, 0.75) 

TMSEEG 0.16 ( − 0.31, 0.57) 0.55 (0.11, 0.81) 0.87 (0.67, 0.95) 0.66 (0.26, 0.86) 

TESA 0.25 ( − 0.19, 0.61) 0.74 (0.46, 0.88) 0.22 ( − 0.28, 0.62) 0.47 ( − 0.01, 0.78) 

SOUND SSP–SIR 0.09 ( − 0.29, 0.45) 0.65 (029, 0.85) 0.70 (0.38, 0.87) − 0.14 ( − 0.55, 0.32) 

Fig. 7. Test-retest agreement of peaks am- 

plitude and latency (rows) in IPL and DLPF 

(columns), computed on TEPs obtained from 

the four preprocessing pipelines (see legend). 

Note that peaks P15, P50 and P120 were not 

present after all preprocessing pipelines. Ver- 

tical error bars represent bootstrapped CIs. 

CCCs were considered significantly different 

from zero when the CIs did not include zero 

( p < 0.05). Asterisks represent significantly dif- 

ferent CCCs within the same peak. “SOUND ”

refers at the full SOUND-SSP–SIR pipeline. 

p = 0.004 and ARTIST vs SOUND-SSP–SIR p < 0.001). Latency CCCs fol- 

lowed a similar pattern ( Fig. 7 ). 

For DLPFC, CCC for amplitude was virtually-none-to-fair (-0.02 –

0.43) in early peaks (P20, P50) and increased to slight-to-substantial 

(0.32 – 0.88) in later peaks (N100, P200 and N300). SOUND-SSP–

SIR CCC resulted significantly higher in N100 compared to TMSEEG 

( p < 0.001) and TESA ( p = 0.022). Latency CCCs in early peaks (P20, P50) 

were relatively stable around virtually-none-to-slight concordance val- 

ues ( − 0.06 – 0.26), while it varied considerably across preprocessing 

pipelines in later components (N100, P200 and N300), ranging from 

substantial for ARTIST (0.90) and virtually none for SOUND-SSP–SIR 

(-0.14). TESA CCC were significantly smaller in P200 compared to 

ARTIST ( p = 0.010) and TMSEEG ( p = 0.036) but not SOUND-SSP–SIR, 

while TMSEEG CCC resulted significantly higher in N300 compared only 

to SOUND-SSP–SIR ( p = 0.034). 

3.4. Global mean field power (GMFP) 

The analyses on the GMFP resulted in a pattern of effects substan- 

tially similar to the TEP traces. These results can be found in detail in 

the supplementary materials. 

First, we found that the GMFPs derived from the four preprocess- 

ing methods were significantly different in amplitude both for IPL and 

DLPFC and for both session 1 and 2 (Fig. 12S:15S Tables 6S:9S); Second, 

the temporal correlations of the GMFP between pipelines were variable, 

with higher values at later latencies starting from 80 ms (Fig. 16S:19S) 

and so was the reliability of GMFP. Despite no differences were found 

in GMFP amplitude between sessions (Fig. 20S-21S), the temporal cor- 

relation between sessions for all pipelines varied between slight to sub- 

stantial (Fig. 22S-23S) and the CCC varied in a range between virtually 

none to substantial (Fig. 24S; Table 10S-11S). 
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4. Discussion 

We found significant differences in TEP amplitudes across prepro- 

cessing pipelines for both stimulated areas, i.e., IPL and DLPFC, in 

both session 1 and 2. Spatial and temporal correlations were generally 

moderate-to-substantial, although lower values were found at the begin- 

ning of the epoch and on frontal electrodes. Moreover, the test–retest 

agreement of TEPs was highly variable across components and also var- 

ied across preprocessing pipelines. 

The same analyses on the GMFP showed a similar pattern of results. 

These findings suggest a marked impact of the choice of the preprocess- 

ing pipeline on the TEPs, mainly at early latencies, which may affect 

their reproducibility. 

Variability brought by the choice of the preprocessing pipeline in the TEPs 

The application of different processing pipelines produced TEPs that 

were significantly different in amplitude and were variably correlated, 

for both IPL and DLPFC. 

