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Abstract Cellulose can be dissolved with another

biopolymer in a protic ionic liquid and spun into a

bicomponent hybrid cellulose fiber using the Ioncell�

technology. Inside the hybrid fibers, the biopolymers are

mixed at the nanoscale, and the second biopolymer

provides the produced hybrid fiber new functional

properties that can be fine-tuned by controlling its share

in the fiber. In the present work, we present a fast and

quantitative thermoanalytical method for the composi-

tional analysis of man-made hybrid cellulose fibers by

using thermogravimetric analysis (TGA) in combination

with chemometrics. First, we incorporated 0–46 wt.% of

lignin or chitosan in the hybrid fibers. Then, we analyzed

their thermal decomposition behavior in a TGA device

following a simple, one-hour thermal treatment protocol.

With an analogy to spectroscopy, we show that the

derivative thermogram can be used as a predictor in a

multivariate regression model for determining the share

of lignin or chitosan in the cellulose hybrid fibers. The

method generated cross validation errors in the range

1.5–2.1 wt.% for lignin and chitosan. In addition, we

discuss how the multivariate regression outperforms

more commonmodelingmethods such as those based on

thermogram deconvolution or on linear superposition of

reference thermograms. Moreover, we highlight the

versatility of this thermoanalyticalmethod—which could

be applied to a wide range of composite materials,

provided that their components can be thermally

resolved—and illustrate it with an additional example

on the measurement of polyester content in cellulose and

polyester fiber blends. The method could predict the

polyester content in the cellulose-polyester fiber blends

with a cross validation error of 1.94 wt.% in the range of

0–100 wt.%. Finally, we give a list of recommendations

on good experimental and modeling practices for the

readers who want to extend the application of this

thermoanalytical method to other composite materials.

Keywords Ioncell� technology � Compositional

analysis � Man-made hybrid fibers � Biopolymers �
Thermogravimetric analysis � Chemometrics

Introduction

Ionic liquids (IL) can dissolve a wide range of

biopolymers, including cellulose (Hermanutz et al.

2019), hemicelluloses, lignin (Pu et al. 2007), chitin

and chitosan (Shamshina 2019), or natural composite
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M. Mäkelä
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matrices like wood (Ma et al. 2018a, b). Using the

Ioncell� technology (Sixta et al. 2015), we are able to

dissolve mixtures of biopolymers in a protic ionic

liquid and spin the solution into hybrid fibers. The

obtained hybrid fibers are composed of two or more

biopolymers forming nanoscale mixtures inside a

micrometric fibrous matrix (Mikkilä et al. 2020; Zahra

et al. 2020; Le et al. 2020; Trogen et al. 2021).

Hybrid fibers like cellulose-lignin (Bengtsson et al.

2019; Mikkilä et al. 2020; Le et al. 2020; Trogen et al.

2021), cellulose-chitosan (Zahra et al. 2020), cellu-

lose-chitin (Ota et al. 2020) or cellulose-betulin

(Makarov et al. 2018) have found applications in

textiles (Ma et al. 2015) or as precursors for biobased

carbon fibers (Byrne et al. 2016). The presence of a

second biopolymer provides to the hybrid fiber new

functional properties that can be fine-tuned by con-

trolling the share of the biopolymer in the fiber.

The fiber composition is generally analyzed as a

quality check and as a basis of process mass balance

calculations after fiber spinning, washing, and drying.

The macromolecular composition of the spun fibers

can change in comparison to the initial biopolymers

share used during the dissolution stage. Loss of

biopolymers can occur during the dope filtration stage

because of incomplete dissolution, or during the

spinning operation due to diffusion and leaching of

the biopolymers in the spin bath (Ma et al. 2015)

(Mikkilä et al. 2020).

The compositional analysis of the hybrid fibers

generally involves the use of wet-chemical methods

for the hydrolysis and quantification of the biopoly-

mers. Those methods are time consuming and require

the use of several chemicals (more details in the

materials and methods section). We therefore inves-

tigated the use of thermogravimetric analysis (TGA)

as a faster alternative and green analytical method for

the compositional analysis of the hybrid fibers (Koel

and Kaljurand 2006; Armenta et al. 2008; Tobiszewski

2016).

