

This is an electronic reprint of the original article. This reprint may differ from the original in pagination and typographic detail.

Ghazy, Amr; Safdar, Muhammad; Lastusaari, Mika; Savin, Hele; Karppinen, Maarit Advances in upconversion enhanced solar cell performance

Published in: Solar Energy Materials and Solar Cells

DOI: 10.1016/j.solmat.2021.111234

Published: 15/09/2021

Document Version Publisher's PDF, also known as Version of record

Published under the following license: CC BY

Please cite the original version:

Ghazy, A., Safdar, M., Lastusaari, M., Savin, H., & Karppinen, M. (2021). Advances in upconversion enhanced solar cell performance. *Solar Energy Materials and Solar Cells*, 230, Article 111234. https://doi.org/10.1016/j.solmat.2021.111234

This material is protected by copyright and other intellectual property rights, and duplication or sale of all or part of any of the repository collections is not permitted, except that material may be duplicated by you for your research use or educational purposes in electronic or print form. You must obtain permission for any other use. Electronic or print copies may not be offered, whether for sale or otherwise to anyone who is not an authorised user.

Contents lists available at ScienceDirect

Solar Energy Materials and Solar Cells

journal homepage: www.elsevier.com/locate/solmat

Amr Ghazy^a, Muhammad Safdar^{a,b}, Mika Lastusaari^c, Hele Savin^d, Maarit Karppinen^{a,*}

* Department of Chemistry and Materials Science, Aalto University, FI-00076, Espoo, Finland

^b Picosun Oy, Tietotie 3, FI-02150, Espoo, Finland

^e Department of Chemistry, University of Turku, FI-20014, Turku, Finland

^d Department of Electronics and Nanoengineering, Aalto University, FI-00076, Espoo, Finland

ARTICLE INFO

Keywordz: Solar cella Upconversion Luminescence Lanthanides Atomic layer deposition Photonics

ABSTRACT

Photovoltaics (PV) is the leading renewable energy harvesting technology. Thus, there is a remarkable strive to enhance the light harvesting capability of the state-of-the-art solar cells. The major issue common to all solar cell types is that they utilize only a limited portion of the solar spectrum, mostly in the visible range, as the active semiconductor materials suffer from intrinsic light absorption thresholds. As a result, photons below and above these threshold values do not contribute to the electricity generation. A plausible solution to enhance the performance is to integrate the PV cell with an upconverting (UC) component capable of harvesting lower energy photons in the infrared (IR) range and emitting visible light. The concept was first introduced in 1990s, but major progress in the field has been made in particular in the recent few years. In this overview our intention is to provide the readers with a comprehensive account of the progress in the research on the UC-enhanced solar cells. Lanthanide ions embedded in different host lattices constitute the most important UC material family relevant to the PV technology; we first summarize the design principles and fabrication routes of these materials. Then discussed are the different approaches taken to integrate the UC layers in actual PV device configurations. Finally, we will highlight the most prominent results obtained, give some future perspectives and outline the remaining challenges in this scientifically intriguing and application-wise important field.

1. Introduction

The expected global transition to sustainable energy has massively increased the demand for renewable energy sources such as the solar energy. The production of solar cells for the photovoltaics (PV) industry has been growing constantly already for several decades, and the prospects promise continuous growth in future too [1]. The most common solar cells are based on semiconducting materials and in order to convert solar energy into electricity as efficiently as possible, it is important to choose a semiconductor material with an appropriate band gap that matches the solar spectrum. However, a single material can be optimal only for a specific wavelength range and consequently, the solar cell materials are often divided into different categories based on the corresponding material properties.

The dominant technology category today in the PV market is based on crystalline silicon (c-Si). This is due to the abundancy of the raw material as well as the highly developed mass-production infrastructure that have benefitted from the silicon microfabrication development. Silicon has also a rather ideal band gap (1.1 eV), which matches well with the maximum-intensity wavelength of the solar spectrum. Consequently, c-Si cells have a theoretical power conversion efficiency limit of ~30% [2]; the experimentally confirmed photoconversion efficiencies are already close to this limit, the current record being 26.7% [3]. In addition to c-Si, so-called thin-film solar cells have a long history. Among this category, amorphous silicon (a-Si) has been studied a lot since it was first reported by Carlson and Wronski in 1976 [4]. These a-Si cells have a wide band gap (~1.8 eV) making the technology ideal for specific applications including indoors use, although the total power conversion efficiency has remained at a modest level of ~12% [2].

More recently, new materials have emerged as potential alternatives to replace the silicon-based cells. First, dye sensitized solar cells (DSSC) were invented in 1991 by O'Regan and Grätzel aiming to provide much lower material costs combined with a cheap and simple manufacturing technology [5]. More recently, an organohalide perovskite sensitizer in a DSSC cell was reported in 2009 [6], and as a result so-called perovskite solar cells (PSC) emerged as a sub-branch of the DSSC technology. Initially the power conversion efficiency in these emerging technologies was rather low, around 3–4% [7], but the growth has been enormous in

* Corresponding author.

E-mail address: maarit.karppinen@aalto.fi (M. Karppinen).

https://doi.org/10.1016/j.solmat.2021.111234

Received 27 April 2021; Received in revised form 5 June 2021; Accepted 7 June 2021 Available online 20 June 2021

0927-0248/© 2021 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

A. Ghasy et al.

a relatively short time; the highest conversion efficiency of over 20% was reported already in 2015 [8]. While these results are highly promising, there are still issues related to upscaling the technology and the long-term stability as compared to the state-of-the-art silicon-based solar cells.

Despite the progress made in enhancing the performance of the different solar cell technologies, the fundamental issues related to the semiconductor materials themselves (in particular their band gaps) still restrict the conversion efficiency prospects of the PV technology. Firstly, the photons with a higher energy than the band gap, i.e. the solar radiation often in the ultraviolet (UV) range, result in so-called charge carrier thermalization, which causes major energy losses as heat [9]. Another major loss mechanism is the limited absorption of the state-of-the-art PV semiconductors in the photon wavelengths below the band gap, typically in infrared (IR) part of the solar spectrum [10]. The upper wavelength limit for the IR absorption varies with the solar cell type according to its semiconductor material (Fig. 1) [11,12]. The c-Si solar cells have the smallest band gap which allows them to absorb up to 1100 nm of the solar radiation, but even these cells incur more than 19% loss in efficiency due to this incapability to fully utilize the IR part of the solar spectrum. For other types of solar cells, these losses are even higher, amounting up to 50% [10].

Traditionally, the aforementioned losses (both above and subbandgap) have been addressed by stacking multiple materials on top of each other with varying band gaps. Such multi-junction cells, often based on III-V semiconductors, have reached higher power conversion efficiencies even above 47% [13]. However, this technology category suffers from high fabrication and material costs and typically highly concentrated sunlight is needed to reach such high efficiencies. Recently, pricewise a more competitive technology emerged that combines only two different materials, hence the name tandem cells. Currently the most promising option seems to be to combine c-Si and perovskite solar cells. Some commercial activities are already established around this approach [14].

Fig. 1. Parts of the solar spectrum utilized (in blue) and lost (in red) of different solar cell types, and the absorption ranges (in green) of the upconverting Im^{3+} ions, sketched according to Ref. [10]. (For interpretation of the references to colour in this figure legend, the reader is referred to the Web version of this article.)

An alternative means for the utilization of non-absorbed sub-band gap photons is to take advantage of so-called photon upconversion (UC) materials. Instead of having charge-collection junction made of a low band gap material, they are based on separate luminescent materials that are placed in the vicinity of the charge-collection structures. Upconversion is an anti-Stokes luminescence process exhibited by certain materials that are capable of absorbing low-energy photons typically in the near-infrared (NIR) range and then converting the energy into higher energy photons, typically in the visible (Vis) range. This phenomenon has shown immense potential towards several applications, including bioimaging, photodynamic therapy, sensors and display technology [15-18]. Regarding PV applications, the UC materials could considerably enhance the energy harvesting capability of the PV cells as they extend the useable solar spectrum range to the NIR photons in single junction solar cells (Fig. 1). A clear advantage of this approach is that no major adjustments or changes are needed for the current PV technologies to integrate them with the UC layers [19]. Indeed, upconversion in photovoltaics has already been demonstrated in several PV technologies, e.g. first in GaAs solar cells by Gibart et al. [20], later in c-Si cells by Trupke et al. [9], and most recently also in DSSCs by Shan and Demopoulos [21]. It is interesting to note that before the UC phenomenon itself was demonstrated experimentally, its use was suggested theoretically for the detection of infrared quanta in an IR quantum counter. That is essentially exactly what the PV-UC combination is set to do, to detect IR photons.

In recent years, several reviews have been published that discuss the chemistry and synthesis of UC materials [22], strategies used to tune the UC emission [23], and the progress in UC-enhanced DSSC and perovskite solar cells [24,25]. In this review, our intention is to provide a brief but comprehensive account of the state-of-the-art and the future prospects of the UC materials in photovoltaics. Majority of the studies on the UC materials in the context of the PV technologies have involved lanthanide-based UC materials [26,27]. Therefore, we start by discussing the UC properties of different lanthanide ions and the host materials used for them in Section 2. Then, before addressing the state-of-the-art of UC-integrated solar cells in Section 4, we devote Section 3 for different approaches taken to integrate the UC layers in PV devices and evaluating the performance enhancement in practice. Finally, Section 5 is a short summary of the current state and an outlook for the future perspectives and challenges in this scientifically exciting and industrially important field.

2. Lanthanide-based upconverting materials

2.1. Upconversion of lanthanides

Lanthanides (Ln) are the group of 14 elements in the Periodic Table after lanthanum, starting from cerium (Z = 58) up to lutetium (Z = 71) with the $6s^25d^14f^6$ electron configuration. For all these elements, the trivalent state is the most stable, where the 6s and 5d orbitals are empty and the 4f orbitals are partially filled. The 4f orbitals are strongly shielded from the coordination environment by the more spatially extended 5s and 5p orbitals. Because of the shielding, the Ln³⁺ ions exhibit characteristic narrow-band emission (Fig. 2). Moreover, since the f-f transitions are parity forbidden (no change in dipole moment), the excited states have long lifetimes [28]. This is an essential feature for enabling the stacking of photons required for upconversion.

There are several mechanisms for Ln^{3+} based upconversion (Fig. 3). In the excited state absorption (ESA) mechanism, one Ln^{3+} ion sequentially absorbs two photons so that the first excitation yields a metastable intermediate state which then absorbs a second photon to emit a single high energy photon [29]. The energy transfer upconversion (ETU) mechanism comprises two Ln^{3+} ions, one of them being a sensitizer and the other acting as an activator. The sensitizer ion absorbs a photon to reach an excited metastable state and thereafter transfers the energy non-radiatively to the activator. While the activator is still in the 35

35

Fig. 3. Important UC mechanisms relevant for Ln³⁺ ions.

excited state, another photon absorbed by the sensitizer is transferred to the activator, which is then excited to a higher excited state [30]. A radiative relaxation of the activator results in the emission of an upconverted higher energy photon. Typically, Yb³⁺ is used as a sensitizer due to its high absorption cross-section, and the position of its f-f transition that lies around 980 nm, which facilitates energy transfer to the most common activator ions, e.g. Er^{3+} , Ho^{3+} and Tm^{3+} [31]. In the third UC mechanism, i.e. cooperative energy transfer (CET), two sensitizers individually absorb low energy photons and simultaneously transfer their energy to the activator to cooperatively excite it for a subsequent emission of the upconverted photon [32,33].

2.2. Host materials and synthesis strategies

The interest towards lanthanide luminescence started already in the 1880s [34], and during the 1940s, 1950s and 1960s the theoretical background was formulated. Since those times, numerous different compounds doped with lanthanides have been synthesized just for the sake of basic research. After the establishment of the UC phenomenon in the 1960s also upconversion has been reported in a wealth of different Ln-based materials [26]. In fact, the following efficient lanthanide luminescence hosts (where the Ln host is typically Y, La, Gd, or Yb) were characterized for (Yb3+,Er3+) UC emission already by the early 1970s [35]: LnF₃, LiLnF₄, NaLnF₄, BaLnF₄, LnOX (X = F, Cl, Br), Ln₂O₃, LnBO₃, YAlO3, YGaO3, Ln3BO6, Y3A15O10, Y3Ga5O10, Y2GeO5, Y2GeO7, YTiO5, Y2Ti2O7, YPO4, YASO4, YVO4, YTaO4, LnNbO4, Y3TaO7, Y3NbO7, YTa3O9, YNb3O9, Y2TeO6, Y2WO6, and NaLn (WO4)2. In practice, all materials that can be doped with lanthanides can also be doped with e.g. Yb³⁺, Er³⁺, Ho³⁺ and Tm³⁺ to obtain the UC emission with at least some intensity.

In a practical UC material, where the Ln³⁺ ions are embedded in a suitable host lattice, the crystal structure and composition of this host lattice lay the grounds for the UC efficiency by affecting the site symmetry of the lanthanides and offering suitable energy transfer routes as well as inhibiting the radiation-less de-excitation. Also, the absorption cross-sections, concentrations and homogeneity in distribution of the lanthanide dopants affect the UC properties of the material [12]. To allow easy doping of the Ln³⁺ ions, at least one of the cation species in the host lattice should be of similar size, and preferably also valence, to the Ln³⁺ dopants. An important requirement for the host lattice is that it provides an asymmetrical crystal field to allow the f-f transitions of the Ln³⁺ ions [36]. Also, an optimal host material should possess low phonon energies to minimize the non-radiative emissions [34], and be thermally and chemically stable, and transparent to the IR photons [35]. One possibility for such thermally and chemically stable host lattices are metal oxides, but the drawback is their high phonon energy. On the other hand, metal fluorides have been recognized as more efficient host material candidates owing to their lower phonon energy. In a very early review, the upconversion pioneer Auzel [35] demonstrated that the best fluorides may be even 100-fold more efficient in UC emission than the best oxides. Unfortunately, the fluorides are often hygroscopic, which may be a limitation [37]. For example, YF3:Yb3+,Er3+ was initially proven to yield four times as high UC efficiency as NaYF4:Yb³⁺,Er³⁺ [38], but the less hygroscopic tetrafluoride has established a position as the leading UC host. This flagship material was first highlighted in 1972 in two separate studies: by Menyuk et al. [39] for the cubic @-NaYF4, and by Kano et al. [40] for the hexagonal β-NaYF4. Due to its stronger UC emission, the hexagonal form is currently considered more promising [41], and thus it is being studied vigorously for many different fields of UC applications.

A common way to apply the Ln^3 -based UC materials is to synthesize them in nanoparticle form, motivated by the fact that in NPs the nonradiative losses are usually lower and the UC quantum yield higher [42]. However, the lattice strain, surface defects and solvent inclusion with high phonon energies may cause quenching of the UC luminescence [43]. To address these issues, specific core-shell NP structures have been developed [24]. In these CS-NPs, the UC core is isolated by an inert shell. The quality of the UC luminescence process may vary based on the shell characteristics, including the chosen material and the thickness [44]. In addition to different types of nanoparticles, UC materials are typically also produced e.g. as microcrystalline powder, thin films, glass and glass ceramics. In Table 1, we have collected some examples of recently investigated UC materials (matrix, dopants) and also their synthesis methods, and the form in which the material is applied. It is to be noted that in the time period 2017 2020, the number of scientific articles and proceedings papers dealing with UC has maintained a steady pace of ca. 2000 publications per year. Thus, the material list presented below is by no means exhaustive.

Recently, UC thin films have become more appealing and important due to their compatibility towards solid-state optical devices and applications. Thin films have been fabricated from UC NPs using solutionbased methods such as spin-coating [45] and dip-coating [46], but the drawback is that the thus prepared films are prone to contain traces of solvent impurities. Alternately, gas-phase deposition techniques, such as metal-organic chemical vapor deposition (MO-CVD) and atomic layer deposition (ALD) [47], could provide an attractive way to produce precisely thickness-controlled UC thin films on a variety of substrates [48]. Such UC thin films can offer some unique features over the NPs, such as conformality and improved adhesion to the substrate in practical devices [49].

3. Integration of upconversion layers in solar cell devices

3.1. Integration strategies

Several ways of fabricating and incorporating the UC layer within the solar cell structure have been experimented. Typically, the UC material is produced in a powder or nanoparticle form (as summarized in Table 1), and then applied as a thin coating using e.g. spin-coating, dipcoating techniques, or deposited directly from gaseous precursors.

