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ABSTRACT: Complex machine learning (ML) models applied
within computational chemistry and materials science tend to be
seen as black boxes, yielding property predictions given some input
features. While the purpose of ML methods is often to circumvent
computationally expensive first-principles calculations, the fact that
the inner workings of the models are not understood conceals
chemical insight and knowledge regarding the underlying data and
physical correlations within it. Knowing what a model is learning
from the data and how outputs are formed is also useful in
facilitating the justification and wider adoption of ML solutions.
Here, we present an important contribution in this direction by
exploring and explaining the hydrogen adsorption properties of
defective nitrogen-doped carbon nanotubes (NCNTs) through
density functional theory simulations and machine learning-based data analysis. As the main highlight, we demonstrate the
application of a recent game-theoretic approach to deconvolute and interrogate the trained ML models, revealing how various
structural, chemical, and electronic features contribute toward the hydrogen affinities of roughly 6500 different NCNT adsorption
sites. The employed method of Shapley additive explanations (SHAP) attributes locally accurate importances to the investigated
features, unraveling high spin polarization, narrow highest occupied molecular orbital−lowest unoccupied molecular orbital
(HOMO−LUMO) gap, small dopant−adsorption site separation, and diverse angle and coordination effects as particularly impactful
for increasing hydrogen adsorption strengths. The SHAP method is shown capable of promoting a deep understanding of complex
feature−activity relationships, facilitating research efforts such as rational catalyst design for energy conversion applications.

1. INTRODUCTION

Rational materials development is pivotal in facilitating a
sustainable deployment of modern energy conversion tech-
nologies empowering envisioned concepts such as the
hydrogen economy.1 To substitute current best available
technologies, novel materials must satisfy criteria of phys-
icochemical activity, operational stability, cost-effectiveness,
and environmental friendliness, a multiobjective optimization
task that has led to the introduction of materials of ever-
increasing complexity. This important effort demands that
atomistic structure−activity relations are comprehensively
elucidated so that a targeted fine-tuning of the distinct
structural and compositional properties is enabled. However,
decoupling different microscopic features and their individual
contributions to the macroscopic response of a complex
material is complicated and time-consuming.2

While computational chemistry and density functional
theory (DFT) have mitigated this problem by providing
complementary tools to assess nanoscale structural and
electronic properties of, e.g., catalyst materials,3 the uncertain
correspondence between models and complex experimental

systems presents a considerable challenge.2,4 As experimental
materials are seldom uniform or monodisperse in nature,
computations should ideally consider an ensemble of probable
model systems to determine which configurations and moieties
might contribute most to the macroscopic observables.5

Clearly, as the number of degrees of freedom grows rapidly,
high-throughput tools for screening and analyzing individual
configurations and features are highly desired, a hurdle
optimally tackled by machine learning (ML)-based ap-
proaches.6

Machine learning models are applied within computational
chemistry and materials science to an increasing extent for the
purpose of accelerated catalyst development,7−9 force-field
training,10−12 and density functional fitting,13−15 to name a few

Received: April 30, 2021
Revised: June 18, 2021

Articlepubs.acs.org/JPCC

© XXXX The Authors. Published by
American Chemical Society

A
https://doi.org/10.1021/acs.jpcc.1c03858
J. Phys. Chem. C XXXX, XXX, XXX−XXX

D
ow

nl
oa

de
d 

vi
a 

A
A

L
T

O
 U

N
IV

 o
n 

Ju
ly

 1
7,

 2
02

1 
at

 1
3:

16
:5

0 
(U

T
C

).
Se

e 
ht

tp
s:

//p
ub

s.
ac

s.
or

g/
sh

ar
in

gg
ui

de
lin

es
 f

or
 o

pt
io

ns
 o

n 
ho

w
 to

 le
gi

tim
at

el
y 

sh
ar

e 
pu

bl
is

he
d 

ar
tic

le
s.

https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Rasmus+Kronberg"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Heikki+Lappalainen"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Kari+Laasonen"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/showCitFormats?doi=10.1021/acs.jpcc.1c03858&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jpcc.1c03858?ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jpcc.1c03858?goto=articleMetrics&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jpcc.1c03858?goto=recommendations&?ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jpcc.1c03858?goto=supporting-info&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jpcc.1c03858?fig=abs1&ref=pdf
pubs.acs.org/JPCC?ref=pdf
https://pubs.acs.org?ref=pdf
https://pubs.acs.org?ref=pdf
https://doi.org/10.1021/acs.jpcc.1c03858?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://pubs.acs.org/JPCC?ref=pdf
https://pubs.acs.org/JPCC?ref=pdf
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://acsopenscience.org/open-access/licensing-options/


examples. However, a problem of most ML models is their
apparent black-box nature.16 Complex ML algorithms such as
artificial neural networks and ensemble models are often
observed to be capable of learning and predicting target
properties with high precision, but interpreting the models and
explaining why they work as they do is challenging and
frequently omitted. Interpretability aspects of ML models have
consequently gained significant interest to increase the level of
understanding of how ML models compose outputs based on
input features, giving rise to the subfield of explainable artificial
intelligence (XAI).17,18 Resolving feature weights is essential to
understand which features have the greatest impact on the
target variable and therefore deserve the most attention. A
model that is interpretable and explainable is likely to be also
more convincing and easily adoptable as it provides insights
concerning the physics and chemistry behind the investigated
data as well as how the model could be potentially improved.
For a more thorough overview of state-of-the-art developments
within ML-driven materials science, the reader is referred to
the recent comprehensive reviews presented by Marques et
al.19 and others.20,21 The former is particularly recommended
for its extensive discussion on the importance of model
interpretability.
In this work, we present a significant contribution toward

this direction by applying a recent game-theoretic approach
based on Shapley values to accurate feature attribution within
machine learning augmented computational catalyst design. As
our target, we consider hydrogen adsorption on defective
nitrogen-doped carbon nanotubes (NCNTs), a noble metal-
free system with electrocatalytic potential for reactions such as
hydrogen and oxygen evolution (HER and OER),22 as well as
oxygen reduction (ORR).23 HER constitutes the cathodic half-
reaction of electrolytic water-splitting, composed of an initial
hydrogen adsorption process, the Volmer reaction (H+ + e− →
H*), followed by desorption via two alternative paths, either
the Tafel (2H* → H2) or Heyrovsky ́ (H* + H+ + e− → H2)
step. Considering that adsorbed hydrogen serves as a key
intermediate in the HER, hydrogen adsorption energies are
frequently used as descriptors in high-throughput catalyst
screening, alluding to whether the reaction could be facile from
a thermodynamic perspective.24 In view of the Sabatier
principle, heterogeneously catalyzed reactions should exhibit
optimal adsorption characteristics, as too strong adsorption
will decrease the driving force of the desorption step, while a
too low adsorbate affinity will hinder the required stabilization
and activation of the adsorbing species on the catalyst surface.
For the HER, this balance has been empirically shown to call
for a hydrogen adsorption free energy of ΔG ∼ 0 eV, although
recent theoretical evidence has suggested somewhat more
positive values.25 Nevertheless, it is clear that adsorption
energies of excessive magnitudes will have a detrimental effect
on HER rates.
Although heteroatom doping has been shown to have a

promoting effect on the insufficient catalytic activity of pure
carbon nanomaterials,26 experimentally measured activation
overpotentials gauging the surplus energy needed to drive HER
on NCNTs remain inferior to state-of-the-art platinum-based
catalysts.22,27,28 This performance gap suggests suboptimal
hydrogen adsorption properties, and there is evidently still
plenty of understanding to be gained regarding the activity-
determining features of NCNTs and how a rational fine-tuning
of these could enable further performance improvements. To
this end, we perform DFT calculations at both generalized

gradient approximation (GGA) and hybrid Hartree−Fock/
DFT (HF/DFT) levels of theory, probing the hydrogen
affinity of roughly 6500 different adsorption sites on 16 NCNT
systems. Potentially important structural, chemical, and
electronic features affecting the target variable are parsed
from the DFT output and used to train random forest machine
learning models for the regression task of predicting the DFT
adsorption energies. The fitted models and acquired data are
analyzed using Shapley additive explanations (SHAP),17,29

revealing intricate details on how distinct features impact the
model output at both local (individual sample) and global
(average impact across data set) levels. Furthermore, we
examine higher-order interactions between features that
explain how multivariate effects can contribute to feature−
activity relationships.