The use of TGA has been applied to the compo-

sitional analysis of a wide range of composite

materials. The method appears particularly efficient

for measuring the contents of volatile additives,

thermally stable organic fillers (e.g. carbon black) or

inorganic fillers in composite materials (Brown 2005;

Haines 2012). In most of these cases, the thermal

analysis protocol is designed to separate the thermal

decomposition stages of the different components.

The resulting thermogram shows distinguished mass

loss steps that correspond to the thermal decomposi-

tion stages of different components, and their contents

can be directly read from the thermogram. Apart from

few cases where such methods are applicable, they

cannot be extrapolated to a wide range of composite

(bio)materials. This is particularly true for lignocellu-

losic biomass and biocomposites, in which the thermal

decomposition reactions of their structural biopoly-

mers overlap (Yang et al. 2007; Sebio-Puñal et al.

2012; Yeo et al. 2019).

Several authors have tried to develop alternative

methods for extracting compositional information

from the TGA data of biomass. For instance, Cozzani

et al. suggested a simple linear superposition of the

thermograms of model biopolymers for quantifying

their fractions in unknown biomass samples (Cozzani

et al. 1997). Their method successfully predicted

cellulose and lignin contents but showed limitations

for predicting the hemicelluloses content. Carrier et al.

proposed another method based on the deconvolution

of the mass loss derivative curves (DTGs) into

gaussian peaks, which areas are proportional to the

biopolymers contents (Carrier et al. 2011). Although

the authors obtained good correlations for holocellu-

lose, a-cellulose and hemicelluloses (by difference),

they were not able to accurately quantify the lignin

content. Another variant of the deconvolution method

was developed by Saldarriaga et al. (Saldarriaga et al.

2015), who suggested to quantify the different

biopolymer contents (hemicellulose, cellulose, lignin)

in a biomass by modeling their thermal decomposition

reactions. Following this method, the biopolymer

fractions and their pyrolysis kinetic parameters are

identified from the deconvolution-fitting of the

biomass thermogram according to the widely used

kinetic model of parallel reactions (Grønli et al. 2002a;

Anca-Couce et al. 2014). However, the authors

assumed in their pyrolysis model that only lignin

produces char, while cellulose and hemicelluloses

fully volatilize. This assumption is of course highly

disputable, since it is well known that cellulose and

hemicellulose produce solid char during pyrolysis,

with yields that are generally higher than 10 wt.%

(Antal et al. 1998, 2000; Grønli et al. 1999; Lin et al.

2009; Zhou et al. 2017).

Besides the linear superposition and the deconvo-

lution-based methods, combinations of thermoanalyt-

ical or spectroscopic methods with multivariate data
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analysis have been particularly successful for the

compositional analysis of various materials (Risoluti

et al. 2016; Acquah et al. 2017; Garcı́a et al. 2017;

Materazzi et al. 2017; Chauhan et al. 2020).

Here, we will discuss the combination of TGA and

multivariate regression for the compositional analysis of

hybrid cellulose-lignin and cellulose-chitosan man-

made fibers. We will also discuss the versatility of this

method and illustrate it with an additional example on

the compositional analysis of cellulose-polyester textile

fiber blends. We will also review and analyze some

limitations of the linear superposition and deconvolu-

tion-basedmethods in comparisonwith the multivariate

regression method, with a special emphasis on cases

where the components in the compositematerial interact

during the thermal decomposition. Finally, we will give

some recommendations related to good experimental

and modeling practices when using TGA and multi-

variate regression for compositional analysis.

Material and methods

Materials

Birch (Betula pendula) prehydrolysis kraft pulp

(Mn = 57.5 kg/mol, Mw = 163.6 kg/mol, Enocell

Speciality Cellulose, Finland) was received from

Stora Enso Enocell Mill (Uimaharju, Finland). The

cellulose was received as pulp sheets and ground to a

fine powder in a Wiley mill before use. Organosolv

(OS) beech lignin (Mn = 0.44 kg/mol, Mw = 2.23

kg/mol was received from the Lignocellulosic Biore-

finery Pilot Plant, Fraunhofer CBP in Leuna, Ger-

many. The lignin was used as received; only larger

particles were crushed using a spoon before use.

Chitosan powder (Mw = 30 kg/mol) was purchased

from Glentham Life Science (UK). The ionic liquid

(IL) 1,5-diazabicyclo[4.3.0]non-5-ene-1-ium acetate

([DBNH][OAc]) was synthesized from 1,5-diazabicy-

clo[4.3.0]non-5-ene (Fluorochem, UK) and acetic acid

glacial (Merck, Germany), as described in (Michud

et al. 2016).

