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ABSTRACT

On the arcminute angular scales probed by Planck, the cosmic microwave background (CMB) anisotropies are gently perturbed by gravitational
lensing. Here we present a detailed study of this effect, detecting lensing independently in the 100, 143, and 217 GHz frequency bands with an
overall significance of greater than 25σ. We use the temperature-gradient correlations induced by lensing to reconstruct a (noisy) map of the CMB
lensing potential, which provides an integrated measure of the mass distribution back to the CMB last-scattering surface. Our lensing potential map
is significantly correlated with other tracers of mass, a fact which we demonstrate using several representative tracers of large-scale structure. We
estimate the power spectrum of the lensing potential, finding generally good agreement with expectations from the best-fitting ΛCDM model for
the Planck temperature power spectrum, showing that this measurement at z = 1100 correctly predicts the properties of the lower-redshift, later-
time structures which source the lensing potential. When combined with the temperature power spectrum, our measurement provides degeneracy-
breaking power for parameter constraints; it improves CMB-alone constraints on curvature by a factor of two and also partly breaks the degeneracy
between the amplitude of the primordial perturbation power spectrum and the optical depth to reionization, allowing a measurement of the optical
depth to reionization which is independent of large-scale polarization data. Discarding scale information, our measurement corresponds to a 4%
constraint on the amplitude of the lensing potential power spectrum, or a 2% constraint on the root-mean-squared amplitude of matter fluctuations
at z ∼ 2.

Key words. gravitational lensing: weak – methods: data analysis – cosmic background radiation – large-scale structure of Universe
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1. Introduction

This paper, one of a set of papers associated with the 2013 re-
lease of data from the Planck1 mission (Planck Collaboration I
2014), describes our reconstruction of the cosmic microwave
background (CMB) lensing potential based on 15 months of
data, estimation of the lensing potential power spectrum, and a
first set of associated science results.

When Blanchard and Schneider first considered the effect
of gravitational lensing on the CMB anisotropies in 1987, they
wrote with guarded optimism that although “such an observa-
tion is far from present possibilities [...] such an effect will not
be impossible to find and to identify in the future” (Blanchard
& Schneider 1987). In the proceeding years, and with the emer-
gence of the concordance ΛCDM cosmology, a standard the-
oretical picture has emerged, in which the large-scale, linear
structures of the Universe which intercede between ourselves
and the CMB last-scattering surface induce small but coherent
(Cole & Efstathiou 1989) deflections of the observed CMB tem-
perature and polarisation anisotropies, with a typical magnitude
of 2′. These deflections blur the acoustic peaks (Seljak 1996),
generate small-scale power (Linder 1990; Metcalf & Silk 1997),
non-Gaussianity (Bernardeau 1997), and convert a portion of the
dominant E-mode polarisation to B-mode (Zaldarriaga & Seljak
1998). Gravitational lensing of the CMB is both a nuisance, in
that it obscures the primordial fluctuations (Knox & Song 2002),
as well as a potentially useful source of information; the char-
acteristic signatures of lensing provide a measure of the distri-
bution of mass in the Universe at intermediate redshifts (typi-
cally 0.1 < z < 5). In the ΛCDM framework, there exist accurate
methods to calculate the effects of lensing on the CMB power
spectra (Challinor & Lewis 2005), as well as optimal estimators
for the distinct statistical signatures of lensing (Hu & Okamoto
2002; Hirata & Seljak 2003a).

In recent years there have been a number of increasingly sen-
sitive experimental measurements of CMB lensing. Lensing has
been measured in the data of the WMAP satellite both in cross-
correlation with large-scale-structure probed by galaxy surveys
(Hirata et al. 2004, 2008; Smith et al. 2007; Feng et al. 2012a),
as well as internally at lower signal-to-noise (Smidt et al. 2011;
Feng et al. 2012b). The current generation of low-noise, high-
resolution ground-based experiments has done even better; the
Atacama Cosmology Telescope (ACT) has provided an inter-
nal detection of lensing at 4.6σ (Das et al. 2011, 2013), and the
South Pole Telescope detects lensing at 8.1σ in the temperature
power spectrum, and 6.3σ from a direct reconstruction of the
lensing potential (Keisler et al. 2011; van Engelen et al. 2012;
Story et al. 2013). Significant measurements of the correlation
between the reconstructed lensing potential and other tracers of
large-scale structure have also been observed (Bleem et al. 2012;
Sherwin et al. 2012).

Planck enters this field with unique full-sky, multi-frequency
coverage. Nominal map noise levels for the first data release (ap-
proximately 105, 45, and 60 µK arcmin for the three CMB chan-
nels at 100, 143, and 217 GHz respectively) are approximately
five times lower than those of WMAP (or twenty five times
lower in power), and the Planck beams (approximately 10′, 7′
and 5′ at 100, 143, and 217 GHz), are small enough to probe the

1 Planck (http://www.esa.int/Planck) is a project of the
European Space Agency (ESA) with instruments provided by two sci-
entific consortia funded by ESA member states (in particular the lead
countries France and Italy), with contributions from NASA (USA) and
telescope reflectors provided by a collaboration between ESA and a sci-
entific consortium led and funded by Denmark.

2.′4 deflections typical of lensing. Full sky coverage is particu-
larly beneficial for the statistical analysis of lensing effects, as
much of the “noise” in temperature lens reconstruction comes
from CMB fluctuations themselves, which can only be beaten
down by averaging over many modes.

Lensing performs a remapping of the CMB fluctuations,
such that the observed temperature anisotropy in direction n̂
is given in terms of the unlensed, “primordial” temperature
anisotropy as (e.g. Lewis & Challinor 2006)

T (n̂) = T unl(n̂ + ∇φ(n̂)),

= T unl(n̂) +
∑

i

∇iφ(n̂)∇iT (n̂) + O(φ2), (1)

where φ(n̂) is the CMB lensing potential, defined by

φ(n̂) = −2
∫ χ∗

0
dχ

fK(χ∗ − χ)
fK(χ∗) fK(χ)

Ψ(χn̂; η0 − χ). (2)

Here χ is conformal distance (with χ∗ ≈ 14 000 Mpc denoting
the distance to the CMB last-scattering surface) and Ψ(χn̂, η)
is the (Weyl) gravitational potential at conformal distance χ
along the direction n̂ at conformal time η (the conformal time
today is denoted as η0). The angular-diameter distance fK(χ) de-
pends on the curvature of the Universe, and is given by

fK(χ) =


K−1/2 sin(K1/2χ) for K > 0 (closed),
χ for K = 0 (flat),
|K|−1/2 sinh(|K|1/2χ) for K < 0 (open).

(3)

The lensing potential is a measure of the integrated mass distri-
bution back to the last-scattering surface. To first order, its effect
on the CMB is to introduce a correlation between the lensed tem-
perature and the gradient of the unlensed temperature, a property
which can be exploited to make a (noisy) reconstruction of the
lensing potential itself.

In Fig. 1 we plot the noise power spectrum Nφφ
L for recon-

struction of the lensing potential using the three Planck frequen-
cies which are most sensitive to the CMB anisotropies on the
arcminute angular scales at which lensing effects become ap-
parent. The angular size of the Planck beams (5′ FWHM and
greater) does not allow a high signal-to-noise ratio (S/N) recon-
struction of the lensing potential for any individual mode (our
highest S/N on an individual mode is approximately 2/3 for the
143 and 217 GHz channels, or 3/4 for a minimum-variance com-
bination of both channels), however with full-sky coverage the
large number of modes that are probed provides considerable
statistical power. To provide a feeling for the statistical weight
of different regions of the lensing measurement, in Fig. 2 we
plot (forecasted) contributions to the total detection significance
for the potential power spectrum Cφφ

L as a function of lensing
multipole L. In addition to the power spectrum of the lensing po-
tential, there is tremendous statistical power in cross-correlation
of the Planck lensing potential with other tracers of the matter
distribution. In Fig. 2 we also plot forecasted S/N contributions
for several representative tracers.

This paper describes the production, characterization, and
first science results for two Planck-derived lensing products:

(I) A map of the CMB lensing potential φ(n̂) over a large
fraction of the sky (approximately 70%). This repre-
sents an integrated measure of mass in the entire visible
Universe, with a peak sensitivity to redshifts of z ∼ 2.
At the resolution of Planck, this map provides an esti-
mate of the lensing potential down to angular scales of 5′
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Fig. 1. Sky-averaged lens reconstruction noise levels for the 100, 143,
and 217 GHz Planck channels (red, green, and blue solid, respectively),
as well as for experiments that are cosmic-variance limited to a maxi-
mum multipole `max = 1000, 1500, and 1750 (upper to lower solid grey
lines). A fiducial ΛCDM lensing potential using best-fit parameters to
the temperature power spectrum from Planck Collaboration XVI (2014)
is shown in dashed black. The noise level for a minimum-variance
(“MV”) combination of 143+217 GHz is shown in black (the gain from
adding 100 GHz is negligible).

at L = 2048, corresponding to structures on the order of
3 Mpc in size at z = 2.

(II) An estimate of the lensing potential power spectrum Cφφ
L

and an associated likelihood, which is used in the cosmo-
logical parameter analysis of Planck Collaboration XVI
(2014). Our likelihood is based on the lensing multi-
pole range 40 ≤ L ≤ 400. This multipole range (high-
lighted as a dark grey band in Fig. 2), was chosen as
the range in which Planck has the greatest sensitivity to
lensing power, encapsulating over 90% of the anticipated
signal-to-noise, while conservatively avoiding the low-L
multipoles where mean-field corrections due to survey
anisotropy (discussed in Appendix C) are large, and the
high-L multipoles where there are large corrections to the
power spectra from Gaussian (disconnected) noise bias.
Distilled to a single amplitude, our likelihood corresponds
to a 4% measurement of the amplitude of the fiducial
ΛCDM lensing power spectrum, or a 2% measurement of
the amplitude of the matter fluctuations (neglecting pa-
rameter degeneracies).

Our efforts to validate these products are aided by the fre-
quency coverage of the three Planck channels that we employ,
which span a wide range of foreground, beam, and noise prop-
erties. For the mask levels that we use, the root-mean-squared
(RMS) foreground contamination predicted by the Planck sky
model (Delabrouille et al. 2013) has an amplitude of 14, 22, and
70 µK at 100, 143, and 217 GHz, which can be compared to a
CMB RMS for the Planck best-fitting ΛCDM power spectrum
of approximately 110 µK. The dominant foreground component
at all three CMB frequencies is dust emission, both from our
Galaxy as well as the cosmic infrared background (CIB), al-
though at 100 GHz free-free emission is thought to constitute
approximately 15% of the foreground RMS. Contamination

100 101 102 103
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L
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Fig. 2. Overview of forecasted contributions to the detection signif-
icance as a function of lensing multipole L for the Cφφ

L power spec-
trum (solid black), as well as for several other mass tracers, at the noise
levels of our MV lens reconstruction. Our measurement of the power
spectrum Cφφ

L is presented in Sect. 6, The ISW-φ correlation believed
to be induced by dark energy is studied in Sect. 6.2. The NVSS-φ cor-
relation is studied (along with other galaxy correlations) in Sect. 6.3.
The CIB-φ prediction (dashed cyan) uses the linear SSED model of
Hall et al. (2010), assuming no noise or foreground contamination. A
full analysis and interpretation of the CIB-φ correlation is performed in
Planck Collaboration XVIII (2014).

from the thermal Sunyaev-Zeldovich (tSZ) effect is a potential
worry at 100 and 143 GHz, but negligible at 217 GHz (Sunyaev
& Zeldovich 1980). On the instrumental side, these frequency
channels also span a wide range of beam asymmetry, with typi-
cal ellipticities of 19%, 4%, and 18% at 100, 143, and 217 GHz.
The magnitude of correlated noise on small scales (due to de-
convolution of the bolometer time response) also varies signifi-
cantly. The ratio of the noise power (before beam deconvolution)
at ` = 1500 to that at ` = 500 is a factor of 1.5, 1.1, and 1.0 at
100, 143, and 217 GHz. The agreement of lens reconstructions
based on combinations of these three channels allows a powerful
suite of consistency tests for both foreground and instrumental
biases. We will further validate the robustness of our result to
foreground contamination using the component-separated maps
from the Planck consortium (Planck Collaboration XII 2014).

At face value, the 4% measurement of Cφφ
L in our fiducial

likelihood corresponds to a 25σ detection of gravitational lens-
ing effects. In fact, a significant fraction (approximately 25% of
our error bar) is due to sample variance of the lenses themselves,
and so the actual “detection” of lensing effects (under the null
hypothesis of no lensing) is significantly higher. We have also
been conservative in terms of mask and multipole range in the
construction of our fiducial lensing likelihood. As we will show
in Sect. 7.1, we obtain consistent results on sky fractions larger
than our fiducial 70% sky mask.

The Planck lensing potential is part of a significant shift for
CMB lensing science from the detection regime to that of preci-
sion cosmological probe. The NVSS quasar catalogue, for exam-
ple, has been a focus of previous lensing cross-correlation stud-
ies with WMAP (Hirata et al. 2004; Smith et al. 2007; Hirata
et al. 2008), where evidence for cross-correlation was found at
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approximately 3.5σ. As we will see in Sect. 6.3, the significance
for this correlation with Planck is now 20σ. Notably, this is less
than the significance with which lensing may be detected inter-
nally with Planck. The lensing potential measured by Planck
now has sufficient signal-to-noise that shot noise of the NVSS
quasar catalogue is the limiting source of noise in the cross-
correlation.

The majority of this paper is dedicated to the production and
testing of the Planck lensing map and power spectrum estimate.
Our focus here is on extracting the non-Gaussian signatures of
lensing, although we note that lensing effects are also apparent
at high significance (10σ) as a smoothing effect in the Planck
temperature power spectra (Planck Collaboration XV 2014). We
begin in Sect. 2, where we describe and motivate our method-
ology for producing unbiased estimates of the lensing poten-
tial and its power spectrum. The Planck maps and data cuts
that are used for this purpose are described in Sect. 3, and the
simulations that we use to characterize our reconstruction and
its uncertainties are described in Sect. 4. In Sect. 5 we give an
overview of our error budget, and discuss the various sources of
systematic and statistical uncertainty for our lensing estimates.
In Sect. 6 we present our main results: the first Planck lensing
map and a corresponding estimate of the lensing potential power
spectrum. The likelihood based on this power spectrum is com-
bined with the likelihood for the temperature anisotropy power
spectrum (Planck Collaboration XV 2014) to derive parameter
constraints in Planck Collaboration XVI (2014). In Sect. 6.1
we highlight a subset of parameter results where the informa-
tion provided by the lensing likelihood has proven particularly
useful. In the concordance ΛCDM cosmology, there is believed
to be a correlation between the CMB lensing potential and the
low-` temperature anisotropies, driven by the effects of dark
energy. We also present a measurement of this correlation in
Sect. 6.2. Finally, we connect our lensing potential map to other
tracers of large-scale structure with several illustrative cross-
correlations using galaxy, quasar, cluster and infrared source cat-
alogues in Sect. 6.3. These main results are followed in Sect. 7
by a large suite of systematic and consistency tests, where we
perform null tests against a variety of different data cuts and pro-
cessing. We conclude in Sect. 8. A series of appendices provide
further details on some technical aspects of our methodology and
lensing potential estimates.

Throughout this paper, when we refer to the concordance or
fiducial ΛCDM cosmology we are referring to a model with
baryon density ωb = Ωbh2 = 0.0221, cold dark matter den-
sity ωc = Ωch2 = 0.1199, density parameter for the cos-
mological constant ΩΛ = 0.6910, Hubble parameter H0 =
100 h km s−1 Mpc−1 with h = 0.6778, spectral index of the power
spectrum of the primordial curvature perturbation ns = 0.96, am-
plitude of the primordial power spectrum (at k = 0.05 Mpc−1)
As = 2.21 × 10−9, and Thomson optical depth through reion-
ization τ = 0.093. These values were determined from a pre-
publication analysis of the Planck temperature power spectrum,
but are consistent with the best-fit values quoted in Planck
Collaboration XVI (2014). Throughout this work we shall fre-
quently quote lensing bandpower amplitudes relative to this fidu-
cial model for ease of comparison, although as discussed in
Sect. 2 our lensing likelihood itself is designed to be insensitive
to the choice of fiducial model.

2. Methodology

In this section, we detail our methodology for reconstructing
the lensing potential and estimating its angular power spectrum.

These are both obtained by exploiting the distinctive statistical
properties of the lensed CMB.

(I) If we consider a fixed lensing potential applied to multi-
ple realizations of the CMB temperature anisotropies, then
lensing introduces statistical anisotropy into the observed
CMB; the fluctuations are still Gaussian, however the co-
variance varies as a function of position and orientation
on the sky. We use this idea to obtain a (noisy) estimate of
φ(n̂). The noise of this map is a combination of instrumen-
tal noise and statistical noise due to the fact that we only
have a single realization of the CMB to observe, analo-
gous to shape noise in galaxy lensing.

(II) If we consider averaging over realizations of both the lens-
ing potential and the CMB fluctuations, then lensing intro-
duces non-Gaussianity into the observed CMB. This ap-
pears at lowest order in the connected part of the CMB
4-point function, or trispectrum2. We use this to measure
the lensing power spectrum Cφφ

L .

The estimators that we use are derived from maximizing the like-
lihood function of the lensed CMB under the assumption that
the instrumental noise is Gaussian and the lensed CMB is per-
turbatively Gaussian and statistically isotropic. These estimators
are optimal (in the minimum-variance sense). In cases where we
have made suboptimal analysis choices, we provide estimates of
the loss of signal-to-noise.

2.1. Lens reconstruction

To gain intuition for the process of lens reconstruction, it is use-
ful to consider the effect of lensing on a small patch of the sky.
Lensing remaps the temperature fluctuations by a deflection field
∇φ(n̂). The part of ∇φ(n̂) that is constant over our patch is not
an observable effect; it describes only a re-centering of the map.
The variation of the deflection field across the patch is observ-
able, however. This can be usefully decomposed into conver-
gence (κ) and shear modes (γ+, γ−) as

−∇i∇jφ(n̂) =

[
κ + γ+ γ−
γ− κ − γ+

]
(n̂). (4)

If we observe a patch that is small enough that these quan-
tities can be taken as constant, then the observational con-
sequences are simple. The convergence mode causes a local
change of scale, either magnifying or demagnifying the fluctu-
ations. Taking the local power spectrum of our small patch, we
would find that the CMB peaks would shift to larger or smaller
scales, relative to the full-sky average. The shear modes also de-
scribe changes of scale, however they are now orientation depen-
dent. On a small patch, convergence and shear estimators can be
constructed from local estimates of the (orientation-dependent)
power spectrum and then stitched together to recover the lensing
potential φ (Zaldarriaga & Seljak 1998; Bucher et al. 2012). This
procedure describes a quadratic estimator for the local conver-
gence and shear.

From the description above, it is not immediately clear how
to go about stitching together estimates of convergence and shear
in different regions of the sky, or what weight to give the local
power spectrum estimates as a function of scale. These questions
can be resolved by considering a generic form for the quadratic

2 The ISW-lensing correlation also introduces a non-zero bispectrum.
When correlating the reconstructed φ(n̂) with the large-angle tempera-
ture anisotropies in Sect. 6.2, we are probing this bispectrum.
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estimator, and optimizing its weight function for sensitivity to
lensing (Okamoto & Hu 2003). To first order in the lensing po-
tential, the statistical anisotropy introduced by lensing appears
as an off-diagonal contribution to the covariance matrix of the
CMB:

∆〈T`1m1 T`2m2〉 =
∑
LM

(−1)M
(
`1 `2 L
m1 m2 −M

)
Wφ
`1`2LφLM , (5)

where the average 〈〉 is taken over CMB realizations with a fixed
lensing potential. Here the bracketed term is a Wigner 3 j sym-
bol, φLM =

∫
d2 n̂Y∗LM(n̂)φ(n̂) is the harmonic transform of the

lensing potential, and the weight function Wφ
`1`2L is given by

Wφ
`1`2L = −

√
(2`1 + 1)(2`2 + 1)(2L + 1)

4π

√
L(L + 1)`1(`1 + 1)

× CTT
`1

(
1 + (−1)`1+`2+L

2

) (
`1 `2 L
1 0 −1

)
+ (`1 ↔ `2). (6)

Here CTT
` is the ensemble-average power spectrum of the lensed

CMB. In our analysis, we will use the fiducial model described
at the end of Sect. 1 to determine CTT

` , however our lensing like-
lihood can be renormalized to account for uncertainties in this
model. In this approach, errors in the fiducial model do not bias
our lensing bandpower estimates, they only result in slight sub-
optimality. Note that we use the lensed power spectrum here,
rather than the unlensed spectrum that is sometimes used in the
literature, as this is accurate to higher order in φ (Lewis et al.
2011), an improvement which is necessary at Planck sensitivity
(Hanson et al. 2011). Use of the unlensed spectrum would lead
to biases on the order of 15% at L < 200.

Now we construct a quadratic estimator to search for the co-
variance which is introduced by lensing. We will use several dif-
ferent estimators for the lensing potential, as well as to probe
possible point-source contamination, and so it will be useful to
keep this discussion as general as possible. A completely generic
quadratic estimator for the lensing potential can be written as

φ̂x
LM =

∑
L′M′

[
Rxφ

]−1

LM,L′M′

[
x̄L′M′ − x̄MF

L′M′
]
, (7)

where Rxφ is a normalization matrix, and x̄LM is a quadratic
“building block” which takes in a pair of filtered sky maps T̄ (1)

`m

and T̄ (2)
`m , and sums over their empirical covariance matrix with a

weight function W x
`1`2L:

x̄LM =
1
2

∑
`1m1,`2m2

(−1)M
(
`1 `2 L
m1 m2 −M

)
W x
`1`2LT̄ (1)

`1m1
T̄ (2)
`2m2

. (8)

The “mean-field” term x̄MF
LM accounts for all known sources of

statistical anisotropy in the map, which could otherwise bias the
lensing estimate. It is given by

x̄MF
LM =

1
2

∑
`1m1,`2m2

(−1)M
(
`1 `2 L
m1 m2 −M

)
W x
`1`2L〈T̄

(1)
`1m1

T̄ (2)
`2m2
〉, (9)

where the ensemble average here is taken over realizations of the
CMB and noise.

We may now optimize the generic quadratic estimator above.
If the primordial CMB fluctuations and instrumental noise are
Gaussian and the lensing potential is fixed, then the likelihood
for the observed CMB fluctuations is still a Gaussian, which may

be maximized with respect to the lensing potential modes φLM
(Hirata & Seljak 2003a). The optimal quadratic estimator is the
first step of an iterative maximization of this likelihood, and it
has been shown that additional iterations of the estimator are not
necessary for temperature lens reconstruction (Hirata & Seljak
2003a; Okamoto & Hu 2003). The optimal quadratic estimator
has the following choices for the weight function and filtering.