Interestingly, TEPs at latencies below and above 100 ms showed dif- 

ferent patterns. 

Early-latency TEPs showed less differences in amplitude than late 

ones, but their correlations between pipelines and between sessions 

were variable and below moderate. The temporal correlations in the 

window 6–80 ms indicated that most of the low correlations were lo- 

cated in the fronto-temporal regions, where the muscular artifact is 

stronger. Finally, a general trend of low test–retest agreement was found 

in early peaks (P15, P20 and P50). 

Early components are informative in the study of effective connec- 

tivity as they reflect fast activations of remote areas directly or indi- 

rectly connected with the stimulated region ( Bortoletto et al., 2021 ). 

Unfortunately, they are superimposed to high-amplitude artifacts such 

as muscular and decay artifacts, that result in low SNR. Therefore, the 

preprocessing pipeline is likely to have a strong impact on the recover- 

ing of this part of the signal. To mitigate this issue, the signal around 

the TMS artefact is generally cut and lost for a longer time window that 

varies between 5 and 15 ms across studies. Nevertheless, according to 

the indication in the published preprocessing pipelines, the cut is meant 

to remove the TMS-pulse artifact, that lasts no longer than 5–6 ms with 

our settings ( Veniero et al., 2009 ), while other steps are indicated for re- 

moval of high-amplitude artefacts, e.g., a first-round of ICA ( Atluri et al., 

2016 ; Rogasch et al., 2017 ; Wu et al., 2018 ). How the length of the in- 

terpolation window may reduce the variability that we have found is not 

known and should be investigated in further studies. However, a longer 

cut around the TMS pulse may not eliminate the detrimental effects of 

the initial artefacts. Previous studies that have assessed the test–retest 

agreement of TEPs outside the motor cortex reported contrasting results 

for early peaks ( Casarotto et al., 2010 ; Kerwin et al., 2018 ; Lioumis et al., 

2009 ; Ozdemir et al., 2020 ) . Specifically, two studies in which the TMS 

pulse was cut for more than 10 ms showed a reduced reliability in early 

peaks ( Kerwin et al., 2018 ; Ozdemir et al., 2020 ). Differently, two stud- 

ies that employed sample and hold amplifiers reported high reliability 

of early peaks ( Casarotto et al., 2010 ; Lioumis et al., 2009 ). 

A macroscopic consequence of preprocessing-related variability may 

be the inconsistent definition of TEP components across studies. For ex- 

ample, beside the N100–P200 complex, TEP components are not yet 

fully characterized outside the motor cortex. Most of the studies on 

DLPFC stimulation agree on deflections such as the N40, P60, N100 

and P185 ( Bagattini et al., 2019 ; Chung et al., 2019 ; Conde et al., 

2019 ; Gordon et al., 2018b ; Rogasch et al., 2014 ; Voineskos et al., 

2019 ), but other peaks are often reported at ~30 ms, ~50 ms, or 

~70 ms ( Bagattini et al., 2019 ; Conde et al., 2019 ; Rogasch et al., 

2014 ). For IPL, there is still little characterization of TEP components 

and the few studies that reported them have shown inconsistent results 

( Conde et al., 2019 ; Rogasch et al., 2020 ; Romero Lauro et al., 2014 ). 

It is already known that the peak characterization may be drastically 

altered should only one TMS-related artifact be left unhandled in the 

signal ( Rogasch et al., 2014 ). Therefore, the variability in TEP compo- 

nents observed after the data have been preprocessed may be caused 

by a different artifact suppression in each preprocessing pipeline, espe- 

cially for large-amplitude early-latency TMS-related artifacts, which are 

the most difficult to handle. 

Late TEP components, i.e. above 100 ms, showed different am- 

plitudes across pipelines for both areas but were highly correlated 

with each other in both space and time. This suggests that the func- 

tions used to reduce artifacts at those latencies yielded TEPs with sim- 

ilar unfolding of components, but with different amplitudes. More- 

over, the test-retest reliability was between moderate to substantial 

for all late components except for the N/P300 latency that was highly 

variable, probably reflecting the slow response at the end of the 

epoch. 