Biopolymer dissolution in IL and spinning

of hybrid fibers

Cellulose pulp, mixtures of cellulose-lignin and cel-

lulose-chitosan, with controlled mass proportions,

were dissolved in [DBNH][OAc] inside a high shear

kneader (80 �C, 90 min, 7 ± 3 mbar, mixing 30 rpm).

The IL-biopolymers solutions were then filtered in a

filter press unit (5 lm metal mesh pore size) and dry-

jet wet spun using a piston spinning unit (Fourné

Polymertechnik, Germany), as described in our pre-

vious articles (Zahra et al. 2020; Trogen et al. 2021).

The spun fiber codes, their corresponding cellulose

share and total biopolymers concentration during

dissolution are summarized in Table 1. No 100%

lignin or chitosan solutions could be spun into fibers

because such solutions do not have the adequate

viscoelastic properties needed for this particular IL-

based dry-jet wet spinning (Zahra et al. 2020; Trogen

et al. 2021).

Fiber compositional analysis using reference

methods

The sample preparation for carbohydrate and lignin

analyses in the cellulose-lignin fibers were performed

Table 1 Experimental conditions during the preparation of hybrid Ioncell� fibers

Ioncell� fiber Cellulose pulp share during dissolution, wt.% Biopolymers conc., wt.% fiber code

Cellulose-lignin 100 13 Cellulose

90 13 Cell90-BL10

70 15 Cell70-BL30

50 17 Cell50-BL50

Cellulose-chitosan 100 12 Cellulose

90 12 Cell90-Ch10

75 12 Cell75-Ch25

50 12 Cell50-Ch50
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according to the NREL/TP-510-42,618 standard. The

monosaccharides in the acid hydrolysis solutions were

quantified using an ion chromatograph (ICS-3000

HPAEC-PAD), with a DionexTM CarboPacTM PA20

column (ThermoFisher Scientific, USA). Ultrapure

water was used as eluent and after each analysis, the

column was washed with NaOH solution, followed by

ultrapure water for regeneration before the next

injection. The acid-insoluble (Klason) lignin was

determined by filtration and gravimetry, and the

acid-soluble lignin (ASL) was measured using a

Shimadzu UV 2550 spectrophotometer at 205 nm.

The contents of the hemicelluloses, cellulose and

lignin were calculated according to the Janson method

(Janson 1972).

The chitosan contents in the cellulose-chitosan

fibers were calculated from their nitrogen contents,

which were measured using a Perkin Elmer 2400

CHNS/O elemental analyser. The C, H, and N (wt. %)

contents were directly obtained from the measure-

ment, while O (wt. %) was calculated by difference.

Each sample was measured in duplicate. The acid

hydrolysis protocol in the NREL/TP-510-42,618

standard did not work for the chitosan-cellulose fibers,

as the chitosan could not be hydrolyzed using H2SO4.

We tried a two-step hydrolysis protocol using H2SO4

and HCl to hydrolyze the cellulose and chitosan into

their respective monosaccharides, but the hydrolyses

were incomplete. We are still developing new wet-

chemistry methods for the compositional analysis of

those novel hybrid fibers and will therefore restrict our

analysis to the chitosan content determined using

elemental analysis.

Thermogravimetric analysis

TGA was done in a Netzsch STA 449 F3 Jupiter &

QMS 403 Aëolos Quadro thermal analyser. The fibers

were heated from 40 to 600 �C at a heating rate of 10

�C/min under a flow of helium (70 mL/min). The

sample mass was kept below 5 mg in order to

minimize heat and mass transfer limitations (Narayan

and Antal 1996). The calculations presented in Fig. S2

in the ESI, which are based on the references (Narayan

and Antal 1996) (Lin et al. 2009) and (Richter and

Rein 2018), suggest that the thermal lag in our

experiments is only of few degrees. Themeasurements

were repeated twice for each sample. From each

thermogram, we extracted the following characteristic

parameters that give a summary of the thermal

reactivity of the sample:

• Tonset;
�C temperature at a conversion level of 5%.

• Tpeak;
�C: temperature at the maximum mass loss

rate.

• DTGpeak;%=min: maximum mass loss rate.

• Toff set;
�C: temperature at a conversion level of

95%.

• Ychar;%: final solid residue.