In Fig. 4, we show representative schemes for the placement of the UC layer within different PV cell types. For example, Markose et al. [52] used the coprecipitation method for synthesizing (Yb³, Er³)-doped Y₂O₃, YOF and YF₃ UC phosphors which were then integrated in a back reflector layer of thin-film a-Si solar cells fabricated through plasma-enhanced chemical vapor deposition (PECVD). In another investigation, (Yb³, Ho³)-doped Y₂O₃ UC layers were prepared solvothermally, and combined with N3 (C₂₆H₁₆N₆O₈RuS₂) dye-sensitized TiO₂-based DSSC cells fabricated by spin-coating; adding the UC layer was done by introducing the electrolyte solution by clamping both the FTO glass plates [87].

Li et al. [88] used pulsed laser deposition (PLD) technique to deposit NaYF₄:Yb³ ,Er³ /NaYF₄:Yb³ ,Tm³ (55-nm UC layer) on their PSC device. Most recently, we demonstrated the use of the ALD technique in depositing (Er,Ho)₂O₃ (45 60 nm UC layer) on a silicon substrate, which was mounted to the backside of a bifacial c-Si solar cell [49]. Using bifacial c-Si cells [89,90] in photon upconversion (as compared to fully metallized backside cells) [91,92] has the benefit that there is no need to adjust the commercial cell fabrication process at all but the upconversion layer can be just placed to the bottom of the finished cell. Additional back reflector can be used to guide the luminescent photons back to the cell.

It is important to note that a precise control over the film thickness of the UC layer is critical to achieve optimal UC emission [49,93,94]. Hence, the advanced gas-phase deposition techniques are clearly beneficial over the solution techniques as they allow for a nanoscale

Table 1

Examples of important host lattices for Ln-doped UC materials including the synthesis method and the form the material is applied: powder (P), nanoparticle (NP), core-shell nanoparticle (CS-NP), thin film (TF), glass/ceramics (G), or nanorod (NR).

Host material	Ln dopant	Form	Synthesis method	Ref.
Oxides				
Y ₂ O ₃	Yb ³ , Er ³ ,	Р	Solvothermal	[<mark>50</mark>]
	Eu ³ Er ³	Р	Sol-gel	[51]
	Yb ³ , Fr ³	Р	Co-precipitation	[52]
(Yb,Er) ₂ O ₃	Yb ³ , Er ³	TF	ALD	[48]
Er ₂ O ₃ Lu ₂ O ₃	Ho ³ Yb ³ ,	TF P, NP	ALD Combustion	[49] [53]
SiO ₂	Er ³ Yb ³ ,	TF	Dip-coating	[46]
SiO ₂ TiO ₂	Er ³ Ho ³	TF	Sol-gel & Spin-	[54]
	Yb ³ , Fr ³	TF	coating Sol-gel	[55]
	Eu ³			
Au@TiO2	Yb ³ ,	CS-	Hydrothermal	[56]
	Er ³	NP		
anatase-TiO ₂	Yb ³ , Er ³	TF	Sol-gel & Spin- coating	[45]
$\begin{array}{l} Mg_2SiO_4\\ Gd_{4.67}Si_3O_{13} \end{array}$	Er ³ Tm ³	TF P	Co-precipitation Solid state	[57] [58]
NaY ₉ (SiO ₄) ₆ O ₂	Yb ³ ,	Р	synthesis Solid state	[59]
	Tm ³ Yb ³ ,	Р	synthesis	
	Ho ³			
ZnO	Yb ³ , Er ³	NP	Solution- combustion	[<mark>60</mark>]
CaCe ₂ (MoO ₄) ₄	Yb ³ , Er ³	NP	Sol-gel	[<mark>61</mark>]
$Gd_{0.5}Na_{0.5}MoO_4$	Ho ³ , Yb ³	NP	Co-precipitation	[<mark>62</mark>]
SrAl ₂ O ₄	Eu ³ , Yb ³	NR	Electrospinning	[63]
$Ba_{0.85}Ca_{0.15}Ti_{0.9}Zr_{0.1}O_3$	Er ³	TF	Chemical solution deposition	[64]
TeO ₂ GeO ₂ Na ₂ O Nb ₂ O ₅ Er ₂ O ₃	Er ³	G	Melt-quenching	[65]
NaBi(WO ₄) ₂	Yb ³ ,	Р	Solid state	[<mark>66</mark>]
Na8Al6Si6O24(Cl,S)2	Er ³ Yb ³ ,	Р	Solid state	[67]
	Er ³		synthesis	
Oxyfluorides YOF	Yb ³ ,	Р	Co-precipitation	[52]
$Y_2 Te_6 O_{15} \ BaF_2 \ YF_3$	Yb^3 , Fr^3	G	Melt-quenching	[<mark>68</mark>]
Fluorides				
YF ₃	Yb ³ , Er ³	Р	Co-precipitation	[52]
NaYF ₄	Yb ³ , Er ³	NP	Microemulsion	[<mark>69</mark>]
-NaYF ₄	Yb ³ , Tm ³	TF	Sol-gel	[70]
Cu _{1.8} S@NaYF ₄ @NaYF ₄	Yb ³ , Er ³	CS- NP	Solvothermal	[71]
NaYF ₄ @NaPO ₃ Na ₂ O NaF	Yb ³ , Er ³	NP in G	Melt-quenching	[72]
Li(Gd,Y)F ₄	Yb ³ , Er ³	NP	Thermal decomposition	[73]
KLaF ₄	Yb ³ , Er ³ /	NP	Solvothermal	[74]
	Tm ³ / Ho ³			
BaYF ₅	110	NP	Co-precipitation	[75]
			(continued on next	page)

Table 1 (continued)

Host material	Ln dopant	Form	Synthesis method	Ref.
	Yb ³⁺ , Br ³⁺ , Tm ³⁺			
Ba ₂ LaP ₇	Nd ³⁺ , Yb ³⁺	O	Melt-quenching	[76]
NaGdF4@NaGdF4@ZIF-8	Yb ³⁺ , Er ³⁺	CS- NP/ MOF	Solvothermal	[77]
PbP ₂	Yb ³⁺ , Er ³⁺ , Ho ³⁺	P	Solid state synthesis	[78]
CaF ₂	Yb ³⁺ , Er ³⁺ , Tm ³⁺	ŢF	MO-CVD	[79]
CaF ₂	Yb ³⁺ , Er ³⁺ , Tm ³⁺	TF	MO-CVD Sol-gel	[80]
InF ₃ -ZnF ₂ -SrF ₂ -BaF ₂ Othern	Er ³⁺	G	Melt-quenching	[81]
YPO LaPO4 GdPO4	Yb ³⁺ , Er ³⁺	NP		[82]
AlgOs_PgOs_SiOg-YbgOs	Yb ³⁺	G	Sol-gel	[83]
MoS2	Yb ³⁺ , Br ³⁺	P	Hydrothermal	[84]
Y-pyrazine	Yb ³⁺ , Er ³⁺	ŢF	ALD/MLD	[85]
(Yb,Er)-IR-806	Yb ³⁺ , Er ³⁺	ŢF	ALD/MLD	[86]

thickness control. The ALD technology in particular is highly promising owing to its unique characteristics, such as relatively mild deposition conditions and the large-area uniformity and conformality of the resultant thin films [47]. Moreover, ALD cycles for metal species can be combined with MLD (molecular layer deposition) cycles for organic molecules to grow amorphous or crystalline metal-organic materials [95,96], where the ultrathin organic layers could work e.g. for sensitization. The ALD and ALD/MLD techniques have already been used for the fabrication of various Ln-based thin films with interesting photoluminescence and upconversion properties [86,97–105] though mostly not yet integrated with actual solar cell structures.

3.2. Figures of merit

The evaluation of enhancement in solar cell performance due to upconversion can be reported with different indicators. From the final application point of view, the most informative parameter is naturally the power conversion efficiency (PCE), which describes the ratio between the energy produced by the solar cell and the input solar energy. Obviously, successful implementation of UC to the cells should be seen as higher PCE. However, PCE is affected by many different factors and it may hence be difficult to estimate the role of UC in the given cell architecture. Therefore, it is often more useful to focus on the cell parameters that measure directly the impact of the UC process as these describe better the potential of the given UC material.

One of such parameters is external quantum efficiency (EQE), which describes the ratio between the number of charge carriers (electrons) collected by a solar cell and the number of photons incident on the cell. EQE can be measured for each photon wavelength separately, which gives the advantage that one can focus on the EOE of the emitted photon wavelength originating from the luminescent material. For instance, in case of NaYF4:Er3+, the EQE is interesting only wavelength range of 1480-1560 nm [106-109]. If EQE is increased with the given wavelength, it means more charge carriers are generated and as a result the cell produces higher current. In fact, from the measured BQE one can calculate the short circuit current (Igc) for the solar cell (or current density, Jsc, is often preferred as it is independent on the cell area). Alternatively, one can also directly measure Jsc by measuring the photocurrent of the cell under zero bias voltage. Since J_{sc} is the parameter that is affected directly by the incoming photons, it is the most widely used parameter to describe the effectiveness of the UC process on the cell efficiency.

The EQE (and J_{sc}) values are directly proportional to PCE, which means that only if all the other parameters remain unaffected, increase

Fig. 4. Integration of UC layers in different solar cell types: a-Si (amorphous silicon), bifacial c-Si (crystalline silicon), DSSC (dye synthesized solar cell), and PSC (perovskite solar cell) [49,52,87,88]. (For interpretation of the references to colour in this figure legend, the reader is referred to the Web version of this article.)

in EQE or J_{sc} will be seen in PCE. Therefore, the EQE and J_{sc} values are much more informative parameters than PCE in convincing the community about the quality of the studied material in an UC process.

4. State-of-the-art of upconversion-integrated solar cells

The implementation of UC in solar cells is an area of increasing interest since last few decades. The first positive results were reported by Gibart et al., in 1996, when they combined (Yb3+,Er3+) co-doped vitroceramic with an ultra-thin GaAs solar cell [20]. A sequential absorption and energy transfer of the IR photons from Yb3+ to Er3+ resulted in emission of a green photon that caused a photo-response in the 0.039 cm² substrate-free GaAs cell. With an input excitation of 1W at 1.39 eV by a Ti-sapphire IR laser, an EQE of 2.5% was measured. Later, integration of NaYF4:Er3+ UC layers with bifacial c-Si solar cells was demonstrated [110]. The polycrystalline UC samples were mixed into an optically transparent acrylic adhesive with similar refractive index and coupled to the rear of a bifacial silicon solar cell. An EOE of about 2.5% was obtained under 5.1 mW excitation at 1523 nm. Trupke et al. [111] theoretically predicted up to -40% conversion efficiency using non-concentrated sunlight (AM1.5) for a silicon solar cell combined with UC. However, a practical demonstration with NaYF4:Er3+ UC phosphors gave an EQE close to 1% at 1550 nm, using a prototypical device setup. In recent years, the efforts in the field have rapidly grown to apply UC materials in different forms and combine UC with conventional as well as emerging solar cell technologies.

Amorphous silicon solar cells: As mentioned in the introduction, a-Si cells are relatively low-cost and easy to fabricate with an additional advantage of high chemical stability. The relatively wide band gap of aSi (-1.8 eV) implies that these devices can absorb only up to 700 nm of solar light, hence they suffer from greater transmission losses compared to some other solar cell technologies, such as crystalline Si (c-Si). The research related to UC enhancement of a-Si cells can be traced back to 2010 [112-114], when de Wild et al. and Zhang et al. independently reported Er³⁺-based NaYF₄ nanocrystals coupled to the backside of a-Si solar cells. De Wild et al. [112,113] used 200-300 µm thick layers of β-NaYF4:Yb³⁺,Er³⁺ powder dispersed in polymethylmethacrylate (PMMA) and applied to the backside of a-Si cells using spin-coating; they recorded a 3x increase in the short-circuit current. On the other hand, Zhang et al. [114] implemented NaYF4 nanocrystals with 18% Yb³⁺ and 2% Er³⁺ doping to achieve an increase of -6% in short-circuit current density for their a-Si cells, as shown in Fig. 5. Later, Chen et al. [115] applied β-NaYF4:Er3+ powder dispersed in cyclohexane to produce a 200 µm thick UC layer on a glass substrate, followed by physical placement of it below an a-Si cell. Under single-illumination with 60/80 mW/cm² 980/1560 nm diode lasers, short-circuit currents of 0.3/0.01 µA were measured, respectively. Under co-excitation by 60 mW 980 nm and 100 mW 1560 nm lasers, a current improvement to 0.54 µA was obtained, owing to the UC-induced enhancement.

More recently, Markose et al. [52] investigated three different host lattices, Y₂O₃, YOF and YF₃, for (Yb³⁺, Er³⁺) co-doping, and found YF₃ as the best matrix among the tested ones, for the performance enhancement of a-Si cells. An improvement of 7.5% in short-circuit current density was recorded for YF₃:Yb³⁺, Er³⁺ UC layers on AM1.5G along with a single wavelength diode laser source of 980 nm. Liu et al. [116] reported an enhancement of 25%, as shown in Fig. 5 in the short-circuit current for a thin film a-Si solar cell by applying (Yb³⁺, Er³⁺) co-doped β -NaYF₄ dispersed in a PMMA layer.

Fig. 5. (a) I–V curve of the pioneering work done in 2009 using Yb³⁺, Er^{3+} co-doped β -NaYF₄ in enhancing the performance of a-Si solar cells under AM 1.5G irradiation [114]. (b) I–V curve showing a 25% relative enhancement in I_{sc} of a-Si solar cell by adding Yb³⁺, Er^{3+} co-doped β -NaYF₄ UC layer [116]. (c) EQE curve of a-Si solar cell that shows a clear enhancement of the 900–1000 nm region absorption [116]. (d) Enhancement in the J_{sc} of a bifacial c-Si solar cell, achieved by introducing an ALD-grown UC ($Er_{0.95}Ho_{0.05}$)₂O₃ thin-film layer [49]. Reference cells are in black and UC-assisted cells are in red. (For interpretation of the references to colour in this figure legend, the reader is referred to the Web version of this article.)

Crystalline silicon solar cells: The narrow band gap of c-Si (-1.1)eV) allows the c-Si cells to absorb photons up to 1100 nm. Hence, the employment of Yb3+-based UC materials with the absorption maximum around 980 nm is not truly feasible; rather, other UC Ln ions should be challenged [117]. In this regard, Shalav et al. [86] in 2005 and Lahoz [94] in 2008 introduced Er3+ doped NaYF4 microcrystals and Ho3+-doped oxyfluoride glass ceramics for expanding the absorption of c-Si solar cells into the sub-bandgap region. These ions absorb at 1150-1230 nm (Ho3+) and 1450-1550 nm (Er3+), and the emission of the UC photons takes place at <1000 nm. An attractive feature related to the use of Ho^{3+} (instead of e.g. Er^{3+}) is that the solar intensity at -1180nm is higher than at the longer wavelengths, indicating higher potential for the solar energy harvesting from this spectral range. An interesting idea is to use mixtures of two or more lanthanides in compatible concentrations to maximize the UC performance. For instance, (Ho³⁺,Yb³⁺) co-doped UC materials can provide stronger NIR luminescence due to the inter-ion energy transfer and sensitization [118].

Fischer et al. [108] reported the use of Er^{3+} -doped $\text{Ba}Y_2F_8$ UC layers to reach 3% EQE under 1520 nm monochromatic excitation; the relative solar cell efficiency enhancement was $0.55 \pm 0.14\%$ at 94 ± 17 suns. Monocrystalline $\text{Ba}Y_2F_8$: Er^{3+} shows less scattering than the typically used microcrystalline powders such as β -NaYF₄: Er^{3+} . Incoming lower energy photons can enter deep into the monocrystalline material, resulting in higher extent of absorption from abroad spectral range. Considerably smaller enhancement in EQE, i.e. 0.4%, was achieved when Er^{3+} doped tellurite glass was combined with a c-Si cell under 1500 nm laser excitation [119]. More recently, we demonstrated a 3% improvement in short-circuit current density, as shown in Fig. 5, under a solar excitation equivalent to 16 suns, for a bifacial c-Si cell combined with ALD-grown ($\text{Er}_{0.95}\text{Ho}_{0.05}$)₂O₃ thin film [49].

Dye sensitized solar cells: The power conversion efficiency of DSSCs depends on the band gap of the dye used; for the most commonly used ruthenium dye the band gap is ~1.8 eV, which averts the cells from absorbing light beyond ~800 nm. Thus, DSSCs inherently suffer from a low PCE [24], with the record in PCE being 14.7% from the year 2015 [120]. Hence, DSSCs are arguably the solar cell type that could benefit the most from the UC integration [10].