Late peaks, i.e., N100 and P200, are known as the most reliable 

and stable peaks of the TEPs ( Biabani et al., 2019 ; Conde et al., 2019 ; 

Kerwin et al., 2018 ; Lioumis et al., 2009 ; Ozdemir et al., 2020 ). These 

studies are in line with our findings in that late latencies were the most 

resilient to the preprocessing pipeline in terms of shape, resulting in 

high correlations. However, it is likely that the earplugs employed in 

this study were not sufficient to suppress auditory response to the click 

emitted by the TMS pulse ( Biabani et al., 2019 ; Conde et al., 2019 ; 

Nikouline et al., 1999 ; Nikulin et al., 2003 ; ter Braack et al., 2015 ; 

Tiitinen et al., 1999 ). Moreover, none of the pipelines provided correc- 

tion for auditory artefacts. Therefore, these data should be interpreted 

with caution as the later peaks may be a mixture of genuine TEPs and 

afferent responses, which could itself be a reliable response. This issue 

could be solved with an appropriate sham control, although this issue 

continues to be debated in the TMS–EEG field ( Belardinelli et al., 2019 ; 

Conde et al., 2019 ; Siebner et al., 2019 ). 

Possible sources of variability between preprocessing pipelines 

The differences observed between the TEP preprocessing pipelines 

could derive from multiple factors. The main structural differences be- 

tween the pipelines used in this study were (1) the order of the steps in 

the pipeline, (2) the type of core functions to remove TMS-related arti- 

facts and (3) the level of automatism. The order of the steps in processing 

TMS–EEG signal is crucial, because the interaction of some procedures, 

i.e., filtering and ICA, with the large-amplitude artifacts might introduce 

additional analysis-related artifacts to the signal ( Rogasch et al., 2017 ). 

Regarding the type of core functions to remove TMS-related artifacts, 

these methods employ different ICA algorithms [ARTIST uses Infomax 

( Makeig et al., 1997 ), TMSEEG and TESA use fastICA ( Hyvärinen and 

Oja, 2000 )] or other methodologies such as the SOUND-SSP–SIR 

( Mutanen et al., 2018 , 2016 ). Infomax and fastICA were benchmarked 

in another study against another ICA algorithm called adaptive mix- 

ture ICA (AMICA) ( Palmer et al., 2008 ), which retains the best perfor- 

mance in separating neuronal components so far ( Delorme et al., 2012 ). 

Both Infomax and fastICA were highly correlated in terms of compo- 

nent scalp maps and spectral profile with AMICA components. This sug- 

gests that using different ICA algorithms in the TEPs should generate 

minimal variability, since the choice of artifactual components is based 

on the component scalp maps and spectral profile. However, the selec- 

tion of ICA, which is done manually by the experimenter in some cases 

and by automatic algorithms in others, may have impacted the final re- 

sult. A markedly different approach is the one from SOUND-SSP–SIR. 

As mentioned in the methods, SOUND cleans the signal in each sensor 

at the source level utilizing the information coming from nearby sen- 

sors, while SSP–SIR attenuates the TMS-induced muscular artifact de- 

tecting its time–frequency features at the source level. Another study 

already compared ICA and SSP–SIR (without SOUND) approaches in re- 

covering the TMS–EEG neuronal signal ( Biabani et al., 2019 ). There, 

ICA was found to reduce and distort the signal more than SSP–SIR. In 

contrast with our expectation, we found that SOUND-SSP–SIR’ TEPs did 

not show marked statistical differences with all the ICA-based method- 

ologies. Nonetheless, ICA might not be the ideal tool to separate brain 

signal from TMS-related artifact, because one of its core assumptions is 

that these two signals are independent from each other. Although this 
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assumption might hold in the EEG alone, in TMS–EEG many artifacts 

are time-locked to the TMS pulse, as it is the brain signal, breaking the 

assumption of independency ( Metsomaa et al., 2014 ). This might be an 

issue for the ICA-based preprocessing pipelines. 

