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Abstract: This paper presents the analytical calculation of the heat transfer coefficient of a complex
housing shape of a Totally Enclosed Fan-Cooled (TEFC) industrial machine when it works below
20% of its nominal speed or close to stall. Therefore, passive cooling is dominant, and most of
the heat is extracted by the combination of natural convection and radiation phenomena. Under
these conditions, the area-based composite approach was used for the development of the analytical
calculation method. A test rig using a TEFC Synchronous Reluctance Motor (SynRM) was constructed,
and the collected experimental data was used to validate the proposed analytical method successfully.

Keywords: analytical approach; AC motor; heat transfer; passive cooling; natural convection; radia-
tion; thermal analysis; totally enclosed fan-cooled machine; view factor

1. Introduction

In a TEFC machine for variable speed drives, at low-speed performance or close to
stall, the passive cooling is the dominant cooling [1,2]. Hence, heat fluxes are extracted from
the housing to the ambient by the mixture of natural convection and radiation phenomena.
In the thermal analysis of a TEFC motor, the accurate calculation of these parameters
significantly impacts the thermal model accuracy. One of the standard methods to calculate
these parameters is the analytical approach. In this approach, the convection and radiation
are calculated using empirical correlations based on dimensionless numbers. Depending
on the thermal analysis method, these phenomena are demonstrated by the coefficients
used either directly or to calculate thermal resistance [3].

The most challenging parameters in determining the convection and radiation heat
transfer are convection and radiation coefficients. This challenge is more severe for TEFC
machines, including intricate and compound housing forms [4]. These coefficients depend
on various factors, e.g., surface temperature, fluid, material properties, cooling methodol-
ogy, surface shape, size, installation direction, and view factor [3]. Besides, semi-open fin
channels on the outer circumferential of a TEFC housing are designed for the forced cooling
purpose to provide the proper path for axial airflow generated by the fan [3]. Hence, they
do not offer appropriate airflow passage into the fins depth [3]. Consequently, the fins
structures are not constructed for effective natural cooling [2,5,6].

Calculating natural convection got less attention among the studies related to the
thermal analysis of small to medium power ranges of industrial machines. Miller [7]
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presented one of the first studies in this field by applying a correlation for an electrical
machine (EM) with unfinned cylindrical surfaces. This correlation entirely depends on
the machine housing diameter and the temperature difference of the machine housing
and the ambient heat. Staton [8] developed Miller’s study using the computational fluid
dynamic (CFD) approach for several different machine housings, such as square housing,
standard housing, and radial finned. He proposed the correlations for the mentioned
bodies by defining new coefficients for the Miller correlation. Mellor [9] and Boglietti [10]
demonstrated their thermal model for the TEFC machines and proposed the stator DC
test to determine the thermal resistance between housing and ambient in natural cooling
conditions. Later, Boglietti [2,11] proposed the empirical correlation to calculate the heat-
transfer resistance from housing to ambient for the small and medium power ranges of
the TEFC machine in the natural cooling conditions. Their correlation entirely depends
on the housing surface area of the machine. Then, Staton [1,12], introduced the composite-
based area correlation for calculating the convection coefficients. Moreover, he proposed
the classical empirical correlations based on the dimensionless number to compute the
convection coefficient [1,12].

However, radiation is the latest heat-transfer phenomenon whose effect has been
implemented in thermal analysis and modeling of an EM [4]. In the past, most studies in EM
thermal analysis neglected this phenomenon, based on the statement that the EM housing
temperature was not reaching the level to provide heat transfer by the radiation [2,4,13].
Therefore, information and experimental results about radiation in the EM are scarce [2].
Boglietti et al. [13,14] presented one of the first studies investigating radiation impact on
the heat transfer from an EM surface. They examined the effect of radiation heat transfer
experimentally by developing a test rig. Since the heat transfer by radiation occurs in
parallel by natural convection, they utilized a vacuum chamber to confine to heat transfer
only by radiation. According to their findings, the amount of heat transfer by radiation
during passive cooling is significant. Besides, other research studies on thermal engineering
devices, such as heat sinks, demonstrated that in natural cooling terms, 20% to 40% of heat
transfer occurs by radiation [15,16].

Consequently, the above hypothesis on neglecting the radiation phenomenon is in-
correct and provides a significant error on EMs’ thermal analysis. However, utilizing this
hypothesis during forced cooling does not lead to substantial errors and it can still be
implemented. This coefficient is calculated easily for smooth surfaces. However, it becomes
critical for finned housing. In this case, the view factor is the crucial parameter, involving
complex mathematical calculations.