There are several approaches when incorporating the UC layers with DSSC, as seen in Fig. 6, one of them is adding the UC material to the TiO₂ layer. This approach was pioneered by Shan and Demopoulos in 2010 [21], who fabricated a DSSC cell by incorporating (Yb³⁺, Er³⁺) co-doped

LaF₃ with the TiO₂ layer of the cell. Recently, a similar approach was followed by Qin et al. [121] in their study where Ho^{3+} -doped NaYbF₄ was added to the TiO₂ layer, increasing the PCE of the cell from 5.84% to 7.52%, under one sun illumination.

Another route to integrate UC materials to DSSC devices is to add the UC component as a rear reflector functional layer, thus serving the two purposes of light harvesting and reflection simultaneously. In 2011, Liu et al. [124] added (Yb^{3+} , Br^{3+}) co-doped $Y_3Al_5O_{12}$ layer as a back reflector, and demonstrated that 980 nm laser irradiation resulted in an enhanced J_{sc} . More recently, a remarkable 33.5% relative enhancement under one sun illumination was reported for a DSSC device in which the UC (Yb^{3+} , Br^{3+}) co-doped CeO₂, used as a back reflector and scattering layer at the back of a DSSC, was additionally doped with Fe³⁺ [125].

An alternative approach is to employ the UC material as a counter electrode for the DSSC; this was reported by Li et al. [123] in 2014 who aimed to improve the performance of the cell using a lower cost counter electrode to replace Pt. Using (Yb^{3+}, Er^{3+}) co-doped fluorine tin oxide (FTO) as a counter electrode they could achieve a relative enhancement of 24% in J_{SC} and increase the PCE from 6.7% to 7.30%, compared to a standard Pt electrode, under one sun illumination. More recently, a remarkable 68.5% relative enhancement compared to a standard UC-free Pt electrode was reported for a SnS-carbon counter electrode prepared using (Yb^{3+}, Er^{3+}) co-doped CeO₂, raising the PCE of the DSSC from 5.65% to 9.52%, under one sun irradiation [126]. Interestingly, in the same study adding a similar UC layer to the Pt-electrode based DSSC raised the PCE of the cell to 8.32%, which translates to a 47.3% relative enhancement.

Perovskite solar cells: An attractive feature of PSCs is their large absorption coefficient [127]. However, the relatively wide band gap of ~1.55 eV of the most common material components in PSCs limits the absorption of such cells to ~780 nm. This, on the other hand, makes the PSCs an ideal target for the integration of UC materials to broaden the absorption range [128]. Upconversion-enhanced PSC was first reported by Chen et al. [129] in 2016, who added (Yb³⁺,Er³⁺) co-doped LiYF₄ as an external light converting layer to the cell, to enhance the PCE by 7.9% under a 7–8 sun illumination, as shown in Fig. 7. The same technique was used more recently in a study where a plasmon-enhanced NaYF₄: Yb³⁺,Er³⁺/NaYF₄:Yb³⁺,Tm³⁺/Ag composite UC layer (Fig. 4) was found to enhance the PCE of the cell from 16.1% to 19.5% (21% increase), under one sun illumination [88]. Adding UC external layer to the rear side of the cell, showed better PCE enhancement than to the front side of

Fig. 6. I-V curves and schematic diagrams of UC assisted DSSC using different approaches; (1) incorporating the UC phosphor in the TiO₂ layer [87], (2) adding a UC rear reflector layer [122] and (3) replacing Pt counter electrode with a UC electrode [123].

Fig. 7. I-V curves and schematic diagrams of UC assisted PSC using different approaches; (1) adding the UC as an additional active layer [129], (2) incorporating UC materials in the active perovskite layer [131], and (3) incorporating the UC material in the hole transport layer (HTL) of the cell [73].

the PSC [130].

Another approach is to incorporate the UC material in the perovskite active layer. This was demonstrated in 2017 by Meng et al. [131] using β -NaYF₄:Yb³⁺,Er³⁺ nanocrystals embedded within the perovskite layer in different amounts, raising the PCE of the cell from 12.1% to 18.60% as shown in Fig. 7 on average, to achieve a remarkable relative enhancement of 54.4% compared to the control device, under one sunlight illumination.

A third approach is to add the UC component to the hole transport layer of the PSC. This was explored by He et al. [132] who added β -NaYF₄:Yb³⁺,Er³⁺ to replace the mesoporous TiO₂ layer of the cell, thus raising the PCE of the cell from 12.88% to 17.78%, under one sun illumination; an additional 0.35% increase in PCE was obtained by 980 nm laser irradiation. Later, Deng et al. [73] used the same technique adding UC Li(Gd,YF₄:Yb³⁺,Er³⁺ nano crystals with different concentrations, to a PSC, increasing the PCE of the cell from 14.7% to 18.3% (Fig. 7) and achieving almost 25% relative enhancement compared to the undoped cell under simulated one sun illumination.

In Table 2, we have collected recent highlights of the solar cell performance enhancements achieved with the UC integration. As a general comment, it should be noted that the Ln^{3+} and transition metal (e.g. Fe³⁺) dopants may, to certain extent, contribute to the observed enhancement due to their own photoluminescence effect.

5. Conclusions and outlook

In this brief overview, we have outlined the basic phenomena, material design issues and integration strategies related to the utilization of upconversion materials for enhancing the performance of various types of solar cells through spectral manipulation. This research field has been strongly emerging in recent years, and for all the major types of solar cells promising results have already been reported. For example, a J_{sc} of 20.5 mA/cm² and 21.9 which reflects a ~79% and ~63% relative enhancement to respective control devices have been reported for DSSC [126,142], while for the PSC, J_{sc} has reached of 22.7 mA/cm², reflecting a ~40% relative enhancement than the control device [131]. Here the direct comparison of the given numbers may not be fully fair though, as there are various ways to measure and express the magnitudes of performance enhancements; indeed, establishment of a more standard way

of discussing the UC-driven enhancements could be one of the development targets in future.

The progress in the field is impressive considering that originally the UC phenomenon was realized only with lasers yielding very high excitation photon densities, while the recent highlights for UC-enhanced solar cells have been demonstrated with actual sun light excitation. There is definitely still lot of space for improving the efficiency of the applied UC layers themselves. This research line should include not only the fine-tuning of the currently known UC materials but also innovative search for new UC host matrices.

Lanthanide ions embedded in different host lattices constitute the most important UC material family relevant to the PV technology. For the required capability of harvesting lower energy photons in the NIR range and emitting visible light, the most advantageous lanthanide ions are the heaviest ones: Yb3+, Tm3+, Er3+, Ho3+, and Nd3+. In practice, most of the studies have involved the combination of Yb3+ and Er3+ with the main absorption in the range 800-1000 nm; this NIR harvesting range fits quite well with the intrinsic absorption capability of the PV cells based on the wide-bandgap semiconductors (perovskite, dyesensitized and organic solar cells). On the other hand, in the case of Si-based cells this wavelength range is already well absorbed by the narrow-bandgap Si itself (absorbs well up to 1100 nm). For c-Si, instead of Yb3+, e.g. Ho3+ together with Er3+ could be more appropriate for efficient UC enhancement. Indeed, the major NIR absorption bands for Ho³⁺ and Er³⁺ are in the 1150-1230 and 1450-1580 nm ranges. In future works, more precise tuning of the UC Ln3+ ion composition/ concentration should be targeted for each solar cell type separately. Another future challenge could be to more precisely investigate and discuss the true causes of enhancements observed with the UC materials. In reality, only a fraction of the absorbed photons is converted to the UC luminescence, and besides the UC emission there is always also regular photoluminescence present. Within the solar spectrum, many of the energy states of lanthanides can be excited which may result in regular photoluminescence in the visible wavelengths. This is a challenge regarding the deeper understanding and interpretation of the experimental observations, but at the same time we should learn to take a full benefit of all the upconversion, downconversion and photoluminescence processes enabled by the different lanthanides (and even some d-block transition metals) to be able to harness all the possibilities for the best

Table 2

Recent highlights of UC-enhanced solar cells. (NG: Not given)

Host material	Ln dopant	Indicator	Irradiation	Ref. without UC	Relative enhancem.	Year/Ref
a-Si						
Y ₂ O ₃	Yb ³ ,Er ³	J_{SC}	98 suns	13.1	3.4% 4.8% 7.5%	2018 [52]
YOF						
YF3 NaVE	$Vh^3 Er^3$	L. EOE (080 nm)	AM1 5C	04.0	25% 0.05%	2018 [116]
TeO ₂ PbF ₂	$Yb^3 Er^3$	I_{SC} -EQE (980 mm)	NG	4.25	10.6%	2018 [110]
-NaYF4	Yb^3 , Er^3 , Gd^3	EQE (980 nm)	NG	0.02	0.12%	2012 [134]
-NaYF ₄	Er ³	J _{SC}	laser (980, 1560 nm)	NG	0.3 A, 0.1 A,	2012 [115]
-NaYF ₄	Yb ³ ,Er ³	Isc	AM1.5G	0.4	25%	2010 [114]
-NaYF ₄	Yb ³ ,Er ³	EQE (980 nm)	laser 980 nm	0.01	0.02%	2010 [113]
-NaYF ₄	Yb ³ ,Er ³	J _{sc}	laser 980 nm	0.005	0.005	2010 [112]
c-Si	n 3 m 3		14	1001	00/	0001 [(0]
$(Er,HO)_2O_3$ TeO, WO, 7rO, Fr.O.	Er ,HO Er ³	I_{SC}	loser 1500 nm	1021	3%	2021 [49]
BaY_2F_2	EI Fr ³	EQE (1500 mm)		~0	7.4%	2017 [119]
PbF ₂	Er ³	EQE (1560 nm)	NG	0	0.38%	2013 [100]
-NaYF ₄	Yb ³ ,Er ³	EQE (1523 nm)	77 suns	0	3.4%	2014 [136]
-NaYF ₄	Er ³	EQE (1500 nm)	$\sim 1 sun$	0	1.69%	2014 [107]
$InF_3 \ 20ZnF_2 \ 20SrF_2 \ 20BaF_2$	Yb ³ ,Er ³	EQE (1480 nm)	864 suns	0.4	0.1%	2013 [106]
BaY ₂ F ₈	Er ³	EQE (1557 nm)	~62 suns	0	6.5%	2013 [109]
-NaYF ₄	Er ³	PCE	$\sim 1 \text{ sun}$	7.68	8.6%	2012 [137]
ZrF ₄ BaF ₂ LaF ₃ AlF ₃ NaF InF ₃	Er ³	EQE (1540 nm)	NG	NG	2.4%	2011 [138]
-NaYF4	Er ³	EQE (1523 nm)	NG	0	5.1%	2010 [139]
-Natf4	Er ²	EQE (1523 nm)	NG	0	3.4%	2007 [140]
	EF	EQE (1525 IIII)	NG	0	2.5%	2005 [110]
-NaVE	Ho ³	PCF	AM 1 5G	5.8	28.8%	2021 [121]
BiYO ₂	Yb^3 Er^3	PCE	1 Sun	5.7	8.2%	2021 [121]
NaYbF4	Ho ³	PCE	1 Sun	6.4	46.1%	2021 [142]
CaWO ₄ @TiO ₂	Yb ³ ,Er ³	PCE	1 Sun	6.9	21%	2020 [143]
LiYF ₄	Yb ³ ,Er ³	PCE	AM 1.5G	5.0	51.1%	2020 [144]
Y ₂ O ₃	Ho ³ ,Yb ³	PCE	AM 1.5G	8.9%	10.3%	2020 [145]
CeO ₂ : Fe@TiO ₂	Yb ³ ,Er ³	PCE	AM 1.5G	5.5	33.5%	2020 [125]
YbF ₃ @TiO ₂	Ho ³	PCE	AM 1.5G	6.4	21%	2020 [146]
CeO ₂	Yb ³ ,Er ³	PCE	AM 1.5G	5.7	68.5%	2020 [126]
La(OH) ₃ @TiO ₂	Yb ^o ,Er ^o	PCE	AM 1.5G	6.4	38.0%	2019 [147]
Naff ₄ $(010)_2$	$Ho^3 Vh^3$	PCE	AM 1.5G	0.13	14.7	2019 [148]
1_2O_3 NaVE, @TiO ₂	$Vh^3 Fr^3$	PCF	AM 15	55	31.6%	2019 [87]
$CaCe_2(MoO_4)_4$	Yb^3 .Er ³	PCE	AM 1.5	6.5	19.9%	2018 [61]
ZnO	Yb ³ ,Er ³	PCE	AM 1.5G	8.3	8.3%	2018 [60]
-NaYF ₄	Yb ³ ,Er ³	PCE	AM 1.5G	5.6	29.8%	2018 [150]
-NaYF ₄	Yb ³ ,Er ³ /Eu ³	PCE	AM 1.5G	6.7	14.0%	2018 [151]
-NaYF ₄ @YOF	Yb ³ ,Er ³	PCE	AM 1.5G	7.0	17.1	2018 [152]
Y ₂ O ₃ @TiO ₂	Er ³	PCE	1 Sun	5.4	43.6%	2018 [153]
CeO ₂	YD^3 , Er^3	PCE	AM 1.5G	5.5	27.0%	2017 [154]
$-Na F_4 (WSIO_2 (WTIO_2))$	10,Er Er ³	PCE	AM 1.5G	5.0	10.0%	2017 [94]
-NaYF4@ -NaYF4	Yb^3 Er^3	PCE	AM 1.5G	7.1	28.2%	2016 [156]
NaYF4@SiO2@Au@TiO2	Yb^3 , Er^3	PCE	AM 1.5G	6.1	28.1%	2016 [157]
YbF ₃ /TiO ₂	Ho ³	PCE	AM 1.5G	6.5	24.6%	2016 [158]
Gd ₂ O ₃	Yb ³ ,Ho ³	PCE	1 sun	6.7	10.4%	2016 [159]
-NaGdF ₄	Yb ³ ,Er ³	PCE	AM 1.5G	3.6	19.44%	2016 [160]
$Gd_2(MoO_4)O_3$	Yb ³ ,Er ³	PCE	AM 1.5G	2.9	24.8%	2016 [161]
-NaYF4@SiO2@TiO2	Yb ³ ,Er ³	PCE	AM 1.5G	8.67	5.0%	2016 [162]
	YD^{-} , Er^{-}	PCE	AM 1.5G	5.7	25.6%	2015 [163]
-NaVE.@SiO.	$Vh^3 Fr^3$	PCE	AM 1.5G	3.2	55.4% 6.8%	2015 [104]
CeO ₂	$Yb^3 Er^3$	PCE	1 sun	5.8	15%	2015 [166]
-NaGdF₄	Yb^3 .Er ³	PCE	AM 1.5G	6.8	11.3%	2015 [167]
-NaYF ₄	Yb ³ ,Er ³ ,Tm ³	PCE	AM 1.5G	3.4	27.4%	2015 [168]
Y ₂ O ₃	Yb ³ ,Er ³	PCE	1 sun	5.9	12.5%	2015 [169]
ZnO/TiO ₂	Yb ³ ,Er ³	PCE	NG	3.0	35.8%	2015 [170]
-NaYF ₄ @TiO ₂	Yb ³ ,Er ³	PCE	1 Sun	6.2	24.5%	2014 [171]
-NaYF ₄ @ -NaYF ₄	Yb^3 , Er^3	PCE	AM 1.5G	5.0	5.9%	2014 [172]
-NaYF ₄ @SiO ₂	Yb ^o ,Er ^o	PCE	AM 1.5G	6.0	6.7%	2014 [173]
FIU E deped TiC	YD ,Er VL ³ E. ³	PCE	AM 1.5G	6.7	9.0%	2014 [123]
r -doped HO_2	10, Er Vb ³ Er ³	PGE	AWI 1.5G	0.3 5.3	40.1%	2014 [174]
۲۲:3 -NaVF₄@SiO₂@Δ11	$Vh^3 Fr^3$	PCE	AM 1.5G	5.5 7 9	20.0%	2014 [175]
-NaGdF4	Yb^3 Er^3	PCE	AM 1.5G	5.8	21.4%	2014 [1/0]
-NaYF4@SiO2@TiO2	Yb ³ ,Er ³	PCE	1 Sun	7.8	18.1	2013 [177]
TiO ₂	Er ³	PCE	AM 1.5G	4.1	62.9%	2013 [178]
TiO _{2-x} F _x	Yb ³ ,Er ³	PCE	AM 1.5G	5.4	31.1%	2013 [179]

(continued on next page)

Table 2 (continued)