2. THEORETICAL METHODS
2.1. Random Forest Ensemble Learning. A random

forest (RF) is a machine learning method that operates by
generating an ensemble of decision trees based on training data
composed of several features for each sample and outputting
the mean prediction of the individual estimators for a target
quantity.30,31 To reduce correlation between individual trees,
the random subspace method is applied during tree generation
such that only a stochastically chosen subset of all input
features is considered when splitting each node. A second level
of randomness is injected by using a bootstrap sample of the
training data for each tree, i.e., training samples are selected
with replacement so that each data point may be chosen a
variable amount of times. On average, 1/e ∼ 37 % of the
training samples will not be used for the construction of a
given tree, forming an “out-of-bag” (OOB) set of samples that
can be used for internal validation. By training a random forest
of stochastically distinct decision trees, both numerical
(regression) and categorical (classification) target variables of
unseen test data can be predicted robustly with a reduced risk
of overfitting compared to conventional decision trees or, e.g.,
deep neural networks.32

2.2. Feature Attribution Methods. 2.2.1. Impurity-
Based Metrics. Estimating feature importances is a delicate
matter. By default, most random forest regressor implementa-
tions calculate feature importances based on the mean decrease
in impurity (MDI) as measured by variance reduction, i.e., the
drop in the mean-squared error (MSE) when splitting a node.
More generally, an impurity measure i(n) is a figure of merit of
any node n such that the smaller the impurity, the purer the
node is. With the full training set initially represented by a
single node, successive binary splits sn that maximize the
decrease in impurity are made, partitioning the data into
increasingly homogeneous groups until the terminal nodes
(leaves) cannot be made any purer. Denoting the impurity
decrease as Δi(sn), the importance Ij of a given feature j for
predicting the target variable is then defined as the sum of
weighted impurity decreases for all nodes where j is used,
averaged over all trees {ŷt}t = 1

T in the random forest30,33

∑ ∑= Δ
= ∈ ̂ |

I
T

w n i s
1

( ) ( )j
t

T

n y j
n

1 t (1)

where the weight w(n) is the fraction of samples reaching node
n. Thus, features used at the top of a decision tree contribute
to the final prediction of a larger portion of the input samples.
Consequently, eq 1 corresponds to a normalized feature
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importance estimate accounting for the expected fraction of
samples feature j contributes to in combination with the
decrease in impurity gained upon splitting them. For
classification tasks, one of the most common impurity
measures is the Gini score,34 and when employed, eq 1 is
correspondingly known as the Gini importance. A further
overview of the different flavors of impurity measures is,
however, beyond the scope of the present brief discussion.
Unfortunately, impurity-based feature importances suffer

from a major drawback as they tend to inflate the importances
of high cardinality numerical features, i.e., variables that may
attain a broad spectrum of unique values in contrast to, e.g.,
binary or finite categorical features.33,35 This bias toward
continuous high cardinality features arises from their inherent
ability to offer more potential cut-points that may, by chance,
produce a large impurity decrease when the node is split.
Consequently, even randomly generated numbers can be
ranked misleadingly as highly important as long as the model is
complex enough to be able to overfit using these, resulting in
severe inconsistencies in feature attributions. This is also
because impurity-based feature importances are evaluated at
the model training time and are thus biased toward the training
data and do not appropriately reflect the usefulness of the
features to make generalizable predictions. Impurity-based
attributions fail also in treating strongly correlated features,
yielding underestimated importance values for actually
impactful multicollinear variables that offer access to equivalent
information via different channels.
2.2.2. Shapley Additive Explanations. An effective

mitigation to the above issues has been recently presented
by Lundberg and Lee29 and is based on Shapley values known
from cooperative game theory.36 Shapley values measure the
contribution of each member of a coalition in a collaborative
game, providing a theoretically well-founded division of credit
among the members based on the average of all contributions
made by an individual. In the context of machine learning, each
feature can be considered to represent a single player of a
coalition of features that cooperate toward forming a
prediction. Consequently, the contribution of each player can
be identified as a measure of the feature importances, the
Shapley values. To calculate the Shapley value of a feature j,
one considers a subset of all features and evaluates a
general model f both with the feature j present in the subset (

∪ { }j ) and with the feature absent ( ). The marginal
contribution of the feature in a specific coalition is then

∪{ } −f j f( ) ( ), and averaging over all possible permuta-
tions in which a coalition can be formed yields the Shapley
value ϕj as

∑ϕ = | |! | | − | | − !
| |!

[ ∪{ } − ]
⊆ \{ }

f j f
( 1)

( ) ( )j
j

(2)

where |·| denotes the number of elements in a set. To estimate
feature importances based on Shapley values in practice, we
apply the concept of Shapley additive explanations (SHAP), as
implemented in the efficient SHAP Python package optimized
for tree ensemble methods.17 The SHAP values are a special
case of eq 2 in which the general set function f ( ) is defined
as a conditional expectation function of the machine learning
model ̂f x( ) given a subset of the features, [ ̂ | ] f x x( ) . In
other words, each feature is sequentially introduced into the

conditional expectation function and the induced change in the
expected output is defined as the SHAP value of that feature
after averaging over all possible feature permutations. While
this task is formally NP-hard with a notorious exponential

TLF( 2 )F scaling, where T, L, and F are the number of trees,
terminal nodes (leaves), and input features, respectively, the
computational complexity is mitigated in the decision tree-
specific implementation of SHAP by recursively tracking the
fraction of all possible feature subsets that end up in each leaf
node. This is essentially equivalent to evaluating the condi-
tional expectation function for all 2F feature subset
permutations simultaneously, yielding a more tractable

TLD( )2 polynomial complexity where D is the maximum
depth of any tree.
The SHAP values satisfy three important properties

necessary for feature attribution methods: local accuracy,
missingness, and consistency.29 Local accuracy, or additivity,
entails that the model output ̂f x( ) for each prediction equals
exactly the sum of the individual feature contributions plus a
base value corresponding to the expected output (weighted
average of all predictions) in the absence of input features

∑ ϕ̂ = [ ̂ ] + ̂
∈

f f fx x x( ) ( ) ( , )
j

j
(3)

The property of missingness, on the other hand, requires that
features absent in the original input, i.e., f(S ∪{j}) = f(S), have
no attributed impact (ϕj = 0). Perhaps most importantly,
consistency ensures that a change in a model that increases
some feature’s contribution does not decrease the importance
of this feature. The requirement of consistency is not satisfied
by other feature importance evaluation methods based on
standard concepts such as the MDI.17 Indeed, it has been
shown that Shapley values are the only feature attribution
method that satisfies all of the above three properties
simultaneously, enabling reliable and meaningful comparisons
of importances across the feature space.
It is notable that the SHAP values are local feature

attributions explaining the importance of input features for
individual predictions. Focusing on a single observation i, the
SHAP values reflect the contribution of each feature toward
the model output for that sample. In analogy with previous
global model interpretations measuring the average impact of
each feature across the whole data set, the local SHAP
explanations can also be combined for a global understanding
of the model structure and the importance of each feature for
the full data set. This is most simply achieved by averaging the
magnitudes of all SHAP values for each feature j

∑ϕ ϕ⟨| |⟩ =
| |

| |
∈

1
j

i
j

i( )

(4)

where | | is the number of samples in data set .
Although the SHAP values are a rather recent feature

attribution method, their desirable properties have facilitated a
successful application of the concept in the context of machine
learning augmented computational chemistry for explaining
model predictions of band gaps and exciton binding energies in
two-dimensional (2D) materials,37 optic dielectric constants of
crystals,38 nonequilibrium proton-coupled electron transfer
dynamics in proton wires,39 exchange−correlation functional
fitting,14 and heterogeneous ice nucleation on diverse solid
substrates.40

The Journal of Physical Chemistry C pubs.acs.org/JPCC Article

https://doi.org/10.1021/acs.jpcc.1c03858
J. Phys. Chem. C XXXX, XXX, XXX−XXX

C

pubs.acs.org/JPCC?ref=pdf
https://doi.org/10.1021/acs.jpcc.1c03858?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


2.2.3. SHAP Interaction Values. While the SHAP values
attribute to each input feature the impact that feature has on
the model output, they do not directly reveal information on
the possible interactions between features. Indeed, the local
effect of a feature on the model prediction may alter depending
on the values of the other features, i.e., the context of the
prediction. Consequently, it may be highly informative to
separate interaction effects of features from the main effect a
feature has on the model output. To this end, Shapley
interaction indices Φij extend Shapley values by allocating
credit among all pairs of features. Analogous to eq 2, SHAP
interaction values are defined as17

∑Φ = | |! | | − | | − !
| | − !