Chemometric analysis of the thermograms

To derive compositional information from the TGA

data, we used the samples thermograms as multivari-

ate predictors in a Partial Least Squares Regression

model (PLSR). The TGA data plotting, analysis and

TGA-PLSR modelling were performed with Matlab

(R2020b version, the Mathworks, Inc.). The TGA

dataset used in this study is available from the

corresponding author on a reasonable request.

The original thermograms (mass Vs temperature)

were first preprocessed before the TGA-PLSR mod-

elling. The thermograms were first adjusted on a dry

sample basis by subtracting the mass loss occurring

below 150 �C, which accounts for water removal

during drying. Then, the thermograms were smoothed

using a 20 points moving average filter and trans-

formed into first derivative signals (DTG) using

numerical differentiation. The preprocessed thermo-

grams were then mean centered by subtracting the

mean DTG signal of the DTG dataset.

In general, PLSR is a method for relating an

independent and dependent data set, here X and y, by

a linear multivariate regression model. The principle is

based on calculating latent structures from both the

X and y blocks by maximizing their covariance. In this

way a regression model can be obtained even if the

number of predictor variables exceeds the number of

samples, which is a common situation in spectroscopy

and thermogravimetric analysis. The procedure is

illustrated in Fig. 1.

The preprocessed TGA data were first assembled

into an X matrix, where the numbers of rows and

columns respectively equalled the number of samples

and variables in the pre-processed TGA data. Sample
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biopolymer contents were then organized in a column

vector y following the same order as in the X matrix.

The Non-Iterative Partial Least Squares (NIPALS)

algorithm described by (Geladi and Kowalski 1986)

was then used for building a regression model between

X and y.

In the NIPALS algorithm, the X and y blocks are

decomposed into score and loading matrices, which

for one y variable can be described as:

X ¼ TP0 þ E

y ¼ Uqþ f� where

• T represent the TGA scores.

• P0 represent the TGA loading vectors.

• U represent the concentration scores.

• q are the concentration loadings.

• E and f � represent respectively the X and y blocks

residuals after the projection onto a defined number

of latent variables (LVs).

The scores T are orthogonal (T’T is a diagonal

matrix), which is enabled by the introduction of

additional X block weights,W, which are orthonormal

(W’W = I). A mixed relation between X and y then

exists through:

y ¼ Tq0 þ f

where f denotes the difference between the observed y

and predicted values of ŷ and is to be minimized. A

regression vector b following the general regression:

y ¼ Xbþ f

can also be determined as b ¼ W P0Wð Þ�1q0.

Fig. 1 An illustration of the TGA-PLSR model principle for

correlating the fiber TGA data to their biopolymer content. The

Cell50BL50 fibers shown in the TGA crucible have distinct

thermal signature and lignin content, which are correlated

together through the PLSR
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Model validation and selection of the number of

latent variables for a TGA-PLSR model were done

according to a cross-validation procedure using the

leave-one-out method (Brereton 2003). In this proce-

dure, the number of latent variables was selected to

minimize the root-mean square error of cross valida-

tion (RMSECV):

RMSECV ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Pn
i¼1 yi � ŷið Þ2

n

s

where n denotes the number of samples in the data set.

For more details on the PLSR method and algorithms,

the reader is referred to (Helland 2001; Martens 2001;

Wold et al. 2001a, b).

Results and discussion

Compositional analysis using reference methods

The Enocell cellulose pulp, which was the main

component of the hybrid fibers was composed of

91.7% cellulose, 7.7% hemicelluloses, and 0.6%

lignin. The beech lignin contained of 96.4% lignin,

0.3% cellulose, and 3.3% hemicelluloses. The com-

positions of the cellulose-lignin spun fibers were

slightly different from the compositions we aimed for

when we mixed the cellulose pulp and the beech lignin

during the dissolution stage (see Table S1 in the ESI).

It is likely that the water-soluble fractions of lignin and

hemicelluloses did not coagulate during the spinning

operation and leached out into the spin bath. It is also

possible that part of these water-soluble fractions was

removed in the washing step. The partial loss of

hemicelluloses and lignin therefore increased the

relative cellulose content in the spun fibers.

Similarly, we observed a lower chitosan content in

the hybrid cellulose-chitosan fibers after spinning.

Loss of undissolved chitosan chains during filtration

and leaching of the chitosan short chains in the

spinning bath during the spinning or washing steps can

explain those deviations. The measured chitosan

content in the different cellulose-chitosan fibers is

given in Table S2 in the ESI).