Host material	Ln dopant	Indicator	Irradiation	Ref. without UC	Relative enhancem.	Year/Ref
-NaYF ₄ @TiO ₂	Yb ³ ,Er ³	PCE	AM 1.5G	3.5	23.1%	2013 [180]
-NaYF ₄	Yb ³ ,Er ³	PCE	AM 1.5G	2.7	4.4%	2012 [181]
Y ₂ O ₃	Yb ³ ,Er ³	PCE	1 sun	5.8	19.9%	2012 [182]
NaYF ₄	Yb ³ ,Er ³	PCE	AM 1.5G	1.6	11.9%	2011 [183]
TiO ₂	Yb ³ ,Er ³	PCE	AM 1.5G	6.4	13.6%	2011 [184]
Lu ₂ O ₃	Yb ³ ,Tm ³	PCE	1 sun	6.0	11.1%	2011 [185]
-NaYF ₄	Yb ³ ,Er ³	PCE	AM 1.5G	5.5	26.6%	2011 [<mark>186</mark>]
YF ₃	Yb ³ ,Er ³	PCE	1 sun	5.8	35.5%	2011 [187]
Y ₃ Al ₅ O ₁₂	Yb ³ ,Er ³	J _{sc}	laser 980 nm	~0	0.2%	2011 [124]
LaF ₃ TiO ₂	Yb ³ ,Er ³	I _{sc}	AM 1.5G	6.2	2.4%	2010 [21]
PSC						
NaCsWO ₃ @	Yb ³ ,Er ³	PCE	AM 1.5G	16.1	18.0%	2021 [<mark>188</mark>]
-NaYF ₄ @ -NaYF ₄						
IR783: NaYF4@NaYF4	Yb ³ ,Er ³ ,Nd ³	PCE	AM 1.5G	19.4	5.6%	2020 [189]
TiO ₂	Yb ³ ,Er ³	PCE	AM 1.5G	8.3	16.5%	2020 [190]
-NaYF4@NaYF4	Yb ³ ,Er ³ ,Sc ³	PCE	AM 1.5G	17.4	15.8%	2019 [<mark>191</mark>]
-NaYF4@SiO2	Yb ³ ,Tm ³	PCE	AM 1.5G	12.3	14.81%	2019 [<mark>192</mark>]
Li(Gd,Y)F ₄	Yb ³ ,Er ³	PCE	AM 1.5G	14.7	24.9%	2019 [73]
-NaYF ₄	Yb ³ , Tm ³	PCE	AM 1.5G	15.8	15.2%	2019 [<mark>193</mark>]
TiO ₂	Er ³	PCE	AM 1.5G	9.1	16.5%	2018 [194]
-NaYF ₄	Ho ³	PCE	AM 1.5G	11.1	29.0%	2018 [195]
KY ₇ F ₂₂	Yb ³ ,Er ³	PCE	AM 1.5G	13.2	6.1%	2018 [130]
TiO ₂	Yb ³ ,Er ³	PCE	AM 1.5G	14.0	17.9%	2018 [196]
-NaYF ₄ @ -NaYF ₄	Yb ³ ,Er ³ ,Tm ³	PCE	AM 1.5G	16.1	19.3%	2018 [88]
-NaYF4@ SiO2	Yb ³ ,Er ³	PCE	AM 1.5G	8.2	21.1	2018 [197]
-NaYF ₄	Yb ³ ,Er ³	PCE	AM 1.5G	13.5	46.4%	2017 [131]
TiO ₂	Yb ³ ,Er ³	PCE	AM 1.5G	10.3	20.8%	2017 [198]
-NaYF ₄ /Li Ag@SiO ₂	Yb ³ ,Er ³	PCE	AM 1.5G	7.8	33.4%	2017 [199]
-NaYF ₄ -IRM06	Yb ³ ,Er ³	PCE	AM 1.5G	13.5	29.4%	2017 [200]
mCu _{2 x} S _x @SiO ₂ @Er ₂ O ₃	Er ³	PCE	AM 1.5G	16.2	9.9%	2017 [201]
LiYF ₄	Yb ³ ,Er ³	PCE	7-8 Suns	11	7.9%	2016 [129]
-NaYF4	Yb ³ ,Er ³	PCE	AM 1.5G	12.9	9.8%	2016 [132]
-NaYF ₄	Yb ³ ,Er ³	PCE	AM 1.5G	14.1	13.7%	2016 [202]
-NaYF ₄ @ -NaYF ₄	Yb ³ , Tm ³	PCE	AM 1.5G	14.7	8.8%	2016 [203]
Others						
(QDSSC)TiO ₂ /CdS/ -NaYF ₄	Yb ³ ,Er ³	PCE	1 sun	2.14	106%	2020 [204]
(QDSSC)TiO ₂	Yb ³ ,Er ³	PCE	AM 1.5G	2.9	20%	2020 [205]
(GaAs) -NaYF ₄	Yb ³ ,Er ³	PCE	AM 1.5G	7.9	68.4%	2018 [206]
(Polymer) -NaYF ₄	Yb ³ ,Er ³	PCE	AM 1.5G	3.1	6.5%	2014 [207]
(Organic) -NaYF ₄	Yb ³ ,Er ³	PCE	laser (980 nm)	0.0048	29.1%	2012 [208]
(Organic) Y ₂ BaZnO ₅	Yb ³ ,Ho ³	EQE (980 nm)	laser (980 nm)	0.2	4.95%	2012 [209]
-			~37 suns			
(GaAs) Y ₆ W ₂ O ₁₅	Yb ³ ,Er ³	I _{sc}	laser (973 nm)	0	3.58 A	2012 [210]
(GaAs) vitroceramic	Yb ³ ,Er ³	PCE	NG	0	2.5%	1996 [20]

possible utilization of these different energy conversion processes.

From the practical performance point of view, the era of UCenhanced PV is yet in its infancy, considering how far we are from the possibly achievable maximum values. Among the different PV technologies, the market leading c-Si technology could turn out to be the most rewarding for the UC enhancement efforts in the sense that the performance of these cells is otherwise approaching a kind of saturation (current records around 27% versus the ~30% S-Q limit), meaning that the improvements expected through standard PV development efforts can be only fractional [211,212]. Optimistically, for the UC-enhanced c-Si PV technology the new target could be set much higher, even up to 40%, to truly shake the PV community.

From another perspective, it is difficult to see that the UC-enhanced solar cells could as such compete with the recent developments in the PV field, such as the tandem cells or new solar cell materials. Nevertheless, the UC components can be considered as a complementary technology which rather builds on top of the existing technologies providing extra boost to these technologies. A clear advantage is the relatively easy integration of the UC layers into the current PV cells, without drastically affecting the device configurations or process lines. Here the already existing strong c-Si PV infrastructure could be highly beneficial for the fast transition from the innovation to the commercial large-scale utilization.

Finally, we like to emphasize the importance of the fabrication technique of the UC layers/coatings. The conventional solution-based

spin-coating, spray-drying and electrodeposition methods offer limited control over the film thickness and conformality, and are less feasible from the industry points of view. Here advanced gas-phase thin film techniques could offer clear benefits, being for example free from solvent impurities. The ALD technique in particular known as the state-ofthe-art gas-phase thin-film technology in conventional microelectronics

vields precisely thickness-controlled, conformal, and uniform coatings over large-area and complex substrate surfaces. The ALD technology is already well integrated with the silicon-based PV industry for the fabrication of metal oxide surface passivation layers [213,214], where it has proven its capability to fulfil the cost, throughput and performance criteria. Moreover, we already have the required well-behaving ALD processes available for a number of Ln-based thin films [215], including those with promising photoluminescence and upconversion properties. The ALD precursors employed are non-toxic and safe to handle, but naturally the lanthanides used as the UC activators in general are considered as critical raw materials, which should be taken into account considering their mass production for GW-scale PV factories. Despite the great prospects, efforts to integrate the ALD-grown UC films with actual PV cells have remained scarce. An exciting idea would be to develop a new ALD UC coating that could simultaneously work as the surface passivation layer.

CRediT authorship contribution statement

Amr Ghazy: Conceptualization, Visualization, Writing original draft. Muhammad Safdar: Writing review & editing. Mika Lastusaari: Writing original draft. Hele Savin: Writing original draft. Maarit Karppinen: Conceptualization, Supervision, Funding acquisition, Writing original draft.

Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Acknowledgements

Funding was received from the Academy of Finland (Profi 3), and the Flagship Programme, Photonics Research and Innovation (PREIN). Also, Amr Ghazy acknowledges Jenny & Antti Wihuri Foundation for financial support.

References

- Global market for solar power overview, Sol. Power Eur. (2020) 17. http s://www.solarpowereurope.org/european-market-outlook-for-solar-power-202 0-2024/. (Accessed 11 January 2021).
- [2] A. Khare, A critical review on the efficiency improvement of upconversion assisted solar cells, J. Alloys Compd. 821 (2020) 153214, https://doi.org/ 10.1016/j.jallcom.2019.153214.
- [3] K. Yoshikawa, H. Kawasaki, W. Yoshida, T. Irie, K. Konishi, K. Nakano, T. Uto, D. Adachi, M. Kanematsu, H. Uzu, K. Yamamoto, Silicon heterojunction solar cell with interdigitated back contacts for a photoconversion efficiency over 26%, Nat. Energy 2 (2017) 1 8, https://doi.org/10.1038/nenergy.2017.32.
- [4] D.E. Carlson, C.R. Wronski, Amorphous silicon solar cell, Appl. Phys. Lett. 28 (1976) 671 673, https://doi.org/10.1063/1.88617.
- [5] B. O Regan, M. Grätzel, A low-cost, high-efficiency solar cell based on dyesensitized colloidal TiO₂ films, Nature 353 (1991) 737 740, https://doi.org/ 10.1038/353737a0.
- [6] A. Kojima, K. Teshima, Y. Shirai, T. Miyasaka, Organometal halide perovskites as visible-light sensitizers for photovoltaic cells, J. Am. Chem. Soc. 131 (2009) 6050 6051, https://doi.org/10.1021/ja809598r.
- [7] N.G. Park, Perovskite solar cells: an emerging photovoltaic technology, Mater. Today 18 (2015) 65 72, https://doi.org/10.1016/j.mattod.2014.07.007.
- [8] W.S. Yang, J.H. Noh, N.J. Jeon, Y.C. Kim, S. Ryu, J. Seo, S. Il Seok, Highperformance photovoltaic perovskite layers fabricated through intramolecular exchange, Science 348 (80) (2015) 1234 1237, https://doi.org/10.1126/science. aaa9272.
- [9] T. Trupke, M.A. Green, P. Würfel, Improving solar cell efficiencies by upconversion of sub-band-gap light, J. Appl. Phys. 92 (2002) 4117 4122, https:// doi.org/10.1063/1.1505677.
- [10] J.C. Goldschmidt, S. Fischer, Upconversion for photovoltaics a review of materials, devices and concepts for performance enhancement, Adv. Opt. Mater. 3 (2015) 510 535, https://doi.org/10.1002/adom.201500024.
- [11] W. Shockley, H.J. Queisser, Detailed balance limit of efficiency of p-n junction solar cells, J. Appl. Phys. 32 (1961) 510 519, https://doi.org/10.1063/ 1.1736034.
- [12] J. De Wild, A. Meijerink, J.K. Rath, W.G.J.H.M. Van Sark, R.E.I. Schropp, Upconverter solar cells: materials and applications, Energy Environ. Sci. 4 (2011) 4835 4848, https://doi.org/10.1039/c1ee01659h.
- [13] J.F. Geisz, R.M. France, K.L. Schulte, M.A. Steiner, A.G. Norman, H.L. Guthrey, M. R. Young, T. Song, T. Moriarty, Six-junction III V solar cells with 47.1% conversion efficiency under 143 Suns concentration, Nat. Energy 5 (2020) 326 335, https://doi.org/10.1038/s41560-020-0598-5.
- [14] A. Al-Ashouri, E. Köhnen, B. Li, A. Magomedov, H. Hempel, P. Caprioglio, J. A. Márquez, A.B.M. Vilches, E. Kasparavicius, J.A. Smith, N. Phung, D. Menzel, M. Grischek, L. Kegelmann, D. Skroblin, C. Gollwitzer, T. Malinauskas, M. Jošt, G. Matič, B. Rech, R. Schlatmann, M. Topič, L. Korte, A. Abate, B. Stannowski, D. Neher, M. Stolterfoht, T. Unold, V. Getautis, S. Albrecht, Monolithic perovskite/silicon tandem solar cell with >29% efficiency by enhanced hole extraction, Science 370 (2020) 1300 1309, https://doi.org/10.1126/science.abd4016.
- [15] E. Hemmer, A. Benayas, F. Légaré, F. Vetrone, Exploiting the biological windows: current perspectives on fluorescent bioprobes emitting above 1000 nm, Nanoscale Horizons 1 (2016) 168 184. https://doi.org/10.1039/c5nh00073d.
- [16] J. Xu, P. Yang, M. Sun, H. Bi, B. Liu, D. Yang, S. Gai, F. He, J. Lin, Highly emissive dye-sensitized upconversion nanostructure for dual-photosensitizer photodynamic therapy and bioimaging, ACS Nano 11 (2017) 4133 4144, https:// doi.org/10.1021/acsnano.7b00944.

- [17] Z. Zhang, S. Shikha, J. Liu, J. Zhang, Q. Mei, Y. Zhang, Upconversion nanoprobes: recent advances in sensing applications, Anal. Chem. 91 (2019) 548 568, https:// doi.org/10.1021/acs.analchem.8b04049.
- [18] R. Deng, F. Qin, R. Chen, W. Huang, M. Hong, X. Liu, Temporal full-colour tuning through non-steady-state upconversion, Nat. Nanotechnol. 10 (2015) 237 242, https://doi.org/10.1038/nnano.2014.317.
- [19] X. Huang, S. Han, W. Huang, X. Liu, Enhancing solar cell efficiency: the search for luminescent materials as spectral converters, Chem. Soc. Rev. 42 (2013) 173 201, https://doi.org/10.1039/C2CS35288E.
- [20] P. Gibart, F. Auzel, J.C. Guillaume, K. Zahraman, Below band-gap IR response of substrate-free GaAs solar cells using two-photon up-conversion, Jpn. J. Appl. Phys., Part 1 (35) (1996) 4401 4402, https://doi.org/10.1143/jjap.35.4401.
- [21] G.-B. Shan, G.P. Demopoulos, Near-infrared sunlight harvesting in dye-sensitized solar cells via the insertion of an upconverter-TiO₂ nanocomposite layer, Adv. Mater. 22 (2010) 4373 4377, https://doi.org/10.1002/adma.201001816.
- [22] W. Wang, M. Zhao, C. Zhang, H. Qian, Recent advances in controlled synthesis of upconversion nanoparticles and semiconductor heterostructures, Chem. Rec. 20 (2020) 2 9, https://doi.org/10.1002/tcr.201900006.
- [23] Y. Wang, K. Zheng, S. Song, D. Fan, H. Zhang, X. Liu, Remote manipulation of upconversion luminescence, Chem. Soc. Rev. 47 (2018) 6473 6485, https://doi. org/10.1039/c8cs00124c.
- [24] D. Li, H. Ågren, G. Chen, Near infrared harvesting dye-sensitized solar cells enabled by rare-earth upconversion materials, Dalton Trans. 47 (2018) 8526 8537, https://doi.org/10.1039/C7DT04461E.
- [25] S.K. Karunakaran, G.M. Arumugam, W. Yang, S. Ge, S.N. Khan, X. Lin, G. Yang, Research progress on the application of lanthanide-ion-doped phosphor materials in perovskite solar cells, ACS Sustain. Chem. Eng. 9 (2021) 1035 1060, https:// doi.org/10.1021/acssuschemeng.0c07319.
- [26] F. Auzel, Upconversion and anti-Stokes processes with f and d Ions in solids, Chem. Rev. 104 (2004) 139 173, https://doi.org/10.1021/cr020357g.
- [27] T.N. Singh-Rachford, F.N. Castellano, Photon upconversion based on sensitized triplet-triplet annihilation, Coord. Chem. Rev. 254 (2010) 2560 2573, https:// doi.org/10.1016/j.ccr.2010.01.003.
- [28] S.V. Eliseeva, Luminescence of lanthanide ions in coordination compounds and nanomaterials, in: Ana de Bettencourt-Dias (Ed.), Wiley, 2015, https://doi.org/ 10.1002/anie.201504040.
- [29] J. Zhou, Q. Liu, W. Feng, Y. Sun, F. Li, Upconversion luminescent materials: advances and applications, Chem. Rev. 115 (2015) 395 465, https://doi.org/ 10.1021/cr400478f.
- [30] H. Dong, L.D. Sun, C.H. Yan, Energy transfer in lanthanide upconversion studies for extended optical applications, Chem. Soc. Rev. 44 (2015) 1608 1634, https:// doi.org/10.1039/c4cs00188e.
- [31] F. Huang, X. Liu, Y. Ma, S. Kang, L. Hu, D. Chen, Origin of near to middle infrared luminescence and energy transfer process of Er³ /Yb³ co-doped fluorotellurite glasses under different excitations, Sci. Rep. 5 (2015) 8233, https://doi.org/ 10.1038/srep08233.
- [32] M. Safdar, A. Ghazy, M. Lastusaari, M. Karppinen, Lanthanide-based inorganicorganic hybrid materials for photon-upconversion, J. Mater. Chem. C. 8 (2020) 6946 6965, https://doi.org/10.1039/d0tc01216e.
- [33] Y. Arai, T. Yamashidta, T. Suzuki, Y. Ohishi, Upconversion properties of Tb³ -Yb³ codoped fluorophosphate glasses, J. Appl. Phys. 105 (2009), 083105, https://doi.org/10.1063/1.3112010.
- [34] S.V. Eliseeva, J.C.G. Bünzli, Lanthanide luminescence for functional materials and bio-sciences, Chem. Soc. Rev. 39 (2010) 189 227, https://doi.org/10.1039/ b905604c.
- [35] F.E. Auzel, Materials and devices using double-pumped phosphors with energy transfer, Proc. IEEE 61 (1973) 758 786, https://doi.org/10.1109/ PROC 1973 9155
- [36] A. Nadort, J. Zhao, E.M. Goldys, Lanthanide upconversion luminescence at the nanoscale: Fundamentals and optical properties, Nanoscale 8 (2016) 13099 13130, https://doi.org/10.1039/c5nr08477f.
- [37] F. Wang, X. Liu, Recent advances in the chemistry of lanthanide-doped upconversion nanocrystals, Chem. Soc. Rev. 38 (2009) 976–989, https://doi.org/ 10.1039/b809132n.
- [38] F. Auzel, D. Pecile, Comparison and efficiency of materials for summation of photons assisted by energy transfer, J. Lumin. 8 (1973) 32 43, https://doi.org/ 10.1016/0022-2313(73)90033-1.
- [39] N. Menyuk, K. Dwight, J.W. Pierce, NaYF₄:Yb,Er an efficient upconversion phosphor, Appl. Phys. Lett. 21 (1972) 159 161, https://doi.org/10.1063/ 1.1654325.
- [40] T. Kano, H. Yamamoto, Y. Otomo, NaLnF₄:Yb³, Er³ (Ln:Y,Gd,La): efficient green-emitting infrared-excited phosphors, J. Electrochem. Soc. 119 (1972) 1561, https://doi.org/10.1149/1.2404042.
- [41] K.W. Krämer, D. Biner, G. Frei, H.U. Güdel, M.P. Hehlen, S.R. Lüthi, Hexagonal sodium yttrium fluoride based green and blue emitting upconversion phosphors, Chem. Mater. 16 (2004) 1244 1251, https://doi.org/10.1021/cm0311240.
- [42] D. Kumar, S.K. Sharma, S. Verma, V. Sharma, V. Kumar, A short review on rare earth doped NaYF₄ upconverted nanomaterials for solar cell applications. Mater. Today Proc., Elsevier Ltd, 2020, pp. 1868 1874, https://doi.org/10.1016/j. matpr.2020.01.243.
- [43] F. Wang, J. Wang, X. Liu, Direct evidence of a surface quenching effect on sizedependent luminescence of upconversion nanoparticles, Angew. Chem. Int. Ed. 49 (2010) 7456 7460, https://doi.org/10.1002/anie.201003959.
- [44] H. Lakhotiya, A. Nazir, S. Roesgaard, E. Eriksen, J. Christiansen, M. Bondesgaard, F.C.J.M. Van Veggel, B.B. Iversen, P. Balling, B. Julsgaard, Resonant plasmonenhanced upconversion in monolayers of core-shell nanocrystals: role of shell