∇
⊆ \{ }

( 2)
2( 1)

( )ij
i j

ij
, (5)

where i ≠ j and

∇ = ∪{ } − ∪{ } − [ ∪{ } − ]f i j f i f j f( ) ( , ) ( ) ( ) ( )ij

(6)

with = [ ̂ | ]f f x x( ) ( ) as before. In other words, the
marginal effect of feature j in the absence of feature i within
the square brackets in eq 6 is subtracted from the effect of j
when i is present, averaging over all possible permutations of
feature coalitions to which i and j are introduced.
Consequently, Φ is an F × F matrix, the diagonal elements
of which correspond to the main effect of each feature,
respectively. These are obtained by subtracting all off-diagonal
interaction effects from the corresponding SHAP values ϕi

∑ϕΦ = − Φ
≠

ii i
j i

ij
(7)

As the interaction effects are split equally between all pairs of
features, Φij = Φji, the SHAP interaction matrix is symmetric
and the total interaction of a certain feature pair is given by Φij
+ Φji = 2Φij.

3. COMPUTATIONAL DETAILS
3.1. Model Systems. Hydrogen adsorption was studied on

16 different nitrogen-doped and defective CNTs, each
consisting of up to 224 atoms in a periodically repeated
simulation cell with dimensions of approximately 3.1 × 3.1 ×
1.7 nm3. Two different CNT types were considered, namely,
the achiral zigzag (14, 0) and armchair (8, 8) CNTs, both
having experimentally realistic diameters of ca. 1.1 nm.
Roughly 2.0 nm of vacuum was applied around the nanotubes
to decouple periodically repeated images of the systems in the
xy-plane. Of the various dopant and defect configurations, two
substitutional graphitic, three pyridinic, and three pyrrolic
nitrogen moieties were explored with single vacancy, double
vacancy, and Stone−Wales rotation-type defects, resulting in
dopant and vacancy concentrations ranging between 0.4−1.8
and 0−0.9 atom %, respectively. The dopant and defect types
were selected based on previous experimental and computa-
tional studies41−45 on probable doping configurations in
NCNTs. The investigated substrates are summarized in
Table 1.
Given the defined reference configurations, the hydrogen

affinity was probed considering all possible sites in the positive
half-space containing the nitrogen/defect configuration,
amounting to roughly 100 sites per NCNT. Having
determined the most stable adsorption site for each nanotube,

the minimum energy adsorbed systems were selected as
substrates for a second round of adsorption energy
calculations, thus now including two hydrogen adsorbates.
This procedure was repeated for the cases of three and finally
four adsorbed hydrogen intermediates to assess the impact of
hydrogen coverage. A total of 6517 distinct adsorption
configurations were optimized, and the (differential) adsorp-
tion energies ΔE were evaluated conventionally following eq 8

Δ = − −+ + −E E E E
1
2n nNCNT H NCNT ( 1)H H2 (8)

Table 1. Specification and Illustration of the Studied Model
NCNT Systemsa

aBlue and gray spheres correspond to carbon and nitrogen atoms,
respectively. The abbreviations V1, V2, and SW denote a single
vacancy, double vacancy, and Stone−Wales rotation, respectively. For
the Stone−Wales defect, two distinct nitrogen positions resembling
indole (N1a) and indolizine (N1b) structures were considered.
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where Ei is the ground-state energy of system i obtained from
the DFT calculation. We note that the free energy of
adsorption ΔG can be easily estimated from eq 8 by adding
a constant finite-temperature correction amounting to roughly
0.3 eV for hydrogen adsorption on NCNTs.46 Here, we will
nevertheless focus on the ground-state energy differences to
avoid introducing any unnecessary approximations.
We note that a few of the optimized adsorption

configurations may be similar based on symmetry arguments
despite the fact that a large amount of adsorption sites far away
from the defect moieties were eliminated by considering only
sites in the positive half-space. However, dopant−defect
configurations more complex than, e.g., simple graphitic sites
effectively break the symmetry of the CNTs, resulting in an
appreciable reduction in the number of equivalent sites. The
inherent symmetries are further reduced upon the adsorption
of the initial hydrogen, which inevitably perturbs the structures
of the NCNTs subject to three further hydrogen adsorption
events, each in turn also reducing the symmetry. Thus, while
some configurations considered in our data set may indeed be
similar, we note that these correspond to a minority.
3.2. Electronic Structure Calculations. Spin-polarized

DFT calculations were carried out using the hybrid Gaussian
and plane-wave (GPW) method,47 as implemented in the
CP2K/Quickstep software package.48 The plane-wave ex-
pansion of the electron density was truncated at an optimized
cutoff value of 600 Ry, while the orbital functions of the
valence electrons were expanded in short-range, molecularly
optimized, and polarized double-ζ quality Gaussian basis sets
(MOLOPT-SR-DZVP).49 The remaining ionic cores were
represented by dual-space norm-conserving Goedecker−
Teter−Hutter (GTH) pseudopotentials.50−52

The exchange−correlation energy was described using the
Perdew−Burke−Ernzerhof (PBE)53 GGA functional including
dispersion corrections based on the DFT-D3 scheme of
Grimme et al.54 with rational Becke−Johnson damping.55 A
direct minimization of the electronic Kohn−Sham energy
functional was conducted by the orbital transformation (OT)
method56 employing an energy convergence threshold of 2.7 ×
10−5 eV. Geometries were optimized by relaxing the atomic
positions using the BFGS algorithm until the force on any
atom was less than 2.3 × 10−2 eV Å−1. Net atomic charges and
electronic spin moments were calculated self-consistently from
the optimized electron density using the iterative Hirshfeld
partitioning procedure.57 This population analysis scheme
enables a rational selection of the promolecule and has been
shown to compare favorably with alternative population
analyses based on the electrostatic potential or topological
partitioning.58−60

To validate the performed GGA calculations, a subset of 256
adsorption configurations were selected from the full GGA
data set of structures relaxed using PBE and reconverged at the
hybrid HF/DFT level of theory. Specifically, for each of the 64
NCNT-coverage combinations, four adsorption configurations
corresponding to the maximum, minimum, median, and
midrange adsorption energy values were chosen. Notably, the
midrange energy corresponds to the configuration exhibiting
an adsorption energy closest to the average of the maximum
and minimum energy values. Hybrid single-point calculations
were subsequently performed on these PBE-optimized
configurations using the truncated, long-range corrected
PBE061 functional (PBE0-TC-LRC) introduced by Guidon
et al.,62 where the standard 1/r Hartree−Fock exchange
(HFX) term is truncated using a cutoff radius of 8 Å. The
auxiliary density matrix method (ADMM)63 was further

Table 2. Mathematical Formulation and Description of All 25 Input Features Used in the RF Modelsa

feature definition unit description

xk Nk/NNCNT atom % atomic concentration of k = N, V, or Hb

min dk θ +r zmin
k

k k
2 2 2 Å shortest curvilinear distance along the NCNT surface between S and k = N or Hc

min l | − |R Rmin
k

kS Å shortest S to k ∈ NN bond lengthd

max l | − |R Rmax
k

kS Å longest S to k ∈ NN bond length

RMSD ⟨ Δ ⟩R( )k
2 Å adsorption-induced root-mean-squared displacement of atomic positions

RmaxSD ΔRmax( )
k

k
2

Å adsorption-induced root-maximum-squared displacement of atomic position

χ +( )arctan m
n m

3
2

rad chiral angle of (n,m) NCNT

min φk
̂ · ̂

≠
u umin arccos( )

j i
ik jk rad smallest angle where k = S or nearest N defines the vertex and i,j ∈ NN of k

max φk
̂ · ̂

≠
u umax arccos( )

j i
ik jk rad largest angle where k = S or nearest N defines the vertex and i,j ∈ NN of k