(I) The weight function W x should be a matched filter for the
covariance induced by lensing (i.e., one should use φ̄, with
weight function given by Eq. (6)). We shall use this weight
function for all of our fiducial results, although for consis-
tency tests we will also use “bias-hardened” estimators,
which have weight functions constructed to be orthogonal
to certain systematic effects (Namikawa et al. 2013). This
is discussed further in Sect. 7.4.

(II) The filtered temperature multipoles T̄`m should be given
by T̄`m = (C−1T )`m, where T is a beam-deconvolved sky
map and C is its total signal+noise covariance matrix. We
describe our approximate implementation of this filtering
in Appendix B. When combining multiple frequencies for
our minimum-variance estimator, all of the available data
are combined into a single map which is then filtered and
used for both input multipoles of the quadratic estimator.
It can be desirable to use different pairs of maps however,
and we use this for several consistency tests. For exam-
ple, we feed maps with independent noise realizations into
the quadratic estimator to avoid possible noise biases in
Sect. 7.3.

In the quadratic maximum-likelihood estimator, the mean-field
correction emerges from the determinant term in the likelihood
function, and it can be seen that the normalization matrix R is
the Fisher matrix for the φLM; this means that the normalization
is the same as the covariance matrix of the lens reconstruction,
and so the unnormalized lensing estimate φ̄ = x̄− x̄MF is equiva-
lent to an inverse-variance-weighted lens reconstruction, which
is precisely the quantity needed for most statistical analysis. This
is why we have denoted it with an overbar, in analogy to T̄ .

We choose to treat the map noise as if it were homogeneous
when constructing the filtered T̄`m, and do not account for vari-
ation with hit count across the sky. This is a slightly suboptimal
filtering choice; in Appendix. B we estimate that it leads to a
5% loss of total signal-to-noise when constraining the power
spectrum of the lensing potential. The advantage of this ap-
proach, however, is that far from the mask boundaries our fil-
tering asymptotes to a simple form, given by

T̄`m ≈
[
CTT
` + CNN

`

]−1
T`m ≡ F`T`m, (10)

where CTT
` is the temperature power spectrum and CNN

`
is the

power spectrum of the homogeneous noise level that we use in
our filtering. For the purposes of compact notation, in the fol-
lowing equations we combine both of these elements in the “fil-
ter function” F`. The asymptotic form of our filtering, Eq. (10),
will prove useful, as it means that the normalization of our esti-
mator, as well as its variance and response to various systematic
effects, may be accurately modelled analytically. It allows us to
propagate uncertainties in the beam transfer function and CMB
power spectrum, for example, directly to our lens reconstruction.
This filtering choice also means that the normalization does not
vary as a function of position on the sky, which simplifies the
analysis of cross-correlations between the lensing potential map
and external tracers. Under the approximation of Eq. (10), the
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estimator normalization is given by

R
xφ
LM,L′M′ = δLL′δMM′R

xφ
L , (11)

where the response function Rxφ
L for filtered maps T̄ (1) and

T̄ (2) is

R
xφ,(1)(2)
L =

1
(2L + 1)

∑
`1`2

1
2

W x
`1`2LWφ

`1`2LF(1)
`1

F(2)
`2
. (12)

This can be read as “the response of estimator x to lensing on
scale L”. The filter functions F` are those used for T̄ (1) and T̄ (2)

respectively. In cases where the filter functions are obvious, we
will drop the indices above.

Putting all of the above together, for a chosen quadratic esti-
mator x̄ we obtain normalized, mean-field-debiased estimates of
the lensing potential φ as

φ̂x
LM =

1

R
xφ
L

(
x̄LM − x̄MF

LM

)
. (13)

Note that our normalization function Rxφ
L is only approximate,

but we will verify its accuracy in Sect. 4. For the standard lens-
ing estimator of Okamoto & Hu (2003; which uses the weight
function of Eq. (6)), we use x = φ. This estimator is denoted
simply as φ̂LM .

2.2. Lensing power spectrum estimation

We form estimates for the power spectrum of the lensing po-
tential by taking spectra of the lensing estimates from Sect. 2.1,
using a simple pseudo-C` estimator. In order to reduce mode
coupling, as well as to downweight regions near the analysis
boundary where the mean-field due to masking can be large, we
take the power spectrum from an apodized version of our lensing
estimate, given by

φ̃x
LM = P−1

L

∫
dn̂Y∗LM(n̂)M̃(n̂)

∑
L′M′

YL′M′ (n̂)PL′ φ̂
x
L′M′

 , (14)

where M̃(n̂) is an apodized version of the analysis mask M(n̂)
used in our filtering and PL ≡ L(L + 1) is an approximate pre-
whitening operation. The construction of M̃(n̂) is described in
Sect. 3. Our fiducial apodization occurs over a band of approxi-
mately 5◦, and effectively reduces the sky fraction by 9%.

The power spectrum of φ̃ probes the 4-point function of
the observed CMB, which contains both disconnected and con-
nected parts. We model it as being due to a combination
of Gaussian CMB fluctuations, lensing effects and unresolved
point-source shot noise, and estimate the power spectrum of the
lensing potential with

Ĉφφ
L,x =

f −1
sky,2

2L + 1

∑
M

|φ̃x
LM |

2 − ∆Cφφ
L

∣∣∣
N0

− ∆Cφφ
L

∣∣∣
N1
− ∆Cφφ

L

∣∣∣
PS
− ∆Cφφ

L

∣∣∣
MC

, (15)

where fsky,2 =
∫

dn̂M̃2(n̂)/4π is the average value of the square
of the apodizing mask. The first line of Eq. (15) isolates the con-
nected part of the CMB 4-point function, or trispectrum, which
would be zero for Gaussian fluctuations. The second line con-
tains corrections which isolate the part of the trispectrum which
is directly proportional to the non-Gaussianity induced by Cφφ

L .

In the following paragraphs, we explain these terms in more
detail.

The first correction term ∆Cφφ
L

∣∣∣
N0

subtracts the (large) dis-
connected contribution to the power spectrum of φ̃. To determine
this term, we use the data-dependent subtraction which emerges
for maximum-likelihood estimators of the CMB trispectrum
(Regan et al. 2010; see also Appendix D). For lensing, this pro-
cedure has the additional advantage of reducing the correlation
between different multipoles L , L′ of the lens reconstruction to
a level which is negligible at Planck resolution and noise levels
(Schmittfull et al. 2013), as well as reducing sensitivity to un-
certainties in our model of the CMB and noise covariance ma-
trices (Namikawa et al. 2013). Writing the power spectrum of
φ̃LM explicitly as a function of the four inverse-variance filtered
temperature maps

Cφ̃φ̃
L,x[T̄ (1), T̄ (2), T̄ (3), T̄ (4)] ≡

f −1
sky,2

2L + 1

∑
M

|φ̃x
LM |

2, (16)

the disconnected contribution reads

∆Cφφ
L,x

∣∣∣
N0

=

〈
−Cφ̃φ̃

L,x

[
T̄ (1)

mc, T̄
(2)
mc′ , T̄

(3)
mc′ , T̄

(4)
mc

]
+Cφ̃φ̃

L,x

[
T̄ (1)

mc, T̄
(2), T̄ (3)

mc, T̄
(4)

]
+Cφ̃φ̃

L,x

[
T̄ (1)

mc, T̄
(2), T̄ (3), T̄ (4)

mc

]
+Cφ̃φ̃

L,x

[
T̄ (1), T̄ (2)

mc, T̄
(3), T̄ (4)

mc

]
+Cφ̃φ̃

L,x

[
T̄ (1), T̄ (2)

mc, T̄
(3)
mc, T̄

(4)
]

− Cφ̃φ̃
L,x

[
T̄ (1)

mc, T̄
(2)
mc′ , T̄

(3)
mc, T̄

(4)
mc′

] 〉
mc,mc′

, (17)

where T̄mc indicates a Monte-Carlo simulation of the corre-
sponding map. The ensemble average is taken over two sets of
independent realizations mc and mc′. Note that because of the
way we have used pairs of Monte-Carlo simulations and data
with independent CMB and noise realizations, the mean-field
correction is zero for all of the terms above.

The term ∆Cφφ
L |N1 corrects for the “N(1)” bias due to sec-

ondary contractions of the lensing trispectrum (Hu 2001; Kesden
et al. 2003). It is only a large effect at L > 100, and so we calcu-
late it using a flat-sky expression as

∆Cφφ
|L|,x

∣∣∣∣
N1

=
1

R
xφ,(1)(2)
|L| R

xφ,(3)(4)
|L|

∫
d2 l1

(2π)2

∫
d2 l3

(2π)2

× F(1)
|l1 |

F(2)
|l2 |

F(3)
|l3 |

F(4)
|l4 |

W x(l1, l2)W x(l3, l4)

×

[
Cφφ,fid.
|l1−l3 |

Wφ(−l1, l3)Wφ(−l2, l4)

+Cφφ,fid.
|l1−l4 |

Wφ(−l1, l4)Wφ(−l2, l3)
]
, (18)

where l1 + l2 = l3 + l4 = L and Cφφ,fid.
L is a fiducial model for

the lensing potential power spectrum. The W(l, l′) are flat-sky
analogues of the full-sky weight functions. The flat-sky lensing
weight function, for example, is

Wφ(l1, l2) = CTT
|l1 |

l1 · L + CTT
|l2 |

l2 · L. (19)

The N(1) term is proportional to the lensing potential power
spectrum, and so in principle it should be used to improve our
constraints on Cφφ

L rather than subtracted as an additive bias.
However the statistical power of this term is relatively small
at Planck noise levels. From a Fisher matrix calculation, the
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trispectrum contractions which source the N(1) term are only de-
tectable in the Planck data at 4σ significance, compared to ap-
proximately 25σ for the primary contractions. We choose sim-
ply to subtract the N(1) term from our power spectrum estimates.
There is a small cosmological uncertainty in the N(1) correction
due to uncertainty in the Cφφ

L power spectrum, which we discuss
in Sect. 5.3.

The ∆Cφφ
L

∣∣∣
PS

term is a correction for the bias induced by the
shot-noise of unresolved point sources (including SZ clusters),
and will be discussed in more detail in Sect. 2.4.

Finally, the ∆Cφφ
L

∣∣∣
MC

term is a small correction that we ob-
tain by estimating Ĉφφ

L following the procedure above on a num-
ber of lensed CMB realizations, and then subtracting the input
power spectrum. This term can be non-zero due to pseudo-C`

leakage effects from masking, which we have not accounted for
other than apodization, errors in our calculation of the N(1) term,
or errors in the normalization at the power spectrum level. We
will find that ∆Cφφ

L

∣∣∣
MC

is sufficiently small that in practice it
does not matter whether we account for it as a renormalization
or an additive offset, and we choose to treat it as an offset for
simplicity.

We will ultimately characterize the uncertainty of Ĉφφ
L by

Monte-Carlo, however the following analytical expression is a
useful approximation

Var(Ĉφφ
L,x) ≈ VL ≡

1
fsky,2

2
2L + 1

[
Cφφ

L + Nφφ
L,x

]2
(20)

where Nφφ
L,x is the reconstruction noise level. We take it to be

Nφφ
L,x =

1
(2L + 1)

1

R
xφ,(1)(2)
L R

xφ,(3)(4)
L

∑
`1`2

1
4

∣∣∣W x
`1`2L

∣∣∣2
×

(
ĈTT,(1)(3)
`1

ĈTT,(2)(4)
`2

+ ĈTT,(1)(4)
`1

ĈTT,(2)(3)
`2

)
, (21)

where Ĉ(i)( j)
L is the ensemble-average cross-spectrum between

T̄ (i) and T̄ ( j), given by

ĈTT,(i)( j)
L =

f −1
sky,(i)( j)

2L + 1

∑
M

〈
T̄ (i)

LMT̄ ( j)∗
LM

〉
, (22)

where fsky,(i)( j) is the fraction of sky common to both T̄ (i) and
T̄ ( j). We will use this analytical estimate of the variance for
weighting our Cφφ

L estimates in statistical analyses.

2.3. Lensing power spectrum likelihood

Based on our measurements of the lensing potential power spec-
trum, we construct a Gaussian likelihood based on bins in Cφφ

L .
Our likelihood has the form

−2lnLφ(Cφφ) = BL
i

(
Ĉφφ

L −Cφφ
L

) [
Σ−1

]i j
BL′

j

(
Ĉφφ

L′ −Cφφ
L′

)
, (23)

whereB represents a binning function, Σ is the covariance matrix
between bins, and sums are performed over paired upper/lower
indices. As the shape and amplitude of Cφφ

L are constrained
strongly in the concordance ΛCDM model, with which our re-
sults are broadly consistent, we choose a binning function de-
signed to maximize our sensitivity to small departures from the
fiducial ΛCDM expectation. This is given by

BL
i =

Cφφ,fid.
L V−1

L∑Li
max

L′=Li
min

(Cφφ,fid.
L′ )2V−1

L′

if Li
min ≤ L ≤ Li

max, (24)

where VL is defined in Eq. (20) and Li
min and Li

max define the
multipole range of the bin. Our binned results correspond to
an estimate of the amplitude of a fiducial Cφφ

L power spectrum
in a given multipole range, normalized to unity for the fidu-
cial model. We denote these amplitude estimates explicitly for
a given lens reconstruction Ĉφφ

L as

Âi = BL
i Ĉφφ

L . (25)

In principle there are several reasons why a likelihood approach
such as the one we have described above could fail; the usual is-
sues with a pseudo-C` likelihood, such as the non-Gaussianity
of the Cφφ

L are compounded by the fact that the φ estimates
themselves are non-Gaussian, and derived from the tempera-
ture data itself, which means that the measurement uncertainties
on the lens reconstruction are potentially correlated with those
of the temperature power spectrum. In Appendix D, we validate
the above approach to the likelihood by considering these issues
in more detail.

2.4. Unresolved point-source correction

At the high multipoles (` > 1000) that provide most of the modes
which are useful for lens reconstruction, the contribution from
unresolved (and therefore undetected and unmasked) extragalac-
tic foregrounds becomes apparent in the Planck power spectra.
For measurements of the lensing potential power spectrum, we
should therefore be concerned with possible biases from the
trispectrum non-Gaussianity of these unresolved sources. The
work of Osborne et al. (2014) indicates that at Planck resolu-
tion and sensitivity, the contribution of unresolved foregrounds
to lens reconstruction is small but potentially non-negligible,
with the largest contribution coming from the shot noise trispec-
trum of unresolved radio and tSZ sources. Given uncertainties in
modelling the non-Gaussianity of unresolved point sources, our
approach is heavily data dependent. In addition to tests for the
consistency of lens reconstructions at 143 and 217 GHz, we use
two additional methods to measure and correct for point-source
contamination in our analysis.

In our fiducial lensing power spectrum analysis, we measure
the amplitude of the shot-noise contribution to the data trispec-
trum and correct the measured lensing spectrum accordingly. We
measure the shot-noise amplitude using the power spectrum of a
quadratic estimator designed to detect the “noise” due to sources,
similar to the approach advocated in Munshi et al. (2011a). The
trispectrum (or connected four-point function) for point-source
shot noise is defined in position space as

〈T (n̂1)T (n̂2)T (n̂3)T (n̂4)〉 =

S 4δ(n̂1 − n̂2)δ(n̂2 − n̂3)δ(n̂3 − n̂4), (26)

or in harmonic space:

〈T`1m1 T`2m2 T`3m3 T`4m4〉 = S 4
∫

dn̂Y`1m1 Y`2m2 Y`3m3 Y`4m4 . (27)

The quadratic estimator that we use to measure the amplitude S 4

is denoted as s̄, and is defined by the weight function

W s
`1`2L =

√
(2`1 + 1)(2`2 + 1)(2L + 1)

4π

(
`1 `2 L
0 0 0

)
. (28)

We measure the amplitude of the shot-noise trispectrum S 4 as

Ŝ 4 =

∑
L

Ĉ ss
L S −1

L

 / ∑
L′

S −1
L′

 , (29)
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where Ĉ ss
L is defined analogously to Eq. (15) and the sums are

taken over L, L′ ∈ [Ls
min, L

s
max]. The power spectrum weighting

S L is given by

S L ≡
1

fsky,2

2
2L + 1

1

R
ss,(1)(2)
L R

ss,(3)(4)
L

· (30)

In the limit that [Ls
min, L

s
max] = [0,∞] this estimator is equivalent

to measuring the shot-noise trispectrum using the 1-point kurto-
sis of the map. The advantage of the trispectrum-related power
spectrum approach is that it allows us to separate out regions of
the trispectrum measurement that are contaminated by lensing,
as well as to look for evidence of clustering, which would ap-
pear as a deviation of the measured spectrum Ĉ ss

L from the shape
expected for unclustered sources. We then calculate and remove
an estimated bias to the measured lensing potential given by

∆Ĉφφ
L,x|PS = Ŝ 4R

xs,(1)(2)
L R

xs,(3)(4)
L . (31)

The shot-noise correction described above does not take into ac-
count the correlation of sources with the dark matter distribu-
tion. And hence the lensing potential. In Sect. 7.4 we therefore
additionally perform tests using a “point source bias-hardened
estimator”, constructed using the weight function of Eq. (28).
This bias-hardened estimator has zero response to both the point-
source shot-noise trispectrum (S 4), as well as to the primary
trispectrum contractions involving the correlation between point
sources and the lensing potential (S 2φ).

3. Data and cuts

Planck sky maps: The majority of the results in this pa-
per are based on the Planck nominal-mission frequency maps
at 100, 143, and 217 GHz, built from the first 15.5 months
of data. These are in HEALPix3 format, with resolution pa-
rameter Nside = 2048, corresponding to pixels with a typi-
cal width of 1.′7. These have effective noise levels of approx-
imately 105 µK arcmin at 100 GHz, 45 µK arcmin at 143 GHz,
and 60 µK arcmin at 216 GHz. The beam widths shrink with
frequency, and are 10′ at 100 GHz, 7′ at 143 GHz, and 5′ at
217 GHz. Our primary products – a map of the lensing poten-
tial and an associated power spectrum likelihood – are based
on a minimum-variance (hereafter MV) combination of the 143
and 217 GHz maps. Although lensing may be detected at a sig-
nificance of approximately 10σ at 100 GHz, the CMB modes
used in this reconstruction are already sample-variance domi-
nated at 143 and 217 GHz, and so adding it to the MV combina-
tion would lead to negligible improvement. In addition to these
maps, we also use the 857 GHz Planck map as a dust template,
which is projected out of both maps independently in our filter-
ing procedure (described further in Appendix B). This projection
is primarily intended to remove diffuse Galactic dust contam-
ination, although it also removes a portion of the CIB fluctu-
ations, which have a similar spectral index to that of Galactic
dust over these frequency bands (Planck Collaboration XXIV
2011; Planck Collaboration XVIII 2011). As a simple approach,
this template projection overlooks several potential difficulties,
including variation of Galactic dust spectral indices across the
sky as well as mismatch between the beams at 100/143/217
and 857 GHz, although we find it is adequate for our purposes.
As lens reconstruction is most sensitive to small-scale modes,
the coupling to large-scale Galactic foregrounds is relatively

3 http://healpix.jpl.nasa.gov

weak. In Sect. 7 we will also perform lens reconstruction us-
ing the more rigorously component-separated maps of Planck
Collaboration XII (2014), finding good agreement with our base-
line results.

In analyzing these maps, we use the fiducial beam trans-
fer functions described in Planck Collaboration VII (2014) and
Planck Collaboration (2013). There are uncertainties associated
with these transfer functions, which we propagate to an uncer-
tainty in the lensing estimator normalization in Sect. 5.2.

Galaxy mask: We avoid the majority of Galactic foreground
power using the temperature analysis masks described in Planck
Collaboration (2013). These are constructed using a combina-
tion of the 30 GHz and 353 GHz maps, corrected for an estimate
of the CMB contribution, smoothed to 5′ and thresholded un-
til a desired sky fraction is obtained (Planck Collaboration XII
2014). For our baseline results, we use the 70% masks (which
remove 30% of the sky), although in Sect. 7 we will show that
we obtain consistent results with both larger and smaller masks.
When computing the power spectrum, we additionally multiply
our φ estimates by an apodized version of the Galaxy mask. Each
pixel outside of the masked region is multiplied by an apodized
weight varying between zero at the mask boundary and unity at
a distance greater than 5◦ from the closest masked pixel. We use
a sinusoid weight function, similar to the one used in Namikawa
et al. (2013) and Benoit-Levy et al. (2013). Note that due to this
apodization, the effective sky fraction used in our power spec-
trum analysis is approximately 9% lower than the sky fraction
of our reconstruction.

CO and extended-object masks: We mask regions believed
to be contaminated by carbon-monoxide (CO) emission lines at
100 and 217 GHz using the  2 CO map described in Planck
Collaboration XIII (2014). We mask all pixels above 60 µK in
the map after degrading to Nside = 256, and then restore by hand
all isolated pixels that are removed by this cut but do not ap-
pear to be extended CO regions. This low-resolution mask is
prograded back to Nside = 2048 and smoothed at 20′, slightly
larger than the map resolution of 15′. We additionally exclude
extended nearby objects (the two Magellanic Clouds, M31, M33,
and M81) by cutting out disks centred on their locations. The
radii of these disks range from 250′ for the Large Magellanic
Cloud to 30′ for M81.

Point-source masks: We remove detected point sources (or
otherwise compact objects) using a mask constructed from a
combination of sources identified in the Planck Early Release
Compact Source Catalogue (ERCSC; Planck Collaboration
Int. VII 2013), the SZ clusters from the Planck Cluster
Catalogue (PCC; Planck Collaboration XXIX 2014), and
the Planck Catalogue of Compact Sources (PCCS; Planck
Collaboration XXVIII 2014). We produce individual masks for
100, 143, and 217 GHz, cutting out detected sources with disks
having radii of either 3σ or 5σ depending on their flux level,
whereσ describes the Gaussian beam-width of the given channel
and is taken to be 4.1′ at 100 GHz, 3.1′ at 143 GHz, and 2.1′ at
217 GHz. SZ clusters are not masked at 217 GHz. For the PCCS
we mask all sources with S/N ≥ 5 in a given band, or S/N ≥ 10
in either adjacent frequency band, using a 3σ disk, extending to
a 5σ disk for any sources with S/N ≥ 10 in the target band. For
the ERCSC, we make a 3σ cut for every source detected at the
target frequency, as well as for every source that is detected with
a flux greater than 1 Jy at 70 GHz, 0.7 Jy at 100 GHz, 0.4 Jy at
143 GHz, 0.5 Jy at 217 GHz, or 0.9 Jy at 353 GHz. For sources
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that satisfy the brightness criterion at the target frequency, we
also enlarge the cut to 5σ. For SZ clusters we make a cut be-
tween 3σ and 5σ depending on the cluster angular size θ500
for all sources in the MMF1 catalogue with S/N ≥ 5. We fur-
ther mask cool cores (CC) using the Early Cold Cores catalogue
(Planck Collaboration VII 2011) in a similar fashion, using a
maximum 15′ excluding radius.