As mentioned in Section 2 , the level of automation was substantially 

different across pipelines. ARTIST was designed to be fully automatic, 

in order to minimize the error due to subjective choices of the experi- 

menter. Therefore, trials, channels and ICA components were rejected 

without supervision. In our study, this feature led to a substantial differ- 

ence in the number of channels and ICA components rejected from this 

methodology. This could explain why ARTIST TEPs resulted as the most 

different in terms of amplitude in both IPL and DLPFC and also why 

spatial correlations with ARTIST deviated from the others until almost 

125 ms in the IPL. TMSEEG, TESA and SOUND-SSP–SIR also showed sig- 

nificant differences in rank after the preprocessing between each other, 

although remarkably less pronounced than with ARTIST. This is also 

reflected in the higher spatial and temporal correlations and in the re- 

duced differences of the cluster-based ANOVA between those pipelines. 

It is interesting to note, that ARTIST shows the highest amplitude in 

TEPs despite having the lowest rank. This may be due to the removal of 

several low-signal-power independent components in ARTIST. Trial re- 

movals were different between pipelines. Specifically, SOUND-SSP–SIR 

pipeline consistently removed less trials than the other pipelines. This 

is not surprising, since SOUND-SSP–SIR approach is to clean the data 

before doing the trial rejection, in order to spare the signal as much as 

possible. 

Lastly, it should be noticed that we investigated only four published 

preprocessing pipelines, while most of the TMS–EEG studies use custom 

preprocessing pipelines. Therefore, our results could barely represent 

the unaccounted variability possibly resulting from the various prepro- 

cessing pipelines within other TMS–EEG reports. 

What to do to overcome the variability brought by the preprocessing ap- 

proach? 

Variability brought by differences in the preprocessing phase is 

a crucial emerging issue that we have reported here for TMS–EEG 

and that has been recently reported also for other techniques applied 

in the neuroscience field, such as fMRI ( Botvinik-Nezer et al., 2020 ; 

Lindquist, 2020 ). This variability on TMS–EEG studies may be reduced 

when the results are based on the contrast between two conditions pro- 

cessed with the same pipeline, e.g., TEPs pre vs. post treatment or TEPs 

rest vs. task, and may be more critical in studies on resting-state TMS–

EEG aimed to investigate effective connectivity, where there is no con- 

trast to control the impact of a chosen pipeline. Nevertheless, in both 

cases accuracy of results would be affected if a pipeline does not reliably 

remove artefactual components and/or if it removes part of the evoked 

signal. 

A first strategy to reduce this problem may be to improve the signal- 

to-noise ratio during TMS-EEG recording. TEP signal recorded following 

DLPFC or IPL stimulation is known to be particularly problematic, be- 

cause there are no established procedures to set TMS parameters, e.g., 

TMS intensity and coil orientation, to obtain an optimal cortical re- 

sponse. Moreover, TMS pulses in those areas might interact with head 

and neck muscles, causing muscular twitches. In our study, the intensity 

of stimulation was set at 100% MT to minimize the discomfort when 

stimulating frontal regions, reducing muscular twitches. Despite this 

choice is in line with several TMS-EEG studies, it might have contributed 

to TEPs with low SNR. Other strategies to set TMS parameters include 

setting the TMS intensity based on a model the induced electric field 

in the target area and adjusting coil orientation to reduce muscle arte- 

facts. However, it should be considered that both these strategies affect 

the signal and the noise at the same time: higher TMS intensities in- 

crease the signal as well as the artefacts, coil orientation modulates the 

amplitude of cortical responses and of muscular twitches at the same 

time. Therefore, an important point to be addressed in future studies 

concerns the strategies to increase SNR during recordings and whether 

a TMS–EEG dataset recorded in conditions of a higher SNR could yield 

more robust results, less susceptible to the choice of the preprocessing 

pipeline. 