αk arccos (z ̂ · v̂k) rad angular displacement of S with respect to the nearest k = N or H

CNk ∑i
CN

CN
i

i ,max
generalized coordination number of k = S or nearest N with i ∈ NN

ΔCNk adsorption-induced change in CNk

Z atomic number of the adsorption site
M 2S + 1 spin multiplicity of the system
q nval − (n↑ + n↓) e residual charge on the adsorption site (iterative Hirshfeld partitioning)
μ n↑ − n↓ e spin polarization on the adsorption site (iterative Hirshfeld partitioning)
Eg ELUMO − EHOMO eV energy gap (for open-shell systems the SOMO−LUMO gap)e

aNote that all features except those inferring to adsorption-induced changes are calculated on the reference configurations, i.e., the NCNT
structures before adsorption, NCNT + (n − 1)H. A glossary of auxiliary variables used in defining each feature is presented in Table S1. bN, V, H =
nitrogen, vacancy, hydrogen. cS = adsorption site. dNN = nearest-neighbor sites. eSOMO = singly occupied molecular orbital.
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applied to reduce the cost of computing the exact HFX energy.
In this approach, a supplementary polarized pFIT3 basis set
was used to project the original density matrix into an auxiliary
one for which the HFX energy can be computed more
efficiently, thus facilitating accelerated hybrid calculations
despite the large system sizes.
3.3. Machine Learning. The employed machine learning

workflow was implemented using the tools provided in the
scikit-learn64 Python package. For the purpose of
understanding how different features of defective NCNTs
contribute to their inherent hydrogen adsorption properties,
random forests were trained on the calculated PBE(0) DFT
data employing 25 different structural, chemical, and electronic
features parsed from the CP2K output (Table 2). The target
variable of the regression task was the adsorption energy ΔE.
We note that all features except those inferring to adsorption-
induced changes were calculated on the reference config-
urations, i.e., the NCNT structures prior to adsorption, NCNT
+ (n − 1)H, to emphasize intrinsic catalyst characteristics
more interesting from an experimental point of view. The
limited PBE0 data set was applied to train complementary RF
models and tentatively assess the impact of exact Hartree−
Fock exchange on the feature attributions. Adsorption energy
outliers were removed from both data sets based on the local
outlier factor (LOF) method. Instances where geometry
optimization resulted in spontaneous formation of H2 gas
were also excluded, yielding the final GGA and hybrid data set
sizes of 6477 and 254 samples, respectively.
10 × 5-fold nested cross-validation (CV) was applied to

obtain an unbiased estimate of the random forest general-
ization performance. The benefit of the nested CV strategy is
that the full data set can be exhaustively tested employing
different subsets of the data in turn for model training and
validation. The utilization of different train−test splits provides
also a way to estimate the model stability. This workflow is
depicted in Figure 1 and entails the following steps. After DFT
calculations and data preprocessing, the acquired data set is
split in accordance with the outer CV loop strategy. As we
employ 10-fold outer CV, the data set is split into 10 subsets,
each of which is, in turn, held out as a test set i, while the
remaining data forms the outer loop training (trainval) set

\ i. For each outer fold, the trainval set is next split in
accordance with the inner CV loop strategy. For 5-fold inner
CV, the set \ i is split into five parts, each of which is, in
turn, used as a validation set j, while the rest forms the inner

loop training set \ \( )i j. Using the inner loop training set,
the model is trained multiple times using different hyper-
parameter settings and the performance of a particular setting
is evaluated against the validation set. For the hyperparameter
tuning, we employ randomized parameter sampling to
optimize the number of features considered for the random
subspace method, the maximum depth of the decision trees,
and the minimum number of samples required at a node to be
split. The root-mean-squared error, RMSE = ⟨(ŷi − yi)

2⟩1/2, is
used as the loss function, and each random forest is composed
of 500 decision trees for an adequate compromise between
computational cost and accuracy.
Having trained a random forest for each inner CV fold and

hyperparameter setting, the RMSEs are averaged over all folds
and the set of hyperparameters that minimizes the loss is
chosen. Leaving the inner loop, a random forest is trained
using the selected hyperparameters on the whole trainval set

\ i and evaluated on the test set i held out before entering
the inner loop. The trained model and applied test data are
subsequently explained using the GPU accelerated version of
the TreeSHAP algorithm, and the obtained feature attributions
including SHAP interaction values are aggregated together
with the model predictions on the held-out samples. Repeating
this nested cycle for each outer CV split allows us to evaluate
the model performance against all samples in the collected data
set, as well as to explain the model output for each of these
instances. Importantly, the nested CV approach ensures that
no data leakage occurs and trained models are always validated
and tested on unseen data. Due to the heterogeneous nature of
the data set, we note that all CV folds were stratified by the
adsorption energies (rounded to nearest integer) for balanced
and representative train−test splits containing roughly equal
proportions of configurations with similar hydrogen affinities.
A further validation of the specified RF size and nested CV
strategy is presented in the Supporting Information, showcas-
ing a robust generalization performance and invariance of the
SHAP results against increasing the number of inner CV folds
and decision trees in the RF.

4. RESULTS AND DISCUSSION
4.1. Predictions and Performance. All features detailed

in Table 2 and adsorption energies were parsed from the PBE-
level CP2K output and associated atomic coordinate files. As
illustrated by the distribution in Figure 2a, the adsorption
energies follow a skew normal distribution with a mean and
standard deviation of 0.74 and 0.38 eV, respectively, suggesting

Figure 1. Employed machine learning and SHAP analysis workflow
with n = 6477 and 254 samples for the PBE and PBE0 data sets,
respectively, and k = 10 and l = 5 for 10-fold outer and 5-fold inner
cross-validation.
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that most adsorption sites on the studied NCNTs have low
hydrogen affinities. The maximum adsorption energy included
in the data set is 1.89 eV, while the minimum value is −2.50
eV. Figure 2a displays clearly the nonuniform nature of the
data demanding the previously discussed need for stratified
cross-validation. The predictions made using the optimized RF
models were aggregated over the course of the nested CV
procedure. As an illustration of the model performance, a
parity plot displaying the RF predictions as a function of the
true PBE adsorption energies is shown in Figure 2b for one
example outer CV fold. In addition to the unseen test data, the
model is intentionally tested also on the training data to
contrast the model accuracy on the two data subsets. We stress
that the performance on the test data is nonetheless what
determines the true generalization performance of the models.
The inset of Figure 2b shows learning curves for the training

and test sets where the RMSE loss is depicted as a function of
the training set size. This data highlights the continuous
decrease in the training and test set errors as the number of
training samples is incremented. Despite the marked difference
between the training and test set RMSE losses, it is clear from
the curves that the test set RMSE keeps decreasing as the
number of training samples is increased. We expect that a
further increase of the data set beyond the current size would
improve the generalization performance and reduce the
discrepancy between the training and test sets, although the
number of GGA samples required would be rather large due to

the evidenced inverse power law behavior. Importantly,
however, overfitting cannot be observed based on the learning
curves as the model keeps improving (learning) with increasing
data size.
The correlation between the PBE adsorption energies and

the values predicted by the RFs on the test set samples is high,
exhibiting average MAE and RMSE values of 0.06 ± 0.01 and
0.11 ± 0.01 eV, respectively, and a coefficient of determination
(r2) of 0.92 ± 0.01. Expectedly, the predictions on the training
set are very precise, reaching a chemical accuracy (<1 kcal
mol−1 ∼ 43 meV) based on both the MAE and RMSE losses
with an r2-score of 0.99. Reassuringly, although the majority of
samples reside roughly within the 0.5 ± 1.0 eV range, the RF
appears also capable of predicting adsorption energies of less
frequent configurations displaying markedly stronger binding
with a reasonable accuracy. This is of paramount importance
for obtaining reliable feature attributions, as it shows that at
least some of the input features are indeed important for the
hydrogen affinity and that the model is capable of learning this
dependence sufficiently well across the whole data set.
The performance metrics for the training and test sets

averaged over all outer CV folds are summarized in Figure 3.