In Sect. 7.2 we will test our sensitivity to this SNR cut, vary-
ing it from S/N ≥ 5 to S/N ≥ 4.2 and S/N ≥ 10.

4. Simulations

We require simulations of the data described in Sect. 3 for sev-
eral aspects of our analysis: to determine the lensing-mean field
φMF, to determine the ∆Cφφ

L

∣∣∣
N0

and ∆Cφφ
L

∣∣∣
MC

correction terms of
Eq. (15), and to determine our measurement error bars, as well
as to validate our reconstruction methodology. Here we outline
the basic algorithm we use to generate these simulations.

(1) Simulate the unlensed CMB and lensing potential. Using the
fiducial ΛCDM theoretical unlensed power spectra for the
cosmology given at end of Sect. 1, we generate realizations
T unl
`m and φLM of the unlensed temperature and lensing po-

tential with appropriate correlations. By default we simulate
these fields up to `max = 2560. In addition to these stochas-
tic components, we also include a dipolar lensing mode in
our simulations, to account for the Doppler aberration due
to our motion with respect to the CMB (Kamionkowski &
Knox 2003; Challinor & van Leeuwen 2002):

φβ(n̂) ≈ β · n̂, (32)

where β is in the direction of Galactic coordinates (l, b) =
(264.4, 48.4), with amplitude |β| = 0.00123, corresponding
to a velocity of 369 km s−1 (Hinshaw et al. 2009).

(2) Lens the temperature field. We use a fast spherical harmonic
transform to compute the temperature and deflection fields

T unl(n̂) =
∑
`m

Y`m(n̂)T unl
`m ,

d(n̂) =
∑

M

∇YLM(n̂)φLM . (33)

This computation is performed on an equicylindrical pix-
elization (ECP) grid with (Nθ,Nφ) = (16 384, 32 768)
equally-spaced points in (θ, φ). We determine the lensed
temperature on this ECP grid as

T (n̂) = T unl(n̂ + d(n̂)). (34)

This equation is evaluated following the same algorithm as
the LENSPix code (Lewis 2005), with 2D cubic Lagrange
interpolation on the ECP grid, which has conveniently uni-
form pixel spacing. We then obtain the lensed temperature
multipoles T φ

`m by a reverse harmonic transform. The aver-
age power spectrum of these lensed simulations agrees with
the implementation in CAMB (Challinor & Lewis 2005) to
better than 0.1% at l < 2048. We have also used the algo-
rithm of Basak et al. (2009), which gives consistent results.
In addition to the lensing dipole, our motion with respect
to the CMB also causes a small modulation of the observed
fluctuations, which we determine from the lensed tempera-
ture field as

T mod(n̂) = fνβ · n̂T (n̂), (35)

where fν is a frequency dependent boost factor that we ap-
proximate as 1.5, 2, and 3 at 100, 143, and 217 GHz, re-
spectively. There is an extended discussion of this factor in
Planck Collaboration XXVII (2014).

(3) Generate a Gaussian realization of extragalactic foreground
power T fg

`m. We simulate Gaussian foreground power at 100,
143, and 217 GHz such that the auto- and cross-spectra of
the foreground power at these frequencies has the form

CA×B
` = APS

A×BCPS
` + ACIB

A×BCCIB
` , (36)

where A and B label frequency bands. The template power
spectra are based on the modelling of Planck Collabora-
tion XV (2014); Planck Collaboration XVI (2014), and are
given by

CPS
` =

2π
30002 , CCIB

` =
2π

`(` + 1)

(
`

3000

)0.8

· (37)

We use the parameters

APS
100× 100 = 208 µK2 APS

100× 143 = 72 µK2 APS
100× 217 = 44 µK2

APS
143× 143 = 64 µK2 APS

143× 217 = 43 µK2 APS
217× 217 = 57 µK2

ACIB
143× 143 = 4 µK2 ACIB

143× 217 = 14 µK2 ACIB
217× 217 = 54 µK2.

The parameters above were obtained by fitting the auto-
and cross-spectra of our inverse-variance-filtered tempera-
ture maps to the templates above. Our point source masks
differ from those used in Planck Collaboration XVI (2014),
and so these numbers cannot be directly compared to the val-
ues there. The purpose of including a Gaussian foreground
component in our simulations is primarily so that our mea-
surement error bars will include the additional scatter due to
the foreground power (we will see in Sect. 5 that foreground
power constitutes a few percent of our total error budget).
Our lensing power spectrum results are otherwise unaffected
by this component of our simulations. Our lensing estimates
do include an overall correction for point-source shot-noise,
although we do not include the non-Gaussian covariance of
the shot-noise in our error budget, given that point sources
are a small fraction of the total power at the multipoles
probed by Planck. We test this point-source treatment fur-
ther in Sect. 7.2.

(4) Convolve T φ+T fg+T mod with the (asymmetric) instrumental
beam using Eq. (C.7). This results in a HEALPix map of the
beam-convolved CMB T b(n̂), from which we extract beam-
convolved multipoles T b

`m.
(5) Make a final map of the observed sky T (n̂) with the

HEALPix Nside = 2048 pixelization, with

T (n̂) =
∑
`m

Y`m(n̂)Bpix
`

T`m + n(n̂), (38)

where Bpix
`

is the HEALPix Nside = 2048 pixel window
function, which accounts for the effective smearing of the
beam due to the binning of hits into pixels. Although this
smearing is an inadequate description of the pixelization-
smearing effect for any individual pixel, it is a good approx-
imation when averaged over all pixels on the sky. We will
discuss pixelization effects further in Sect. C.4. The quantity
n(n̂) is a simulated realization of the instrumental noise. We
use noise realizations from the FFP6 simulation set (Planck
Collaboration I 2014). In order to make the power spectrum
of our simulations more closely match the power spectrum
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of the data, we find that it is necessary to include an addi-
tional white noise component with an amplitude of 20, 10,
and 10 µK arcmin at 100, 143, and 217 GHz respectively.
Indeed, the FFP6 simulation are produced on the basis of
the half-ring estimates of the noise which are known to un-
derestimate the map noise (Planck Collaboration VI 2014).

The simulations described above are used throughout this work
both to debias our lensing estimates, as well as to characterize
their uncertainty. Here we briefly use them to validate the nor-
malization of our lensing estimates. There are two relevant nor-
malizations: the map-level normalization which describes how
our reconstruction traces the input φ realization, as well as the
analogous normalization for the lensing potential power spec-
trum. Throughout this work, we use the analytical normalization
estimates of Eq. (12) to normalize our map estimates. In Fig. 3
we plot the average cross-correlation between the input and re-
constructed φLM for our minimum-variance reconstruction, di-
vided by a simple fsky factor to account for missing power in the
mask. We can see that our analytical map-level normalization is
accurate at the 1% level. This is small enough that we do not fur-
ther renormalize our φmap. At the power spectrum level, we find
similar accuracy of our normalization in the 40 < L < 400 re-
gion which forms the basis of our fiducial lensing likelihood.
The power spectrum estimates in Fig. 3 are obtained by averag-
ing the first line of Eq. (15) over a set of lensed but otherwise
Gaussian simulations. This 1% error in the power spectrum nor-
malization is accounted for in our likelihood by the ∆Cφφ

L

∣∣∣
MC

term. Given the good agreement of the Cφφ
L power spectrum

used in our simulations with that measured from data, it does
not matter whether we incorporate the Monte-Carlo correction
as a multiplicative or additive term. We have chosen to incorpo-
rate it as additive for simplicity. At higher multipoles, there is
additional scatter in our power spectrum normalization test (up
to 10% for the plotted bins). It is difficult to know from this test
whether it is due to actual scatter in our power spectrum normal-
ization (which seems unlikely, given that the map-level normal-
ization is quite accurate), a small mis-estimation of the N(1) term
(which begins to dominate over Cφφ

L above L = 500), or simply
pseudo-C` leakage issues. In any case, it is still small, and is ab-
sorbed into our ∆CL|MC term when estimating power spectra at
these multipoles. Although we have only presented results for
our minimum-variance reconstruction here, those for individual
frequency results are similar.

As a visual illustration, and a preview of our data results in
Sect. 6, in Fig. 4, we show a simulated lens reconstruction as
well as the input φ map. This gives a visual impression of the
signal-to-noise in our lens reconstruction.

5. Error budget

In this section, we describe the measurement and systematic er-
ror budget for our estimation of the lensing potential power spec-
trum. This is broken down into three sections; in Sect. 5.1 we
describe our measurement (or “statistical”) error bars, which are
due to the fact that we have only a single noisy sky with a fi-
nite number of modes to observe. In Sect. 5.2 we consider un-
certainty in the instrumental beam transfer function, which we
will see propagates to a normalization uncertainty for our lens-
ing estimates. Finally, in Sect. 5.3 we discuss the effect of cos-
mological uncertainty; possible errors in the fiducial model for
CTT
` result in a normalization uncertainty for our lensing esti-

mates, and uncertainties in the fiducial Cφφ
L power spectrum lead
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Fig. 3. Validation of our estimator normalization for simulations of the
MV reconstruction at the map and power spectrum levels. The map nor-
malization (plotted as φ̂φin) is tested by taking the cross-spectrum of the
input φ with the reconstruction averaged over Monte-Carlo simulations,
divided by an fsky factor to account for missing power in the mask. The
power spectrum normalization (plotted as φ̂φ̂) is obtained by averaging
the first line of Eq. (15) over simulations, and then comparing it to the
expected value, which is Cφφ

L + ∆Cφφ
L

∣∣∣
N1

because our simulations do not
contain point-source non-Gaussianity.

Sim

φWF(n̂)

Input

Fig. 4. Simulation of the Wiener-filtered lensing potential estimate
φWF

LM ≡ Cφφ
L (φ̄LM − φ̄

MF
LM) for the MV reconstruction (left), and the input

φ realization (right; filtered by Cφφ
L R

φφ
L to be directly comparable to the

Wiener estimate). Both maps show the southern Galactic sky in ortho-
graphic projection. The lensing reconstruction is noise dominated on
all scales, however correlations between the two maps can still be seen
visually.

to uncertainties in the N(1)
L correction. As a guide to the relative

size and scale dependence of these terms, in Fig. 5 we summa-
rize the error budget for our fiducial minimum-variance lens re-
construction, based on 143 and 217 GHz. Individual frequency
bands, as well as 100 GHz are qualitatively similar.

5.1. Measurement

Although our measurement uncertainties are ultimately as-
signed by Monte Carlo, we can use the analytical expression of
Eq. (21) to gain intuition for how they are sourced by various
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Fig. 5. Relative contribution of statistical measurement uncertainty
(grey band, representing the 1σ uncertainty on Cφφ

L for the plotted bins)
and the systematic errors we assign due to uncertainty in the N(1) bias
correction, point-source shot-noise correction, and the beam transfer
function. The contributions represent error eigenmodes in Cφφ

L , and so
are completely correlated between L. Note that these contributions are
much smaller than our measurement uncertainty, and they have been
multiplied by a factor of 10 for clarity.

components. Our simple model of the sky after masking and
dust cleaning is that it consists of three uncorrelated signals:
CMB, instrumental noise, and unresolved isotropic foreground
power. The noise variance of the lens reconstruction in Eq. (21)
involves two power spectra, and so we can think of the noise con-
tribution as the sum of six possible terms involving pairs of the
CMB, noise, and foreground power spectra. In Fig. 6 we com-
bine these contributions into three representative contributions
to the reconstruction noise: “pure CMB” in which both spectra
are due to CMB fluctuations; the “noise” contribution in which
either both spectra are those for noise power, or one is noise and
one is CMB; and, finally, the “foreground” contribution in which
either one or both of the spectra are due to unresolved foreground
power. We can see that for most reconstruction multipoles, the
pure CMB contribution constitutes the largest part of the recon-
struction noise, followed by noise. The unresolved foreground
power is a fairly small contribution to our measurement error.
Note that the dominant terms for both the “noise” and “fore-
ground” contributions are the ones in which one of the spectra is
a CMB fluctuation. For this reason, we will focus less on the use
of cross-spectra to avoid noise biases than is done for the usual
CMB power spectra (Planck Collaboration XV 2014), although
we will perform consistency tests using cross-spectra of data to
avoid noise biases. Note that our realization-dependent method
for removing the disconnected noise bias (Eq. (17)) means that
the majority of this contribution is estimated directly from the
data itself, reducing our sensitivity to uncertainty in the noise
and foreground power.

5.2. Beam transfer function

Errors in the effective beam transfer function appear as an error
in the normalization of our lensing estimates. For simplicity here
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Fig. 6. Relative contributions of CMB, instrumental noise, and fore-
ground power terms discussed in Sect 5.1 to the approximate lens recon-
struction variance of Eq. (21), previously plotted in Fig. 1. As discussed
in Sect. 5.1, the finite number of CMB modes observed by Planck is the
dominant source of variance for the lens reconstruction.

we will describe the case for a single standard quadratic lensing
estimator that uses the same map for both of its inputs, although
when dealing with combinations of channels for our actual re-
sults we account for differences in the beam transfer function
and errors between “legs” of the estimator (or pair of estimators,
in the case of the lensing potential power spectrum).

We model the effect on φ̂ from a discrepancy between the
“measured” and “true” effective beam transfer function as

〈φ̂LM〉 =
1

R
φφ
L

 1
2L + 1

∑
`1`2

1
2

∣∣∣∣Wφ
`1`2L

∣∣∣∣2 F`1 F`2

Btrue
`1

Bmeas
`1

Btrue
`2

Bmeas
`2

 φLM ,

(39)

where the average is over CMB fluctuations for fixed
lenses. The statistics of Btrue/Bmeas are discussed in Planck
Collaboration VII (2014), where it is found that the beam uncer-
tainty may be described by a small number Neig of eigenmodes
(typically five),

ln
(

Bmeas
`

Btrue
`

)
=

Neig∑
i=1

giE
bi
`
. (40)

Here, Ebi
`

are the uncertainty eigenmodes (indexed by i) for the
beam determination, and gi are independent Gaussian random
variables with unit variance. The frequency-band eigenmodes
are small for 100−217 GHz (no more than 1% at l < 2048), and
so we can equate

Btrue
`

Bmeas
`

≈ 1 − ln
(

Bmeas
`

Btrue
`

)
· (41)

We can also ignore terms of order E2 and propagate the inde-
pendent beam uncertainties directly to a corresponding set of
independent eigenmodes for φ. These eigenmodes are given as

Eφi
L =−

1

R
φφ
L

 1
2L+1

∑
`1`2

1
2

∣∣∣∣Wφ
`1`2L

∣∣∣∣2 F`1 F`2

∑
i

(
Ebi
`1

+Ebi
`2

) , (42)
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Fig. 7. Propagation of eigenmodes for beam transfer function uncer-
tainty (left-hand panels) to an uncertainty in the lensing normalization
(right-hand panels). The normalization eigenmodes are flat, with ampli-
tudes given by approximately twice the beam uncertainty at the beam
and noise cutoff scale (at ` ≈ 1000 for 100 GHz and ` ≈ 1500 for 143
and 217 GHz).

with the model that

〈φ̂LM〉

φLM
= 1 +

Neig∑
i=0

giE
φi
L . (43)

In Fig. 7 we plot the beam uncertainty eigenmodes as well
as the corresponding normalization eigenmodes. The normal-
ization eigenmodes are flatter than the beam uncertainty eigen-
modes, and do not converge to zero at low-L, reflecting the fact
that at all scales the lensing estimate takes most of its weight
from modes of `1 and `2 close to the noise/beam cutoff (at
` ≈ 1000 for 100 GHz and ` ≈ 1500 for 143 and 217 GHz).
As can be seen in Fig. 7, the beam normalization eigenmode is
essentially twice the value of the beam uncertainty eigenmode
on these scales.

Owing to the small size of the eigenmodes, the propagation
to a fractional uncertainty on Cφφ

L is accomplished essentially
by applying a factor of two to the eigenmodes of Eq. (42). The
normalization uncertainty due to beams for the lensing poten-
tial power spectrum is therefore approximately 1% at 100 GHz
and 0.5% at 143 and 217 GHz. When computing the beam un-
certainty for our minimum-variance result, we take the 143 and
217 GHz beam eigenmodes to be uncorrelated.

5.3. Cosmological

Similarly to the case with the beam transfer function of the previ-
ous subsection, uncertainty in the cosmological model may also
be propagated to an uncertainty in the estimator normalization.
There are two aspects in which cosmological uncertainty can en-
ter our analysis. First, when estimating the ∆Cφφ

L

∣∣∣
N1

contribution
of Eq. (15) we assume a fiducial Cφφ

L , obtained from the param-
eters of the fiducial ΛCDM cosmology described in Sect. 1. We

take a random subset of samples from Planck MCMC chains for
the ΛCDM cosmology and calculate the corresponding ∆Cφφ

L

∣∣∣
N1

bias. Compared to our fiducial correction, we see small-scale
fluctuations with an amplitude of 0.2% and a typical scale of
∆L = 150, superimposed on a larger overall amplitude scatter
with a standard deviation of approximately 6%. This result is
reasonable: in the ΛCDM model the Planck TT measurements
have the power to detect the smoothing effects of gravitational
lensing on the acoustic peaks at a significance level of 10σ, cor-
responding to a 10% constraint on the overall amplitude of Cφφ

L ,
consistent with the result from analysis of individual samples
above. To account for cosmological uncertainty in the ∆Cφφ

L

∣∣∣
N1

correction, we therefore assign it a 10% overall amplitude uncer-
tainty. This correction is small for the L range considered in our
fiducial likelihood, and so this uncertainty is essentially negligi-
ble compared to our statistical error bars (although we include it
in our error budget nevertheless).

The second point at which cosmological uncertainty enters
our analysis is in the normalization of our estimates. In Eq. (12),
as well as in our tests of the normalization in Sect. 4, we have
assumed that the statistically-anisotropic covariance induced by
lensing is equal to that assumed when weighting the estimator,
given by Eq. (6). If the true cosmological power spectrum differs
from the fiducial one used in Eq. (6) then we will misestimate φ
as

〈φ̂LM〉

φLM
= 1 + ∆TT

L =
1

R
φφ
L

 1
2L + 1

∑
`1`2

1
2

Wφ
`1`2LWφ, true

`1`2L F`1 F`2

 ,
(44)

where Wφ,true
`1`2L is given by Eq. (6), with the modification that it is

evaluated with the “true” ensemble-average lensed CMB power
spectrum rather than the fiducial one CTT

` . We have chosen to ac-
count for this normalization uncertainty coherently with the tem-
perature likelihood. Given a proposed CTT

` , Cφφ
L pair, we renor-

malize Cφφ
L → (1 + ∆TT

L )2Cφφ
L in our likelihood (Eq. (23)) so that

it is directly comparable to our measurement.

6. Results

In this section, we present the primary results of this paper; a
measurement of the CMB lensing potential over approximately
70% of the sky and its associated power spectrum estimate
Ĉφφ

L . Our lensing potential map and power spectrum have sev-
eral science implications, which we will discuss in proceeding
subsections.

(1) The lensing power spectrum probes the matter power spec-
trum integrated back to the last-scattering surface, and pro-
vides additional low-redshift leverage for CMB-alone pa-
rameter constraints with a broad maximum at z ∼ 2.
Highlights of the additional information that the Planck
lensing likelihood contributes to the parameter constraints of
Planck Collaboration XVI (2014) are presented in Sect. 6.1.

(2) Our lensing potential map correlates with the CMB tem-
perature via the late-time integrated Sachs-Wolfe (ISW) ef-
fect sourced by dark energy. We measure the cross-spectrum
between our lens reconstruction and the low-` temperature
multipoles in Sect. 6.2, which we find is present at the level
predicted in ΛCDM, and discrepant with the null hypothesis
of no correlation at approximately 2.5σ.
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(3) Our lensing potential map correlates with the fluctuations
of the cosmic infrared background, which also trace large-
scale structure and have good redshift overlap with the
CMB lensing potential. We do not discuss this correlation
here, but instead refer to the detailed analysis of Planck
Collaboration XVIII (2014).

(4) Finally, our lensing potential map correlates with external
tracers of large-scale structure. In Sect. 6.3 we present cross-
correlations with several representative galaxy catalogues.

Our primary results are based on a minimum-variance (MV)
combination of the 143 and 217 GHz Planck maps, although as
an initial consistency check we will also present most of our re-
sults in this section for the individual frequency maps as well. In
Sect. 7 we will present a more extensive suite of consistency tests
on our power spectrum estimates and lensing map. In particular
in Sect. 7.1, we will compare with results obtained on different
masks and on the foreground-cleaned Planck maps described in
Planck Collaboration XII (2014).

Our MV lensing map is shown in Fig. 8, where we plot
the Wiener-filtered reconstruction of the lensing potential. At
the noise levels of our reconstruction, approximately half of the
modes in this map are noise. At a visual level, the lensing map of
Fig. 8 has comparable signal-to-noise to the COBE-DMR maps
of the CMB temperature anisotropy (Bennett et al. 1996). Future
measurements, including the Planck full mission release which
contains approximately twice the amount of data used here, will
improve on this first full-sky map of the CMB lensing poten-
tial. As is illustrated in the simulated reconstruction of Fig. 4,
there will be clear visual correlations between this map and fu-
ture measurements. For comparison with the full MV result, in
Fig. 9 we also plot the individual 143 and 217 GHz reconstruc-
tions for the southern hemisphere.