This paper aims to provide a comprehensive study to enhance knowledge in calculat-
ing the heat-transfer coefficient of a TEFC housing of EMs in passive cooling. The research
focuses on existing challenges and problems of developing the analytical method using the
area-based composite method. The main objective is to propose an analytical approach to
determine the heat-transfer coefficient (radiation and convection coefficients) of a TEFC
housing in natural cooling. Furthermore, it offers a simplified assumption to reduce the
mathematical complexity of the view factor calculation.

For the research purposes, the analytical method described in this study was applied to
a four-pole, 10 kW, 400 V, 50 Hz, TEFC SynRM with ‘F’ insulation class. Figure 1 illustrates
a CAD drawing of the SynRM. Firstly, the analytical calculation approach for calculating
the convection and radiation coefficients is described in detail. Next, a test bench was set
up, and measurements were conducted. Then, the experimental data were compared to
the corresponding results obtained through the proposed analytical method to validate the
analytical process.
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Table 1 shows the characteristic data of the machine housing’s fin section at the axial
length of 222.5 mm and a diameter of 230 mm.

Table 1. Characteristic data of the fin section.

Mean Fin’s Length
(mm)

Mean Fin’s Height
(mm)

Mean Fin’s Spacing
(mm)

Number of
Fins

Fins on the top of the housing 34.38 24.37 11.86 12
Fins on the underside of the housing 184.25 24.37 11.86 12

Fins on the sides of the housing 180.75 24.83 9.70 30

2. Analytical Background of Heat-Transfer Coefficient

The crucial parameter in calculating the heat transfer from the machine housing to the
ambient is the heat-transfer coefficient (h0). This coefficient indicates the effect of the heat
transfer by radiation and the convection phenomena, and is described as:

h0 = hc + hr, (1)

where hc and hr are convection and radiation coefficients (W/m2/K), respectively.
Therefore, at first, calculating the convection coefficient of the actual frame of a TEFC

EM using an analytical approach by the area-based composite method was considered.
Then, the study was extended to determine the radiation coefficient from the actual frame
of a TEFC.

2.1. Natural Convection

The convection phenomenon is a heat transfer between solid surfaces and fluid due
to the fluid motion [1]. During passive cooling (natural convection), the fluid motion
process occurs by the buoyancy forces according to the density difference of hot and cold
fluid molecules.

One of the standard methods to calculate the convection coefficient is utilizing em-
pirical correlations. The empirical correlations are defined by the dimensionless number,
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e.g., Nusselt number (Nu), Rayleigh (Ra), Grashof (Gr), Prandtl (Pr), and Reynolds (Re)
numbers [17]. In this manner, the convection coefficient is defined as [1]:

hc =
Nu·k

L
. (2)

where k is fluid thermal conductivity (W/m/◦C), and L is the characteristic length of the
surface (m).

According to (2), the only unknown parameter is the Nusselt number, and its typical
form for the natural convection is defined as [1]:

Nu = a(Gr·Pr)b, (3)

where a and b are constants, Grashof (Gr), Prandtl (Pr) numbers are calculated, respec-
tively, as [1]:

Gr =
βg∆Tρ2L3

µ2 , (4)

Pr =
cpµ

k
, (5)

where β is the cubical expansion coefficient (1/K), g is the gravitational acceleration (m/s2),
∆T is the temperature difference between the surface and the ambiance (◦C), ρ is the fluid
density (kg/m3), µ is the dynamic fluid viscosity (kg/s/m), and cp is the fluid specific heat
capacity (kJ/kg/◦C).

In the analytical calculation of the natural convection coefficient of a TEFC EM, we are
faced with a complex and compound housing structure for which there is no single correla-
tion to demonstrate the Nusselt number. Therefore, the complex and compound housing
structure is divided into several simpler shapes with known correlation for calculating the
Nusselt numbers. Then, from these values and using (2), the convection coefficient of each
body is obtained. Finally, the total convection coefficient of a TEFC housing is determined
by utilizing the area-based composite technique [1]. A positive aspect of this technique
is that the total convection coefficient is more similar to the dominant shape’s convection
coefficient [2]. Furthermore, the EM installation direction (vertical or horizontal) is essential
for analyzing natural convection. This study considers the analytical calculation for the
EM, which is installed in the horizontal direction.