We include here also the results on the hybrid data set, the
results of which are discussed in full detail in the Supporting
Information. Briefly, the model generalization performance on
the PBE0 data is expectedly worse (MAE 0.29 ± 0.03 eV,
RMSE 0.40 ± 0.07 eV) compared to using the GGA data set
due to the 96 % smaller data size. The hybrid data and trained
models are, however, useful for a tentative assessment of the
impact of the exact Hartree−Fock exchange on the attributed
feature importances.

4.2. SHAP Analysis of Random Forest Outputs.
4.2.1. Global and Local Explanations. In the following,
SHAP values are computed to unravel the most important
features of defective NCNTs that contribute to their intrinsic
hydrogen adsorption properties. By virtue of the employed
nested cross-validation workflow, the SHAP analysis is
performed on all outer CV test set splits using the RF models
tuned in the respective inner CV loops. As the outer loop test
sets are completely separate from the outer CV training data,
which is also used in the inner CV hyperparameter tuning, we
ensure that the feature attributions are calculated for samples

Figure 2. (a) Sorted adsorption energies within the GGA data set.
The mean and standard deviation of 0.74 ± 0.38 eV are marked by
the dashed line and shaded area, respectively. (b) Parity plot of the
adsorption energies predicted by the RF model versus the true PBE
values of the training and test set samples of an example outer CV
split. Ideal correlation is marked by the dashed line, and the shaded
area corresponds to ± the test set RMSE averaged over all CV splits.
The skew normal distributions on the right side of the panels illustrate
the distribution of samples within the full data and stratified example
training and test sets. The test set distribution (red) has been
arbitrarily scaled for visual purposes. The inset in (b) shows cross-
validated learning curves for the training and test sets using a single
hyperparameter setting. The shaded areas denotes the standard
deviation of the respective RMSE losses.

Figure 3. Unbiased generalization performance of the RF models
based on 10 × 5-fold nested CV on the GGA and hybrid HF/DFT
data sets. The solid bars denote a lower bound of the respective
averaged errors, while the hatched parts indicate the variability as
twice the standard deviation across the outer CV folds. The average
coefficients of determination with standard deviations are annotated
above the bars. The limit of chemical accuracy is marked for reference
by the dashed line.
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of data unseen by a particular model. Thus, as discussed above,
we are able to utilize the full data set for the analysis while
completely avoiding bias associated with the training instances
to which the models could theoretically overfit. This approach
would not be possible using conventional impurity-based
feature attributions that are computed on the training samples
during tree construction.
As a summary of the feature attributions, the mean

magnitude of the SHAP values of each feature is computed.
Sorting the results, the 10 most impactful features are
displayed in Figure 4a, highlighting the global feature

importances. Clearly, three features emerge as particularly
important when considering the whole data set: the spin
polarization (local magnetic moment) on the adsorption site,
the adsorption-induced change in the generalized coordination
number of the nearest nitrogen dopant, and the highest
occupied molecular orbital−lowest unoccupied molecular
orbital (HOMO−LUMO) gap of the system. Inspecting the
correlation between the SHAP values and the feature values, an
overall increase of the adsorption energy is indicated as a
function of increasing ΔCNN and Eg, while a negative
correlation is seen for μ. Other globally important features

include bond angles and lengths between the adsorption site
and its nearest neighbors, containing information on ring
strain. Furthermore, the distance of the adsorption site to the
nearest N-dopant, adsorption site charge, and NCNT chirality
have considerable impacts toward the RF model output.
Although the feature attributions based on the mean

magnitudes of the SHAP values provide a simple and concise
picture of the global feature importances, local information
contained within the SHAP values is lost in the process of
evaluating the modulus and averaging following eq 4. It is
therefore informative to leverage the property of SHAP values
as local feature attributions, revealing the impact of features for
individual data samples and predictions. We re-emphasize that
local accuracy (additivity) is a desirable property of feature
attribution methods. This property is not reflected by default
impurity-based importances, limiting the accessible level of
accuracy to the global scale presented in Figure 4a.
Consequently, we illustrate in Figure 4b all SHAP values of
the 10 globally most impactful features using violin-like scatter
plots, where the vertical dispersion of the values encodes the
abundance of similar attributed importances for a given feature.
This visualization reveals that the high global impact of ΔCNN
is largely caused by a cluster of configurations exhibiting low
feature values, responsible for negative marginal contributions
as low as −1.3 eV in some model outputs. These samples are
specifically characterized by negative ΔCNN values around −1,
suggesting adsorption-induced bond breaking at nitrogen
dopant sites as the source of substantially negative adsorption
energies. This is a manifestation of possible instabilities in the
CNT structure due to substitutional nitrogen doping, resulting
in highly reactive structures. We note that this tendency is
particularly characteristic of N1V1-pyrrolic nitrogen moieties,
accounting for nearly all 200 configurations in which bond
breaking at the nitrogen site is observed. Such instabilities are
likely to be deleterious for efficient HER catalysis. Bond
breakage modulates also the potential energy surface close to
the nitrogen dopant, opening up new adsorption sites to which
preadsorbed hydrogen atoms may preferentially bind. Sub-
sequently, hydrogen affinities calculated for these sites also
contain contributions from bond rearrangement and hydrogen
site hopping, thus complicating the analysis of adsorption
energetics at pyrrolic nitrogen moieties.
In contrast, the SHAP values of the spin polarization on the

adsorption site are rather continuously distributed, showcasing

Figure 4. (a) Global SHAP importances ranking the 10 most
impactful features in forming adsorption energy predictions. Bars
correspond to cross-validated averages, and the error bars indicate ± 1
standard deviation across the outer CV folds. Correlation coefficients
of SHAP and feature values are annotated on each accordingly color-
coded bar. (b) SHAP values (local explanations) of the 10 globally
most important features for all test set observations. The vertical
dispersion of data points depicts high densities of SHAP values, i.e.,
abundance of configurations with similar ϕj. All data points are color-
coded according to the feature values they represent.

Figure 5. SHAP values of the (a) spin polarization on the adsorption site, (b) system energy gap, (c) minimum angle at the adsorption site, and (d)
distance between the adsorption site and the nearest nitrogen dopant. The density of SHAP values is indicated by the color scale, and the global
importances of the respective features are annotated above the panels for reference. Each data point in (b) has been shifted (jittered) along the Eg-
axis by a small random amount (max. ±0.05 eV) to better highlight the overall trend between the SHAP and feature values. We stress that no more
than 64 different values of the band gap were explicitly considered, and the jittering of the data is only a visual change that importantly does not
affect the qualitative information conveyed by the plot. For the clustered raw data, please see Figure S4.
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a clear negative correlation with the feature values of μ. The
same applies for the energy gap Eg, although with the opposite
correlation. Furthermore, the chiral angle χ of the NCNT has a
quite moderate impact on the adsorption energy predictions,
but there is a clear distinction between the effects of zigzag and
armchair nanotubes, with the former having an overall negative
impact on the output and the latter a positive. Intriguingly, the
largest angle at the adsorption site exhibits a similar
discontinuous behavior as ΔCNN , with a separate group of
configurations with high feature values having a decisively
increasing effect on the predicted adsorption strengths. The
high feature values turn out to be associated with reactive 2-
fold coordinated nitrogen sites characterized by maximum
angles around 4π/3 rad (240°), as well as to some extent
seven-membered rings and stretched six-ring structures.
Although summarizing individual SHAP values in the spirit

of Figure 4b facilitates a deeper analysis of the local feature
effects, the precise relation between the attributed importances
and the feature values cannot be elucidated. This is particularly
important for more complex dependencies between SHAP and
feature values, such as those seen for the minimum angle at the
adsorption site min φS as well as the distance between the
adsorption site and the nearest nitrogen dopant min dN. In the
former case, high feature values may correspond to both near-
zero and considerably negative SHAP values, while in the
latter, small values of min dN may be attributed with both

positive and negative importances. As a direct analysis of these
effects, the dependence plots of the SHAP values as a function
of the respective feature values are presented in Figure 5. Here,
we highlight four important features, μ and Eg with a
monotonic dependence as a function of the feature values, as
well as min φS and min dN, the attributed importances of which
show a more complex trend. The dependence plots of the
remaining features are shown and discussed in Figure S4.
As inferred above, high values of the spin polarization at the

adsorption site result in decreased adsorption energies, while
large energy gaps have a low or slightly positive impact on the
model output. A similar increasing dependence is observed for
the minimum angle at the adsorption site in Figure 5c for
angles smaller than 2π/3 rad (120°). This indicates that
adsorption sites at ideal six-membered ring structures have a
small increasing effect on the adsorption energy predictions,
while decreasing the angle toward 3π/5 rad (108°) results in
stronger adsorption. This value corresponds to the angle of a
five-membered ring, which, opposed to the six-membered case,
experiences pronounced reactivity-increasing internal strain.
Interestingly, for min φS values larger than 120°, an abrupt
decrease in the SHAP values is evidenced, suggesting that
stretched six-ring structures display high hydrogen affinities.
Such moieties are mostly associated with 2-fold coordinated
adsorption sites observed at the edges of vacancy structures
connected to pyridinic and pyrrolic dopant configurations.