In Fig. 10 we plot the power spectra of our individual 100,
143, and 217 GHz reconstructions as well as the minimum-
variance reconstruction. The agreement of all four spectra is
striking. Overall, our power spectrum measurement is reason-
ably consistent with the ΛCDM prediction, given our measure-
ment error bars. Dividing the L ∈ [1, 2048] multipole range into
bins of ∆L = 64 and binning uniformly in [L(L + 1)]2Cφφ

L , we
obtain a reduced χ2 for the difference between our power spec-
trum estimate and the model of 40.7 with 32 degrees of freedom.
The associated probability to exceed is 14%. On a detailed level,
there are some discrepancies between the shape and amplitude
of our power spectrum and the fiducial model however. Our like-
lihood is based on the multipole range 40 ≤ L ≤ 400, which cap-
tures 90% of the forecasted ensemble-average signal-to-noise
for an amplitude constraint on Cφφ

L in our fiducial cosmological
model (see Fig. 2). This range was chosen as the region of our
spectrum least likely to be contaminated by systematic effects
(primarily uncertainties in the mean-field corrections at low-L,
and uncertainties in the Gaussian and point-source bias correc-
tions at high-L). Estimating an average amplitude for the fiducial
lensing power spectrum for a single bin over this multipole range
using Eq. (25) we find an amplitude of Â40→400 = 0.94±0.04 rel-
ative to the fiducial model (which has A = 1). The power in this
region is consistent with the fiducial model, although 1.5σ low
(the corresponding probability-to-exceed for the χ2 of this differ-
ence is 15%). The low- and high-L extent of our likelihood were
deliberately chosen to have enough expected lensing signal to
enable a 10σ detection of lensing on either side, bookending our
likelihood with two additional consistency tests. On the low-L
side, we have a good agreement with the expected power. As will
be discussed in Sect. 7.4, our measurement at L < 10 fails some

φWF(n̂)

Galactic north

φWF(n̂)

Galactic south

Fig. 8. Wiener-filtered lensing potential estimate φWF
LM ≡ Cφφ

L (φ̄LM− φ̄
MF
LM)

for our MV reconstruction, in Galactic coordinates using orthographic
projection. The reconstruction is bandpass filtered to L ∈ [10, 2048].
The Planck lens reconstruction has S/N ≤ 1 for individual modes on
all scales, so this map is noise dominated. Comparison between simu-
lations of reconstructed and input φ in Fig. 4 show the expected level
of visible correlation between our reconstruction and the true lensing
potential.

Galactic south - 143 GHz Galactic south - 217 GHz

Fig. 9. Wiener-filtered lensing potential estimates, as in Fig. 8, for the
individual 143 and 217 GHz maps. Note that the “noise” due to CMB
fluctuations is correlated between these two estimates.
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Fig. 10. Lensing potential power spectrum estimates based on the individual 100, 143, and 217 GHz sky maps, as well our fiducial minimum-
variance (MV) reconstruction which forms the basis for the Planck lensing likelihood. The black line is for the best-fit ΛCDM model of Planck
Collaboration XVI (2014).

consistency tests at a level comparable to the expected signal.
The L < 10 modes, which we suspect are somewhat contam-
inated by errors in the mean-field subtraction, are nevertheless
consistent with the fiducial expectation, as can be seen in Fig. 10;
we measure Â1→10 = 0.44 ± 0.54. Extending to the lower limit
of our likelihood, with a single bin from 10 ≤ L ≤ 40 we mea-
sure Â10→40 = 1.02 ± 0.12. On the high-L side of our fiducial
likelihood, there is tension however. Extending from the final
likelihood multipole at L = 400 to the maximum multipole of
our reconstruction, we find Â400→2048 = 0.68 ± 0.13, which is
in tension with A = 1 at a level of just over 2.4σ. The rela-
tively low power in our reconstruction is driven by a dip rela-
tive to the ΛCDM model spectrum between 500 < L < 750,
as can be seen in Fig. 10. We show this feature more clearly
in the residual plot of Fig. 11. This deficit of power is in turn
driven by the 143 GHz data. For an estimate of the power spec-
trum using only 143 GHz, we measure Â143

400→2048 = 0.37 ± 0.18.
The 217 GHz reconstruction is more consistent with the model,
having Â217

400→2048 = 0.82 ± 0.17. These two measurements are
in tension; we have Â217−143

400→2048 = 0.45 ± 0.18, which is a 2.5σ
discrepancy. The error bar on this difference accounts for the
expected correlation between the two channels due to the fact
that they see the same CMB sky. A larger set of consistency
tests will be presented in Sect. 7. We note for now that the bins
from 40 < L < 400 used in our likelihood pass all consistency
tests, and show better agreement between 143 and 217 GHz.
Although L < 40 and L > 400 are not included in our nominal
likelihood, when discussing the use of the lensing likelihood for
cosmological parameter constraints in the following section we
will perform additional cross-checks using these bins to ascer-
tain whether they would have any significant implications for
cosmology.

In addition to the Planck power spectrum measurements,
in Fig. 11 we have overplotted the ACT and SPT measure-
ments of the lensing potential power spectrum (Das et al. 2013;

van Engelen et al. 2012). It is clear that all are very consistent.
The Planck data provides the largest signal-to-noise of these
measurements; as we have already discussed the 40 < L < 400
lensing likelihood provides a 4% constraint on the amplitude of
the lensing potential power spectrum, while the constraint from
current ACT and SPT measurements are 32% and 16% respec-
tively. These measurements are nevertheless quite complemen-
tary. As a function of angular scale, the full-sky Planck power
spectrum estimate has the smallest uncertainty per multipole of
all three experiments at L < 500, at which point the additional
small-scale modes up to `max = 3000 used in the SPT lensing
analysis lead to smaller error bars. The good agreement in these
estimates of Cφφ

L is reassuring; in addition to the fact that the ex-
periments and analyses are completely independent, these mea-
surements are sourced from fairly independent angular scales
in the temperature map, with ` <∼ 1600 in the case of Planck,
` < 2300 in the case of ACT, and ` < 3000 in the case of SPT.
Cross-correlation of the Planck lensing map with these indepen-
dent measures of the lensing potential will provide an additional
cross-check on their consistency, however at the power spectrum
level they are already in good agreement.

6.1. Parameters

Weak gravitational lensing of the CMB provides sensitiv-
ity to cosmological parameters affecting the late-time growth
of structure that are otherwise degenerate in the primary
CMB anisotropies imprinted around recombination. Examples
include the dark energy density in models with spatial curvature
and the mass of neutrinos that are light enough (mν < 0.5 eV)
still to have been relativistic at recombination.

To connect our measurement of the lensing power spectrum
to parameters, we construct a lensing likelihood nominally based
on the multipole range 40 ≤ L ≤ 400, cut into eight equal-width
bins with ∆L = 45 to maintain parameter leverage from shape
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Fig. 11. Replotting of Fig. 10, removing 100 GHz for easier compar-
ison of 143 and 217 GHz. Also plotted are the SPT bandpowers from
van Engelen et al. (2012), and the ACT bandpowers from Das et al.
(2013). All three experiments are very consistent. The lower panel
shows the difference between the measured bandpowers and the fidu-
cial best-fit ΛCDM model.

information in addition to our overall amplitude constraint. In
Table 1 we present bandpowers for these eight bins using the
individual 100, 143, and 217 GHz reconstructions as well as
the MV reconstruction that is the basis for our nominal likeli-
hood. The bandpower estimates and their uncertainties are bro-
ken down into constituent parts as discussed in Sect. 2. Based on
these bandpowers, we form a likelihood following Eq. (23). The
measurement errors on each bin are measured by Monte-Carlo
using 1000 simulations, and the bins are sufficiently wide that
we can neglect any small covariance between them (this is dis-
cussed further in Appendix D). We analytically marginalize over
uncertainties that are correlated between bins, including them in
the measurement covariance matrix. This includes beam transfer
function uncertainties (as described in Sect. 5.2), uncertainties
in the point source correction (Sect. 7.2) and uncertainty in the
N(1) correction.

As the lensing likelihood is always used in conjunction with
the Planck TT power spectrum likelihood, we coherently ac-
count for uncertainty in CTT

` by renormalizing our lensing po-
tential measurement for each sample, as described in Sect. 5.3.

The lensing likelihood is combined with the main Planck
TT likelihood (Planck Collaboration XV 2014) – constructed
from the temperature (pseudo) cross-spectra between detector
sets at intermediate and high multipoles, and an exact ap-
proach for Gaussian temperature anisotropies at low multipoles
– in Planck Collaboration XVI (2014) to derive parameter con-
straints for the six-parameter ΛCDM model and well-motivated
extensions. Lensing also affects the power spectrum, or 2-point
function, of the CMB anisotropies, and this effect is accounted
for routinely in all Planck results. On the angular scales relevant

for Planck, the main effect is a smoothing of the acoustic peaks
and this is detected at around 10σ in the Planck temperature
power spectrum (Planck Collaboration XVI 2014). The infor-
mation about Cφφ

L that is contained in the lensed temperature
power spectrum for multipoles ` <∼ 3000 is limited to the am-
plitude of a single eigenmode (Smith et al. 2006). In extensions
of ΛCDM with a single additional late-time parameter, lensing
of the power spectrum itself can therefore break the geometric
degeneracy (Stompor & Efstathiou 1999; Sherwin et al. 2011;
van Engelen et al. 2012; Planck Collaboration XVI 2014). As
discussed in Appendix D and Schmittfull et al. (2013), cosmic
variance of the lenses produces weak correlations between the
CMB 2-point function and our estimates of Cφφ

L , but they are
small enough that ignoring the correlations in combining the two
likelihoods should produce only sub-percent underestimates of
the errors in physical cosmological parameters.

In the following, we illustrate the additional constraining
power of our Cφφ

L measurements in ΛCDM models and one-
parameter extensions, highlighting those results from Planck
Collaboration XVI (2014) where the lensing likelihood is
influential.

6.1.1. Six-parameter ΛCDM model

In the six-parameter ΛCDM model, the matter densities, Hubble
constant and spectral index of the primordial curvature perturba-
tions are tightly constrained by the Planck temperature power
spectrum alone. However, in the absence of lensing the am-
plitude As of the primordial power spectrum and the reioniza-
tion optical depth τ are degenerate, with only the combination
Ase−2τ, which directly controls the amplitude of the anisotropy
power spectrum on intermediate and small scales, being well de-
termined. This degeneracy is broken by large-angle polarization
since the power from scattering at reionization depends on the
combination Asτ

2. In this first release of Planck data, we use
the WMAP nine-year polarization maps (Bennett et al. 2013) in
combination with Planck temperature data. With this data com-
bination, Cφφ

L is rather tightly constrained in the ΛCDM model
(see Fig. 12) and the direct measurements reported here provide
a non-trivial consistency test of the model.

The eight Cφφ
L bandpowers used in the lensing likelihood are

compared to the expected spectrum in Fig. 12 (upper-left panel).
For the latter, we have used parameter values determined from
the main Planck likelihood in combination with WMAP polar-
ization (hereafter denoted WP) and small-scale power spectrum
measurements (hereafter highL) from ACT (Das et al. 2013) and
SPT (Reichardt et al. 2012)4. In this plot, we have renormalized
the measurements and their error bars (rather than the theory) us-
ing the best-fit model with a variant of the procedure described
in Sect. 5.3. Since the lensed temperature power spectrum in the
best-fit model is very close to that in the fiducial model used
to normalise the power spectrum estimates throughout this pa-
per, the power spectrum renormalisation factor (1 + ∆TT

L )2 of
Eq. (44) differs from unity by less than 0.5%. The predicted
Cφφ

L in the best-fit model differs from the fiducial model by less
than 2.5% for L < 1000. The best-fit model is a good fit to the

4 As discussed in detail in Planck Collaboration XVI (2014), the pri-
mary role of the ACT and SPT data in these parameter fits is to constrain
more accurately the contribution of extragalactic foregrounds, which
must be carefully modelled to interpret the Planck power spectra on
small scales. For ΛCDM, the foreground parameters are sufficiently de-
coupled from the cosmological parameters that the inclusion of the ACT
and SPT data has very little effect on the cosmological constraints.
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Table 1. Reconstruction bandpower amplitudes and minimum-variance reconstruction for 100, 143, and 217 GHz, computed following Eq. (25).

Reconstruction bandpower amplitude

Lmin–Lmax Araw − An0 Aps An1 Amc Abeam Â L4Cφφ
L × 107

100 GHz
40– 84 . . . (7.883−6.948) ± 0.191 +0.005 ± 0.003 +0.035 ± 0.003 0.007 ±0.011 0.889 ± 0.191 7.297 ± 1.568
85–129 . . . (11.077−9.999) ± 0.197 +0.008 ± 0.004 +0.040 ± 0.004 −0.010 ±0.011 1.040 ± 0.197 6.711 ± 1.272

130–174 . . . (16.360−15.411) ± 0.256 +0.014 ± 0.007 +0.045 ± 0.004 0.025 ±0.011 0.866 ± 0.257 4.294 ± 1.273
175–219 . . . (25.031−23.896) ± 0.337 +0.024 ± 0.013 +0.057 ± 0.006 0.043 ±0.011 1.011 ± 0.337 3.947 ± 1.316
220–264 . . . (36.642−35.881) ± 0.442 +0.040 ± 0.021 +0.104 ± 0.010 0.009 ±0.010 0.607 ± 0.443 1.920 ± 1.400
265–309 . . . (51.002−50.170) ± 0.556 +0.058 ± 0.030 +0.205 ± 0.020 −0.076 ±0.010 0.645 ± 0.557 1.693 ± 1.462
310–354 . . . (66.348−65.291) ± 0.707 +0.071 ± 0.037 +0.304 ± 0.030 −0.010 ±0.010 0.692 ± 0.708 1.534 ± 1.571
355–400 . . . (81.994−81.084) ± 0.793 +0.077 ± 0.040 +0.332 ± 0.033 −0.121 ±0.010 0.621 ± 0.795 1.177 ± 1.507
40–400 . . . (17.725−16.731) ± 0.112 +0.016 ± 0.008 +0.062 ± 0.006 0.004 ±0.011 0.912 ± 0.113 . . .

143 GHz
40–84 . . . . (3.936−2.841) ± 0.089 +0.005 ± 0.002 +0.026 ± 0.003 −0.021 ±0.004 1.086 ± 0.090 8.917 ± 0.736
85–129 . . . (5.008−4.058) ± 0.090 +0.007 ± 0.004 +0.032 ± 0.003 −0.016 ±0.004 0.928 ± 0.090 5.991 ± 0.582

130–174 . . . (7.076−6.088) ± 0.109 +0.012 ± 0.006 +0.040 ± 0.004 −0.020 ±0.004 0.956 ± 0.109 4.743 ± 0.540
175–219 . . . (10.092−9.207) ± 0.137 +0.021 ± 0.010 +0.058 ± 0.006 0.013 ±0.004 0.793 ± 0.138 3.094 ± 0.538
220–264 . . . (14.254−13.279) ± 0.174 +0.032 ± 0.016 +0.107 ± 0.011 −0.010 ±0.004 0.845 ± 0.175 2.671 ± 0.553
265–309 . . . (19.049−18.063) ± 0.211 +0.045 ± 0.022 +0.191 ± 0.019 0.008 ±0.004 0.742 ± 0.213 1.948 ± 0.558
310–354 . . . (24.524−22.862) ± 0.244 +0.055 ± 0.026 +0.271 ± 0.027 −0.011 ±0.004 1.347 ± 0.246 2.988 ± 0.547
355–400 . . . (28.355−27.576) ± 0.273 +0.060 ± 0.029 +0.298 ± 0.030 −0.006 ±0.004 0.427 ± 0.276 0.808 ± 0.524
40–400 . . . (8.403 − 7.401) ± 0.048 +0.016 ± 0.008 +0.064 ± 0.006 −0.013 ±0.004 0.935 ± 0.050 . . .

217 GHz
40– 84 . . . (3.884−2.742) ± 0.088 +0.003 ± 0.003 +0.026 ± 0.003 −0.007 ±0.004 1.120 ± 0.088 9.200 ± 0.721
85–129 . . . (4.817−3.866) ± 0.088 +0.005 ± 0.005 +0.032 ± 0.003 −0.012 ±0.004 0.927 ± 0.089 5.982 ± 0.572

130–174 . . . (6.601−5.788) ± 0.103 +0.007 ± 0.009 +0.040 ± 0.004 −0.000 ±0.004 0.766 ± 0.103 3.800 ± 0.512
175–219 . . . (9.544−8.637) ± 0.131 +0.012 ± 0.014 +0.058 ± 0.006 0.012 ±0.004 0.824 ± 0.132 3.217 ± 0.516
220–264 . . . (13.409−12.317) ± 0.162 +0.018 ± 0.021 +0.103 ± 0.010 0.004 ±0.004 0.967 ± 0.163 3.057 ± 0.516
265–309 . . . (17.825−16.583) ± 0.202 +0.025 ± 0.028 +0.179 ± 0.018 −0.003 ±0.004 1.041 ± 0.204 2.733 ± 0.536
310–354 . . . (22.391−20.915) ± 0.227 +0.030 ± 0.034 +0.251 ± 0.025 −0.014 ±0.004 1.210 ± 0.231 2.683 ± 0.513
355–400 . . . (26.119−25.068) ± 0.265 +0.032 ± 0.037 +0.279 ± 0.028 −0.026 ±0.004 0.766 ± 0.269 1.451 ± 0.510

40–400 . . . (8.122−7.111) ± 0.046 +0.009 ± 0.011 +0.064 ± 0.006 −0.004 ±0.004 0.942 ± 0.048 . . .

MV
40– 84 . . . (3.297−2.170) ± 0.073 +0.006 ± 0.003 +0.026 ± 0.003 −0.011 ±0.003 1.105 ± 0.073 9.077 ± 0.601
85–129 . . . (4.062−3.062) ± 0.074 +0.009 ± 0.004 +0.032 ± 0.003 −0.014 ±0.003 0.972 ± 0.074 6.276 ± 0.476

130–174 . . . (5.480−4.542) ± 0.084 +0.015 ± 0.007 +0.040 ± 0.004 −0.012 ±0.003 0.895 ± 0.085 4.442 ± 0.420
175–219 . . . (7.616−6.758) ± 0.103 +0.024 ± 0.011 +0.058 ± 0.006 0.009 ±0.003 0.766 ± 0.104 2.992 ± 0.406
220–264 . . . (10.587−9.576) ± 0.131 +0.036 ± 0.017 +0.101 ± 0.010 −0.003 ±0.003 0.876 ± 0.133 2.771 ± 0.419
265–309 . . . (14.004−12.903) ± 0.156 +0.048 ± 0.022 +0.175 ± 0.017 0.000 ±0.003 0.878 ± 0.158 2.304 ± 0.415
310–354 . . . (17.677−16.285) ± 0.181 +0.057 ± 0.026 +0.246 ± 0.025 −0.009 ±0.003 1.099 ± 0.185 2.438 ± 0.409
355–400 . . . (20.647−19.583) ± 0.208 +0.061 ± 0.028 +0.274 ± 0.027 −0.024 ±0.003 0.753 ± 0.212 1.427 ± 0.401

40–400 . . . (6.788−5.768) ± 0.039 +0.020 ± 0.009 +0.066 ± 0.007 −0.009 ±0.003 0.943 ± 0.040 . . .

Notes. The overall amplitude A is evaluated as Â = Araw−An0−Aps−An1−Amc. The bands are wide enough that the correlation of the measurement
uncertainty between bins is negligible, as discussed in Appendix D; however, most of the systematic errors are significantly correlated between
bands. The final column lists the physical bandpower estimates and their errors obtained by scaling flat averages of L4Ĉφφ

L across each bin in our
fiducial ΛCDM model by the given Â value.

measurements, with χ2 = 10.9 and the corresponding probability
to exceed equal to 21%5. Significantly, we see that the ΛCDM
model, calibrated with the CMB fluctuations imprinted around
z = 1100, correctly predicts the evolution of structure and geom-
etry at much lower redshifts. The 68% uncertainty in the ΛCDM
prediction of Cφφ

L is shown by the dashed lines in the upper-
left panel of Fig. 12. We can assess consistency with the direct
measurements, properly accounting for this uncertainty, by in-

5 For comparison, the χ2 of the eight lensing bandpowers in the range
L = 40–400 relative to the joint best-fit ΛCDM model to the main
Planck+WP+highL likelihood is 9.5, and relative to the fiducial model
χ2 = 11.6.

troducing an additional parameter Aφφ
L that scales the theory Cφφ

L
in the lensing likelihood. (Note that we choose not to alter the
lensing effect in CTT

` .) As reported in Planck Collaboration XVI
(2014) we find

Aφφ
L = 0.99 ± 0.05 (68%; Planck+lensing+WP+highL),

in excellent agreement with Aφφ
L = 1. This analysis differs in

detail from the simple one-parameter analysis with the fiducial
template, reported in Table 1 as A = 0.943± 0.04 for the MV re-
construction. The latter does not account for uncertainty in the
amplitude or shape of the template between bandpowers due to
variations in the six ΛCDM parameters, nor small variations in
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Fig. 12. Upper left: Planck measurements of the lensing power spectrum compared to the ΛCDM mean prediction and 68% confidence interval
(dashed lines) for models fit to Planck+WP+highL (see text). The eight bandpowers are those used in the Planck lensing likelihood; they are
renormalized, along with their errors, to account for the small differences between the lensed CTT

` in the best-fit model and the fiducial model used
throughout this paper. The error bars are the ±1σ errors from the diagonal of the covariance matrix. The colour coding shows how Cφφ

L varies
with the optical depth τ across samples from the ΛCDM posterior distribution. Upper right: as upper-left but using only the temperature power
spectrum from Planck. Lower left: as upper-left panel but in models with spatial curvature. The colour coding is for ΩK . Lower right: as upper-left
but in models with three massive neutrinos (of equal mass). The colour coding is for the summed neutrino mass

∑
mν.

the lensed temperature power spectrum (which affect the nor-
malisation of the reconstruction power spectrum).

An alternative route to breaking the As-τ degeneracy is pos-
sible for the first time with Planck. Since Cφφ

L is directly propor-
tional to As, the lensing power spectrum measurements and the
smoothing effect of lensing in CTT

` (which at leading order varies
as A2

s e−2τ) can separately constrain As and τ without large-angle
polarization data. The variation of Cφφ

L with τ in ΛCDM models
constrained only by the Planck temperature power spectrum is
illustrated in the upper-right panel of Fig. 12, and suggests that
the direct Cφφ

L measurements may be able to improve constraints
on τ further. This is indeed the case, as shown in Fig. 13 where
we compare the posterior distribution of τ for the Planck temper-
ature likelihood alone with that including the lensing likelihood.
We find

τ = 0.097 ± 0.038 (68%; Planck)
τ = 0.089 ± 0.032 (68%; Planck+lensing).

At 95% confidence, we can place a lower limit on the optical
depth of 0.04 (Planck+lensing). This is very close to the optical

depth for instantaneous reionization at z = 6, providing further
support for reionization being an extended process.

The τ constraints via the lensing route are consistent with,
though weaker, than those from WMAP polarization. However,
since the latter measurement requires very aggressive cleaning
of Galactic emission (see e.g., Fig. 17 of Page et al. 2007), the
lensing constraints are an important cross-check.