thickness, ACS Appl. Mater. Interfaces 11 (2019) 1209 1218, https://doi.org/ 10.1021/acsami.8b15564.

- [45] F. Trabelsi, F. Mercier, E. Blanquet, A. Crisci, R. Salhi, Synthesis of upconversion TiO₂:Er³ -Yb³ nanoparticles and deposition of thin films by spin coating technique, Ceram. Int. 46 (2020) 28183 28192, https://doi.org/10.1016/j. ceramint.2020.07.317.
- [46] H.J. da Silva, J.P. Batista, L.A. Rocha, E.J. Nassar, Improved efficiency of silicon polycrystalline commercial photovoltaic cells coated with a co-doped Er^3 /Yb³ silica matrix, J. Mater. Sci. Mater. Electron. 30 (2019) 16886 16891, https://doi.org/10.1007/s10854-019-01549-w.
- [47] S. George, Atomic layer deposition: an overview, Chem. Rev. 110 (2010) 111 131.
- [48] M. Tuomisto, Z. Giedraityte, M. Karppinen, M. Lastusaari, Photon up-converting (Yb,Er)₂O₃ thin films by atomic layer deposition, Phys. Status Solidi Rapid Res. Lett. 11 (2017) 1700076, https://doi.org/10.1002/pssr.201700076.
- [49] A. Ghazy, M. Safdar, M. Lastusaari, A. Aho, A. Tukiainen, H. Savin, M. Guina, M. Karppinen, Luminescent (Er,Ho)₂O₃ thin films by ALD to enhance the performance of silicon solar cells, Sol. Energy Mater. Sol. Cells 219 (2021) 110787, https://doi.org/10.1016/j.solmat.2020.110787.
- [50] C. de Mayrinck, R.L. Siqueira, J. Esbenshade, M.A. Schiavon, R.C. de Lima, H. P. Barbosa, S.J. Lima Ribeiro, J.L. Ferrari, Downconversion and upconversion observed from Er³ /Yb³ /Eu³ tri-doped-Y₂O₃ for application in energy conversion, J. Alloys Compd. 816 (2020) 152591, https://doi.org/10.1016/j. jallcom.2019.152591.
- [51] H. Wu, Z. Hao, L. Zhang, X. Zhang, G.-H. Pan, Y. Luo, H. Wu, H. Zhao, H. Zhang, J. Zhang, Enhancing IR to NIR upconversion emission in Er³ -sensitized phosphors by adding Yb³ as a highly efficient NIR-emitting center for photovoltaic applications, CrystEngComm 22 (2020) 229–236, https://doi.org/10.1039/C9CE01386E.
- [52] K.K. Markose, R. Anjana, A. Antony, M.K. Jayaraj, Synthesis of Yb³ /Er³ codoped Y₂O₃, YOF and YF₃ UC phosphors and their application in solar cell for subbandgap photon harvesting, J. Lumin. 204 (2018) 448 456, https://doi.org/ 10.1016/j.jlumin.2018.08.005.
- [53] P. G uchowski, . Marciniak, M. Lastusaari, W. Stręk, Key factors tuning upconversion and near infrared luminescence in nanosized Lu₂O₃:Er³, Yb³, J. Alloys Compd. 799 (2019) 481–494, https://doi.org/10.1016/j. jallcom.2019.05.358.
- [54] H. Shaier, A. Salah, W.M. Mousa, S.S. Hamed, I.K. Battisha, Physical properties and up-conversion development of Ho³ ions loaded in nano-composite silica titania thin film, Mater. Res. Express 7 (2020), 096403, https://doi.org/10.1088/ 2053-1591/abb4fe.
- [55] J.M.M. Buarque, D. Manzani, S.L. Scarpari, M. Nalin, S.J.L. Ribeiro, J. Esbenshade, M.A. Schiavon, J.L. Ferrari, SiO₂-TiO₂ doped with Er³ /Yb³ /Eu³ photoluminescent material: a spectroscopy and structural study about potential application for improvement of the efficiency on solar cells, Mater. Res. Bull. 107 (2018) 295 307, https://doi.org/10.1016/j.materresbull.2018.07.007.
- [56] J. Zhao, J. Li, Y. Wang, W. Ni, Fabrication and broadband upconversion luminescence of Au@TiO₂:Yb,Er core-shell nanostructures, Chem. Lett. 48 (2019) 651 653, https://doi.org/10.1246/cl.190184.
- [57] R.Y.S. Zampiva, C.G. Kaufmann, L.H. Acauan, R.L. Seeger, F. Bonatto, C. D. Boeira, W.Q. Santos, C. Jacinto, C.A. Figueroa, L.S. Dorneles, A.K. Alves, C. P. Bergmann, C.S. ten Caten, Luminescent anti-reflection coatings based on Er³ doped forsterite for commercial silicon solar cells applications, Sol. Energy 170 (2018) 752 761, https://doi.org/10.1016/j.solener.2018.05.097.
- [2018] J. Zhang, J. Chen, F. Qian, Y. Zhang, S. An, Ratiometric fluorescence temperature-sensing properties of Eu³ and Tm³ in Gd_{4,6}/Si₃O₁₃ oxide host, Opt Laser. Technol. 138 (2021) 106854, https://doi.org/10.1016/j.optlastec.2020.106854.
 [59] J. Zhang, J. Chen, Y. Zhang, S. An, Yb³ /Tm³ and Yb³ /Ho³ doped
- [59] J. Zhang, J. Chen, Y. Zhang, S. An, Yb³ / Im³ and Yb³ /Ho³ doped NaY₉(SiO₄)₆O₂ phosphors: upconversion luminescence processes, temperaturedependent emission spectra and optical temperature-sensing properties, J. Alloys Compd. 860 (2021) 158473, https://doi.org/10.1016/j.jallcom.2020.158473.
- [60] V. Kumar, A. Pandey, S.K. Swami, O.M. Ntwaeaborwa, H.C. Swart, V. Dutta, Synthesis and characterization of Er³ -Yb³ doped ZnO upconversion nanoparticles for solar cell application, J. Alloys Compd. 766 (2018) 429 435, https://doi.org/10.1016/j.jallcom.2018.07.012.
- [61] M.S. Morassaei, A. Salehabadi, A. Akbari, S.H. Tavassoli, M. Salavati-Niasari, Enhanced dye sensitized solar cells efficiency by utilization of an external layer of CaCe₂(MoO₄)₄:Er³ /Yb³ nanoparticles, J. Alloys Compd. 769 (2018) 732 739, https://doi.org/10.1016/j.jallcom.2018.08.037.
- [62] P.K. Vishwakarma, S.B. Rai, A. Bahadur, Intense red and green emissions from Ho³ /Yb³ co-doped sodium gadolinium molybdate nano-phosphor: effect of calcination temperature and Intrinsic optical bistability, Mater. Res. Bull. 133 (2021) 111041, https://doi.org/10.1016/j.materresbull.2020.111041.
- [63] W. Ge, W. Gao, Y. Tian, P. Zhang, J. Zhu, Y. Li, Tunable dual-mode photoluminescences from SrAl₂O₄: Eu/Yb nanofibers by different atmospheric annealing, J. Alloys Compd. 859 (2021) 158261, https://doi.org/10.1016/j. jallcom.2020.158261.
- [64] J. Xu, Y. Zhou, Z. Li, C. Lin, X. Zheng, T. Lin, X. Wu, F. Wang, Microstructural, ferroelectric and photoluminescence properties of Er³ -doped Ba_{0.85}Ca_{0.15}Ti_{0.9}Zr_{0.1}O₃ thin films, Mater. Chem. Phys. 262 (2021) 124320, https://doi.org/10.1016/j.matchemphys.2021.124320.
- [65] O.B. Silva, V.A.G. Rivera, Y. Ledemi, Y. Messaddeq, E. Marega, Germanium concentration effects on the visible emission properties of Er³ in tellurite glasses, J. Lumin. 232 (2021) 117808, https://doi.org/10.1016/j.jlumin.2020.117808.

- [66] A. Kumar, A. Bahadur, Intense green upconversion emission by photon avalanche process from Er³ /Yb³ co-doped NaBi(WO₄)₂ phosphor, J. Alloys Compd. 857 (2021) 158196, https://doi.org/10.1016/j.jallcom.2020.158196.
- [67] I. Norrbo, I. Hyppänen, M. Lastusaari, Up-conversion luminescence a new property in tenebrescent and persistent luminescent hackmanites, J. Lumin. 191 (2017) 28 34, https://doi.org/10.1016/j.jlumin.2017.02.046.
 [68] Y. Zhang, H. Lei, G. Li, L. Zeng, J. Tang, Yb³ /Er³ co-doped transparent tellurite
- [68] Y. Zhang, H. Lei, G. Li, L. Zeng, J. Tang, Yb³ /Er³ co-doped transparent tellurite glass-ceramic for enhanced upconversion luminescence, Opt. Mater. 99 (2020) 109552, https://doi.org/10.1016/j.optmat.2019.109552.
- [69] M. Gunaseelan, S. Yamini, G.A. Kumar, J. Senthilselvan, Highly efficient upconversion luminescence in hexagonal NaYF₄:Yb³, Er³ nanocrystals synthesized by a novel reverse microemulsion method, Opt. Mater. 75 (2018) 174 186, https://doi.org/10.1016/j.optmat.2017.10.012.
- [70] A.L. Pellegrino, M.R. Catalano, P. Cortelletti, G. Lucchini, A. Speghini, G. Malandrino, Novel sol-gel fabrication of Yb³ /Tm³ co-doped -NaYF₄ thin films and investigation of their upconversion properties, Photochem. Photobiol. Sci. 17 (2018) 1239 1246, https://doi.org/10.1039/c8pp00295a.
- [71] F. Xu, H. Gao, J. Liang, S. Jin, J. Zhao, Y. Liu, H. Zhang, Z. Zhang, Y. Mao, Enhanced upconversion luminescence in Cu_{1.8}S@NaYF₄:Yb@NaYF₄:Yb,Er coreshell nanoparticles, Ceram. Int. 45 (2019) 21557 21563, https://doi.org/ 10.1016/j.ceramint.2019.07.149.
- [72] N. Ojha, M. Tuomisto, M. Lastusaari, L. Petit, Upconversion from fluorophosphate glasses prepared with NaYF₄:Er³, Yb³ nanocrystals, RSC Adv. 8 (2018), https:// doi.org/10.1039/c8ra03298j, 19226 19236.
- [73] X. Deng, C. Zhang, J. Zheng, X. Zhou, M. Yu, X. Chen, S. Huang, Highly bright Li (Gd,Y)F₄:Yb,Er upconverting nanocrystals incorporated hole transport layer for efficient perovskite solar cells, Appl. Surf. Sci. 485 (2019) 332 341, https://doi. org/10.1016/j.apsusc.2019.04.226.
- [74] M. Gupta, M. Adnan, R. Nagarajan, G. Vijaya Prakash, Color-tunable upconversion in Er³ /Yb³ -codoped KLaF₄ nanophosphors by incorporation of Tm³ ions for biological applications, ACS Omega 4 (2019) 2275 2282, https:// doi.org/10.1021/acsomega.8b03075.
- [75] M. Zeng, S. Singh, Z. Hens, J. Liu, F. Artizzu, R. Van Deun, Strong upconversion emission in CsPbBr₃ perovskite quantum dots through efficient BaYF₅:Yb,Ln sensitization, J. Mater. Chem. C 7 (2019) 2014 2021, https://doi.org/10.1039/ c8tc06063k.
- [76] H.K. Dan, T.D. Tap, H.X. Vinh, H.T. Nguyen-Truong, J. Qiu, D. Zhou, N.M. Ty, Effects of La³ on the enhancement NIR quantum cutting and UC emissions in Nd³ Yb³ co-doped transparent silicate glass-ceramics for solar cells, Opt. Mater. 95 (2019) 109229, https://doi.org/10.1016/j.optmat.2019.109229.
- [77] Y. Li, Z. Di, J. Gao, P. Cheng, C. Di, G. Zhang, B. Liu, X. Shi, L.-D. Sun, L. Li, C.-H. Yan, Heterodimers made of upconversion nanoparticles and metal organic frameworks, J. Am. Chem. Soc. 139 (2017) 13804 13810, https://doi.org/ 10.1021/jacs.7b07302.
- [78] T. Wu, B. Li, J. Sun, M. Shao, X. Ma, Z. Bai, Preparation of PbF₂:Ho³, Er³, Yb³ phosphors and its multi-wavelength sensitive upconversion luminescence mechanism, Mater. Res. Bull. 107 (2018) 308 313, https://doi.org/10.1016/j. materresbull.2018.08.006.
- [79] A.L. Pellegrino, P. Cortelletti, M. Pedroni, A. Speghini, G. Malandrino, Nanostructured CaF₂:Ln³ (Ln³ Yb³ /Er³, Yb³ /Tm³) thin films: MOCVD fabrication and their upconversion properties, Adv. Mater. Interfaces 4 (2017) 1700245, https://doi.org/10.1002/admi.201700245.
- [80] A.L. Pellegrino, S. La Manna, A. Bartasyte, P. Cortelletti, G. Lucchini, A. Speghini, G. Malandrino, Upconverting tri-doped calcium fluoride-based thin films: a comparison of the MOCVD and sol-gel preparation methods, J. Mater. Chem. C 8 (2020) 3865 3877, https://doi.org/10.1039/c9tc06350a.
- [81] T. Castro, D. Manzani, S.J.L. Ribeiro, Up-conversion mechanisms in Er³ -doped fluoroindate glasses under 1550 nm excitation for enhancing photocurrent of crystalline silicon solar cell, J. Lumin. 200 (2018) 260 264, https://doi.org/ 10.1016/j.jlumin.2018.04.028.
- [82] A. Tymiński, T. Grzyb, Are rare earth phosphates suitable as hosts for upconversion luminescence? Studies on nanocrystalline REPO₄ (RE Y, La, Gd, Lu) doped with Yb³ and Eu³, Tb³, Ho³, Er³ or Tm³ ions, J. Lumin. 181 (2017) 411 420, https://doi.org/10.1016/j.jlumin.2016.09.028.
- [83] B. Glorieux, T. Salminen, J. Massera, M. Lastusaari, L. Petit, Better understanding of the role of SiO₂, P₂O₅ and Al₂O₃ on the spectroscopic properties of Yb³ doped silica sol-gel glasses, J. Non-Cryst. Solids 482 (2018) 46 51, https://doi.org/ 10.1016/j.jnoncrysol.2017.12.021.
- [84] M. Lun, W. Wu, Z. Xing, H. Song, Y. Wang, W. Li, B. Chu, Q. He, Upconversion photoluminescence of Er³ and Yb³ codoped MoS₂ powders, J. Lumin. 223 (2020) 117189, https://doi.org/10.1016/j.jlumin.2020.117189.
- [85] Z. Giedraityte, M. Tuomisto, M. Lastusaari, M. Karppinen, Three- and two-photon NIR-to-vis (Yb,Er) upconversion from ALD/MLD-fabricated molecular hybrid thin films, ACS Appl. Mater. Interfaces 10 (2018) 8845 8852, https://doi.org/ 10.1021/acsami.7b19303.
- [86] M. Tuomisto, Z. Giedraityte, L. Mai, A. Devi, V. Boiko, K. Grzeszkiewicz, D. Hreniak, M. Karppinen, M. Lastusaari, Up-converting ALD/MLD thin films with Yb³, Er³ in amorphous organic framework, J. Lumin. 213 (2019) 310 315, https://doi.org/10.1016/j.jlumin.2019.05.028.
- [87] J. Dutta, V.K. Rai, M.M. Durai, R. Thangavel, Development of Y₂O₃:Ho³ /Yb³ upconverting nanophosphors for enhancing solar cell efficiency of dye-sensitized solar cells, IEEE J. Photovoltaics 9 (2019) 1040 1045, https://doi.org/10.1109/JPHOTOV.2019.2912719.
- [88] H. Li, C. Chen, J. Jin, W. Bi, B. Zhang, X. Chen, L. Xu, D. Liu, Q. Dai, H. Song, Near-infrared and ultraviolet to visible photon conversion for full spectrum