Nevertheless, the main obstacle for finding the best-performing 

pipeline is the lack of a ground truth, i.e., the knowledge of the under- 

lying clean signal, that would allow one to assess the efficacy of each 

preprocessing pipeline. One way could be to run simulations of TMS–

EEG data, where the ground truth is known. This approach presents 

some technical difficulties including a plausible reconstruction of EEG 

signals and an accurate modelling of TMS-induced artefacts. Regarding 

the former, there has been recent development in simulating physiologi- 

cally realistic EEG signals ( Neymotin et al., 2020 ). Regarding the latter, 

currently available realistic sham conditions have been performed by 

distancing the TMS coil from the scalp and delivering a pulse of electric 

stimulation ( Conde et al., 2019 ; Duecker and Sack, 2015 ; Gordon et al., 

2018a ; Mennemeier et al., 2009 ). However, artefacts induced by elec- 

trical stimulation may be different from the ones induced by magnetic 

stimulation. A more realistic model of TMS-induced artefacts may be 

obtained with coils that are designed for a fast decrease of the magnetic 

field with distance, so that the surface of the head can be stimulated 

in a similar way as in the active TMS condition while less stimulation 

reaches the cortex ( Deng et al., 2013 ). 

Alternatively, validation of TEPs may be obtained with more empir- 

ical approaches including, validation through well-established physio- 

logical effects and other neuroimaging techniques. For example, record- 

ing TEPs from the same area in two conditions that are known to 

change cortical excitability, e.g., resting state vs. motor preparation 

( Nikulin et al., 2003 ) or before vs. after drug intake ( Premoli et al., 

2014 ). If the experimental conditioning should not affect the artifact 

sources, a well-performing analysis pipeline should uncover the ex- 

pected TEP changes. Furthermore, validation of TEPs measures may be 

derived from testing the relationships with other already physiological 

and neuroimaging measures. A recent study brought evidence that an 

early component of TEPs obtained with the SOUND-SSP-SIR pipeline 

after M1 stimulation, the P15, reflects the activation of the contralat- 

eral motor cortex, as it has been shown to correlate with a peripheral 

measure of transcallosal inhibition and with microstructural measures 

of the corpus callosum connecting the motor cortices ( Bortoletto et al., 

2021 ). Despite a single study is not enough to validate a measure or the 

pipeline employed, an approach that combines multiple measures may 

allow to highlight physiological responses. 

Already now, even when the ground truth is missing, some meth- 

ods, such as linear spatial filtering methods like SOUND and SSP–SIR, 

allow a straightforward quantification of the over correction across all 

the possible cortical sources ( Mutanen et al., 2016 ). Because the spatial 

filters are perfectly known, one can apply them to all lead-field topogra- 

phies to determine which sources would be attenuated the most by, e.g., 

SOUND or SSP–SIR. This approach enables the assessment of potential 

distortions in the effective connectivity patterns of interest and the suit- 

ability of the chosen analysis pipeline for the research question i.e., the 

researcher could already quantify how much the applied linear spatial 

filters may attenuate the ground truth EEG signals assuming they are 

coming from a cortical region of interest. 

In conclusion, we believe that the TMS-EEG community should fo- 

cus more on the validation of these technical aspects in order to build 

a more solid base for all future TMS-EEG applications. The adoption 

of good practices similar to the ones proposed for fMRI by Botvinik- 

Nezer et al. (2020) and including the sharing of code and data, may 

promote validation of analysis pipelines by allowing more researchers 

to apply their own pipelines to others’ data and, viceversa, to apply 

others’ pipelines to their own data. Moreover, the adoption of pre- 

registration is another practice that may improve the definition of the 

analysis pipeline: pre-registration requires to define the preprocessing 

steps based on current understanding of available methods and possi- 

bly in combination with the application of the preprocessing to pilot 

data, without possible bias induced by the final results. Despite pre- 

registration does not guarantee a well-functioning pipeline, as it does 
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not provide a technical validation, it can foster good practices in the 

planning of the preprocessing phase. Moreover, when there are no a 

priori hypotheses on a particular preprocessing pipeline, the use of a 

multiverse analysis ( Steegen et al., 2016 ), i.e., the use of multiple sta- 

tistical and analytical approaches in the same study to reach consensus 

findings, would be a way to control the variability intrinsic to the pre- 

processing phase, yielding more solid results. 
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