6.1.2. Effect of the large and small scales
on the six-parameter ΛCDM model

Before exploring the further parameters that can be constrained
with the lensing likelihood, we test the effect on the ΛCDM
model of adding the large-scale (10 ≤ L ≤ 40) and small-scale
(400 ≤ L ≤ 2048) lensing data to our likelihood. Adding ad-
ditional data will produce random shifts in the posterior distri-
butions of parameters, but these should be small here since the
multipole range 40 ≤ L ≤ 400 is designed to capture over 90%
of the signal-to-noise (on an amplitude measurement). If the ad-
ditional data are expected to have little statistical power, i.e., the

A17, page 17 of 39

http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/201321543&pdf_id=12


A&A 571, A17 (2014)

0.04 0.08 0.12 0.16 0.20 0.24
τ

0.0

0.2

0.4

0.6

0.8

1.0

P
/P

m
ax

Planck+WP

Planck+lensing

Planck

Fig. 13. Marginalised constraints on the optical depth in ΛCDM models
from the Planck temperature power spectrum (Planck; solid black), and
additionally including the lensing likelihood (Planck+lensing; dashed
red) or WMAP polarization (Planck+WP; dashed-dotted blue). We use
a prior τ > 0.01 in all cases.

error bars on parameters do not change greatly, but their addi-
tion produces large shifts in the posteriors, this would be symp-
tomatic either of internal tensions between the data or an incor-
rect model.

In Fig. 14, we compare the posterior distributions of the
ΛCDM parameters for Planck+WP+highL alone with those af-
ter combining with various lensing likelihoods. Adding our fidu-
cial lensing likelihood (second column) reduces the errors on
parameters by a small amount and the median values shift by
rather less than 1σ for all parameters. The largest gain is for
Ωch2 (and H0) where the errors improve by 20%. Adding further
large- and small-scale data produces no significant reduction in
error bars, as expected. Parameter medians also change very lit-
tle except for Ωch2, which is dragged low by a further 0.3σ on
adding the small-scale lensing information. (The shift in H0 is
due to the anti-correlation between H0 and Ωch2 caused by the
acoustic-scale degeneracy in the temperature power spectrum;
see Planck Collaboration XVI 2014.) These findings are consis-
tent with the power spectrum amplitude measurements discussed
in Sect. 6: we can lower the lensing power by reducing the matter
density, and this is favoured by the lower amplitudes measured
from the small-scale lensing power spectrum.

The tension between the small-scale power and the power
over the L = 40–400 range included in our fiducial likelihood,
coupled with our lower confidence in the accuracy of the bias
removal on small scales, is the reason that we do not include
these smaller scales at this stage in the Planck lensing likelihood.

6.1.3. Spatial curvature and dark energy

Inflation models with sufficient number of e-folds of expan-
sion naturally predict that the Universe should be very close
to spatially flat. Constraining any departures from flatness is
therefore a critical test of inflationary cosmology. However, the
primary CMB anisotropies alone suffer from a geometric degen-
eracy, whereby models with identical primordial power spec-
tra, physical matter densities, and angular-diameter distance to
last-scattering have almost identical power spectra (Efstathiou
& Bond 1999). The degeneracy is partly broken by lensing
(Stompor & Efstathiou 1999), with small additional contribu-
tions from the late-ISW effect (on large scales) and by projection
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Fig. 14. Marginalised posteriors for the six-parameter ΛCDM model,
shown as box plots, for Planck+WP+highL with various lensing like-
lihoods. The red and blue lines are the median and mean, respectively.
The box and bar correspond to 68% and 95% of the probability den-
sity, both centered on the median. The left-most column is without the
lensing likelihood and the median of these constraints is shown by the
grey line. The remaining columns show the effect of adding in the fidu-
cial lensing likelihood (second column), and further adding a low-L bin
(third column), high-L bins (fourth column), or both (final column).

effects in curved models (Howlett et al. 2012). In ΛCDM models
with curvature, the geometric degeneracy is two-dimensional,
involving the curvature and dark energy density, and this lim-
its the precision with which either can be determined from the
CMB alone.

With the high-significance detection of lensing by Planck
in the temperature power spectrum (Planck Collaboration XVI
2014), and via the lens reconstruction reported here, the geomet-
ric degeneracy is partially broken, as shown in Fig. 15. The long
tail of closed models with low dark energy density (and expan-
sion rate at low redshift) allowed by the geometric degeneracy
have too much lensing power to be consistent with Planck’s mea-
sured temperature and lensing power spectra (see also Fig. 12).
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Fig. 15. Two views of the geometric degeneracy in curved ΛCDM models which is partially broken by lensing. Left: the degeneracy in the
Ωm−ΩΛ plane, with samples from Planck+WP+highL colour coded by the value of H0. The contours delimit the 68% and 95% confidence
regions, showing the further improvement from including the lensing likelihood. Right: the degeneracy in the ΩK-H0 plane, with samples colour
coded by ΩΛ. Spatially-flat models lie along the grey dashed lines.

We find marginalised constraints on the curvature parameter of

ΩK = −0.042+0.027
−0.018 (68%; Planck+WP+highL)

ΩK = −0.0096+0.010
−0.0082 (68%; Planck+lensing+WP+highL),

so that lensing reconstruction reduces the uncertainty on ΩK by
more than a factor of two over limits driven by the smoothing
effect on the acoustic peaks of CTT

` . This improvement is consis-
tent with the spread in Cφφ

L in curved models constrained by the
temperature power spectrum, relative to the errors on the recon-
struction power spectrum; see Fig. 12. Note that the mean value
of ΩK also moves towards zero with the inclusion of the Cφφ

L
measurements. Adding the high-L and low-L data to the likeli-
hood brings no more than a percent-level improvement on the
constraint. We see that the CMB alone now constrains the ge-
ometry to be flat at the percent level. Previous constraints on
curvature via CMB lensing have been reported by SPT in com-
bination with the WMAP-7 data: ΩK = −0.003+0.014

−0.018 (68%; Story
et al. 2013). This constraint is consistent, though almost a factor
of two weaker, than that from Planck. Tighter constraints on cur-
vature result from combining the Planck data with other astro-
physical data, such as baryon acoustic oscillations, as discussed
in Planck Collaboration XVI (2014).

Lensing effects provide evidence for dark energy from the
CMB alone, independent of other astrophysical data (Sherwin
et al. 2011; van Engelen et al. 2012). In curved ΛCDM models,
we find marginalised constraints on ΩΛ of

ΩΛ = 0.57+0.073
−0.055 (68%; Planck+WP+highL)

ΩΛ = 0.67+0.027
−0.023 (68%; Planck+lensing+WP+highL).

Again, lensing reconstruction improves the errors by more
than a factor of two over those from the temperature power
spectrum alone. Note that part of the preference for closed mod-
els from the Planck+WP+highL data combination (i.e., with-
out the 4-point function) is related to the tendency of the tem-
perature power spectrum, considered over the full multipole
range, to favour models with more lensing power than in the
best-fit ΛCDM model. This effect is discussed in some detail
in Planck Collaboration XVI (2014).

6.1.4. Neutrino masses

The unique effect in the unlensed temperature power spectrum
of massive neutrinos that are still relativistic at recombination
is small. With the angular scale of the acoustic peaks fixed
from measurements of the temperature power spectrum, neutrino
masses increase the expansion rate at z > 1 where dark energy
is negligible6 and so suppress clustering on scales smaller than
the horizon size at the non-relativistic transition (Kaplinghat
et al. 2003). This effect reduces Cφφ

L for L > 10 (see Fig. 12)
and gives less smoothing of the acoustic peaks in CTT

` . As dis-
cussed in Planck Collaboration XVI (2014), the constraint on∑

mν from the Planck temperature power spectrum (and WMAP
low-` polarization) is driven by the smoothing effect of lens-
ing:

∑
mν < 0.66 eV (95%; Planck+WP+highL). Curiously,

this constraint is weakened by additionally including the lens-
ing likelihood to∑

mν < 0.85 eV, (95%; Planck+lensing+WP+highL),

reflecting mild tensions between the measured lensing and tem-
perature power spectra, with the former preferring larger neu-
trino masses than the latter. Possible origins of this tension are
explored further in Planck Collaboration XVI (2014) and are
thought to involve both the Cφφ

L measurements and features in
the measured CTT

` on large scales (` < 40) and small scales
` > 2000 that are not fit well by the ΛCDM+foreground model.
In regard to Cφφ

L , Fisher estimates show that the bandpowers in
the range 130 < L < 309 carry most of the statistical weight
in determining the marginal error on

∑
mν, and Fig. 12 reveals

a preference for high
∑

mν from this part of the spectrum. We
have checked that removing the first bandpower from the lensing
likelihood, which is the least stable to data cuts and the details
of foreground cleaning as discussed in Sect. 7, has little impact

6 With all other physical densities held fixed to preserve the acous-
tic physics before recombination, increasing the neutrino mass in-
creases the expansion rate at all times after the neutrinos become non-
relativistic (which is after recombination for the light masses considered
here). However, to preserve the angular scale of the sound horizon and
hence the location of the acoustic peaks and troughs, one must reduce
the expansion rate at low redshift. This is done by reducing the physical
density in dark energy.
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on our neutrino mass constraints. We also note that a similar
trend for lower lensing power than the ΛCDM expectation on
intermediate scales is seen in the ACT and SPT measurements
(Fig. 11). Adding the high-L information to the likelihood weak-
ens the constraint further, pushing the 95% limit to 1.07 eV. This
is consistent with our small-scale measurement having a signifi-
cantly lower amplitude. At this stage it is unclear what to make
of this mild tension between neutrino mass constraints from the
4-point function and those from the 2-point function, and we
caution over-interpreting the results. We expect to be able to say
more on this issue with the further data that will be made avail-
able in future Planck data releases.

6.2. Correlation with the ISW Effect

As CMB photons travel to us from the last-scattering surface,
the gravitational potentials they traverse may undergo a non-
negligible amount of evolution. This produces a net redshift or
blueshift of the photons concerned, as they fall into and then
escape from the evolving potentials. The overall result is a con-
tribution to the CMB temperature anisotropy known as the late-
time ISW effect, or the Rees-Sciama (R-S) effect depending on
whether the evolution of the potentials concerned is in the linear
(ISW) or non-linear (R-S) regime of structure formation (Sachs
& Wolfe 1967; Rees & Sciama 1968). In the epoch of dark en-
ergy domination, which occurs after z ∼ 0.5 for the concor-
dance ΛCDM cosmology, large-scale potentials tend to decay
over time as space expands, resulting in a net blueshifting of the
CMB photons which traverse these potentials.

In the concordance ΛCDM model, there is significant over-
lap between the large-scale structure which sources the CMB
lensing potential φ and the ISW effect (greater than 90% at
L < 100), although it should be kept in mind that we cannot
observe the ISW component by itself, and so the effective cor-
relation with the total CMB temperature is much smaller, on the
order of 20%.

The correlation between the lensing potential and the ISW
effect results in a non-zero bispectrum or three-point func-
tion for the observed CMB fluctuations. This bispectrum is
peaked for “squeezed” configurations, in which one short leg
at low-` supported by the ISW contribution is matched to the
lensing-induced correlation between two small-scale modes at
high-`. Constraints on the amplitude of the lensing-ISW bispec-
trum using several different estimators are presented in Planck
Collaboration XXIV (2014). Here we will present an additional
constraint, in which the bispectrum measurement is recast as
an estimate for the amplitude of the cross-spectrum CTφ

L , using
the filtering and frequency map combinations of our baseline
lensing reconstruction. Our measurements are in good agree-
ment with those made in Planck Collaboration XXIV (2014);
a detailed comparison of several lensing-ISW bispectrum es-
timators, including the one used here, is presented in Planck
Collaboration XIX (2014).

Following Lewis et al. (2011), we begin with an estimator for
the cross-spectrum of the lensing potential and the ISW effect as

ĈTφ
L =

f −1
sky

2L + 1

∑
M

T̂LMφ̂
∗
LM , (45)

where T̂`m = CTT
` T̄`m is the Wiener-filtered temperature map

and φ̂ is given in Eq. (13). In Fig. 16 we plot the measured cross-
spectra for our individual frequency reconstructions at 100, 143,
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Fig. 16. Lensing-ISW bispectrum-related cross spectra computed from
Eq. (45). Black dashed lines indicate the average value for simulations,
while dark/light grey filled regions indicate the expected one/two stan-
dard deviation scatter, also measured from simulations. The thin ma-
genta line gives the expected CTφ

L cross-spectrum for our fiducial model.
The agreement of this curve with the simulation average illustrates that
our estimator is accurately normalized. In all the quantitative analysis
of this section we ignore L < 10, although we have plotted the cross-
spectra at these multipoles for interest.

and 217 GHz as well as the MV reconstruction. We also plot the
mean and scatter expected in the fiducial ΛCDM model.

To compare quantitatively the overall level of the measured
CTφ

L correlation to the value in ΛCDM, we estimate an overall
amplitude for the cross-spectrum as

ÂTφ = NTφ
Lmax∑

L=Lmin

(2L + 1)CTφ,fid.
L ĈTφ

L /(CTT
L Nφφ

L ). (46)

The overall normalizationNTφ is determined from Monte-Carlo
simulations. For our processing of the data, we find that it is well
approximated (at the 5% level) by the analytical approximation

NTφ ≈

 Lmax∑
L=Lmin

(2L + 1)
(
CTφ,fid.

L

)2
/(CTT

L Nφφ
L )


−1

. (47)

The estimator above is equivalent to the KSW and skew-
C` estimators of Komatsu et al. (2005); Munshi et al.
(2011b) for the lensing-ISW bispectrum that are used in
Planck Collaboration XXIV (2014; up to implementation de-
tails such as filtering). The mean-field subtraction performed
when computing φ̂LM can be identified with the linear term of
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Table 2. Best-fit amplitudes of the lensing-ISW bispectrum ÂTφ given
by Eq. (46) with Lmin = 10 and Lmax = 100, as well as split into
even/odd-L contributions.

Lensing-ISW amplitudes

ÂTφ (all L) ÂTφ (even L) ÂTφ (odd L)

100 GHz . . . . 0.93 ± 0.52 0.45 ± 0.72 1.44 ± 0.73
143 GHz . . . . 0.81 ± 0.36 0.27 ± 0.48 1.37 ± 0.52
217 GHz . . . . 0.87 ± 0.35 0.54 ± 0.49 1.22 ± 0.49
MV . . . . . . . . 0.78 ± 0.32 0.25 ± 0.45 1.32 ± 0.46

Notes. All of the fits are consistent (within 2σ) with the amplitude of
unity expected in our fiducial ΛCDM model.

Table 3. Differences between the lensing-ISW amplitude fits of Table 2,
along with 1σ scatter determined from Monte-Carlo simulations.

Lensing-ISW pair differences

143 GHz 217 GHz MV

100 GHz . . . . +0.13 ± 0.38 +0.06 ± 0.42 +0.16 ± 0.41
143 GHz . . . . −0.07 ± 0.26 +0.03 ± 0.18
217 GHz . . . . +0.10 ± 0.13
Even−Odd . . . −1.10 ± 0.69 −0.68 ± 0.69 −1.07 ± 0.64

Creminelli et al. (2006), which is necessary to minimize the es-
timator variance. The contribution to the total S/N of this esti-
mator as a function of the short leg L is plotted in Fig. 2, where
it can be seen that the constraining power for the fiducial corre-
lation is almost entirely at L < 100.

In Table 2 we present measured values for the amplitude of
the lensing-ISW bispectrum using Eq. (45). The uncertainties on
ÂTφ are determined by Monte-Carlo. We use the multipole range
10 < L < 100, given some of the potential systematic issues
with L < 10 identified in Sect. 7.4, although as can be seen from
Fig. 16, the inclusion of lower multipoles does not significantly
affect our results. Note that for the ISW-lensing measurements,
inaccuracies in the mean-field subtraction do not bias the esti-
mator although they may degrade the statistical errors on large
scales. The differences between the different amplitude fits are
well within the expected scatter, as we show in Table 3.

As a point of interest, we have also split our amplitude
constraint into the contribution from even and odd multipoles.
There are well known odd/even-multipole power asymmetries in
the temperature anisotropies on large angular scales, the study
of which is somewhat limited by the small number of avail-
able modes (Land & Magueijo 2005; Kim & Naselsky 2010;
Gruppuso et al. 2011; Bennett et al. 2011). The lensing poten-
tial gives a potentially new window on these power asymme-
tries, as a third somewhat independent measurement of power
on large angular scales. As we can see in Table 2, there is a large
difference between the odd/even-L contributions in our lensing-
ISW bispectrum estimate, related to the odd/even temperature
asymmetry.

In Table 3 we present differences between the amplitude
measurements of Table 2, as well as the expected scatter, ac-
counting for correlations between the estimates due to common
CMB and (in the case of MV vs. 143 or 217 GHz) noise fluc-
tuations. We see that our estimates are all very consistent. The
difference in measured odd/even multipole power, while strik-
ing, is not statistically significant at greater than 2σ.

To conclude, we see a correlation between our lensing po-
tential measurement and the large-scale temperature anisotropies
that is consistent with the level expected due to the present-day
dark energy domination in our fiducial ΛCDM cosmology. Our
amplitude measurements are in agreement with those presented
in Planck Collaboration XXIV (2014); these independent mea-
surements are compared in detail in Planck Collaboration XIX
(2014).

6.3. Correlation with galaxy catalogues

The CMB lensing potential is an integrated measure of all matter
in the Universe back to the last-scattering surface, with a broad
kernel which peaks at z ∼ 2, but has significant contributions
from both lower and higher redshifts. There are therefore signif-
icant correlations between the CMB lensing potential and other
tracers of large-scale structure. Such correlations have already
been observed between the lensing potential reconstructed from
WMAP data and the NVSS quasar catalogue (Smith et al. 2007;
Hirata et al. 2008, on the order of 3σ in significance), as well
as between the lensing potential from SPT with optical and in-
frared catalogues from BCS, WISE, and Spitzer/IRAC (Bleem
et al. 2012, between 4 and 5σ), and the ACT lensing potential
with quasars from SDSS (Sherwin et al. 2012, at 3.8σ). Here we
will show several representative examples of correlations with
the Planck lensing potential, between 7σ and 20σ in signifi-
cance. Our goal is not to perform an in depth study, but rather
to demonstrate the power of our public lensing map. In addition
to the correlations presented here, there is a powerful correlation
with, the cosmic infrared background (CIB). Correlation of the
Planck lensing potential with the CIB fluctuations as probed by
the highest frequency Planck channels is observed at greater than
40σ in significance, and has been subjected to a more detailed
analysis and modelling, which is presented in an accompanying
paper, Planck Collaboration XVIII (2014).

To predict expected levels of correlation for a given galaxy
catalogue, we use the Limber approximation (Limber 1954) with
a simple linear bias model, in which the cross-spectrum between
two mass tracers is given by

Cgφ
L =

∫
dχKg

L(χ)Kφ
L(χ)P(k = L/χ, χ), (48)

where χ is conformal distance and P(k, χ) is the 3D matter power
spectrum for wavenumber k at conformal lookback time χ. Kφ

and Kg are kernels associated with lensing and with the galaxy
catalogue of interest respectively, and are given by

Kφ
L(χ) = −

3ΩmH2
0

L2

χ

a

(
χ∗ − χ

χ∗χ

)
,

Kg
L(χ) =

dN
dz

dz
dχ

b(z)
χ
· (49)

Here b(z) is a redshift-dependent linear bias parameter, and
dN/dz describes the redshift distribution of the galaxy popula-
tion. As with the lensing-ISW bispectrum, we can construct a
simple pseudo-CL estimator for the cross correlation using

Ĉgφ
L =

f −1
sky,j

2L + 1

∑
M

gLMφ̂
∗
LM , (50)

where fsky,j is the sky fraction common to both the lens recon-
struction and the catalogue, and gLM is the harmonic transform
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q

Fig. 17. Cross-spectra of the Planck MV lensing potential with several galaxy catalogues, scaled by the signal-to-noise weighting factor Agφ
L defined

in Eq. (52). Cross-correlations are detected at approximately 20σ significance for the NVSS quasar catalogue, 10σ for SDSS LRGs, and 7σ for
both MaxBCG and WISE.

of the galaxy fractional overdensity. Denoting the positions of
the objects p in the catalogue as n̂p, the transform is given by

gLM =
1

Ngg

∑
p

Y∗LM(n̂p), (51)

where Ngg is the surface density of objects in gal/steradian. With
a fiducial model Cgφ,fid.

L for the cross-spectrum obtained using
Eq. (48), the minimum-variance estimator for its overall ampli-
tude is

Âgφ = Ngφ
∑

L

(2L + 1)Cgφ,fid.
L Ĉgφ

L

(Cgg
L + Ngg)(Cφφ

L + Nφφ
L )
≡

∑
L

Agφ
L Ĉgφ

L , (52)

where Cgg
L is the signal power spectrum of the catalogue, which

can be estimated using Eq. (48) with Kg for both weight func-
tions. Here we have defined the spectrum Agφ

L as a scaling at
each multipole L of the cross-correlation power spectrum. The
normalization Ngφ is given by

Ngφ =

∑
L

(2L + 1)
(
Cgφ,fid.

L

)2

(Cgg
L + Ngg)(Cφφ

L + Nφφ
L )


−1

. (53)

In Fig. 17 we plot the contributions to Âgφ as a function of L for
several surveys that have significant correlations with the Planck
MV lensing potential: the NVSS quasar catalogue, the MaxBCG
cluster catalogue, an SDSS LRG catalogue, and an infrared cat-
alogue from the WISE satellite. The error bars for each correla-
tion are measured from the scatter of simulated lens reconstruc-
tions correlated with each catalogue map, and are in generally
good agreement (at the 20% level) with analytical expectations.
These catalogues are discussed in more detail below.

1. NVSS Quasars: the NRAO VLA Sky Survey (NVSS;
Condon et al. 1998) is a catalogue of approximately two

million sources north of δ = −40◦ which is 50% complete
at 2.5 mJy. Most of the bright sources are AGN-powered ra-
dio galaxies and quasars. We process this catalogue follow-
ing Smith et al. (2007), pixelizing the catalogue at HEALPix
Nside = 256 and projecting out the azimuthally-symmetric
modes of the galaxy distribution in ecliptic coordinates to
avoid systematic striping effects in the NVSS dataset. We
model the expected cross-correlation for this catalogue us-
ing a constant b(z) = 1.7 and a redshift distribution centered
at z0 = 1.1 given by

dN
dz
∝

 exp
(
−

(z−z0)2

2(0.8)2

)
(z ≤ z0)

exp
(
−

(z−z0)2

2(0.3)2

)
(z ≥ z0).

(54)

For this model, in the correlation with the MV lens recon-
struction we measure an amplitude of Âgφ

NVSS = 1.03 ± 0.05.
2. SDSS LRGs: We use the LRG catalogue of Ross et al.

(2011); Ho et al. (2012) based on Sloan Digital Sky Survey
Data Release 8 (SDSS DR8), which covers 25% of the sky.
After cutting to select all sources with photometric redshift
0.4 ≤ z ≤ 0.8, and pgal > 0.2, we are left with approximately
1.4×106 objects with a mean redshift of z = 0.55 and a scat-
ter of ±0.07. Apart from the cut above, we do not perform
any additional weighting on pgal. We model this catalogue
using dN/dz taken from the histogram of photometric red-
shifts, and take b(z) = 2. We measure Âgφ

LRGs = 0.96 ± 0.10,
very consistent with expectation.