Solar Energy Materials and Solar Cells 230 (2021) 111234

response perovskite solar cells, Nanomater. Energy 50 (2018) 699 709, https://doi.org/10.1016/j.nanoen.2018.06.024.

- [89] H. Huang, C. Modanese, S. Sun, G. von Gastrow, J. Wang, T.P. Pasanen, S. Li, L. Wang, Y. Bao, Z. Zhu, S. Sneck, H. Savin, Effective passivation of p and n emitters using SiO₂/Al₂O₃/SiN_x stacks: surface passivation mechanisms and application to industrial p-PERT bifacial Si solar cells, Sol. Energy Mater. Sol. Cells 186 (2018) 356 364, https://doi.org/10.1016/j.solmat.2018.07.007.
- [90] H. Huang, L. Wang, L. Mandrell, C. Modanese, S. Sun, J. Wang, A. Wang, J. Zhao, B. Adibi, H. Savin, Boron implanted junction with in situ oxide passivation and application to p-PERT bifacial silicon solar cell, Phys. Status Solidi Appl. Mater. Sci. 216 (2019) 1800414, https://doi.org/10.1002/pssa.201800414.
- [91] K. Chen, V. Vahanissi, Z.J. Rad, J.P. Lehtio, P. Laukkanen, M. Yli-Koski, H. Savin, Black Silicon Boron Emitter Solar Cells with EQE above 95% in UV, in: Conf. Rec. IEEE Photovolt. Spec. Conf., Institute of Electrical and Electronics Engineers Inc., 2020, pp. 2586 2589, https://doi.org/10.1109/PVSC45281.2020.9300686.
- [92] H. Savin, P. Repo, G. Von Gastrow, P. Ortega, E. Calle, M. Garín, R. Alcubilla, Black silicon solar cells with interdigitated back-contacts achieve 22.1% efficiency, Nat. Nanotechnol. 10 (2015) 624 628, https://doi.org/10.1038/ nnano.2015.89.
- [93] M. Saboktakin, X. Ye, S.J. Oh, S.H. Hong, A.T. Fafarman, U.K. Chettiar, N. Engheta, C.B. Murray, C.R. Kagan, Metal-enhanced upconversion luminescence tunable through metal nanoparticle-nanophosphor separation, ACS Nano 6 (2012) 8758 8766, https://doi.org/10.1021/nn302466r.
- [94] J. Wang, Y. Niu, M. Hojamberdiev, F.M. Alamgir, Y. Cai, K. Jacob, Novel triplelayered photoanodes based on TiO₂ nanoparticles, TiO₂ nanotubes, and -NaYF₄: Er³, Yb³ @SiO₂@TiO₂ for highly efficient dye-sensitized solar cells, Sol. Energy Mater. Sol. Cells 160 (2017) 361 371, https://doi.org/10.1016/j. solmat.2016.10.046.
- [95] E. Ahvenniemi, M. Karppinen, In situ atomic/molecular layer-by-layer deposition of inorganic-organic coordination network thin films from gaseous precursors, Chem. Mater. 28 (2016) 6260 6265, https://doi.org/10.1021/acs. chemmater.6b02496.
- [96] J. Penttinen, M. Nisula, M. Karppinen, New s-block metal pyridinedicarboxylate network structures through gas-phase thin-film synthesis, Chem. Eur J. 25 (2019) 11466 11473, https://doi.org/10.1002/chem.201901034.
- [97] P.A. Hansen, H. Fjellvåg, T.G. Finstad, O. Nilsen, Luminescence properties of europium titanate thin films grown by atomic layer deposition, RSC Adv. 4 (2014) 11876 11883, https://doi.org/10.1039/c3ra47469k.
- [98] Z. Giedraityte, P. Sundberg, M. Karppinen, Flexible inorganic organic thin film phosphors by ALD/MLD, J. Mater. Chem. C 3 (2015) 12316 12321, https://doi. org/10.1039/C5TC03201F.
- [99] Z. Giedraityte, L.S. Johansson, M. Karppinen, ALD/MLD fabrication of luminescent Eu-organic hybrid thin films using different aromatic carboxylic acid components with N and O donors, RSC Adv. 6 (2016) 103412 103417, https:// doi.org/10.1039/c6ra24175a.
- [100] L. Mai, Z. Giedraityte, M. Schmidt, D. Rogalla, S. Scholz, A.D. Wieck, A. Devi, M. Karppinen, Atomic/molecular layer deposition of hybrid inorganic organic thin films from erbium guanidinate precursor, J. Mater. Sci. 52 (2017) 6216 6224, https://doi.org/10.1007/s10853-017-0855-6.
- [101] M.N. Getz, P.A. Hansen, S. Fjellvåg, M.A.K. Ahmed, H. Fjellvåg, O. Nilsen, Intense NIR emission in YVO₄:Yb³ thin films by atomic layer deposition, J. Mater. Chem. C 5 (2017) 8572 8578, https://doi.org/10.1039/c7tc02135f.
- [102] M. Getz, P.A. Hansen, M.A.K. Ahmed, H. Fjellvåg, O. Nilsen, Luminescent YbVO₄ by atomic layer deposition, Dalton Trans. 46 (2017) 3008 3013, https://doi.org/ 10.1039/c7dt00253j.
- [103] P.-A. Hansen, H. Fjellvåg, T.G. Finstad, O. Nilsen, Luminescence properties of lanthanide and ytterbium lanthanide titanate thin films grown by atomic layer deposition, J. Vac. Sci. Technol., A 34 (2015), 01A130, https://doi.org/10.1116/ 1.4936389.
- [104] V. Kiisk, A. Tamm, K. Utt, J. Kozlova, H. Mändar, L. Puust, J. Aarik, I. Sildos, Photoluminescence of atomic layer deposited ZrO₂:Dy³ thin films, Thin Solid Films 583 (2015) 70 75, https://doi.org/10.1016/j.tsf.2015.03.041.
- [105] M. Safdar, A. Ghazy, M. Tuomisto, M. Lastusaari, M. Karppinen, Effect of carbon backbone on luminescence properties of Eu-organic hybrid thin films prepared by ALD/MLD, J. Mater. Sci. 56 (2021) 12634 12642, https://doi.org/10.1007/ s10853-021-06094-8.
- [106] M.A. Hernández-Rodríguez, M.H. Imanieh, L.L. Martín, I.R. Martín, Experimental enhancement of the photocurrent in a solar cell using upconversion process in fluoroindate glasses exciting at 1480 nm, Sol. Energy Mater. Sol. Cells 116 (2013) 171 175, https://doi.org/10.1016/j.solmat.2013.04.023.
- [107] M. Rüdiger, S. Fischer, J. Frank, A. Ivaturi, B.S. Richards, K.W. Krämer, M. Hermle, J.C. Goldschmidt, Bifacial n-type silicon solar cells for upconversion applications, Sol. Energy Mater. Sol. Cells 128 (2014) 57–68, https://doi.org/ 10.1016/j.solmat.2014.05.014.
- [108] S. Fischer, E. Favilla, M. Tonelli, J.C. Goldschmidt, Record efficient upconverter solar cell devices with optimized bifacial silicon solar cells and monocrystalline BaY₂F₈:30% Er³ upconverter, Sol. Energy Mater. Sol. Cells 136 (2015) 127–134, https://doi.org/10.1016/j.solmat.2014.12.023.
- [109] A. Boccolini, R. Faoro, E. Favilla, S. Veronesi, M. Tonelli, BaY₂F₈ doped with Er³: An upconverter material for photovoltaic application, J. Appl. Phys. 114 (2013), 064904, https://doi.org/10.1063/1.4817171.
- [110] A. Shalav, B.S. Richards, T. Trupke, K.W. Krämer, H.U. Güdel, Application of NaYF4:Er³ up-converting phosphors for enhanced near-infrared silicon solar cell response, Appl. Phys. Lett. 86 (2005), 013505, https://doi.org/10.1063/ 1.1844592.

- [111] T. Trupke, A. Shalav, B.S. Richards, P. Würfel, M.A. Green, Efficiency enhancement of solar cells by luminescent up-conversion of sunlight, Sol. Energy Mater. Sol. Cells 90 (2006) 3327 3338, https://doi.org/10.1016/j. solmat.2005.09.021.
- [112] J. de Wild, A. Meijerink, J.K. Rath, W.G.J.H.M. van Sark, R.E.I. Schropp, Towards upconversion for amorphous silicon solar cells, Sol. Energy Mater. Sol. Cells 94 (2010) 1919 1922, https://doi.org/10.1016/j.solmat.2010.06.006.
- [113] J. De Wild, J.K. Rath, A. Meijerink, W.G.J.H.M. Van Sark, R.E.I. Schropp, Enhanced near-infrared response of a-Si:H solar cells with -NaYF4;Yb³ (18%), Er³ (2%) upconversion phosphors, Sol. Energy Mater. Sol. Cells 94 (2010) 2395 2398, https://doi.org/10.1016/j.solmat.2010.08.024.
- [114] X.D. Zhang, X. Jin, D.F. Wang, S.Z. Xiong, X.H. Geng, Y. Zhao, Synthesis of NaYF₄: Yb, Er nanocrystals and its application in silicon thin film solar cells, Phys. Status Solidi 7 (2010) 1128 1131, https://doi.org/10.1002/pssc.200982762.
- [115] Y. Chen, W. He, Y. Jiao, H. Wang, X. Hao, J. Lu, S.E. Yang, -NaYF₄:Er³ (10%) microprisms for the enhancement of a-Si:H solar cell near-infrared responses, J. Lumin. 132 (2012) 2247 2250, https://doi.org/10.1016/j.jlumin.2012.04.011.
- [116] D. Liu, Q. Wang, Q. Wang, Near-infrared light harvesting of upconverting NaYF₄: Yb³ /Er³ -based amorphous silicon solar cells investigated by an optical filter, Beilstein J. Nanotechnol. 9 (2018) 2788 2793, https://doi.org/10.3762/ binano.9.260.
- [117] X. Cheng, H. Ge, Y. Wei, K. Zhang, W. Su, J. Zhou, L. Yin, Q. Zhan, S. Jing, L. Huang, Design for brighter photon upconversion emissions via energy level overlap of lanthanide ions, ACS Nano 12 (2018) 10992 10999, https://doi.org/ 10.1021/acsnano.8b04988.
- [118] F. Lahoz, C. Pérez-Rodríguez, S.E. Hernández, I.R. Martín, V. Lavín, U. R. Rodríguez-Mendoza, Upconversion mechanisms in rare-earth doped glasses to improve the efficiency of silicon solar cells, Sol. Energy Mater. Sol. Cells 95 (2011) 1671 1677, https://doi.org/10.1016/j.solmat.2011.01.027.
- [119] K.V. Krishnaiah, P. Venkatalakshmamma, C. Basavapoornima, I.R. Martín, K. Soler-Carracedo, M.A. Hernández-Rodríguez, V. Venkatramu, C.K. Jayasankar, Er³ -doped tellurite glasses for enhancing a solar cell photocurrent through photon upconversion upon 1500 nm excitation, Mater. Chem. Phys. 199 (2017) 67 72, https://doi.org/10.1016/j.matchemphys.2017.06.003.
- [120] K. Kakiage, Y. Aoyama, T. Yano, K. Oya, J.I. Fujisawa, M. Hanaya, Highlyefficient dye-sensitized solar cells with collaborative sensitization by silyl-anchor and carboxy-anchor dyes, Chem. Commun. 51 (2015) 15894 15897, https://doi. org/10.1039/c5cc06759f.
- [121] R. Qin, X. Jinhua, J. Hu, L. Zhao, Effect of luminescent material NaYbF₄:Ho³ on the photovoltaic performance of dye-sensitized solar cells, J. Mater. Sci. Mater. Electron. 32 (2021) 1445 1456, https://doi.org/10.1007/s10854-020-04915-1.
- [122] P. Ramasamy, J. Kim, Combined plasmonic and upconversion rear reflectors for efficient dye-sensitized solar cells, Chem. Commun. 50 (2014) 879 881, https:// doi.org/10.1039/C3CC47290F.
- [123] L. Li, Y. Yang, R. Fan, S. Chen, P. Wang, B. Yang, W. Cao, Conductive upconversion Er,Yb-FTO nanoparticle coating to replace Pt as a low-cost and high-performance counter electrode for dye-sensitized solar cells, ACS Appl. Mater. Interfaces 6 (2014) 8223 8229, https://doi.org/10.1021/am5009776.
- [124] M. Liu, Y. Lu, Z.B. Xie, G.M. Chow, Enhancing near-infrared solar cell response using upconverting transparent ceramics, Sol. Energy Mater. Sol. Cells 95 (2011) 800 803, https://doi.org/10.1016/j.solmat.2010.09.018.
- [125] J. Bai, P. Duan, X. Wang, G. Han, M. Wang, G. Diao, Upconversion luminescence enhancement by Fe³ doping in CeO₂:Yb/Er nanomaterials and their application in dye-sensitized solar cells, RSC Adv. 10 (2020) 18868 18874, https://doi.org/ 10.1039/D0RA02308F.
- [126] M. Ambapuram, G. Maddala, N.B. Simhachalam, S. Sripada, S. Kalvapalli, V. S. Yerva Pedda, R. Mitty, Highly effective SnS composite counter electrode sandwiched bi-function CeO₂:Er³ /Yb³ assisted surface modified photoelectroded dye sensitized solar cell exceeds 9.5% efficiency, Sol. Energy 207 (2020) 1158 1164, https://doi.org/10.1016/j.solener.2020.07.030.
- [127] Y. Qiao, S. Li, W. Liu, M. Ran, H. Lu, Y. Yang, Recent advances of rare-earth ion doped luminescent nanomaterials in perovskite solar cells, Nanomaterials 8 (2018) 43, https://doi.org/10.3390/nano8010043.
- [128] T. Baikie, Y. Fang, J.M. Kadro, M. Schreyer, F. Wei, S.G. Mhaisalkar, M. Graetzel, T.J. White, Synthesis and crystal chemistry of the hybrid perovskite (CH₃NH₃) PbI₃ for solid-state sensitised solar cell applications, J. Mater. Chem. 1 (2013) 5628 5641, https://doi.org/10.1039/c3ta10518k.
- [129] X. Chen, W. Xu, H. Song, C. Chen, H. Xia, Y. Zhu, D. Zhou, S. Cui, Q. Dai, J. Zhang, Highly efficient LiYF₄:Yb³, Er³ upconversion single crystal under solar cell spectrum excitation and photovoltaic application, ACS Appl. Mater. Interfaces 8 (2016) 9071 9079, https://doi.org/10.1021/acsami.5b12528.
- [130] M. Schoenauer Sebag, Z. Hu, K. de Oliveira Lima, H. Xiang, P. Gredin, M. Mortier, L. Billot, L. Aigouy, Z. Chen, Microscopic evidence of upconversion-induced nearinfrared light harvest in hybrid perovskite solar cells, ACS Appl. Energy Mater. 1 (2018) 3537 3543, https://doi.org/10.1021/acsaem.8b00518.
- [131] F.-L. Meng, J.-J. Wu, E.-F. Zhao, Y.-Z. Zheng, M.-L. Huang, L.-M. Dai, X. Tao, J.-F. Chen, High-efficiency near-infrared enabled planar perovskite solar cells by embedding upconversion nanocrystals, Nanoscale 9 (2017) 18535 18545, https://doi.org/10.1039/C7NR05416E.
- [132] M. He, X. Pang, X. Liu, B. Jiang, Y. He, H. Snaith, Z. Lin, Monodisperse dualfunctional upconversion nanoparticles enabled near-infrared organolead halide perovskite solar cells, Angew. Chem. Int. Ed. 55 (2016) 4280 4284, https://doi. org/10.1002/anie.201600702.
- [133] F. Yang, C. Liu, D. Wei, Y. Chen, J. Lu, S.E. Yang, Er³ -Yb³ co-doped TeO₂-PbF₂ oxyhalide tellurite glasses for amorphous silicon solar cells, Opt. Mater. 36 (2014) 1040 1043, https://doi.org/10.1016/j.optmat.2014.01.020.