Figure 2 shows the schematic of a TEFC housing. The machine housing is divided
into various primary forms with known empirical correlations as follows:

• Horizontal cylinder as a fin channel base.
• Horizontal U-shaped fin channels as semi-open fin channels on the top and bottom of

the housing.
• Horizontal flat plate (upper and lower) as semi-open fin channels on the side of

the housing.
• Horizontal and vertical flat plates as fin tips; and
• Vertical plates as end caps.

Therefore, the empirical correlation for basic shapes and more complex shapes such
as horizontal U-shaped channels are described hereafter.

Natural convection from a horizontal flat plate:
As Figure 3 shows, the placement of the horizontal hot plate (upper face and lower

face) plays a decisive role in selecting the correlation [18]. Accordingly, the empirical
correlations for the horizontal flat plate, which is placed in the upper face for the laminar
(105 < Gr·Pr < 108) and turbulent mode (Gr·Pr > 108) are, respectively, as [19,20]:

Nu = 0.54(Gr·Pr)0.25, (6)

Nu = 0.15(Gr·Pr)0.33. (7)
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Figure 3. Two placements of a horizontal hot plate, (a) facing up, and (b) facing down.

Finally, the correlation of a horizontal hot flat plate in the downside direction is
defined as:

Nu = 0.27(Gr·Pr)0.25, (8)

Natural convection from a vertical flat plate:
The Nusselt numbers in the case of a vertical flat plate for laminar (104 < Gr·Pr < 109)

and turbulent (Gr·Pr > 109) modes are defined based on McAdams’ research, respec-
tively, as [20]:

Nu = 0.59(Gr·Pr)0.25, (9)

Nu = 0.10(Gr·Pr)0.33. (10)

Natural convection from a horizontal cylinder:
The empirical correlations for the horizontal cylinder in the laminar (104 < Gr·Pr < 109)

and turbulent (Gr·Pr > 109) are, respectively, [20]:

Nu = 0.525(Gr·Pr)0.25, (11)

Nu = 0.129(Gr·Pr)0.33. (12)

Natural convection from a horizontal fin channel:
Figure 4 presents the schematic of the horizontal fin channels on the TEFC housing.

Jones and Smith’s correlation is one of the most accurate correlations determining the
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Nusselt number of horizontal fin channels in the natural cooling conditions [21,22]. Their
correlation does not depend on the fin size [21,22]. They assumed that the horizontal fin
channels have a U-shaped format and, based on this assumption, they developed the below
correlation with fin space (S) as the characteristic length [21,22]:

Nu = 0.00067 ·Gr·Pr·
{

1 − e(
−7640
Gr·Pr )

0.44
}

1.7. (13)
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2.2. Radiation

Radiation is counted as an electromagnetic phenomenon, which transfers the heat fluxes
by electromagnetic waves [24,25]. Besides, there is no need for intermediaries to extract the
heat by this phenomenon, even it happens in a vacuum condition [24]. The heat-transfer rate
of this phenomenon is directly proportional to the body’s absolute temperature [25].

It is hard to determine the radiation coefficient experimentally since it is a complex
process. Moreover, radiation and convection coincide, and are in parallel with each other.
Separating these two phenomena from each other is complex. Therefore, the standard
method is to add the convection and the radiation coefficients together as the heat-transfer
coefficient in the thermal analysis.

The analytical correlation to calculate the radiation coefficient (hr) is defined as [25–27]:

hr = εσF
T4

1 − T4
2

T1 − T2
= εσF(T1 + T2)

(
T2

1 + T2
2

)
(14)

where ε is the relative emissivity, σ is the Stefan-Boltzmann constant [5.67 × 10−8 (W/m2/K4)],
F is the view factor, and T1 and T2 are the radiating surface temperature and absorbing
surfaces temperature (K), respectively.

However, the evaluation of this coefficient for a TEFC machine is more complicated
than for a machine with a smooth housing structure. According to (14), the most challenging
parameter in calculating the radiation coefficient is the view factor which consists of severe
and complex mathematical and analytical analyses. Staton [21] proposes the hypothesis to
reduce the complexity and mathematical analysis of the view factor. According to his idea,
the view factor of a body with a clear view of ambient equals one, and for other bodies
with no clear view it equals zero. Basically, in the TEFC housing, heat transfer by radiation
is confined to the fin base, fin tips, and end caps [28]. In this paper, the same hypothesis is
utilized to calculate the radiation coefficient.

3. Analytical Analysis Approach

As aforementioned, in this study the machine is installed in a horizontal direction.
As the fin’s axial length, fin spaces, and fins height are various, the mean values of each
parameter are calculated and presented in Table 1.