3. MaxBCG Clusters: The MaxBCG cluster catalogue (Koester
et al. 2007) is a collection of 13, 823 clusters over approxi-
mately 20% of the sky selected from the SDSS photomet-
ric data, covering a redshift range 0.1 ≤ z ≤ 0.3. It is
believed to be 90% pure and more than 85% complete for
clusters with M ≥ 1 × 1014 M�. To simplify the sky cover-
age, we have discarded the three southern SDSS stripes in
the catalogue, which reduces the overall sky coverage to ap-
proximately 17%. There are accurate photometric redshifts
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(∆z ∼ 0.01) for all objects in the catalogue, and so we can
construct dN/dz directly from the histogram of the redshift
distribution. Although these clusters are at very low red-
shift compared to the typical structures which source the
CMB lensing potential, they are strong tracers of dark mat-
ter, with an effective bias parameter of b(z) = 3 (Hütsi 2010).
We obtain a similar average bias parameter 〈b(M, z)〉 for
the MaxBCG clusters if we combine the mass-richness re-
lation of Bauer et al. (2012) and the halo bias prescription
of Tinker et al. (2010). Here we measure a correlation with
the Planck lensing potential of Âgφ

MaxBCG = 1.54 ± 0.21. This
is significantly larger than expected given the simple model
above, although as can be seen in Fig. 17 the shape of the
correlation is in reasonable agreement.

4. WISE Catalogue: The Wide Field Survey Infrared Explorer
(WISE) satellite (Wright et al. 2010) has mapped the full sky
in four frequency bands W1−W4 at 3.4, 4.6, 12, and 22 µm
respectively. We start from the full mission catalogue, which
contains over 560 × 106 objects. To obtain a catalogue with
roughly uniform sensitivity over the full sky and to eliminate
stellar contamination we follow Kovacs et al. (2013), select-
ing all sources with W1 magnitudes less than 15.2 at galac-
tic latitudes greater than 10◦, and require W1−W2 > 0.2 and
W2−W3 > 2.9. We cut all sources that are flagged as po-
tentially spurious, or for which more than 30% of frames
observing a given source are marked as contaminated by
moon-glow. These cuts leave us with 2 308 751 sources. We
additionally remove all sources that lie outside an fsky = 0.6
Galaxy mask. Following Goto et al. (2012), we model the
redshift distribution of these sources using

dN
dz
∝ z exp

(
−

(z − z0)2

2σ2
z

)
, (55)

with z0 = 0.1, σz = 0.1, and where the proportionality con-
stant is chosen such that

∫
dzdN/dz = 1. The bias is taken

to be b = 1. For this model we measure an amplitude of
Âgφ

WISE = 0.97 ± 0.13. Note that the cuts we have used above
are fairly conservative – in particular, relaxing the magni-
tude cut above we can obtain much larger cross-correlation
signals (on the order of 40σ in significance).

It can be seen from Fig. 17 that we have significant correlations
with the objects in all four of these catalogues, with amplitudes
and shapes roughly at the expected level. The correlations here
are only a demonstrative sample of what is possible with the
Planck lensing potential map. Note that although the lensing
potential has a peak sensitivity to high-redshift tracers (such as
NVSS), significant correlations may also be observed with rel-
atively low redshift catalogues. From the perspective of cross-
correlation, the Planck lensing potential represents a mass sur-
vey with a well understood redshift kernel over the full-sky, and
we anticipate that correlations with it will prove useful as a direct
probe of the correlation between luminous and dark matter.

7. Consistency and systematic tests

In this section we perform a number of consistency and system-
atic tests. Most of our tests will focus on the robustness of the
MV reconstruction that forms the basis for our fiducial lensing
likelihood. In Fig. 18 we summarize several of our main consis-
tency checks: foreground tests obtained by comparing individ-
ual frequencies, adjusting the Galactic mask level, or comparing
to results obtained analyzing component-separated maps (dis-
cussed in Sect. 7.1), tests of our correction at the power spectrum

level for contamination by the shot-noise from unresolved point-
source (in Sect. 7.2), tests for possible noise bias obtained by tak-
ing appropriate correlations of maps with independent noise re-
alizations (discussed further in Sect. 7.3), and tests using alterna-
tive estimators that are bias hardened against various systematics
(Sect. 7.4). In all cases, we find that our MV power spectrum is
generally consistent with these alternative reconstructions.

Our baseline reconstruction method uses the methodology
outlined in Sect. 2, as well as a specific choice of filtering to
produce the T̄ that are the inputs to our lensing estimators. We
test our robustness to these choices in Sect. 7.5, as well as the
implementation of our main reconstruction pipeline, by compar-
ing to three alternative and largely independent pipelines.

In addition to these targeted tests, we have also performed
several generic null tests for unexpected signals in our data.
These are deferred to Appendix A, where we study survey-
to-survey discrepancies, lensing curl modes, and the map-level
statistics of our lens reconstruction.

7.1. Foreground contamination

In this section, we test the consistency of our results with respect
to the treatment of Galactic foreground contamination. We use
several different tests to gain perspective on possible issues:

(1) We compare individual frequency reconstructions. The
agreement of the lensing power spectra estimated at 100,
143, and 217 GHz is apparent within the error bars plotted in
Fig. 10. However, because a large fraction of the uncertainty
in these estimates comes from CMB fluctuations themselves
they are significantly correlated. In Fig. 18 we plot the dif-
ference between the 143 and 217 GHz reconstructions (the
scatter for 100 GHz is too large to provide a useful test of
the MV reconstruction so we have not plotted it, although
it is also consistent). Both are in reasonable agreement, al-
though we can see that the somewhat large amplitude for
our first likelihood bin, just above L = 40 is being driven by
217 GHz.

(2) We perform lens reconstruction using both more aggressive
and more conservative Galaxy masks than our fiducial fsky =
0.7 analysis mask, constructed following the description in
Sec. 3. The results of this test are also shown in Fig. 18, for
masks with fsky = 0.6 and fsky = 0.8. We can see a highly
significant discrepancy at very low-L between our fiducial
fsky = 0.7 mask and the more aggressive fsky = 0.8 mask,
however other bins (in particular in the 40 < L < 400 range)
are untouched. Our fiducial results are completely consistent
with the more conservative fsky = 0.6 results.

(3) We perform lens reconstruction on the component-separated
CMB maps from Planck Collaboration XII (2014). These
are the product of four different foreground-removal algo-
rithms: R, N, S, and S. Each of these
methods combines the full set of nine Planck frequency
maps from 30 → 857 GHz to obtain a best-estimate CMB
map. This makes a detailed characterization of these maps
more difficult. However analysis of these maps does pro-
vide a valuable consistency test. In Fig. 18 we compare
the reconstructions obtained on these component-separated
maps to our MV reconstruction, analyzed using the same
Galaxy mask. The foreground-cleaned maps are generally
in good agreement with our fiducial reconstruction, although
the first bin above L = 40 is consistently about one standard-
deviation lower than our MV result, which as we have al-
ready pointed out is driven high by 217 GHz. The confidence
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Fig. 18. Summary of internal consistency tests between our fiducial minimum-variance (MV) reconstruction and a set of alternatives designed
to test sensitivity to potential issues. The top panel shows Cφφ

L estimates, with measurement error bars. The bottom panels show the residual
with respect to the MV reconstruction in units of the MV measurement uncertainty. The grey band marks the 1σ deviation uncertainty of the
MV reconstruction. The error bar on each data point in the lower panels gives the standard deviation of the scatter between each result and the MV,
determined from Monte-Carlo simulations that account for the correlated CMB, noise and foreground power between estimators. Comparison of
the uncertainty on the scatter points and the grey band gives an indication of how constraining each test is. The various tests are described in more
detail in subsections of Sect. 7.
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masks produced in Planck Collaboration XII (2014) cover
significantly more sky than the fsky = 0.7 mask used in our
baseline analysis.

The remainder of this subsection describes our analysis of the
component-separated maps in more detail. For the power spec-
trum tests of Fig. 18, we analyze these maps following the same
methodology as for our fiducial results. As a mask, we use the
union of our fiducial fsky = 0.7 Galaxy mask, point source masks
at 100, 143, and 217 GHz, as well as the “method” masks pro-
vided for each component separation algorithm. We characterize
the bias terms of Eq. (15) as well as the statistical uncertainties of
the lens reconstruction on each map using the same lensed CMB
and FFP6 noise realizations that are discussed in Sect. 4. These
have been run through each of the component-separation algo-
rithms above, resulting in a set of simulated foreground-cleaned
maps (note that no foreground signal was included in the simula-
tions which were run through the separation algorithms, and so
these simulations only reproduce the mixing employed by each
algorithm of the individual frequency maps). To match the power
spectrum of these simulations to the power spectrum of the data
maps, we find it is necessary to add extragalactic foreground
power following the model in Sect. 4, with Acib = 18 µK2 and
Asrc = 28 µK2. The resulting simulations have a power spectrum
that agrees with that of the CMB map estimate based on the data
to better than 2% at l < 2048. This could be improved slightly
by tailoring a specific correction for each map. We also add ho-
mogeneous pixel noise with a level of 12 µK arcmin. If we ne-
glected this power, the agreement would be only at the 8% level,
primarily due to the noise term (the Acib and Asrc contributions
are each at the level of 1−2%). Due to the procedure that we use
to subtract the disconnected noise bias (Eq. (17)) from our lens-
ing power spectrum estimates, the inclusion of these components
does not significantly affect our results, but comparison with the
values used for our single-frequency simulations in Sect. 4 are a
useful indicator of the extent to which the component-separation
algorithms are able to remove extragalactic foreground power in
the high-` regime.

As already discussed, our results on the component-
separated CMB maps are presented in Fig. 18. Because the
CMB and FFP6 noise components of the foreground-cleaned
map simulations are the same as those used to characterize our
fiducial lens reconstruction, we can measure the expected scat-
ter between the component-separated maps and our fiducial re-
construction. This scatter will be slightly overestimated because
we have not attempted to model coherently the contribution to
the reconstruction noise from residual diffuse extragalactic fore-
ground power. For the eight bins in 40 ≤ L ≤ 400 on which
our fiducial likelihood is based, we measure a χ2 for the differ-
ence between our fiducial reconstruction and the corresponding
foreground-cleaned reconstruction of χ2 = (3.14, 4.3, 2.5, 14.7)
for N, S, S, and R respectively. These
χ2 values associated have probability-to-exceed (PTE) values of
(79%, 64%, 86%, 2%). At the level that we are able to test, the
N, S, and S foreground-cleaned maps give results
that are quantitatively consistent with our fiducial reconstruc-
tion. There is more scatter between our fiducial reconstruction
and the R map than expected from simulations, as evi-
denced by a very high χ2 for the difference, however as can
be seen in Fig. 18, there are not any clear systematic differ-
ences. Indeed, the discrepancy for the bins plotted in Fig. 18
(which differ somewhat from the linear bins used in our likeli-
hood) is much less significant than for the bins of our fiducial
likelihood.

Mollweide view

MV, fsky = 0.70.Mollweide view

N, fsky = 0.87

Fig. 19. Wiener-filtered potential maps in Galactic coordinates, as in
Fig. 8, plotted here in Mollweide projection. Top: MV reconstruction;
Bottom: extended reconstruction on the N component-separated
map.

When using the component-separated maps above, we have
used the same fsky = 0.7 Galactic mask as for our MV result, al-
though the confidence regions associated with each foreground-
cleaned map allow more sky, ranging up to fsky = 0.94 for the
N method. We have used the  pipeline (described later
in Sect. 7.5) to test whether this improved sky coverage could
benefit our lens reconstruction. The same method has been used
in Planck Collaboration XII (2014) to evaluate possible biases
to lens reconstruction induced by these methods using the FFP6
simulated CMB realization, described in Planck Collaboration I
(2014), indicating that the different component-separation algo-
rithms do not alter significantly the lensing signal (at the level
which can be tested on a single simulation). Analyzing the N
map, which has the largest confidence region, we find that we
can increase the usable sky area up to fsky = 0.87 without
encountering significant Galactic contamination. In Fig. 19 we
show the striking improvement in sky coverage on the N
map. S and S are very similar; we have not consid-
ered R because of its larger noise level.

Power spectrum estimates at this mask level show consis-
tency with the MV reconstruction within two standard devia-
tions of the measurement uncertainty. The increased sky cover-
age does not bring significant improvements in the error-bars of
the power spectrum, however. Using Eq. (20) as an estimate of
the power spectrum variance, the larger sky coverage yields only
a 3.5% improvement at L < 40 over the MV result, decreasing
down to 0 at L = 400. This could be due to the different weight-
ing used in the component separation compared to the one of the
MV map, which results in slightly noisier maps for our purpose.
While the component-separated maps allow for a reduced mask,
they lead to a marginal improvement of the power spectrum un-
certainties. Nevertheless, their agreement with the MV result is
reassuring.
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7.2. Point source correction

As can be seen in Table 1, the unresolved point-source shot-
noise correction in any individual band for our MV likelihood
is on the order of a few percent, reaching up to 6% for the high-
est multipole bands. Averaged over the 40 ≤ L ≤ 400 band,
the shot noise correction amounts to a 2% shift in the ampli-
tude of Ĉφφ

L , which is small but non-negligible compared to
our statistical uncertainty of 4%. Physically, the amplitudes of
our source corrections are reasonable; at 143 GHz we measure
Ŝ 4

143 = (1.3±0.6)×10−12 µK4. From the radio point-source model
of De Zotti et al. (2010), this corresponds to an effective flux cut
of approximately 150 mJy at this frequency, roughly compara-
ble to that expected for the S/N > 5 cut we make when masking
sources in our fiducial analysis (Planck Collaboration XXVIII
2014). The shot noise measured at 217 GHz is lower, as ex-
pected given the smaller contribution from radio sources, with
Ŝ 4

217 = (0.4 ± 0.4) × 10−12 µK4. The shot-noise level that we
measure for the MV reconstruction lies between these two, with
Ŝ 4

MV = (0.6 ± 0.3) × 10−12 µK4.
As a consistency test of our S/N > 5 source masks, we con-

struct two new sets of source masks that only exclude S/N > 10
sources (to check the stability of our reconstruction under sig-
nificantly higher source contamination), or that exclude all de-
tected sources with S/N > 4.2 (to test the conservatism of our
fiducial flux cut). The results of this test are shown in the masks
panel of Fig. 18. Although not shown explicitly in the figure, the
source correction term with the S/N > 10 mask is considerably
larger than our fiducial correction. For this mask we measure
Ŝ 4

MV = (2.8± 0.3)× 10−12 µK4, now a 9σ detection of shot noise
in the trispectrum. The importance of the correction grows cor-
respondingly, becoming a 9% overall correction to the Cφφ

L am-
plitude in 40 ≤ L ≤ 400. With the source correction, we measure
ÂMV

40→400 = 0.95±0.04, consistent with the ÂMV
40→400 = 0.94±0.04

measurement for our fiducial source mask. Without the source
correction we would have measured ÂMV

40→400 = 1.04 ± 0.04, sig-
nificantly discrepant. We can see that even for this extremely
permissive source mask, our correction for the point-source shot-
noise trispectrum does a good job of rendering Ĉφφ

L insensitive
to source contamination. Turning to the S/N > 4.2 mask, we
measure Ŝ 4

MV,SNR4 = (−0.1 ± 0.3) × 10−12 µK4, reduced from a
2σ measurement of shot noise to one very consistent with zero.
For this reconstruction we measure Â40→400 = 0.93 ± 0.04, in
good agreement with the MV result, although there does ap-
pear to be an overall trend for lower power above L = 400 in
the S/N > 4.2 mask. At a detailed level, both of these results
do fail χ2 tests on the difference with the MV reconstruction.
As the change in sky fraction between these three reconstruc-
tions is small (the difference between the fiducial and S/N >4.2
mask is 1%, and even smaller for the S/N > 10 mask), even the
small differences quoted above are significantly larger than they
should be if the source correction were perfect. This can be seen
in Fig. 18, where the error bars on the difference between each
of these reconstructions and the MV result is too small to be
visible for the plotted points. For the 40 ≤ L ≤ 400 range on
which our likelihood is based, we believe that the discrepancy
between the power spectra estimated with these source masks is
acceptable. Particularly given the results of the S/N > 10 cut,
the source correction that we perform appears to behave reason-
ably, and reduces the sensitivity of our estimates to the shot-
noise trispectrum of unmasked point sources. In Sect. 7.4, we
will also use a modified lensing estimator that has zero re-
sponse to the shot-noise trispectrum and therefore does not re-
quire a source correction. As with the tests above, we will find

good overall agreement with the standard estimator used for the
MV reconstruction.

7.3. Instrumental noise bias

Errors in the instrumental noise model are a source of concern
for our lensing power spectrum estimates, in which all four legs
of the trispectrum estimate come from a single map. In this sit-
uation there are three Wick contractions of the noise which con-
tribute to the power spectrum estimate in two distinct ways, de-
pending on whether they couple between the two quadratic esti-
mators in the power spectrum estimate or not:

(1) The Wick contraction that couples noise contributions inside
the same estimator leads to a mean-field term as in Eq. (9).
This term is sourced by the statistical anisotropy of the noise
(due to the uneven hit distribution across the sky, or the cor-
relations along the scan direction induced by deconvolution
of the bolometer time constant). The shape of this mean-
field is dictated by the Planck scan strategy, which is coher-
ent over large scales, and so this mean-field is primarily at
low-L, below the Lmin = 40 cutoff of our likelihood. It can
be avoided by forming a quadratic estimator in which the
two input maps have different noise realizations. We per-
form a null test against this contribution in Fig. 18, where
the (143 × 217) × (143 × 217) panel shows a comparison
of our MV power spectrum estimate to that obtained using
a quadratic estimator in which one leg comes from 143 GHz
and one from 217 GHz. We see generally good agreement
with the MV result. For the eight bins in 40 ≤ L ≤ 400 of
our fiducial likelihood, we find a χ2 for the difference (ac-
counting for correlations between the two estimates) of 4.2,
which has a PTE of 83%. The noise mean-field contribution
can also be reduced by using an appropriate bias-hardened
estimator. We will perform additional tests with such esti-
mators in Sect. 7.4.

(2) The two Wick contractions that couple noise terms across-
estimators contribute to the disconnected bias ∆Cφφ

L

∣∣∣
N0

. This
term describes the noise contribution to the reconstruction
variance. Our use of the data covariance matrix in Eq. (17)
makes our estimate of the disconnected noise bias insensi-
tive to small errors in the noise model. The noise contri-
bution can also be avoided by taking the cross-spectrum of
two quadratic estimators with independent noise. We show
the result of such a correlation compared to our MV re-
construction in Fig. 18, where the (143 × 143) × (217 ×
217) panel shows the cross-spectrum between the individual
143 and 217 GHz reconstructions. Again, we see generally
good agreement with the MV result. For the eight bins in
40 ≤ L ≤ 400 of our fiducial likelihood, we find a χ2 for
the difference (accounting for correlations between the two
estimates) of 6.5, which has a PTE of 59%.

Based on these tests, we believe that noise bias cannot be a sig-
nificant contaminant for our power spectrum estimates.

7.4. Bias-hardened estimators

Most of the results in this paper use the standard weight func-
tion Wφ

`1`2L to form quadratic estimates for the lensing poten-
tial. This weight function is a matched filter for lensing, and
results in estimators with minimal variance. As we discuss in
Appendix C, however, the standard estimator has large mean-
field contributions at low-L, primary due to masking and noise
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inhomogeneity. As pointed out in Namikawa et al. (2013), these
mean-fields can be mitigated with the use of “bias-hardened”
lensing estimators, which use weight functions W x

`1`2L specially
constructed to project out these effects. Following the notation
of Appendix C, we consider an uncertain bias field zLM with as-
sociated weight function Wz

`1`2L that gives a contribution to the
off-diagonal elements of the CMB covariance matrix (and there-
fore the estimator mean-field) of

∆〈T`1m2 T`2m2〉 =
∑
LM

(−1)M
(
`1 `2 L
m1 m2 M

)
Wz
`1`2LzLM . (56)

We can then form an estimator which is insensitive to zLM simply
as

W (φ−z)
`1`2L = Wφ

`1`2L −
R
φz
L

Rzz
L

Wz
`1`2L. (57)

The quadratic estimator (φ−z) that uses the weight function above
has a significantly reduced mean-field contribution from zLM .
This bias-hardening procedure may be repeated iteratively to
produce weight functions that are insensitive to several sources
of mean-field simultaneously. In Fig. 20 we plot a comparison
at low-L between estimates with the standard estimator and es-
timators that are bias hardened against noise and mask mean-
fields. We see generally good agreement between these sets of
estimates for L ≥ 10. Below L = 10, the pseudo-spectrum of the
difference between the standard and bias-hardened estimators is
unexpectedly large. For this reason, we band-limit our lensing
potential map to L ≥ 10, and do not consider L < 10 for any of
the quantitative results in this paper.

In addition to low-L consistency tests, we may also use these
bias-hardened estimators to estimate Cφφ

L . The resulting power
spectra are plotted in Fig. 18. Taking the difference with the
eight bins in 40 ≤ L ≤ 400 of our fiducial MV reconstruc-
tion, with scatter estimated from simulations, we find χ2 values
of 6.6 and 4.3 for the mask/noise-hardened estimators respec-
tively. These have corresponding PTE values of 58% and 83%.
The error bars on Cφφ

L obtained with the bias hardened estima-
tors used here are generally between 10 and 20% larger than the
error bars of the standard estimator. We also construct an estima-
tor that is bias hardened against the point source weight function
W s
`1`2L of Eq. (28). This estimator has the distinction of having

zero response to point-source shot-noise, as well as any correla-
tion between the point-source shot noise power and the lensing
potential. Again, we find consistent results with the standard es-
timator, with χ2 = 5 and a PTE of 76%.