- [134] Z.Q. Li, X.D. Li, Q.Q. Liu, X.H. Chen, Z. Sun, C. Liu, X.J. Ye, S.M. Huang, Core/ shell structured NaYF₄:Vb³ /Er³ /Gd³ nanorods with Au nanoparticles or shells for flexible amorphous silicon solar cells, Nanotechnology 23 (2012), 025402, https://doi.org/10.1088/0957-4484/23/2/025402.
- [135] F. Yang, X. Hao, Y. Chen, S. Yang, Luminescence of hydrothermally fabricated PbF₂:Er³ particles and their application in bifacial silicon solar cells, Opt. Appl. XLIV (2014), https://doi.org/10.5277/oa140310.
- [136] S. Fischer, B. Fröhlich, H. Steinkemper, K.W. Krämer, J.C. Goldschmidt, Absolute upconversion quantum yield of -NaYF₄ doped with Er³ and external quantum efficiency of upconverter solar cell devices under broad-band excitation considering spectral mismatch corrections, Sol. Energy Mater. Sol. Cells 122 (2014) 197 207, https://doi.org/10.1016/j.solmat.2013.12.001.
- [137] S. Chen, G. Zhou, F. Su, H. Zhang, L. Wang, M. Wu, M. Chen, L. Pan, S. Wang, Power conversion efficiency enhancement in silicon solar cell from solution processed transparent upconversion film, Mater. Lett. 77 (2012) 17 20, https:// doi.org/10.1016/j.matlet.2012.02.123.
- [138] F. Pellé, S. Ivanova, J.-F. Guillemoles, Upconversion of 1.54 m radiation in Er³ doped fluoride-based materials for c-Si solar cell with improved efficiency, EPJ Photovoltaics 2 (2011) 20601, https://doi.org/10.1051/epjpv/2011002.
- [139] S. Fischer, J.C. Goldschmidt, P. Löper, G.H. Bauer, R. Brüggemann, K. Krämer, D. Biner, M. Hermle, S.W. Glunz, Enhancement of Silicon Solar Cell Efficiency by Upconversion: Optical and Electrical Characterization, in: J. Appl. Phys., American Institute of PhysicsAIP, 2010, 044912, https://doi.org/10.1063/ 1.3478742.
- [140] B.S. Richards, A. Shalav, Enhancing the near-infrared spectral response of silicon optoelectronic devices via up-conversion, IEEE Trans. Electron. Dev. 54 (2007) 2679 2684, https://doi.org/10.1109/TED.2007.903197.
- [141] J. Dutta, V.K. Rai, Upconverting BiYO₃ nanophosphors in DSSCs applications, Opt Laser. Technol. 140 (2021) 107087, https://doi.org/10.1016/j. optlastec.2021.107087.
- [142] X. Yang, L. Cai, L. Zhao, Z. Li, C. Wu, J. Sun, Z. Liang, S. Wang, A triple-functional photoanode for light harvesting enhancement in dye sensitized solar cells, Mater. Sci. Semicond. Process. 128 (2021) 105751, https://doi.org/10.1016/j. mssp.2021.105751.
- [143] M. Yu, H. Xu, Y. Li, Q. Dai, G. Wang, W. Qin, Morphology luminescence and photovoltaic performance of lanthanide-doped CaWO₄ nanocrystals, J. Colloid Interface Sci. 559 (2020) 162 168, https://doi.org/10.1016/j.jcis.2019.10.011.
- [144] M. Ambapuram, R. Ramireddy, G. Maddala, S. Godugunuru, P.V.S. Yerva, R. Mitty, Effective upconverter and light scattering dual function LiYF₄:Er³ /Yb³ assisted photoelectrode for high performance cosensitized dye sensitized solar cells, ACS Appl. Electron. Mater. 2 (2020) 962 970, https://doi.org/10.1021/ acsaelm.0c00014.
- [145] P. Tadge, R.S. Yadav, P.K. Vishwakarma, S.B. Rai, T.M. Chen, S. Sapra, S. Ray, Enhanced photovoltaic performance of Y₂O₃:Ho³ /Yb³ upconversion nanophosphor based DSSC and investigation of color tunability in Ho³ /Tm³ / Yb³ tridoped Y₂O₃, J. Alloys Compd. 821 (2020) 153230, https://doi.org/ 10.1016/j.jallcom.2019.153230.
- [146] J. Yu, Y. Yang, C. Zhang, R. Fan, T. Su, Preparation of YbF₃-Ho@TiO₂core-shell sub-microcrystal spheres and their application to the electrode of dye-sensitized solar cells, New J. Chem. 44 (2020) 10545 10553, https://doi.org/10.1039/ d0nj02069a.
- [147] Z. Hu, L. Zhao, H. Guo, S. Wang, W. Li, X. Yang, B. Dong, L. Wan, Novel double-layered photoanodes based on porous-hollow TiO₂ microspheres and La(OH)₃:Yb³
 ⁷Er³ for highly efficient dye-sensitized solar cells, J. Mater. Sci. Mater. Electron. 30 (2019) 212 220, https://doi.org/10.1007/s10854-018-0283-7.
- [149] X. Mao, J. Yu, J. Xu, L. Wan, Y. Yang, H. Lin, J. Xu, R. Zhou, Commercial upconversion phosphors with high light harvesting: a superior candidate for highperformance dye-sensitized solar cells, Phys. Status Solidi Appl. Mater. Sci. 216 (2019) 1900382, https://doi.org/10.1002/pssa.201900382.
- [150] J. Wang, Z. Du, M. Hojamberdiev, S. Zheng, Y. Xu, Oxalate-assisted morphological effect of NaYF4:Yb³, Er³ on photoelectrochemical performance for dye-sensitized solar cells, J. Rare Earths 36 (2018) 353–358, https://doi.org/ 10.1016/j.jre.2017.09.008.
- T. Chen, Y. Shang, S. Hao, L. Tian, Y. Hou, C. Yang, Enhancement of dye sensitized solar cell efficiency through introducing concurrent upconversion/ downconversion core/shell nanoparticles as spectral converters, Electrochim. Acta 282 (2018) 743 749, https://doi.org/10.1016/j.electacta.2018.06.111.
 L. Tian, Y. Shang, S. Hao, Q. Han, T. Chen, W. Lv, C. Yang, Constructing a native
- [152] L. Tian, Y. Shang, S. Hao, Q. Han, T. Chen, W. Lv, C. Yang, Constructing a native oxyfluoride layer on fluoride particles for enhanced upconversion luminescence, Adv. Funct. Mater. 28 (2018) 1803946, https://doi.org/10.1002/ adfm.201803946.
- [153] J. Li, O. Yin, L. Zhao, Z. Wang, B. Dong, L. Wan, S. Wang, Enhancing the photoelectric conversion efficiency of dye-sensitized solar cell using the upconversion luminescence materials Y₂O₃:Er³ nanorods doped TiO₂ photoanode, Mater. Lett. 227 (2018) 209 212, https://doi.org/10.1016/j. matlet.2018.05.057.
- [154] G. Han, M. Wang, D. Li, J. Bai, G. Diao, Novel upconversion Er, Yb-CeO₂ hollow spheres as scattering layer materials for efficient dye-sensitized solar cells, Sol. Energy Mater. Sol. Cells 160 (2017) 54 59, https://doi.org/10.1016/j. solmat.2016.10.021.
- [155] F. Meng, Y. Luo, Y. Zhou, J. Zhang, Y. Zheng, G. Cao, X. Tao, Integrated plasmonic and upconversion starlike Y₂O₃:Er/Au@TiO₂ composite for enhanced photon

harvesting in dye-sensitized solar cells, J. Power Sources 316 (2016) 207 214, https://doi.org/10.1016/j.jpowsour.2016.03.032.

- [156] N. Chander, A.F. Khan, V.K. Komarala, S. Chawla, V. Dutta, Enhancement of dye sensitized solar cell efficiency via incorporation of upconverting phosphor nanoparticles as spectral converters, Prog. Photovoltaics Res. Appl. 24 (2016) 692 703, https://doi.org/10.1002/pip.2723.
- [157] M. Luoshan, L. Bai, C. Bu, X. Liu, Y. Zhu, K. Guo, R. Jiang, M. Li, X. Zhao, Surface plasmon resonance enhanced multi-shell-modified upconversion NaYF₄:Yb³, Er³ @SiO₂@Au@TiO₂ crystallites for dye-sensitized solar cells, J. Power Sources 307 (2016) 468 473, https://doi.org/10.1016/j.jpowsour.2016.01.028.
- [158] J. Yu, Y. Yang, R. Fan, P. Wang, Y. Dong, Enhanced photovoltaic performance of dye-sensitized solar cells using a new photoelectrode material: upconversion YbF₃-Ho/TiO₂ nanoheterostructures, Nanoscale 8 (2016) 4173 4180, https://doi. org/10.1039/c5nr08319b.
- [159] P. Du, J.H. Lim, S.H. Kim, J.S. Yu, Facile synthesis of Gd₂O₃:Ho³ /Yb³ nanoparticles: an efficient upconverting material for enhanced photovoltaic performance of dye-sensitized solar cells, Opt. Mater. Express 6 (2016) 1896, https://doi.org/10.1364/ome.6.001896.
- [160] P. Padhye, S. Sadhu, M. Malik, P. Poddar, A broad spectrum photon responsive, paramagnetic: -NaGdF₄:Yb³, Er³ -mesoporous anatase titania nanocomposite, RSC Adv. 6 (2016) 53504 53518, https://doi.org/10.1039/c6ra06813h.
- [161] X. Jin, H. Li, D. Li, Q. Zhang, F. Li, W. Sun, Z. Chen, Q. Li, Role of ytterbiumerbium co-doped gadolinium molybdate (Gd₂(MoO₄)₃:Yb/Er) nanophosphors in solar cells, Opt Express 24 (2016) A1276, https://doi.org/10.1364/oe.24.0a1276.
- [162] Y. Wang, Y. Zhu, X. Yang, J. Shen, X. Li, S. Qian, C. Li, Performance optimization in dye-sensitized solar cells with -NaYF₄:Yb³ ,Er³ @SiO₂@TiO₂ mesoporous microspheres as multi-functional photoanodes, Electrochim. Acta 211 (2016) 92 100, https://doi.org/10.1016/j.electacta.2016.05.216.
- [163] M. Luoshan, M. Li, X. Liu, K. Guo, L. Bai, Y. Zhu, B. Sun, X. Zhao, Performance optimization in dye-sensitized solar cells with -NaYF₄:Er³ /Yb³ and graphene multi-functional layer hybrid composite photoanodes, J. Power Sources 287 (2015) 231 236, https://doi.org/10.1016/j.jpowsour.2015.04.068.
- [164] Y.M. Kim, C.S. Kim, H.W. Choi, Efficiency improvement of dye-sensitized solar cells by phosphor (Y₂O₃:Er³, Y₃Al₅O₁₂:Ce³) co-doped TiO₂ electrodes, Mol. Cryst. Liq. Cryst. 620 (2015) 83 90, https://doi.org/10.1080/ 15421406.2015.1094874.
- [165] Y. Liu, Y. Xia, Y. Jiang, M. Zhang, W. Sun, X.Z. Zhao, Coupling effects of Audecorated core-shell -NaYF₄:Er/Yb@SiO₂ microprisms in dye-sensitized solar cells: plasmon resonance versus upconversion, Electrochim. Acta 180 (2015) 394 400, https://doi.org/10.1016/j.electacta.2015.08.144.
- [166] J. Bai, R. Zhao, G. Han, Z. Li, G. Diao, Synthesis of 1D upconversion CeO₂:Er,Yb nanofibers via electrospinning and their performance in dye-sensitized solar cells, RSC Adv. 5 (2015) 43328 43333, https://doi.org/10.1039/c5ra06917c.
- [167] W. Liao, D. Zheng, J. Tian, Z. Lin, Dual-functional semiconductor-decorated upconversion hollow spheres for high efficiency dye-sensitized solar cells, J. Mater. Chem. 3 (2015) 23360 23367, https://doi.org/10.1039/c5ta06238a.
- [168] K. Wang, J. Jiang, S. Wan, J. Zhai, Upconversion enhancement of lanthanidedoped NaYF4 for quantum dot-sensitized solar cells, Electrochim. Acta 155 (2015) 357 363, https://doi.org/10.1016/j.electacta.2014.11.131.
- [169] P. Du, J.H. Lim, J.W. Leem, S.M. Cha, J.S. Yu, Enhanced photovoltaic performance of dye-sensitized solar cells by efficient near-infrared sunlight harvesting using upconverting Y₂O₃:Er³ /Yb³ phosphor nanoparticles, Nanoscale Res. Lett. 10 (2015) 321, https://doi.org/10.1186/s11671-015-1030-0
- [170] N. Yao, J. Huang, K. Fu, X. Deng, M. Ding, M. Shao, X. Xu, Enhanced light harvesting of dye-sensitized solar cells with up/down conversion materials, Electrochim. Acta 154 (2015) 273 277, https://doi.org/10.1016/j. electacta.2014.12.095.
- [171] N.C. Dyck, G.P. Demopoulos, Integration of upconverting -NaYF₄:Yb³, Er³ @ TiO₂ composites as light harvesting layers in dye-sensitized solar cells, RSC Adv. 4 (2014) 52694 52701, https://doi.org/10.1039/c4ra08775e.
- [172] C. Yuan, G. Chen, L. Li, J.A. Damasco, Z. Ning, H. Xing, T. Zhang, L. Sun, H. Zeng, A.N. Cartwright, P.N. Prasad, H. Ågren, Simultaneous multiple wavelength upconversion in a core-shell nanoparticle for enhanced near infrared light harvesting in a dye-sensitized solar cell, ACS Appl. Mater. Interfaces 6 (2014) 18018 18025, https://doi.org/10.1021/am504866g.
- [173] Z. Zhou, J. Wang, F. Nan, C. Bu, Z. Yu, W. Liu, S. Guo, H. Hu, X.Z. Zhao, Upconversion induced enhancement of dye sensitized solar cells based on coreshell structured -NaYF₄:Er³, Yb³ @SiO₂ nanoparticles, Nanoscale 6 (2014) 2052 2055, https://doi.org/10.1039/c3nr04315k.
- [174] J. Yu, Y. Yang, R. Fan, D. Liu, L. Wei, S. Chen, L. Li, B. Yang, W. Cao, Enhanced near-infrared to visible upconversion nanoparticles of Ho³ -Yb³ -F- tri-doped TiO₂ and its application in dye-sensitized solar cells with 37% improvement in power conversion efficiency, Inorg. Chem. 53 (2014) 8045 8053, https://doi. org/10.1021/ic501041h.
- [175] L. Li, Y. Yang, R. Fan, Y. Jiang, L. Wei, Y. Shi, J. Yu, S. Chen, P. Wang, B. Yang, W. Cao, A simple modification of near-infrared photon-to-electron response with fluorescence resonance energy transfer for dye-sensitized solar cells, J. Power Sources 264 (2014) 254 261, https://doi.org/10.1016/j.jpowsour.2014.04.100.
- [176] P. Zhao, Y. Zhu, X. Yang, X. Jiang, J. Shen, C. Li, Plasmon-enhanced efficient dyesensitized solar cells using core shell-structured -NaYF₄:Yb,Er@SiO₂@Au nanocomposites, J. Mater. Chem. 2 (2014) 16523 16530, https://doi.org/ 10.1039/C4TA02230K.
- [177] L. Liang, Y. Liu, C. Bu, K. Guo, W. Sun, N. Huang, T. Peng, B. Sebo, M. Pan, W. Liu, S. Guo, X.Z. Zhao, Highly uniform, bifunctional core/double-shell-structured -NaYF₄:Er³, Yb³ @SiO₂@TiO₂ hexagonal sub-microprisms for high-

performance dye sensitized solar cells, Adv. Mater. 25 (2013) 2174 2180, https://doi.org/10.1002/adma.201204847.