Thermogravimetric analysis

Cellulose-lignin samples

The TGA and the DTG curves of the cellulose-lignin

samples are shown in Fig. 2 (a and c). The TGA curves

of the two repeatability tests for each sample are

almost superimposed. The root mean square deviation

between two repeatability tests was less than 1 wt.%

for all the samples (see Fig. S3 in the ESI). The

thermograms and their derivatives showed clear

changes when increasing the share of lignin in the

hybrid fiber. The characteristic parameters of the

Fig. 2 TGA and DTG curves of the cellulose-lignin samples (a and c) and cellulose-chitosan samples (b and d)
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thermograms are summarized in Table 2. Plots of the

TGA characteristic parameters are also shown in

Fig. S4 in the ESI.

Tonset and DTGpeak decreased when increasing the

share of lignin in the fiber, while Tpeak, Toffset, and

Ychar , increased accordingly. The changes in the

thermogram profile can be explained by the larger

thermal degradation window of lignin and its higher

char yield compared to cellulose (Yang et al. 2007)

(Yang et al. 2006), which decomposes in a narrower

temperature range, as shown for the pure cellulose

fiber.

The Tpeak shifted towards higher temperatures when

increasing the share of lignin in the fiber. This shift

suggested possible interactions between cellulose and

lignin during the pyrolysis reaction. This was likely

the case, since the two biopolymers are mixed at the

nanoscale level. However, it is not clear if there were

chemical interactions behind the observed shifts, or if

it was related to other physical phenomena. For

instance, lignin softening (Shrestha et al. 2017; Han

et al. 2019) might cause delays in the cellulose

pyrolysis mass loss because of mass transfer limita-

tions. A simple way to investigate the presence of

interactions between the biopolymers during the

thermal decomposition of the hybrid fibers is to

compare the measured hybrid fibers thermograms with

those calculated using the thermograms of lignin and

cellulose following a linear superposition law. Devi-

ations from the superposition law indicate the pres-

ence of interactions. We will discuss this point more in

detail later in this paper.

Cellulose-chitosan samples

The thermograms of the chitosan and cellulose-

chitosan fibers, as well as their derivative signals are

shown in Fig. 2b and d. For the cellulose-chitosan

samples, the measurement repeatability was slightly

worse than for the cellulose-lignin samples. The root-

mean square deviation between two repeatability tests

varied between 0.25 and 1.24 wt.% (see Fig. S5 in the

ESI). The thermograms showed clear differences

when increasing the share of chitosan in the hybrid

fibers. The characteristic parameters of the thermo-

grams are summarized in Table 2. The thermograms

characteristic parameters as a function of the chitosan

share are also shown in Fig. S6 in the ESI.

Chitosan and cellulose have very different thermal

behaviour despite their structural similarity. The

presence of amine and acetamide groups on the

backbone structure of the chitosan chains favours the

formation of char during pyrolysis through condensa-

tion reactions (López et al. 2008; Zeng et al. 2011).

The char yield was 37 wt.% for chitosan, compared to

10.7 wt.%% for cellulose. Chitosan has also a lower

thermal stability than cellulose and start to decompose

at a lower Tonset. The hybrid fibers showed conse-

quently a lower thermal stability and a higher char

yield as the share of chitosan increased in the fibers.

However, those changes were not linear since the char

yields were not additive and the cellulose maximum

decomposition peak shifted to lower temperatures.

The nanoscale mixing of the cellulose and chitosan

chains promoted interactions between chitosan and

cellulose during pyrolysis, which altered significantly

Table 2 TGA characteristic parameters for the cellulose-lignin and cellulose-chitosan samples