Figure 6. Case examples of model output formation as described by the SHAP values. Local explanations for adsorption at (a) (8,8) graphitic, (b)
(14,0) N1V1-pyridinic, (c) (14,0) N1bSW-pyrrolic, and (d) (8,8) N4V2-pyridinic dopant configurations are illustrated. The adsorbing hydrogen is
marked in yellow, while white, gray, and blue spheres correspond to preadsorbed hydrogen, carbon, and nitrogen atoms, respectively. The base
value [ ̂ ] f x( ) of the model is marked below the panels, and the final output is obtained by summing the marginal contributions, yielding the model

prediction ̂f x( )) annotated above each panel.
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Figure 5d unravels finally the intriguing effect of the relative
position of the adsorption site with respect to the nearest
nitrogen dopant. Indeed, the erratic trend illustrated in Figure
4b of low feature values having both negative and positive
impacts on the model outputs is explained by the totally
different hydrogen affinities of the nitrogen dopant sites and
their (next) nearest neighbors. Here, the former have a small
or decisively positive impact on the adsorption energy
predictions, while the latter sites tend to be considerably
activated by the presence of nitrogen. Moving farther away
from the dopant is observed to result in near-zero attributed
importances.
4.2.2. Decomposition of Individual Adsorption Energy

Predictions. It is informative to inspect a few case examples of
individual adsorption configurations to highlight the explan-
atory power of the locally accurate SHAP feature attributions.
Figure 6 displays four distinct adsorption configurations and
the largest marginal contributions toward forming each model
output. As a first example, Figure 6a highlights two competing
effects observed on the graphitic substitutionally doped
NCNT, namely, adsorption at a 3-fold coordinated nitrogen
dopant site and strong spin polarization. The adsorption to the
nitrogen site is directly captured by four features, namely, zero
adsorption site to dopant separation, an atomic number of 7 of
the adsorption site, a unit increase in the generalized
coordination number of the nearest nitrogen, and undefined
angular displacement of the adsorption site with respect to the
nearest dopant. Additionally, the nitrogen site is indirectly
recognized by the residual charge that tends to be substantially
negative for the more electronegative nitrogen. Recalling the
additivity of SHAP values, these features sum up to a positive
contribution of roughly 0.7 eV in the model output for the
sample configuration. Importantly, this is a clear indication of
the chemistry within our datadirect adsorption at a nitrogen
site is generally unfavorable, corroborating the discussion
associated with Figure 5d. However, the nitrogen site exhibits a
pronounced spin polarization likely induced by the neighbor-
ing preadsorbed hydrogens that favorably perturb the local
electronic structure of the adjacent atoms. Such clustering of
sequentially adsorbing hydrogens has been previously demon-
strated on pristine CNTs.65 Consequently, the final output of
the model collapses back toward the base value, totaling an
adsorption energy of 0.89 eV.
Figure 6b exemplifies, on the other hand, the influence of the

energy gap of the catalyst. In this example, no local features of
the sample NCNT appear to influence the adsorption energy
prediction substantially, except for the close, next-nearest-

neighboring proximity of the adsorption site with respect to
the nitrogen dopant. Thus, the low value of the band gap most
significantly affects the hydrogen affinity, resulting in a model
output of 0.47 eV. Conversely, the cumulative effect of
multiple features illustrated in Figure 6c contributes toward a
considerably more negative −0.04 eV adsorption energy
prediction. Also here, hydrogen adsorbs to a nitrogen next-
nearest-neighbor site, which in addition is located adjacent to a
Stone−Wales defect. Consequently, the maximum and
minimum angles correspond to those of a five- and seven-
membered ring structure, respectively, and the maximum bond
length at the adsorption site is markedly stretched, resulting in
a net strain-induced shift of the model output by ca. −0.3 eV.
In addition, the site exhibits a high local magnetic moment and
a relatively small energy gap, which further decrease the
adsorption energy prediction.
Some of the most important effects contributing toward high

hydrogen affinities are attributed to the coordination of the
adsorption site. Figure 6d breaks down this effect for the case
of hydrogen adsorption to a pyridinic nitrogen dopant. In
accordance with the preceding discussion, the direct
adsorption to a nitrogen site is often weak, and also in this
case, positive SHAP values of 0.05 and 0.17 eV are attributed
to ΔCNN and the negative residual charge on the adsorption
site associated with the electronegative nitrogen. However, the
compressed bond lengths, as well as the large maximum and
minimum angles at the adsorption site induced by the 2-fold
coordination, contribute toward an increased adsorption
strength of −0.35 eV, demonstrating the overriding effect of
site coordination.
In the analyzed example cases, the predicted adsorption

energies deviate from the true PBE values by 0.06 eV on
average, underscoring the accuracy of the trained RF models.
We note that the two samples discussed last exhibit adsorption
energies close to the regime where the thermodynamic
prerequisite for efficient HER catalysis is approximately met.
Most importantly, the above analysis unravels why these
example configurations show optimal hydrogen affinities,
providing a path to actually understand the output of a
complex ML model as well as the chemistry underlying the
studied data. For a compact visualization, we note that multiple
prediction decompositions as those displayed in Figure 6 can
be combined to form a heatmap of SHAP values presented in
Figure S5. Hierarchical clustering of the samples based on the
attributed importances provides a way of obtaining a quick
overview of the data and features resulting in similar model
outputs. For example, the most negative energies are predicted

Figure 7. Main feature effects on the model output as captured by the diagonal elements of the SHAP interaction matrices of the (a) spin
polarization on the adsorption site, (b) system energy gap, (c) minimum angle at the adsorption site, and (d) distance between the adsorption site
and the nearest nitrogen dopant. The data points in (b) have been jittered slightly along the Eg-axis for visual purposes (see Figure 5).
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for adsorption configurations possessing high spin polar-
izations and structural instabilities as encoded by strained
bond lengths and angles as well as adsorption-induced bond
breaking and large atomic displacements. Conversely, the most
positive model outputs are seen for substrates with large
energy gaps and for direct adsorption to nitrogen dopants.
4.2.3. Interaction Effects. The vertical scatter of SHAP

values in Figure 5 indicates that different importances can be
attributed to a specific feature value depending on the
adsorption configuration. This is a manifestation of interaction
effects between features easily missed by studying importances
at a global level. Quantifying these interactions is informative,
unraveling hidden correlations that facilitate an explanation of
why a given feature may be attributed with different
importances despite the value of the feature remaining
unchanged. In the present case, a feature value previously
associated with a high/low hydrogen affinity might have an
opposite impact on the model output depending on the
context formed by the other features. Such insights are
exceptionally valuable from the viewpoint of catalyst design,
suggesting that observed structure−activity trends may not
always reflect simple one-to-one relations. To analyze feature
interactions within our data, we consider first the feature main
effects. To this end, we focus on the diagonal elements of the
SHAP interaction matrices for all outer CV test set samples
and the same features as illustrated in Figure 5 to contrast the
results in the absence of interactions. This data is visualized in
Figure 7.
Expectedly, removing the interaction effects yields a less

disperse representation of the feature dependencies. For values
up to 0.1 e, the attributed impact of the local spin polarization
in Figure 7a follows a monotonically decreasing trend, leveling
out as the feature values increase further. The SHAP main
effect of the energy gap in Figure 7b increases, on the other
hand, as a function of the gap width, as does the minimum
angle at the adsorption site in Figure 7c for values less than or
equal to the ideal angle of a six-membered ring. The exclusion
of interaction effects clarifies the picture of how different
feature values impact adsorption energy predictions. Although
in the three aforementioned cases the same information could
be rather well inferred also from Figure 5, Figure 7d
exemplifies the importance of explicitly considering interaction
effects. Indeed, examining min dN-values between 1 and 3 Å
(nearest- and next-nearest-neighbor sites) reveals a clear
difference compared to Figure 5d. Specifically, nonlinear
interaction effects appear to have a significantly decreasing
impact on the hydrogen affinities of the next-nearest sites of
the nitrogen dopant.
As an overall assessment of the interactions perturbing the

main feature effects, a global analysis of the SHAP interaction
values is performed. In analogy with eq 4 and Figure 4a, we
consider all pairwise feature combinations and sum their
absolute interaction values over all test set samples k in each
outer CV fold. The obtained result is a symmetric F × F matrix
with off-diagonal elements ∑k|Φij