- [178] L. Liang, Y. Yulin, Z. Mi, F. Ruiqing, Q. Lele, W. Xin, Z. Lingyun, Z. Xuesong, H. Jianglong, Enhanced performance of dye-sensitized solar cells based on TiO₂ with NIR-absorption and visible upconversion luminescence, J. Solid State Chem. 198 (2013) 459 465, https://doi.org/10.1016/j.jssc.2012.10.013.
- [179] J. Yu, Y. Yang, R. Fan, H. Zhang, L. Li, L. Wei, Y. Shi, K. Pan, H. Fu, Er³ and Yb³ co-doped TiO_{2-x}F_x up-conversion luminescence powder as a light scattering layer with enhanced performance in dye sensitized solar cells, J. Power Sources 243 (2013) 436 443, https://doi.org/10.1016/j.jpowsour.2013.06.014.
- [180] J. Zhang, H. Shen, W. Guo, S. Wang, C. Zhu, F. Xue, J. Hou, H. Su, Z. Yuan, An upconversion NaYF₄:Yb³, Er³ /TiO₂ core-shell nanoparticle photoelectrode for improved efficiencies of dye-sensitized solar cells, J. Power Sources 226 (2013) 47 53, https://doi.org/10.1016/j.jpowsour.2012.10.073.
- [181] Y. Li, G. Wang, K. Pan, B. Jiang, C. Tian, W. Zhou, H. Fu, NaYF₄:Er³ /Yb³ graphene composites: preparation, upconversion luminescence, and application in dye-sensitized solar cells, J. Mater. Chem. 22 (2012) 20381 20386, https:// doi.org/10.1039/c2jm34113a.
- [182] J. Wang, J. Wu, J. Lin, M. Huang, Y. Huang, Z. Lan, Y. Xiao, G. Yue, S. Yin, T. Sato, Application of Y₂O₃:Er³ nanorods in dye-sensitized solar cells, ChemSusChem 5 (2012) 1307 1312, https://doi.org/10.1002/cssc.201100596
- [183] A.F. Khan, R. Yadav, P.K. Mukhopadhya, S. Singh, C. Dwivedi, V. Dutta, S. Chawla, Core-shell nanophosphor with enhanced NIR-visible upconversion as spectrum modifier for enhancement of solar cell efficiency, J. Nanoparticle Res. 13 (2011) 6837 6846, https://doi.org/10.1007/s11051-011-0591-9.
- [184] G.X. Xie, J.M. Lin, J.H. Wu, Z. Lan, Q.H. Li, Y.M. Xiao, G.T. Yue, H.F. Yue, M. L. Huang, Application of upconversion luminescence in dye-sensitized solar cells, Chin. Sci. Bull. 56 (2011) 96 101, https://doi.org/10.1007/s11434-010-4115-2.
- [185] Q. Li, J. Lin, J. Wu, Z. Lan, Y. Wang, F. Peng, M. Huang, Enhancing photovoltaic performance of dye-sensitized solar cell by rare-earth doped oxide of Lu₂O₃:(Tm³ , Yb³), Electrochim. Acta 56 (2011) 4980 4984, https://doi.org/10.1016/j. electacta.2011.03.125.
- [186] G. Bin Shan, H. Assaaoudi, G.P. Demopoulos, Enhanced performance of dyesensitized solar cells by utilization of an external, bifunctional layer consisting of uniform -NaYF₄:Er³ /Yb³ nanoplatelets, ACS Appl. Mater. Interfaces 3 (2011) 3239 3243, https://doi.org/10.1021/am200537e.
- [187] J. Wu, J. Wang, J. Lin, Z. Lan, Q. Tang, M. Huang, Y. Huang, L. Fan, Q. Li, Z. Tang, Enhancement of the photovoltaic performance of dye-sensitized solar cells by doping Y_{0.78}Yb_{0.20}Er_{0.02}F₃ in the photoanode, Adv. Energy Mater. 2 (2012) 78 81, https://doi.org/10.1002/aenm.201100531.
- [188] F. Xu, Y. Sun, H. Gao, S. Jin, Z. Zhang, H. Zhang, G. Pan, M. Kang, X. Ma, Y. Mao, High-performance perovskite solar cells based on NaCsWO₃@NaYF₄@NaYF₄:Yb, Er upconversion nanoparticles, ACS Appl. Mater. Interfaces 13 (2021) 2674 2684, https://doi.org/10.1021/acsami.0c19475.
- [189] W. Bi, Y. Wu, C. Chen, D. Zhou, Z. Song, D. Li, G. Chen, Q. Dai, Y. Zhu, H. Song, Dye sensitization and local surface plasmon resonance-enhanced upconversion luminescence for efficient perovskite solar cells, ACS Appl. Mater. Interfaces 12 (2020) 24737 24746, https://doi.org/10.1021/acsami.0c04258.
- [190] L. Wang, K. Chen, H. Tong, K. Wang, L. Tao, Y. Zhang, X. Zhou, Inverted pyramid Er³ and Yb³ Co-doped TiO₂ nanorod arrays based perovskite solar cell: infrared response and improved current density, Ceram. Int. 46 (2020) 12073 12079, https://doi.org/10.1016/j.ceramint.2020.01.249.
- [191] Q. Guo, J. Wu, Y. Yang, X. Liu, J. Jia, J. Dong, Z. Lan, J. Lin, M. Huang, Y. Wei, Y. Huang, High performance perovskite solar cells based on -NaYF₄:Yb³ /Er³ / Sc³ @NaYF₄ core-shell upconversion nanoparticles, J. Power Sources 426 (2019) 178 187, https://doi.org/10.1016/j.jpowsour.2019.04.039.
- [192] H. Zhang, Y. Xiao, F. Qi, P. Liu, Y. Wang, F. Li, C. Wang, G. Fang, X. Zhao, Nearinfrared light-sensitive hole-transport-layer free perovskite solar cells and photodetectors with hexagonal NaYF₄:Yb³, Tm³ @SiO₂ upconversion nanoprism-modified TiO₂ scaffold, ACS Sustain. Chem. Eng. 7 (2019) 8236–8244, https://doi.org/10.1021/acssuschemeng.8b06606.
- [193] D. Ma, Y. Shen, T. Su, J. Zhao, N.U. Rahman, Z. Xie, F. Shi, S. Zheng, Y. Zhang, Z. Chi, Performance enhancement in up-conversion nanoparticle-embedded perovskite solar cells by harvesting near-infrared sunlight, Mater. Chem. Front. 3 (2019) 2058 2065, https://doi.org/10.1039/c9qm00311h.
- [194] H. Zhang, Q. Zhang, Y. Lv, C. Yang, H. Chen, X. Zhou, Upconversion Er-doped TiO₂ nanorod arrays for perovskite solar cells and the performance improvement, Mater. Res. Bull. 106 (2018) 346 352, https://doi.org/10.1016/j. materresbull.2018.06.014.
- [195] Y. Li, L. Zhao, M. Xiao, Y. Huang, B. Dong, Z. Xu, L. Wan, W. Li, S. Wang, Synergic effects of upconversion nanoparticles NaYbF₄:Ho³ and ZrO₂ enhanced the efficiency in hole-conductor-free perovskite solar cells, Nanoscale 10 (2018) 22003 22011, https://doi.org/10.1039/c8nr07225f.
- [196] Z. Zhang, J. Qin, W. Shi, Y. Liu, Y. Zhang, Y. Liu, H. Gao, Y. Mao, Enhanced power conversion efficiency of perovskite solar cells with an up-conversion material of Er³ -Yb³ -Li tri-doped TiO₂, Nanoscale Res. Lett. 13 (2018) 147, https://doi. org/10.1186/s11671-018-2545-y.
- [197] J. Hu, Y. Qiao, Y. Yang, L. Zhao, W. Liu, S. Li, P. Liu, M. Chen, Enhanced performance of hole-conductor-free perovskite solar cells by utilization of core/

shell-structured -NaYF₄:Yb³, Er³ @SiO₂ nanoparticles in ambient air, IEEE J. Photovoltaics 8 (2018) 132 136, https://doi.org/10.1109/ JPHOTOV.2017.2762585.

- [198] X. Wang, Z. Zhang, J. Qin, W. Shi, Y. Liu, H. Gao, Y. Mao, Enhanced photovoltaic performance of perovskite solar cells based on Er-Yb Co-doped TiO₂ nanorod arrays, Electrochim. Acta 245 (2017) 839 845, https://doi.org/10.1016/j. electacta.2017.06.032.
- [199] Y. Ding, H. Qiao, T. Yang, N. Yin, P. Li, Y. Zhao, X. Zhang, Upconversion luminescence co-enhanced by Li ions doping and localized surface plasmon resonance for perovskite solar cells, Opt. Mater. 73 (2017) 617 622, https://doi. org/10.1016/j.optmat.2017.09.012.
- [200] X. Lai, X. Li, X. Lv, Y.Z. Zheng, F. Meng, X. Tao, Broadband dye-sensitized upconverting nanocrystals enabled near-infrared planar perovskite solar cells, J. Power Sources 372 (2017) 125 133, https://doi.org/10.1016/j. jpowsour.2017.10.067.
- [201] D. Zhou, D. Liu, J. Jin, X. Chen, W. Xu, Z. Yin, G. Pan, D. Li, H. Song, Semiconductor plasmon-sensitized broadband upconversion and its enhancement effect on the power conversion efficiency of perovskite solar cells, J. Mater. Chem. 5 (2017) 16559 16567, https://doi.org/10.1039/c7ta04943a.
 [202] J. Roh, H. Yu, J. Jang, Hexagonal -NaYF4:Yb³, Er³ nanoprism-incorporated
- [202] J. Roh, H. Yu, J. Jang, Hexagonal -NaYF₄:Yb³, Er³ nanoprism-incorporated upconverting layer in perovskite solar cells for near-infrared sunlight harvesting, ACS Appl. Mater. Interfaces 8 (2016), https://doi.org/10.1021/acsami.6b04760, 19847 19852.
- [203] M. Que, W. Que, X. Yin, P. Chen, Y. Yang, J. Hu, B. Yu, Y. Du, Enhanced conversion efficiency in perovskite solar cells by effectively utilizing near infrared light, Nanoscale 8 (2016) 14432 14437, https://doi.org/10.1039/c6nr03021a.
- [204] J.P. Guerrero-Jimenez, V.H.R. Arellano, I. Zarazua, T. Lopez-Luke, R. Doddoji, A. Cerdan-Pasaran, Increase the quantum dots sensitized TiO₂ solar cell efficiency adding n%Yb³ 1%Er³ doped NaYF₄: submicrometer-sized rods, IEEE J. Photovoltaics 10 (2020) 785 794, https://doi.org/10.1109/ JPHOTOV 2020 2971141
- [205] P. Qu, K. Wang, J. Li, S. Wang, W. Wei, Upconverting TiO₂ spheres with light scattering effect for enhanced quantum dot-sensitized solar cells, Mater. Express. 10 (2020) 556 562, https://doi.org/10.1166/mex.2020.1672.
- [206] H. Chen, S.M. Lee, A. Montenegro, D. Kang, B. Gai, H. Lim, C. Dutta, W. He, M. L. Lee, A. Benderskii, J. Yoon, Plasmonically enhanced spectral upconversion for improved performance of GaAs solar cells under nonconcentrated solar illumination, ACS Photonics 5 (2018) 4289 4295, https://doi.org/10.1021/ acsphotonics.8b01245.
- [207] S. Chen, B. Peng, F. Lu, Y. Mei, F. Cheng, L. Deng, Q. Xiong, L. Wang, X. Sun, W. Huang, Scattering or photoluminescence? Major mechanism exploration on performance enhancement in P3HT-based polymer solar cells with NaYF₄:2%Er³ ,18%Yb³ upconverting nanocrystals, Adv. Opt. Mater. 2 (2014) 442 449, https://doi.org/10.1002/adom.201300522.
- [208] J.L. Wu, F.C. Chen, S.H. Chang, K.S. Tan, H.Y. Tuan, Upconversion effects on the performance of near-infrared laser-driven polymer photovoltaic devices, Org. Electron. 13 (2012) 2104 2108, https://doi.org/10.1016/j.orgel.2012.05.057.
- [209] A.A.D. Adikaari, I. Etchart, P.H. Guéring, M. Bérard, S.R.P. Silva, A.K. Cheetham, R.J. Curry, Near infrared up-conversion in organic photovoltaic devices using an efficient Yb³ :Ho³ co-doped Ln₂BaZnO₅ (Ln Y, Gd) phosphor, J. Appl. Phys. 111 (2012), 094502, https://doi.org/10.1063/1.4704687.
- [210] H.-Y. Lin, H.-N. Chen, T.-H. Wu, C.-S. Wu, Y.-K. Su, S.-Y. Chu, Investigation of green up-conversion behavior in Y₆W₂O₁₅:Yb³ ,Er³ phosphor and its verification in 973-nm laser-driven GaAs solar cell, J. Am. Ceram. Soc. 95 (2012) 3172 3179, https://doi.org/10.1111/j.1551-2916.2012.05281.x.
- [211] A. Richter, R. Müller, J. Benick, F. Feldmann, B. Steinhauser, C. Reichel, A. Fell, M. Bivour, M. Hermle, S.W. Glunz, Design rules for high-efficiency both-sidescontacted silicon solar cells with balanced charge carrier transport and recombination losses, Nat. Energy 6 (2021) 429 438, https://doi.org/10.1038/ s41560-021-00805-w.
- [212] M. Köhler, M. Pomaska, P. Procel, R. Santbergen, A. Zamchiy, B. Macco, A. Lambertz, W. Duan, P. Cao, B. Klingebiel, S. Li, A. Eberst, M. Luysberg, K. Qiu, O. Isabella, F. Finger, T. Kirchartz, U. Rau, K. Ding, A silicon carbide based highly transparent passivating contact for crystalline silicon solar cells approaching efficiencies of 24%, Nat. Energy 6 (2021) 529 537, https://doi.org/10.1038/ s41560-021-00806-9.
- [213] J.A. Van Delft, D. Garcia-Alonso, W.M.M. Kessels, Atomic layer deposition for photovoltaics: Applications and prospects for solar cell manufacturing, Semicond. Sci. Technol. 27 (2012), 074002, https://doi.org/10.1088/0268-1242/27/7/ 074002.
- [214] V. Zardetto, B.L. Williams, A. Perrotta, F. Di Giacomo, M.A. Verheijen, R. Andriessen, W.M.M. Kessels, M. Creatore, Atomic layer deposition for perovskite solar cells: research status, opportunities and challenges, Sustain. Energy Fuels 1 (2017) 30 55, https://doi.org/10.1039/c6se00076b.
- [215] M. Leskelä, K. Kukli, M. Ritala, Rare-earth oxide thin films for gate dielectrics in microelectronics, J. Alloys Compd. 418 (2006) 27 34, https://doi.org/10.1016/j. jallcom.2005.10.061.