The TEFC housing is a compound structure, and there is no single correlation to
evaluate the convection and radiation coefficient of the entire housing. Hence, as Table 2
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shows, the housing is divided into several primary forms with known correlation, such as
horizontal U-shaped fin channels, horizontal flat plate, vertical flat, etc.

Table 2. Segregation of the compound structure of TEFC housing.

Component Convection Correlation Emissivity View Factor Area
(m2)

Fin base Horizontal cylinder 0.8 1 0.0918
Fins on top of
the housing Horizontal fin channel 0.8 0 0.0201

Fins on undersides
of the housing Horizontal fin channel 0.8 0 0.1078

Fins on the sides
of the housing Horizontal flat plate (upper and lower faces) 0.8 0 0.2692

Fin tips Horizontal and vertical flat plate 0.8 1 0.0209
End caps Vertical flat plate 0.8 1 0.0831

Finally, the total heat-transfer coefficient (h0) of TEFC housing is calculated by the
area-based composite method as:

h0 =
h1 A1 + h2 A2 + · · ·

AT
(15)

where h1 is the heat transfer coefficient from primary form one (W/m2/K), A1 is the
primary form one area (m2), h2 is the heat transfer coefficient primary form two (W/m2/K),
A2 is the primary form two area (m2), and AT is the total TEFC housing surface (m2).

4. Experimental Methodology and Analysis Method of Experimental Data

This section mainly focuses on experimental verifications and validation of the ana-
lytical method performance for predicting the heat transfer of a TEFC housing machine
in passive cooling conditions. Therefore, in the first part of this section, the experimental
methodology and technique are described. Then, the analysis method of experimental
data is discussed. Finally, the accuracy of experimental data is determined using uncer-
tainty analysis.

4.1. Experimental Methodology

The DC stator test is the standard experimental technique to evaluate the heat-transfer
coefficient of a machine housing in passive (natural) cooling [29]. In this technique, the
EM losses are limited to the stator copper losses and easily determined [30,31]. But the
drawback of this technique is the long-term test period, as an EM may take up to eight
hours to reach its steady-state thermal condition [30].

For this purpose, the EM stator windings were connected in series and connected to the
DC power supply to provide the required DC power. During the test, the values of injected
current, voltage, surface temperature of the TEFC housing, and ambient temperature were
collected. According to Figure 5, four K-type thermocouples were installed in the various
parts of the EM housing to measure the temperature of different housing parts. Moreover,
another K-type thermocouple was used to measure the ambient temperature. All the
temperature measurement data were collected by the data acquisition system Graphtech
GL200. Also, the mean housing temperature equals the average temperature collected by
these four thermocouples in the machine housing. The experiment was conducted with
five different input currents, and the investigation for each input current was carried out
until the system reached its thermal equilibrium.
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4.2. Collected Data Analysis Approach

After collecting the data, the heat-transfer coefficient was obtained from the experi-
mental data. In the first step, the total heat (QT) was determined. In the DC test, the total
heat equalled DC stator copper losses, which was easily determined by the collected value
of current and voltage as:

QT = V·I (16)

where V and I are the input voltage and current, respectively.
By knowing the values of the total heat (QT), surface TEFC housing temperature (Ts),

and ambient temperature (Ta), the total heat-transfer coefficient (h0) is computed as [26,27]:

h0 =
QT

(Ts − Ta)AT
, (17)

4.3. Uncertainty Analysis

The accuracy of the experimental data directly depends on the accuracy of the mea-
surement equipment. The uncertainty analysis is the approach to find the accuracy of the
measurement data based on measurement equipment precision. In the experiment, TTi
QPX1200S was used to measure the voltage and current with the measurement accuracy
of 0.1% and 0.3%, respectively. Also, the measurement accuracy of K-type thermocouples
was 0.75%.

At first, the accuracy heat loss (wQT ) was determined as:

wQT =

[(
∂QT
∂V

·wV

)2
+

(
∂QT
∂I

·wI

)2
]1/2

(18)

where wV and wI are the measurement accuracy of voltage and current, respectively.
Finally, the uncertainty value of the heat transfer coefficient was defined as:

who =

[(
∂ho

∂QT
·wQT

)2
+ 2·

(
∂ho

∂T
·wT

)2
]1/2

(19)

where wT is the measurement accuracy of K-type thermocouple.



Machines 2021, 9, 120 9 of 12

5. Validation and Discussion

The experimental phase is accomplished to validate and check the accuracy of the
analytical analysis approach to calculate the heat-transfer coefficient of a TEFC EM in
natural cooling.