(k)| = ∑k|Φji
(k)|. Setting the

diagonal main effects to zero yields a global interaction matrix
presented in Figure 8, where the 10 most strongly interacting
feature pairs are highlighted in sorted order. Four pairwise
interactions emerge as particularly dominant, namely, between
Eg and μ, Eg and χ, min dN and Eg, as well as min dN and q. We
will focus on these feature pairs in the following analysis and
plot the corresponding SHAP interaction values as a function
of the feature values of each pair in Figure 9. We reiterate that

summing all pairwise interaction values of a given feature in all
possible pairs and including the main effect yields the SHAP
value of that feature in accordance with eq 7.
Figure 9a illustrates the intriguing impact of min dN on the

model output depending on the value of Eg. Notably, for
adsorption to nitrogen sites (min dN = 0), small values of the
energy gap have a further increasing effect on the adsorption
energies, while large Eg have a small negative contribution. This
trend is reversed for nearest, next-nearest, and third-nearest
sites, where small energy gaps may have a considerably
decreasing effect on the predicted adsorption energies.
However, for more distant adsorption sites, the behavior
resets, i.e., small energy gaps have a slight positive contribution
to the adsorption energy. Overall, the variations in the feature
interaction values are larger for NCNTs with small Eg,
suggesting a more dispersed dopant-induced modulation of
the electronic structure promoted by the increased electron
mobility. This increases especially the activity of sites closer to
the dopant.
The feature interaction values of min dN and q show a clear

separation between adsorption sites with positive and negative
residual charges, with the former having a slight decreasing
contribution to the SHAP values of min dN and the latter a
more positive impact. Clearly, excess negative charge on the
adsorption sites tends to decrease the hydrogen affinity, while
electron deficiency (p-type doping) increases the adsorption
strength. Due to the electron-withdrawing property of
nitrogen, dopant sites are exclusively negatively charged,
while adjacent carbons are positive. Next-nearest-neighboring
sites, on the other hand, show a less homogeneous charge
distribution, bearing both positive and negative residual
charges depending on the specific NCNT configuration and
its perturbing effect on the π-conjugated electronic structure.
Importantly, we emphasize that this interaction between min
dN and q at the next-nearest and to some extent third-nearest
carbon sites is what drives the attributed importances of min
dN toward zero in Figure 5d in contrast to the main feature
effect. Therefore, the close proximity of an adsorption site to
the nitrogen dopant may not always guarantee a high hydrogen
affinity but requires in addition a favorable local charge
distribution. This can be achieved by engineering catalysts with

Figure 8. Global measure of SHAP interaction effects for the 10 most
strongly interacting features. Each element of the matrix corresponds
to the sum of absolute interaction values of a feature pair over all test
set samples in each outer cross-validation split. The color scale
indicates the magnitude of the global interaction, which is also
proportional to the size of each square.
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high concentrations of p-type doping configurations such as
observed for pyridinic moieties.22

Considering the energy gap and the local spin polarization,
the observed interaction effect is negligible for small or slightly
negative values of μ. However, as the spin polarization
increases, the interaction effect becomes substantial, especially
at small values of the energy gap. Here, high local spin
moments lower the predicted adsorption strengths, thus
working against the main effect of Eg illustrated in Figure 7b.
For intermediate values of Eg, the interaction effect is
intriguingly reversed, suggesting on average slightly more
negative predicted adsorption energies for sites with
pronounced spin polarization. The increased electron mobility
promoted by a small energy gap allows the excess spin
introduced by N-doping to favorably delocalize in the system.
Consequently, the spin effect becomes more distributed and is
effectively damped, while for larger energy gaps, delocalization
is spatially constrained, yielding sites lesser in number but with
larger spin polarization and thus increased hydrogen affinities.
A somewhat similar behavior is also evidenced in the case of

the pairwise interaction between Eg and the NCNT chirality.
Given that only the armchair (χ = π/6 rad) and zigzag (χ = 0
rad) variants of the NCNTs were considered, the feature and
interaction values show a binary separation with opposed
trends as a function Eg. For more conductive NCNTs, the
zigzag structure induces a positive shift in the SHAP values of
Eg, although the effect decreases toward zero as the energy gap
widens. Conversely, for low values of the gap, the interaction
effect of armchair NCNTs is seen to have a negative
contribution toward the effect of Eg on the model output,
with the interaction again diminishing as Eg increases. These
results together with the feature importances of χ illustrated in
Figure 4b point toward a small but distinct and complex
chirality effect on adsorption energies, as discussed by Giślason
and Sku ́lason.66 A more detailed analysis is, however,
complicated by the fact that only two different NCNT
structures were considered herein. The required more
comprehensive sampling of different chiralities including
NCNTs with varying diameters is consequently left as a
topic for future research efforts.
4.3. Discussion. The high importance of the adsorption

site spin polarization coincides with previous notions of
catalytically activating electron transfer and spin modulation
effects in heteroatom-doped carbon nanomaterials.23,26,67−70

While such effects have been mainly investigated and identified

for the ORR, our work reveals that similar electronic effects are
also likely to influence the HER as inferred using the
adsorption energy as an activity descriptor. Most importantly,
in contrast to the qualitative reasoning presented in previous
research, the quantitative feature attributions shown here
unravel local feature−activity trends at an unprecedented level
of detail. For example, regarding the spin polarization effect, we
observe that an almost linear decrease in attributed SHAP
values occurs as the magnetic moment on the adsorption site
increases, but only up to roughly 0.1 e where the effect levels
out (Figure 7a). Thus, engineering the spin properties of the
catalyst may be desired only up to a certain degree after which
negligible improvements in hydrogen affinities are obtained. Of
course, the risk of overbinding remains relevant as well.
Moreover, the attributed impact of the HOMO−LUMO

energy gap can be elaborated considering fundamental
concepts of chemical reactivity. The energy gap and the
chemical hardness η of a molecular structure can be
straightforwardly associated by treating the HOMO−LUMO
gap as the difference between the ionization potential and
electron affinity in accordance with Koopmans’ theorem and
applying a finite-difference approximation,71 yielding Eg ∼ 2η.
The principle of maximum hardness states that molecular
structures tend toward an equilibrium state that maximizes η.
Consequently, soft systems with low η undergo electronic
structure-perturbing chemical transformations more readily,
implying that molecular catalysts with small Eg reflect low
kinetic stabilities. Conversely, the rearrangement of electrons
upon a chemical reaction involving large-energy-gap materials
is hindered due to the energetic unfavorability of electron
injection to a high-lying LUMO and/or electron extraction
from a low-lying HOMO. This principle has been demon-
strated for the reactivity of polycyclic aromatic hydrocarbons
and ORR catalysis on nitrogen-doped graphene.67,72 Herein,
we show that the attributed SHAP values specify this
dependence for hydrogen adsorption on NCNTs to follow
approximately an inverse power law, ΔE ∼ −Eg

−γ. As the band
gap is inherently a global property of a specific system, we
emphasize that this finding suggests more conductive (soft)
NCNTs to exhibit on average higher hydrogen affinities.
Therefore, all local sites are not necessarily activated toward
hydrogen adsorption despite small values of Eg and special
moieties, such as 3-fold coordinated nitrogen sites, may remain
inactive due to their exceptional local properties.