7.5. Alternative methods

All of the primary results in this paper use a lens reconstruc-
tion pipeline based on the methodology outlined in Sect. 2. As
a robustness test, both of this methodology and of its implemen-
tation, we have implemented three independent reconstruction
pipelines. These independent pipelines make significantly differ-
ent choices than our baseline approach, primarily in the choice
of the inverse-variance filter function and the calculation of the
correction terms in Eq. (15). Our main result of this section is
Fig. 21, where we compare the lens reconstruction power spec-
tra for these alternative pipelines to our baseline results at 143
and 217 GHz, as well as the MV reconstruction. The agree-
ment is excellent. The only aspect of implementation common
to these four results (apart from the data that was analyzed) is
the set of simulations, described in Sect. 4, which are used to
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Fig. 20. Bias-hardened estimator consistency tests for our MV recon-
struction. Following the discussion in Sect. 7.4 we form estimators that
are bias-hardened against the mean-fields due to inhomgeneous noise
levels (φ−N, cyan), masking (φ−M, magenta), and both of these ef-
fects simultaneously (φ−M−N, orange). The top panel shows the power
spectra of the mean-field for each of these estimators. The middle panel
shows the raw power spectra of the reconstructions themselves, com-
pared to the average expected from signal+noise (dashed black). The
lower panel shows the power spectrum of the difference between each
bias-hardened estimator and the standard result. Dashed black lines
give the expected average of this difference (measured on simulations).
The grey line is the fiducial Cφφ

L power spectrum. We can see that the
differences are consistent with the expected scatter for all estimators
at L ≥ 10.

estimate the various bias terms and characterize the estimator
scatter.
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Fig. 21. Comparison of alternative lensing pipelines. The B re-
sults use the methodology of Sect. 2. Boxes are for the MV reconstruc-
tion, circles show the 143 GHz results, and triangles show the 217 GHz
results. The two bottom panels show differences relative to the MV re-
sult for 143 and 217 GHz.

We now proceed to describe these alternative pipelines in
somewhat more detail. We note first two common aspects of
all three alternative pipelines, which differ from our baseline
results. First, rather than accounting for the Galaxy and point-
source mask in the filter function as is done for our baseline
method, these methods use a completely diagonal filter, which is
the same as the form (given in Eq. (10)) that our baseline filtering
asymptotes to far from the mask boundaries. Instead, as we will
discuss, the alternative pipelines deal with the mask using differ-
ent choices of data preparation and selection. A second differ-
ence common to all three pipelines with our baseline approach
is that when computing the disconnected noise bias ∆Cφφ

L

∣∣∣
N0

,
these methods do not use the two-point expression of Eq. (17),
but rather the approximation to it based on Eq. (21), evaluated
using an estimate of the data power spectrum. Because this cor-
rection is quite large, the agreement of results that use this al-
ternative method to calculate it is reassuring. We now proceed
to describe the individual methods in more detail; the common
motivation in the development of each has been the reduction
of the sharp gradients induced when masking, which can induce
a mean-field several orders of magnitude larger than the lens-
ing signal at low multipoles (as discussed in Appendix C). Each
method takes a different approach to mitigating this mask effect,
as discussed below:

(1) The method  consists of applying the standard quadratic
lensing estimator to the sky map after multiplying by an
apodized Galactic mask, and filling point source holes using

local constrained Gaussian realizations of the CMB sig-
nal+noise. The mask mean-field is proportional to the power
spectrum of the mask, and so as apodization smooths the
mask boundary (suppressing its power spectrum on small
scales), it correspondingly reduces the mean-field signifi-
cantly. The combination of apodization and source filling
makes this estimator very fast to apply to simulations but
does require an involved set of correction terms and fsky fac-
tors. Our implementation and calculation of this method is
described in detail in Benoit-Levy et al. (2013).

(2) The  method consists of inpainting the Galactic mask
as well as the point-source holes, using the sparse-inpainting
algorithm described in Abrial et al. (2007, 2008). The re-
sulting map resembles a full-sky CMB map, and therefore
has no mask mean-field contribution. The inhomogeneous
noise and beam-induced mean-fields do still have to be cor-
rected however. Our implementation is based on that de-
scribed in Perotto et al. (2010), with several improvements.
In Perotto et al. (2010) lens reconstruction was performed
on the inpainted map and then analyzed on the full sky.
However, further inspection has revealed that there are some
spurious features in the lens reconstruction, localized to the
inpainted region inside the Galactic mask. This is likely
due to the inhomogeneous noise in Planck that was ig-
nored in previous work and cannot be reproduced by the
inpainter. We therefore remask the full-sky lens reconstruc-
tion with an apodized Galactic mask (as in Eq. (14)) to re-
move these regions from our analysis. We follow the same
procedure when evaluating the analytical expression for the
∆Cφφ

L

∣∣∣
N0

bias, prewhitening and then applying an apodized
Galactic mask to the inpainted temperature multipoles to es-
timate their power spectrum. Small residual biases are cor-
rected using the same ∆Cφφ

L

∣∣∣
MC

procedure used in the main
method.

(3) The  method avoids the Galactic mask completely
by cutting the sky into a collection of 410 small over-
lapping 10◦ × 10◦ patches centered on the locations of
Nside =8 HEALPix pixels, which are then analyzed un-
der the flat-sky approximation. Our implementation of this
method is described in Plaszczynski et al. (2012). As with
the  method, point-source holes are filled using con-
strained Gaussian realizations. The patches are extracted
from a pre-whitened CMB map, and apodized with a Kaiser-
Bessel window function. The Fourier modes in each patch
are fitted in real space using a fast Fourier-Toeplitz algo-
rithm. No mean-field correction is applied. Residual biases
due to noise inhomogeneity are removed using a ∆Cφφ

L

∣∣∣
MC

correction that is found to be small. The patches method
has been particularly useful in the early stages of our
analysis, to identify outliers caused by unmasked point
sources.

As can be seen in Fig. 21, all three of these methods are in good
agreement with the results of our baseline method, providing re-
assurance that our results are insensitive to the precise details of
our data filtering and reconstruction methodology.

8. Conclusions

The Planck maps have unprecedented sensitivity to gravitational
lensing effects. We see significant and consistent measurements
of lensing for each of the high-resolution CMB channels at 100,
143 and 217 GHz. Even the noisiest channel that we have con-
sidered, 100 GHz, provides a 10σ detection of lensing, which is
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greater than all previous detections. Our fiducial lens reconstruc-
tion, based on a minimum-variance combination of the 143 and
217 GHz channels does even better, with a detection of lensing
(relative to the null hypothesis of no lensing) at a significance of
greater than 25σ. Notably, the noise on our reconstruction is low
enough that it is no longer the limiting source of noise for many
correlations with large-scale structure catalogues (several exam-
ples of which we have given in Sect. 6.3). This marks a shift
for CMB lensing, from the detection regime into that of stan-
dard cosmological probe. Our lensing potential map is publicly
available, and we look forward to the uses which may be found
fo it.

The percent-level Planck lensing potential measurement
pushes into the realm of precision cosmology, and requires care-
ful validation tests that we have performed in Sect. 7. Our fidu-
cial likelihood, based on the 40 ≤ L ≤ 400 range that is most
sensitive to lensing, passes all of the tests that we have performed
at an acceptable level. Most importantly, it is consistent with
individual frequency reconstructions, with more aggressive or
more conservative masking, and with results obtained on more
rigorously component-separated maps. Our measurement of the
lensing potential power spectrum Cφφ

L is broadly consistent with
the ΛCDM expectations of Planck Collaboration XVI (2014),
although there are some shape and amplitude tensions that
lead to smaller-than-forecasted improvements on parameters
such as the sum of neutrino masses

∑
mν. As we saw in

Sect. 6.1, our estimate of the potential power spectrum has di-
rect cosmological implications, where it significantly improves
CMB power-spectrum-only constraints on curvature (or alter-
natively, dark energy). Our lensing likelihood also breaks the
As−τ degeneracy, allowing a measurement of the optical depth
to reionization which is a useful independent cross-check on
the values determined with large angular-scale polarization
measurements.

CMB lensing science has undergone a remarkable develop-
ment in the previous two years (Das et al. 2011; Sherwin et al.
2011; van Engelen et al. 2012). The next year is expected to
bring even greater improvements. The 2500 deg2 lensing survey
of the South Pole Telescope is expected have comparable statisti-
cal power to the one reported here, with a highly complementary
weighting in L-space that is more sensitive to smaller angular
scale lenses. There is also additional Planck data, which will
improve on the measurement reported here considerably. The
results of this paper are based on the nominal-mission Planck
maps, collected during the first fifteen months of science op-
erations. The cryogens used to maintain the 100 mK cooling
stage for the Planck HFI instrument lasted considerably longer
than the nominal-mission lifetime, to a full-mission duration
of approximately thirty months. This additional data, set to be
released in 2014, results in map noise levels that are roughly a
factor two lower in power than those used here. As instrumen-
tal noise constitutes approximately half of our error budget, we
expect a corresponding decrease of approximately 25% in the
variance of our lensing potential map as well as the uncertain-
ties on Cφφ

L . The Planck polarization data, also set for release in
2014, will provide an additional powerful probe of lensing.
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Appendix A: Null tests

In this appendix we present several generic null tests of our lens
reconstruction. In Appendix A.1 we perform tests using lens re-
constructions on the two individual six-month full-sky surveys
contained in the first Planck data release. In Appendix. A.2 we
perform the curl-mode null test which is standard practice in
Galaxy lensing. Finally, in Appendix A.3 we will perform sev-
eral tests on the isotropy and Gaussianity of our MV lensing
potential map.

A.1. Survey consistency

The Planck nominal mission consists of approximately two full-
sky six-month surveys. Our fiducial analysis is based on maps
made from the full data range, however we may also analyze the
first two surveys separately to increase our sensitivity to effects
such as beam asymmetry, correlated noise along the scan direc-
tion, and zodiacal light. In Fig. A.1 we plot several consistency
tests exploiting the breakdown of the data into separate surveys,
for both 143 GHz and 217 GHz. We test for gross contamina-
tion of either survey by estimating the lensing power spectrum
on each individually and then difference the resulting Ĉφφ

L , find-
ing results consistent with the scatter expected from simple sig-
nal+noise simulations. To test the noise model more thoroughly,
we also run lens reconstruction on a map constructed by taking
the half-difference of the two surveys, filtering it in the same way
as the full nominal-mission map. As can be seen in Fig. A.1, the
power spectrum of this reconstruction null test is small compared
to the measurement errors on Ĉφφ

L . Finally, to isolate the effect
of systematics which couple to the CMB and which flip sign
between surveys (such as odd moments of the beam asymme-
try), we take the cross-spectrum of lens reconstruction estimates
obtained from the half-difference of the two survey maps with
those obtained from the half-sum. Again, this null test shows
residuals that are negligibly small compared to our measurement
errors.

A.2. Curl-mode reconstruction

In addition to the standard gradient lensing potential φ sourced
by large-scale structure, we may also use the Planck maps to
reconstruct a curl-mode lensing field ψ. The weight function as-
sociated with the curl field is given by (Namikawa et al. 2012)

Wψ
`1`2L = −

√
(2`1 + 1)(2`2 + 1)(2L + 1)

4π

√
L(L + 1)`1(`1 + 1)

× CTT
`1

(
1 − (−1)`1+`2+L

2

) (
`1 `2 L
1 0 −1

)
+ (`1 ↔ `2). (A.1)

Using this weight function, we may construct an estimator for
the curl-mode power spectrum, completely analogous to that for
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Fig. A.1. Survey consistency null tests at 143 GHz and 217 GHz. Solid
black points show difference of Ĉφφ

L estimated separately on the two six-
month surveys of the nominal mission. Magenta points show the auto-
spectrum of φ̂ obtained from maps made by taking the half-difference
of the two surveys (S1− S2)× (S1− S2). Yellow points show the cross-
spectrum of φ̂ obtained on half-difference and half-sum maps (S1−S2)×
(S1 + S2). The scatter on the tests that contain difference maps is very
small because (as can be seen in Fig. 6) most of the lens reconstruction
“noise” is due to primary CMB fluctuations, which is nulled in these
tests.
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Fig. A.2. Lensing curl power spectrum estimates for the MV reconstruc-
tion (black hatched), as well as the individual 143 (green filled) and
217 GHz (blue filled) frequency reconstructions.

φ. The response function of the curl estimator to point source
shot noise is zero, and so we neglect this correction. Consistency
of the reconstructed curl mode with zero is a standard systematic
test in weak lensing, as the curl field due to gravitational lens-
ing should be negligible (Hirata & Seljak 2003b). One caveat
for this test in the CMB lensing context is that the variance of
the curl mode reconstruction is still affected by the presence of
gravitational lenses, by means of an “N(1)”-type (Kesden et al.
2003) contraction in the trispectrum (van Engelen et al. 2012).
Our curl-mode power spectrum estimates are plotted in Fig. A.2,
after correction for the “N(1)”-type bias using Eq. (18). This bias
is also given explicitly for the curl mode in Benoit-Levy et al.
(2013). We do not see evidence for anomalous power in the curl
reconstruction, although we do find in Sect. C.4 that the curl es-
timate is contaminated by pixelization effects at a level too small
to be seen in this plot.

10 5 0 5 10 10 5 0 5 10

MV Data MV Sim

σ σ

Fig. A.3. Histogram of pixel values for the unnormalized lensing esti-
mate φ̄(n̂) for the MV reconstruction, in units of the standard deviation
of the map. A Gaussian with σ = 1 is overplotted in black. Note that
the y-axis is logarithmic. The left column shows the histogram for the
data itself, while the right column shows a simulated reconstruction.
The reconstructed map is slightly non-Gaussian, but in a way that is ex-
pected from simulations given the non-Gaussian nature of the quadratic
lensing estimator.

A.3. Statistical tests at the map level

In this section we present several sanity tests of our lensing esti-
mates at the map level.

1-point PDF of φ̄: in the left panel of Fig. A.3 we plot the his-
togram, or 1-point function, of our unnormalized potential es-
timate φ̄ for the MV reconstruction, bandlimited to 10 ≤ L ≤
2048. As can be seen from the histogram, the map is slightly
non-Gaussian, as might be expected for an estimator that is
based on the product of two Gaussian random fields. In the
right panel of Fig. A.3 we plot the same histogram for a sim-
ulated MV reconstruction, which shows a comparable level of
non-Gaussian structure. In Appendix D we show that this small
non-Gaussianity is negligible for our lensing likelihood.

Power spectra on patches: to test for gross contamination of
our reconstruction from any localized region of the sky, we use
the  method (described in Sect 7.5) to build an estimate
of the lensing power spectra on a collection of approximately
400 10◦ × 10◦ tiles. We fill point-source holes with local con-
strained Gaussian realizations of the CMB signal. The patches
were chosen to have no overlap with the Galaxy mask.

The distribution of the power spectra estimated for each
patch can be used as a diagnostic for deficiency in the mask and
dust correction. Significantly contaminated but localized regions
would appear as outliers. This procedure successfully detected
several point sources that were overlooked in early versions of
our source masks. In Fig. A.4 we present results of this analysis
using our final Galaxy and point source masks for 143 GHz and
217 GHz.

Isotropy on patches: we can also use the same data to build
a coarse test of the isotropy of the reconstructed lensing map.
We perform lens reconstruction on patches which are oriented
along the local spherical basis (eθ, eφ), and then stack the corre-
sponding 2D power spectrum estimates to build a bi-dimensional
power spectrum for the 143 GHz and 217 GHz maps. This is
shown in Fig. A.5, where we have additionally applied smooth-
ing based on an undecimated wavelet transform to reduce the
visual noise. The overplotted contour lines are placed at levels
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Fig. A.4. Bi-dimensional deflection power spectrum obtained by stack-
ing the individual Fourier amplitude obtained on patches, after ∆Cφφ
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subtraction and smoothing for the 143 and 217 GHz channels.
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Fig. A.5. Density plot of the individual deflection power spectra con-
structed on approximately 400 10◦ × 10◦ patches for the 143 GHz
and 217 GHz channels. The lines are the theoretical 1σ and 2σ error
for this patch size. No strong outliers are seen.

given by the azimuthally averaged power spectrum for L = 100,
200, 300 and 400.

Appendix B: Filtering

In this section, we discuss our filtering methodology, that takes
us from a set of maps T obs,ν

p indexed by frequency ν and pixel
p to the multipoles T̄`m that are fed into the quadratic estima-
tors used to measure lensing and possible contaminants. For an
observed CMB that consists of Gaussian signal and noise, the
optimal filtering (in the minimum-variance sense) for the con-
struction of any quadratic anisotropy estimator is “C−1” filter-
ing, in which the observed map is beam-deconvolved and then
multiplied by the inverse of a signal+noise covariance matrix.
For the purposes of lens reconstruction, the Gaussian assump-
tion above is quite accurate for Planck. The Planck map noise is
well approximated as Gaussian (Planck Collaboration VI 2014).
The observed CMB signal is less-obviously well approximated
as Gaussian, with the non-Gaussianity due to lensing detected
at high significance, however for lens reconstruction at Planck
noise levels the difference in signal-to-noise using a filter con-
structed in the Gaussian limit versus a more complicated “de-
lensing” filter that properly accounts for lensing non-Gaussianity
has been shown to be negligible (Hirata & Seljak 2003a). Other

sources of non-Gaussianity, such as unresolved point sources,
are completely subdominant to either primary CMB or noise at
all of the multipoles probed by our lens reconstruction, and so
we neglect them in the construction of our filters.

For a single map, with a symmetric beam transfer function,
full-sky coverage and homogeneous map noise levels, the C−1

filter is given by

T̄`m =
Fl

Bl

npix∑
p=1

4π
npix

Y∗`m(n̂p)T obs
p , (B.1)

where Y`m(n̂p) gives the value of the spherical harmonic at the
center of pixel p, Bl gives the beam transfer function, and Fl is
given by

Fl =
1

CTT
`

+
(

π
180×60σB−1

`

)2 , (B.2)

where σ is the map noise level in units of µK arcmin. The maps
we use must always be masked to remove bright Galactic fore-
grounds and point sources, and so we do not ever use the full-
sky filter above, although as we will discuss the filter that we do
use asymptotes to this form in regions far from the mask, and
the simple form Fl of the filter function given in Eq. (B.2) will
prove useful in many analytical calculations.

For the more realistic case of inhomogeneous map noise lev-
els, with pixel-space noise correlations and a sky cut, the con-
struction of T̄`m is more involved. To account for the sky cut, we
can take the noise covariance to be infinite for masked pixels.
Reformulating the C−1 filter using the inverse of the noise co-
variance matrix N−1

pp′ in pixel space (defined to be zero if either
p or p′ is a masked pixel), and allowing for the joint-filtering of
multiple input maps (with no noise correlations between them)
we have

T̄`m =
(
CTT
`

)−1 ∑
`′m′

∑
pp′

∑
ν

C−1
`m,`′m′Y

∗p,ν
`′m′N

−1,ν
pp′ T obs,ν

p′ . (B.3)

where ν indexes the maps which are being combined and the
pointing matrix Yp,ν

`m ≡ Bν
`
Y`m(n̂p)4π/npix gives the value of

the spherical harmonic at the center of pixel p, convolved with
the appropriate beam+pixel transfer function Bν

`
. The matrix

C`m,`′m′ is given by

C`m,`′m′ ≡
(
CTT
`

)−1
δ``′δmm′ +

∑
p,p′

∑
ν

Y
∗p,ν
`m N−1,ν

pp′ Y
p′,ν
`′m′ . (B.4)

The filter of Eq. (B.3) is the one that we will use, with a slightly
suboptimal choice for the noise covariance matrix Npp′ that is
described below.

The Planck map noise has several sources of pixel-pixel cor-
relations for p , p′. On small scales, there are correlations along
the scan direction induced by the deconvolution of the bolometer
time response (Planck Collaboration VII 2014). On large scales,
there are correlations between scan rings, due to residual 1/ f
noise fluctuations not cancelled by the baseline subtraction pro-
cedure (Planck Collaboration VI 2014). Accounting for these
pixel correlations would be computationally intractable, as the
full covariance matrix Npp′ (an n4

pix sized object) is too large
to work with on a modern computer, and so we neglect them
in our noise filter. The remaining structure in the noise matrix
is due to the variable coverage in different regions of the sky.
Noise levels are lowest near the Ecliptic poles, which are visited
more frequently than the region around the Ecliptic plane due
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to the Planck scan strategy. Although the variable noise level is
tractable to include in our filtering procedure (and is indeed in-
cluded in the C−1 filtering of e.g., Planck Collaboration XXIV
2014), we have chosen to neglect this aspect of the noise, using
instead a fixed effective noise level. We use an inverse-noise map
in pixel space given by

N−1,ν
p =

(
180 × 60 × Mp

π × σν

)2 (
4π
npix

)
, (B.5)

where Mp is a sky mask and σν is an average map noise level
in units of µK arcmin. In addition to this noise weighting, we
also project out the five modes corresponding to the monopole,
dipole, and 857 GHz Planck map (as a simple dust template).
The noise level for each of these modes is taken to infinity using
the Woodbury formula; putting each of these modes into a map
T i

p indexed by i, our total noise covariance matrix is given in
terms of the inverse noise map above by

N−1,ν
pp′ = δpp′N−1,ν

p −
∑

i j

T −1
i j T i

pT j
p′N

−1,ν
p N−1,ν

p′ , (B.6)

where Ti j is the overlap matrix between templates given by

Ti j =
∑

p

T i
pT j

pN−1,ν
p . (B.7)

Our motivation for taking a fixed noise level is that with this ap-
proach, in regions sufficiently far from the mask boundary, our
filter asymptotes to the diagonal form of Eq. (B.1). This means
that the normalization of our lensing estimates can be well-
approximated analytically, which is very useful for the propa-
gation of systematic effects, and also that the normalization of
our lensing estimates does not vary across the sky with noise
level, which simplifies cross-correlation analysis. Our C−1 fil-
ter is therefore optimally accounting for masking effects, but not
for noise correlations and inhomogeneity. We estimate the sub-
optimality of neglecting these noise properties by calculating the
quantity

(S/N)use

(S/N)opt
=

(
Rφφ,use

L

)2(
Rφφ,opt

L

)
∑
`1`2

1
2

∣∣∣∣Wφ
`1`2L

∣∣∣∣2
(
Fuse
`1

Fuse
`2

)2

Fopt
`1

Fopt
`2


−1

, (B.8)

where Fopt
` is the optimal filter and Fuse

` is the suboptimal filter
that we have actually used. This equation gives the S/N loss as
a function of lens multipole L, however in practice we find that
the L dependence is small enough that it suffices to quote a single
average loss. To estimate the degradation due to ignoring noise
correlations we set

Fopt
` =

1

CTT
`

+ B−2,ν
`

NTT
L

, (B.9)

where NTT
L is the power spectrum of the map noise. We find

that the degradation due to neglect of noise correlations is small;
less than 2% for all L ≤ 2048 at 100 GHz, and less than 0.1%
at 143 and 217 GHz. To calculate the degradation due to ignor-
ing noise inhomogeneity, we determine the map noise level in
the 3072 regions corresponding to Nside = 16 HEALPix pix-
els, take Fopt

` using Eq. (B.2) with the local noise level, and
estimate a resulting S/N degradation using Eq. (B.8). The ne-
glect of noise inhomogeneity is the dominant suboptimality of
our filtering, although it is still small. We find an average S/N
loss (averaged over the entire sky) of approximately 4% at 100,
143, and 217 GHz, consistent with the simulation-based results
of Hanson et al. (2009). We take this loss as justified, given the
simpler normalization properties of our lensing estimates when
neglecting variations in the map noise level.
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Fig. C.1. Analytical estimates for the power spectra of the largest low-L
mean-fields at 143 GHz. The various components are discussed in more
detail in Sect. C.1 (mask), Sect. C.2 (noise), and Sect. C.3 (beams).
The mean-fields all couple most strongly to even modes of the lens re-
construction, due to the approximate north/south symmetry of the scan
strategy and Galactic mask.