Firstly, in the experimental stage, the heat power (QT) value was calculated by (16).
Then, the convection coefficient value (h0) was determined using (17). In the analytical
calculation stage, the TEFC housing was divided into several primary shapes (Table 2),
and the convection coefficient of each primary body was calculated using appropriate
correlations. For the radiation calculation, the hypothesis proposed by Staton was used to
determine the view factor. Finally, using the area-based composite approach, the total heat
transfer coefficient was calculated (15).

Tables 3 and 4 show the analytical analysis results of the heat-transfer coefficient (h0).
Table 3 shows the analytical results, including the radiation phenomenon, and Table 4
shows the analytical results, which excluded the radiation phenomenon. Finally, Table 5
demonstrates the experimental results of the DC stator test.

Table 3. Analytical analysis results including the radiation phenomenon.

V
(v)

Ts
(◦C)

Ta
(◦C)

h0
(W/m2/K)

15 42 20.5 6.91
17 47 21.6 7.14
19 51.5 20.8 7.39
22 61 21.6 7.78
25 64.5 21.2 7.93

Table 4. Analytical analysis results excluding the radiation phenomenon.

V
(v)

Ts
(◦C)

Ta
(◦C)

h0
(W/m2/K)

15 42 20.5 4.95
17 47 21.6 5.13
19 51.5 20.8 5.34
22 61 21.6 5.62
25 64.5 21.2 5.73

Table 5. Experimental results.

V
(v)

I
(A)

Ts
(◦C)

Ta
(◦C)

QT
(W)

h0
(W/m2/K)

15 6.45 42 20.5 96.75 6.37
17 7.12 47 21.6 121.04 6.76
19 7.79 51.5 20.8 148.01 6.93
22 8.71 61 21.6 191.62 7.47
25 9.57 64.5 21.2 239.25 7.65

Figure 6 shows the analytical and experimental results, which are plotted versus the
TEFC housing surface and ambient temperature difference to increase the resolution and
simplify the comparison. The uncertainty analysis values are demonstrated as error bars in
the experimental data presented in Figure 6. Based on uncertainty analysis, the maximum
uncertainty in the experimental results of heat-transfer coefficient is about 6.2%, and the
temperature measurement is about ±2 ◦C.
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Accordingly, the mean relative difference of the analytical data, including the radiation
phenomenon and the experimental data, is about 5.5%. The maximum mean difference is
8.2%, which occurs at the low temperature of TEFC housing. According to Figure 6, the
relative difference of analytical and experimental data reduces by increasing the surface
temperature. As a result, the accuracy of the analytical method in calculating the heat-
transfer coefficient increases by enhancing the housing temperature. Therefore, the accuracy
of the analytical approach is higher at high housing temperatures. Consequently, it predicts
the heat transfer coefficient more accurately at higher housing temperatures.

Furthermore, comparing the analytical data, including radiation and excluding radia-
tion, proves that ignoring the radiation phenomenon is not a correct assumption in passive
cooling. It leads to a significant difference in final results. In this study, neglecting the
radiation shows about 30% error in the value of the heat-transfer coefficient.

The radiation phenomenon transfers around 28% of the total heat. Moreover, imple-
menting the Staton hypothesis in calculating the radiation coefficient does not significantly
affect the final value of the heat-transfer coefficient. Hence, using this hypothesis is benefi-
cial to save computational time and to simplify the mathematical calculation.

6. Conclusions

This study has illustrated the analytical approach to predict the heat-transfer co-
efficient of a TEFC housing in natural cooling conditions. This analytical approach is
developed using area-based composite theory. Moreover, this paper proposed the simplify-
ing hypothesis to reduce computation time and mathematical calculation of the view factor
in the radiation coefficient calculation with great accuracy.

According to the initial results, the analytical approach can successfully predict the heat-
transfer coefficient with a low mean relative difference of 5.5% compared to the experimental
results. Furthermore, the accuracy of this approach is enhanced by increasing the housing
temperature, so it provides more accurate predictions for higher surface temperature.

According to initial results, approximately 30% of heat is transferred by the radiation
phenomenon. Consequently, omitting this phenomenon in calculating the heat-transfer
coefficient and confining the heat transfer to natural convection leads to a significant error.
Moreover, calculating the view factor and restricting the radiation from specific surfaces
does not demonstrate a substantial error in the final results. As a result, the simplifying
assumption in radiation calculation offers fast and easy calculation. To conclude, the
proposed analytical calculation approach has excellent potential to predict the convection
coefficients in passive heat extraction conditions.
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