Figure 9. Pairwise SHAP interaction effects between (a) the dopant−adsorption site separation and the NCNT energy gap, (b) the dopant−
adsorption site separation and the residual charge on the adsorption site, (c) the energy gap and the spin polarization on the adsorption site, and
(d) the energy gap and the NCNT chirality. The data points are colored based on the values of the feature with respect to which the interaction
effect is measured. The data points in (c) and (d) have been jittered slightly along the Eg-axis for visual purposes (see Figure 5).
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The importance of the energy gap is furthermore
emphasized by its connections to the minimum dopant−
adsorption site separation and the spin polarization. While high
electron conductivity is desirable to minimize ohmic losses in
the electrocatalysis of HER, small values of Eg are shown here
to promote also the delocalization of spin density. Sub-
sequently, an increased number of adsorption sites may attain
pronounced magnetic moments, thus reflecting increased
hydrogen affinities. However, for a given multiplicity, a more
delocalized spin density implies decreased magnitudes of the
spin polarization. Thus, decreasing the energy gap may
contribute to a transition from few very reactive adsorption
sites adjacent to a nitrogen dopant to multiple more dispersed
ones showcasing intermediate hydrogen affinities. Overall, the
main effect of the dopant−adsorption site separation on the
adsorption energies follows the form of an interatomic
interaction potential. This emphasizes that the localization of
the optimal electronic structure-perturbing effect of the dopant
is limited to 4 Å, i.e., nearest, next-nearest, and third-nearest
carbon sites. Consequently, even though our analysis does not
indicate a direct effect of dopant and vacancy concentrations
on hydrogen affinities, HER rates are nevertheless promoted
by increasing the number of defect sites that enter the kinetic
equations through the pre-exponential factor.
In addition to electronic effects, the way in which hydrogen

affinities are influenced by structural features including ring
angles, bond lengths as well as site coordinations can be
understood based on the presented results. While five-
membered ring structures have a clear improving effect on
adsorption strengths, the stability of dopant configurations
remains an important consideration. Particularly, N1V1-pyrrolic
configurations are found to easily undergo adsorption-induced
bond breakage at the nitrogen moiety. Bond rearrangement-
resistant five-membered ring structures associated with N-
doped Stone−Wales defects and five-rings adjacent to studied
N1V1-pyridinic dopant configurations are thus more likely to
constitute active, yet sufficiently stable hydrogen-adsorbing
sites. We note that the importance of five-membered ring
structures for HER catalysis has been previously demonstrated
theoretically in nondoped open-ended nanotubes where a
truncation of the CNT promotes the formation of segregated
and fused five-rings at the CNT edge exhibiting more than 0.3
eV lower HER barriers than six-ring sites.73

Although some of the features considered herein are perhaps
not the most useful for the purpose of high-throughput
materials screening as they require DFT calculations, we
emphasize that this issue is of secondary importance
considering the motivation of the present work. Indeed, we
reiterate that the primary objective of this research is to gain
understanding of fundamental physicochemical relationships
underlying the investigated data using a novel feature
attribution methodology. Thus, we highlight the “reverse”
side of ML-driven materials science where the aim is to identify
and concretize complex connections between input features
and property predictions, not only to generate more or less
unintelligible outputs without minding the inner workings of
the deployed model. Nonetheless, future holistic studies in the
spirit of explainable artificial intelligence will also benefit from
the consideration of more easily accessible features to capture
all aspects of state-of-the-art ML augmented computational
materials science. This entails the development of fast and
highly accurate, yet interpretable and transparent ML models

relying on computationally inexpensive descriptors based on,
for example, atomic structure and composition.

5. CONCLUSIONS

Robust and locally accurate feature attributions provided by
Shapley additive explanations17,29 present a tremendous
contribution toward understanding black-box machine learning
models as well as fundamental structure−property relation-
ships within studied data. Such insights are of high value, for
example, within rational catalyst development, where the
number of activity-impacting structural and chemical degrees
of freedom grows combinatorially as investigated materials
become increasingly complex. Tackling large data sets using
ML models is attractive, and analyzing the output using the
SHAP methodology produces reliable feature importances that
help in narrowing down which attributes of the investigated
catalyst candidates are most important with respect to activity
descriptors. Consequently, the catalyst search space can be
rationally expanded and directed toward the most relevant
systems and active sites, subject to more accurate calculations
or experimental characterization.
In this work, we demonstrated the application of SHAP for

the purpose of explaining the hydrogen adsorption properties
of defective nitrogen-doped carbon nanotubes. Roughly 6500
adsorption configurations on 16 different NCNTs were
analyzed using random forest ensemble learning, and the
employed input features were attributed importances based on
the SHAP (interaction) values. This quantitative analysis
unraveled high spin polarization, narrow HOMO−LUMO gap,
small dopant-site separation, and diverse angle and coordina-
tion effects as particularly impactful with respect to increasing
hydrogen affinities of NCNT adsorption sites. The approach
was also able to capture catalyst stability issues as reflected by
bond breaking at pyrrolic nitrogen moieties, emphasizing the
tradeoff between defect- and dopant-induced activation and
excessive destabilization. Notably, our results corroborate
previous analyses of activity modulation effects in heter-
oatom-doped carbon nanomaterials that have been mainly
reported for ORR catalysis. The present work adds to this by
showing that similar features also impact the nature of
hydrogen adsorption and HER on NCNTs, demonstrating
locally accurate feature−activity trends at an unprecedented
level of detail.
We expect the SHAP feature attribution method to find

widespread adoption within computational chemistry and
materials science owing to its universal applicability. Making
applied machine learning models more transparent and
interpretable is highly desirable for answering questions such
as why does a particular model work and how does it form
predictions. Importantly, this information contributes to the
development of physical and chemical knowledge of the system
under investigation, ultimately paving way for a transition
within ML augmented computational chemistry from proof-of-
principle learning capability demonstrations toward using ML
to actually explain and understand fundamental phenomena
underlying complex systems and data sets.
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(41) Ayala, P.; Arenal, R.; Rümmeli, M.; Rubio, A.; Pichler, T. The
doping of carbon nanotubes with nitrogen and their potential
applications. Carbon 2010, 48, 575−586.
(42) Susi, T.; Kotakoski, J.; Arenal, R.; Kurasch, S.; Jiang, H.;
Skakalova, V.; Stephan, O.; Krasheninnikov, A. V.; Kauppinen, E. I.;
Kaiser, U.; Meyer, J. C. Atomistic description of electron beam
damage in nitrogen-doped graphene and single-walled carbon
nanotubes. ACS Nano 2012, 6, 8837−8846.
(43) Arenal, R.; March, K.; Ewels, C. P.; Rocquefelte, X.; Kociak, M.;
Loiseau, A.; Stéphan, O. Atomic configuration of nitrogen-doped
single-walled carbon nanotubes. Nano Lett. 2014, 14, 5509−5516.
(44) Susi, T.; Pichler, T.; Ayala, P. X-ray photoelectron spectroscopy
of graphitic carbon nanomaterials doped with heteroatoms. Beilstein J.
Nanotechnol. 2015, 6, 177−192.
(45) Murdachaew, G.; Laasonen, K. Oxygen evolution reaction on
nitrogen-doped defective carbon nanotubes and graphene. J. Phys.
Chem. C 2018, 122, 25882−25892.
(46) Holmberg, N.; Laasonen, K. Ab initio electrochemistry:
Exploring the hydrogen evolution reaction on carbon nanotubes. J.
Phys. Chem. C 2015, 119, 16166−16178.
(47) Lippert, G.; Hutter, J.; Parrinello, M. A hybrid Gaussian and
plane wave density functional scheme. Mol. Phys. 1997, 92, 477−488.
(48) Kühne, T. D.; Iannuzzi, M.; Del Ben, M.; Rybkin, V. V.;
Seewald, P.; Stein, F.; Laino, T.; Khaliullin, R. Z.; Schütt, O.;
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