Appendix C: Mean-fields

As discussed in Sect. 2, the quadratic lensing estimators that
we use are designed to detect statistical anisotropy induced by
lensing. There are a number of non-lensing sources of statistical
anisotropy that can mimic the lensing signal to some extent. In
our analysis, the effects we consider are

(1) The application of a sky mask, which introduces sharp gra-
dients that may be misinterpreted as lensing.

(2) Noise inhomogeneity, which causes the overall power to
fluctuate across the sky and can resemble the convergence
component of lensing.

(3) Beam asymmetry, which smears the fluctuations more along
one direction than another and can mimic the shear compo-
nent of lensing.

(4) Pixelization, in which detector samples are accumulated into
pixels, introduces a spurious deflection field on the pixel
scale because the centroid of the hit distribution in each pixel
does not necessarily lie at the pixel center.

In our analysis, we account for most of these effects with a cor-
rective mean-field term, given by Eq. (9), which is determined
using Monte-Carlo simulations. In this appendix, we will break
this mean-field down into its constituent parts and discuss each
in more detail. As an overview of the results in this section,
in Fig. C.1 we plot estimates for the three largest mean-fields,
due to masking, noise inhomogeneity, and beam asymmetry
at 143 GHz (100 and 217 GHz are qualitatively similar). These
mean-fields all have most of their contributions on very large
scales, dictated by the coherency of the scan strategy in the case
of beam asymmetry and noise inhomogeneity, and of the large-
scale nature of the Galactic foregrounds in the case of the sky
mask. We note also that the mask mean-field is concentrated
near the edges of the Galaxy cut, and so for our power spec-
trum analysis (where we apodize the estimated φ map, removing
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the contributions near the edges of the mask), the effective mean-
field is significantly reduced.

Our discussion will focus on constructing simple models for
each source of mean-field. Following Hanson et al. (2010), we
will identify each of the individual contributions to the mean-
field with a tracer zLM that sources a contribution to the CMB
covariance matrix given by

∆〈T`1m2 T ∗`2m2
〉 =

∑
LM

zLM(−1)M
(
`1 `2 L
m1 m2 −M

)
Wz
`1`2L, (C.1)

where Wz
`1`2L is a weight function describing how zLM couples

multipoles. Such a contaminant leads to a bias for the standard
lensing estimator φ̂LM given by

φ̂MF
LM =

R
φz
LM

R
φφ
L

zLM , (C.2)

where the response function Rφz
L is defined in Eq. (12). The an-

alytical forms for the mean-fields that we present here are used
in Sect. 7.4 to construct “bias hardened” estimators that have
smaller mean-field corrections, as proposed by Namikawa et al.
(2013).

C.1. Mask

The application of a mask M(n̂) to the beam-convolved sky, fol-
lowed by subsequent beam deconvolution, can be modelled as
a statistical anisotropy “M”, with MLM =

∫
dn̂Y∗LM(n̂)M(n̂) and

weight function (Namikawa et al. 2013)

W M
`1`2L =

√
(2`1 + 1)(2`2 + 1)(2L + 1)

4π

(
`1 `2 L
0 0 0

)
×

CTT
`1

B(2)
`1

B(2)
`2

+ CTT
`2

B(1)
`2

B(1)
`1

 · (C.3)

The mask mean-field using our fiducial Galaxy and point-source
analysis mask (described in Sect. 3) is plotted in Fig. C.1. At
very low-L, the mean field induced by this mask can be much
larger than the reconstruction noise level. At L = 2 for example,
it can be up to 104 times greater than the reconstruction noise
level, although the amplitude of the mean-field is a very steep
function of L.

The mask mean-field is proportional to CTT
` , and so with

percent-level agreement between the power spectrum of our sim-
ulations we use to determine the mean-field and the data power
spectrum (discussed in Sect. 4), we can expect errors on the
power spectra of the mask mean-field at the level of one part
in 104. At L = 2 for 143 and 217 GHz this corresponds to a
level of [L(L + 1)]2Cφφ

L ≈ 4 × 10−7, comparable to the lensing
potential power spectrum. There are several good ways to miti-
gate the effect of the mask mean-field. By apodizing the mask
before lens reconstruction, the gradients at the mask bound-
ary can be greatly reduced, which significantly suppresses the
mean-field (van Engelen et al. 2012; Benoit-Levy et al. 2013).
At the map level, the only issue with such an apodization for
our purposes is that it results in a position-dependent normaliza-
tion which can complicate cross-correlation analyses. A related
approach, which we have taken in our power spectrum analy-
sis, is to apodize the lens reconstruction after performing the
reconstruction. This amounts to removing the regions of φ̂ near
the mask boundary where the mean-field has all of its features.

This “avoidance” approach can also be used easily in cross-
correlation analyses, as in Hirata et al. (2004). A third approach
is that of Namikawa et al. (2013), who show that it is possi-
ble to construct “bias-hardened” lensing estimators which have
smaller mean-field contributions. We have already shown con-
sistency tests based on this approach in Sect. 7.4. In the low-
L bias-hardened comparisons of Fig. 20, we saw discrepancies
with the standard estimator of [L(L + 1)]2Cφφ

L ≈ 4 × 10−7 and
7 × 10−7, precisely the level expected above.

For our publicly released lensing map, we have chosen sim-
ply to high-pass filter our map to L > 10, above which we be-
lieve that mean-field errors are subdominant to the reconstruc-
tion noise.

C.2. Instrumental noise

The instrumental noise of Planck is rich in statistically-
anisotropic structure, as discussed in Planck Collaboration VI
(2014), which is sourced by the following

(1) Striping effects, due to residual noise correlations on long
time scales after destriping.

(2) Correlations along the scan direction induced by the de-
convolution of the detector time response and the low-pass
rolloff filter.

(3) Large variations in the pixel noise level due to the larger
density of pixel hits near the Ecliptic poles.

All of these effects can be avoided by forming estimators us-
ing pairs of data with independent noise realizations, as we
have done in Sect. 7.3, although our baseline results do not use
such cross-correlations. Here we discuss the size of the noise
mean-field. Items (1) and (2) are difficult to study analytically.
For white noise with a variance in each pixel given by N(n̂p),
item (3) can be identified with a statistical anisotropy “N” de-
fined by Hanson et al. (2009)

NLM =

∫
dn̂pY∗LM(n̂p)N(n̂p)

WN
`1`2L =

√
(2`1 + 1)(2`2 + 1)(2L + 1)

4π

(
`1 `2 L
0 0 0

)
1

B`1

1
B`2

, (C.4)

Note that the shape of this bias is dictated by the hit count dis-
tribution, which is known quite well, rather than the noise level,
which is more uncertain. The shape of the noise mean-field is
plotted in Fig. C.1. As with the mask, it is large compared to
our signal and noise but falls off quickly with multipole. For
L < 10, given that there are known issues with our noise mod-
elling at the 5% level in power (as discussed in Sect. 4), it can be
important to construct quadratic estimators from correlations of
maps with independent noise realizations (apart from our bias-
hardened estimator tests in Sect. 7.4, this is also done for L = 1
in Planck Collaboration XXVII 2014), however at the L > 10
multipoles of our lensing map and power spectrum, uncertain-
ties in the noise mean-field should be negligible.

C.3. Beam asymmetry

Planck observes the sky after convolution with a “scanning
beam”, which captures its effective response to the sky as a
function of displacement from the nominal pointing direction.
Asymmetry in the shape of this beam (for example ellipticity)
means that the fluctuations in the map are smeared depending
on the beam orientation, which can mimic the shearing effects
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of gravitational lensing. Here we present semi-analytical esti-
mates of this beam asymmetry mean-field, and discuss how sim-
ulations of beam asymmetry are included in our simulations to
correct for it. As with the noise inhomogeneity, we will see that
the large-scale coherency of the Planck scan strategy means that
beam asymmetries only mimic large-scale modes of φLM .

Decomposing the scanning beam into harmonic coefficients
B`m, each time-ordered data (TOD) sample can be modelled as
(neglecting the contribution from instrumental noise, which is
independent of beam asymmetry)

Ti =
∑
`ms

e−isαi B`sT̃`msY`m(θi, φi), (C.5)

where the TOD samples are indexed by i, and T̃`m is the under-
lying sky signal. The spin spherical harmonic sY`m rotates the
scanning beam to the pointing location (θ, φ), while the e−isαi

factor gives it the correct orientation. On the small scales that
lensing is sensitive to, it is a good approximation to assume that
the procedure of mapmaking from TOD samples is just a process
of binning:

T (n̂p) =
∑
i∈p

Ti/Hp, (C.6)

where n̂p is the centroid of pixel p, and the sum is taken over all
hits assigned to pixel p. Hp is the number of hits in pixel p. Here
we will assume that the pointing for each observation of pixel p
is identical to the pixel center n̂p. The purpose of this assump-
tion is simply to isolate the effect of beam asymmetry from the
(small) effect of pixelization. We will discuss the pixelization
effect in Sect. C.4. Placing all hits at pixel centers, combining
Eq. (C.5) and Eq. (C.6) we have

T (n̂) =
∑

s

w(n̂,−s)

∑
`m

B`sT̃`msY`m(n̂)

 , (C.7)

where the “scan strategy maps” w(n̂, s) are given by

w(n̂p,−s) =
∑
i∈p

e−isαi/Hp. (C.8)

The scan strategy maps are spin-s objects, with corresponding
harmonic decomposition

swLM =

∫
d2 n̂sY∗LM(n̂)w(n̂, s). (C.9)

We use Eq. (C.7) to include the effect of asymmetric beams in
the simulations that we use to debias our lensing estimates. We
can also propagate the effect of beam asymmetry to the lens-
ing mean-field directly. Each mode s of the scan strategy can be
identified with a statistical anisotropy “bs” of the type defined in
Eq. (C.1), with bs

LM = swLM and

Wbs

`1`2L =

√
(2`1 + 1)(2`2 + 1)(2L + 1)

4π

×

(`1 `2 L
s 0 −s

) B(1)
`1

B(2)∗
`1 s

B(1)
`1

B(2)
`2

CTT
`1

+

(
`1 `2 L
0 s −s

) B(1)∗
`2 s B(2)

`2

B(1)
`1

B(2)
`2

CTT
`2

 .
(C.10)

In Fig. C.1 we have plotted the expected full-sky bias for the
best-fit Planck beams, which are measured from planet observa-
tions in Planck Collaboration VII (2014). There are considerable
differences in the mean-field between frequencies, as well as the
steep scale dependence, which is dictated by the large-scale co-
herency of the scan strategy.

C.4. Pixelization

In the process of mapmaking, TOD samples are accumulated
into bins defined by HEALPix pixels. The Planck HFI maps are
generated at HEALPix resolution 11, with a typical size of 1.′7,
which is sufficiently close to the 2.′4 scale of deflections expected
from gravitational lensing effects that this remapping of the ob-
served CMB is a source of concern. To model this effect, we
begin from Eq. (C.5), but treat the beam as symmetric to isolate
the effect of pixelization from that of beam asymmetry. Binning
hits into pixels, we then have

T (n̂) =
∑
i∈p

∑
`m

B`0T̃`mY`m(θi, φi)/H(n̂)

≈
∑
`m

B`0T̃`mY`m(n̂ + dpix), (C.11)

where n̂ is the center of pixel p and in the second line we have
made a gradient approximation to Y`m(n̂) about the pixel center,
and used the effective deflection vector

dpix(n̂p) =
∑
i∈p

(
n̂i − n̂p

)
/Hp, (C.12)

where n̂i is the pointing for observation i, which is assigned to
pixel p (with center at n̂p and number of hits Hp). Implicit in this
model is an assumption that on the arcminute pixelization scale
the beam-convolved sky fluctuations are quite smooth, and can
be modelled as a gradient. Pixelization therefore introduces an
effective deflection field, given by dpix, which biases our recon-
struction of the lensing potential. We could in principle correct
for the spurious lensing field which this introduces by includ-
ing the remapping of Eq. (C.11) in the simulations used to esti-
mate the mean-field correction, however as we will see it is quite
small. We can decompose the spin-1 deflection field as

dpix
LM =

∫
d2 n̂ 1Y∗LM(n̂)

[
dpix
θ + idpix

φ

]
(n̂), (C.13)

where dθ and dφ are the components of dpix along the θ and φ di-
rections respectively. The associated weight function, following
Eq. (C.1), is given by

Wd
`1`2L = −

√
(2`1 + 1)(2`2 + 1)(2L + 1)

4π
CTT
`1

×

√
`1(`1 + 1)
L(L + 1)

B`1

B`2

(
`1 `2 L
1 0 −1

)
+ (`1 ↔ `2). (C.14)

The pixelization deflection field can also be usefully split into
gradient- and curl-type parts, as

dpix
LM = dG, pix

LM + idC, pix
LM , (C.15)

where the gradient and curl parts both satisfy the reality
condition

dG/C, pix
LM = (−1)Md∗G/C, pix

L−M . (C.16)

Only the gradient mode couples to the φ̂ lensing estimator, while
the curl part only couples to the curl-mode lensing estimator ψ̂
(discussed in Sect. A.2). The statistical anisotropy introduced by
dG, pix is almost completely degenerate with that of CMB lensing,
differing only by the fact that it operates on the beam-convolved
CMB sky rather than the primordial one. In Fig. C.2 we plot the
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Fig. C.2. Power spectra of the expected bias to our lensing estima-
tors due to pixelization ∆Ĉφφ

L

∣∣∣
pix

(thick solid lines), as well as cross-
correlation of the pixelization field with the estimators themselves
R
φ(pix)
L Ĉφd

L (binned points). The theoretical lensing potential power spec-
trum Cφφ

L is plotted for gradient modes as solid black, while the lower
dashed black curves give (0.1, 0.01, 0.001) ×Cφφ

L respectively. The pix-
elization bias is always small compared to both signal and reconstruc-
tion noise.

expected bias to the lensing power spectrum estimator, which is
given by

∆Ĉφφ
L

∣∣∣
pix =

1
2L + 1

(
R
φd
L

)2 ∑
M

∣∣∣dG
LM

∣∣∣2 , (C.17)

as well as the analogous bias ∆Ĉψψ
L

∣∣∣
pix for the curl null-test es-

timator. To test for the presence of the pixelization lensing field
in our reconstructions, we cross-correlate the deflection fields
dG/C, pix

LM with our lensing estimates φ̂, ψ̂. In Fig. C.2 we plot

Ĉφd
L =

f −1
sky

2L + 1

∑
M

φ̂LMdG∗
LM , (C.18)

and similarly for ψ. We detect both dG
LM and dC

LM at greater than
15σ significance for all of our three main frequency bands, at the
expected level. This detection is only possible because we know
dLM precisely from the satellite pointing. Except at the very high-
est multipoles, the gradient mode of the deflection lensing field is
always significantly smaller than the CMB lensing potential. At
L < 250, which provides most of the weight for the Planck lens-
ing likelihood, the bias to the lensing potential is significantly
less than 0.1%, while our statistical measurement uncertainty is
at the 4% level.

Appendix D: Likelihood validation

In the construction of our lensing likelihood in Sect. 2.3 we have
used several simplifying approximations to the statistics of the
reconstructed lensing potential, which we discuss briefly here.

Uncorrelated binned power spectrum estimates: in Fig. D.1
we plot Monte-Carlo estimates of the bandpower correlation.
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Fig. D.1. Measured correlation coefficients for the bins of Table 1, es-
timated from 1000 simulated lens reconstructions. There is some ev-
idence for correlations along the diagonal at the 10% level, which is
sufficiently small that we have chosen to neglect bin-bin correlations in
our likelihood.

These plots do not include the effect of beam uncertainties, er-
rors in the point-source correction or cosmological uncertainty
in the subtraction of the N(1) bias, which we include in our like-
lihood covariance matrix analytically. Even for adjacent band-
powers, the correlation coefficient is constrained to be less than
10% and we ignore such correlations in constructing the like-
lihood. As discussed in Sect. 5, however, we do include band-
power correlations from beam uncertainties and the point-source
and N(1) correction in the likelihood.

Gaussianity of the binned power spectrum estimates: our es-
timator for the lensing potential power spectrum is a sum over
the trispectrum of the observed CMB. There is no simple, rigor-
ous argument to expect our bandpower estimates to be Gaussian
distributed, however keeping in mind that we are collapsing the
information in a multi-million pixel map down to eight eigen-
modes, it is quite reasonable to expect that the central limit the-
orem will drive their distribution in this direction. With a set of
simulated lens reconstructions, it is straightforward to assess the
Gaussianity of our amplitude estimates. In Fig. D.2 we plot his-
tograms of the bandpower coefficients from our set of fiducial
simulations showing that the Gaussian approximation is good
for the marginal distributions. Further tests of the assumption of
a Gaussian likelihood are made in Schmittfull et al. (2013) for
isotropic surveys. There it is shown that parameter constraints
for a simple two-parameter model of Cφφ

L scatter across simu-
lations in a manner consistent with the likelihood width in any
realization.

No correlations between the lensing potential and temper-
ature power spectra: lensing may be detected at a significance
of 10σ as a smearing of the acoustic peaks in the temperature
power spectrum; see Planck Collaboration XVI (2014). A po-
tential worry when simply combining the temperature likelihood
with the lensing power spectrum likelihood is that we are double
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Fig. D.2. Histograms of amplitude coefficients for the bandpowers of
Table 1, taken from 1000 simulated lens reconstructions. Each coeffi-
cient has been rescaled by its standard deviation so that it can be directly
compared to a unit-variance Gaussian distribution (solid lines).

counting the same information (Lewis 2005; Perotto et al. 2006;
Smith et al. 2006) since we do not account for the correlated ef-
fect of sample variance of the lenses in the estimated Ĉφφ

L and
ĈTT
` spectra. This effect is explored in detail in Schmittfull et al.

(2013) where it is shown to derive from the connected part of the
6-point function for the lensed temperature anisotropies. They
estimate for Planck that the maximum correlation between Ĉφφ

L
and ĈTT

` for unbinned spectra is around 0.05%, and that ignoring
this leads to a misestimation of the errors on the lensing ampli-
tude AL (see Sect. 6.1) in a joint analysis of only 2%. A more
pressing concern is that the statistical errors on the reconstruc-
tion power are correlated with those for the temperature power
spectrum due to sample variance of the CMB anisotropies. This
effect is also discussed in detail in Schmittfull et al. (2013). The
correlation derives from the fully disconnected part of the CMB
6-point function and leads to correlations of at most 0.2% be-
tween the unbinned spectra. However, these correlations are re-
moved exactly by the realization-dependent aspect of the N(0)

debiasing procedure discussed in Sect. 2.2.
To see that the disconnected contribution to cov(Ĉφφ

L , ĈTT
` )

vanishes, we note that with our data-dependent N(0) subtraction
the data enters the Ĉφφ

L in the form7

Ĉφφ
L ∼

∂

∂Cφφ
L

〈TiT jTkTl〉c

(
T̄iT̄ jT̄kT̄l

−
[
C−1

i j T̄kT̄l + C−1
kl T̄iT̄ j − C̄−1

i j C̄−1
kl

]
−

[
C−1

ik T̄ jT̄l + C−1
jl T̄iT̄k − C̄−1

ik C̄−1
jl

]
−

[
C−1

il T̄ jT̄k + C−1
jk T̄iT̄l − C̄−1

jk C̄−1
il

])
. (D.1)

7 For compactness of presentation, we consider estimates built from a
single temperature map here.

Here, T̄i is the inverse-variance filtered temperature, with co-
variance C−1

i j , and summation over repeated indices is assumed.
Equation (D.1) arises naturally for optimal trispectrum estima-
tion of weakly non-Gaussian fields (e.g., Regan et al. 2010). The
expectation value of the data combination on the right-hand side
is simply the connected 4-point function, 〈TiT jTkTl〉c, but the
data-dependent quadratic terms improve the variance of the es-
timator. The right-hand side of Eq. (D.1) is explicitly symmetric
under regroupings of pairs of indices so that only the primary
coupling of the trispectrum need be included. For lensing, the
primary coupling factors such that

∂

∂Cφφ
L

〈TiT jTkTl〉
primary
c =

∑
M

(−1)MXi j
LMXkl

L−M; (D.2)

see Hu (2001); Hanson et al. (2011) for explicit expressions. The
first set of terms in Eq. (D.1) combine to give

∂

∂Cφφ
L

〈TiT jTkTl〉
primary
c

×
(
T̄iT̄ jT̄kT̄l −

[
C−1

i j T̄kT̄l + C−1
kl T̄iT̄ j − C̄−1

i j C̄−1
kl

])
=

∑
M

(−1)M
[
Xi j

LM

(
T̄iT̄ j −C−1

i j

)] [
Xkl

L−M

(
T̄kT̄k −C−1

kl

)]
, (D.3)

where the terms in square brackets are exactly of the form
of mean-field-subtracted, unnormalized estimates of φLM and
φL−M . The remaining terms are equivalent to the N(0) subtraction
in Eq. (17). Any quadratic estimate of the temperature power
spectrum will involve a linear combination of terms of the form
T (1)

p T (2)
q , where T (1)

p and T (2)
q may be different noisy estimates of

the temperature anisotropies but are correlated with themselves
and Ti through (at least) the common temperature anisotropies.
If we form the covariance between T (1)

p T (2)
q and the data combi-

nation in Eq. (D.1) that enters the Cφφ
L estimate, the disconnected

terms give the contribution to the covariance between the esti-
mated lensing and temperature power spectra due to sample vari-
ance of the temperature anisotropies. However, it is straightfor-
ward to show that by including the additional terms in Eq. (D.1)
that are quadratic in T̄ the disconnected contribution vanishes.
We see that, as well as mitigating against errors in the CMB
and noise covariance matrices (see Sect. 2), and reducing the co-
variance between Cφφ

L estimates (Hanson et al. 2011), the data-
dependent N(0) subtraction that we adopt removes much of the
covariance with the temperature power spectrum.

The final effect that correlates the lensing and temperature
power spectrum estimates is the correlation between T and φ
due to the late-time ISW effect in the former (Sect. 6.2). This
produces only local correlations between the spectra and they
fall rapidly with L being less than 0.5% at L = 40. Their impact
on the errors on the lensing amplitude AL in a joint estimate from
the temperature and lensing likelihoods is negligible.
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