Sample Tonset ± Tpeak ± DTGpeak ± Ychar ± Toff set ±

Cellulose-lignin Cellulose 306.8 0.4 346.3 0.4 25.8 0.0 10.3 0.2 404.3 11.0

Cell90-BL10 301.8 1.1 353.3 0.4 21.8 0.1 13.1 0.4 417.8 0.4

Cell70-BL30 284.3 0.4 360.8 0.4 15.2 0.0 18.2 0.2 449.3 1.1

Cell50-BL50 261.8 3.9 361.8 1.1 10.6 0.7 22.9 0.3 479.3 4.6

Beech lignin 241.5 3.5 361.8 5.3 4.8 0.0 40.4 0.5 529.3 1.8

Cellulose-chitosan Cellulose 306.8 0.4 346.3 0.4 25.8 0.0 10.3 0.2 404.3 11.0

Cell90-Chit10 279.8 3.2 347.5 1.4 16.6 1.7 18.5 1.1 437.8 0.4

Cell75-Chit25 265.3 4.6 339.0 6.4 10.4 1.3 24.5 1.3 447.3 0.4

Cell50-Chit50 261.0 1.4 294.3 0.4 7.7 0.0 30.7 0.7 474.8 2.5

Chitosan 251.3 1.8 304.5 0.0 9.7 0.1 37.0 0.6 505.0 9.9
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the thermograms and increased the char yield (Zahra

et al. 2020).

Composition analysis using the TGA-PLSR

method

The preprocessing steps of the cellulose-lignin and

cellulose-chitosan samples thermograms are illus-

trated respectively in Fig. S7 and Fig. S9 in the ESI.

The TGA-PLSR results for the determination of the

lignin and chitosan contents, respectively in the

cellulose-lignin and cellulose-chitosan samples are

shown in Fig. 3. We will now discuss those results for

each group of samples separately.

The cellulose-lignin samples

The top-left graph in Fig. 3 shows the variation of the

root mean square errors of calibration (RMSEC) and

cross validation (RMSECV) with the number of LVs

included in the model. The RMSECV was used for

choosing the number of LVs for TGA-PLSR model.

As illustrated in Fig. 3, the RMSECV decreased

significantly when including five LVs in model, and

then remained almost constant. Adding more than five

LVswould not hence improve themodel quality. From

the analysis of the different LVs score and loading

plots, (see Fig. S8 in the ESI), the five first loadings

show a clear structure and appear to contribute, with

different extents, in modeling the data variability.

Therefore, we chose to include five LVs in the TGA-

PLSR model for predicting the lignin content in the

cellulose-lignin samples.

With five LVs, the explained variance in the X and

y block exceeded 99%. The RMSECV was 1.46 wt.%

and the coefficient of determination was higher than

0.99. The model prediction performance was satisfac-

tory and shows that this method can be used for

predicting the lignin content in the regenerated fibers

with a good accuracy.

The regression vector, shown in the bottom-left

graph of Fig. 3, showed three main peaks correspond-

ing to the most important regression coefficients.

Those coefficients can be linked to the temperatures

for which there are significant differences in the

thermal behavior of the samples. The first two

coefficients at 306 �C and 348 �C corresponded to

the onset and DTG peak temperature of the cellulose

fiber. The last one, at 381 �C, was close to the

temperature for which the mass loss rate of cellulose

approached zero. Those coefficients were all negative

since they are correlated with the cellulose content.

Positive peaks appeared at higher temperatures and

were positively correlated to the lignin content, which

had a broader decomposition range. This relationship

between the regression vector coefficients and char-

acteristic temperatures of cellulose and lignin decom-

positions illustrates very well how the TGA-PLSR

works for coupling the thermal behavior of a biopoly-

mer to its content in the hybrid fiber.

The score and loading plots depicted in Fig. S8 in

the ESI show that the first LV accounted for nearly

81% of theX block variance and separated the samples

as a function of their lignin content. Samples with the

lowest lignin contents had the lowest scores. The

corresponding loading vector was meaningful to this

regard, since it showed a main negative peak with a

minimum corresponding to the decomposition peak

temperature of the cellulose fiber (around 345 8C) and
gave negative scores to the samples with a high

cellulose content. The second LV accounted for nearly

Fig. 3 TGA-PLSR results for the cellulose-lignin (left) and

cellulose chitosan samples (right). From top to down: RMSEs,

predicted Vs observed content and model regression vector
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17% of the X block variability and separated the

extreme samples (the cellulose fiber and the beech

lignin) from the hybrid fibers. The loading vector

showed also two distinguished and opposite peaks.

The first negative at 3398C, and the second positive

one at 3658C. Though accounting for a small part of

the data variability, the rest of the LVs loading vectors

showed a clear structure which might be related to the

maximum decomposition peak shift when increasing

the lignin content. The reconstructed thermograms

using the model scores and loadings are shown in

Fig. S9 in the ESI, together with the experimental

ones. This figure illustrates how powerful the TGA-

PLSR model can be in reconstructing accurately the

original thermograms. The main results from the

TGA-PLSR models for the quantification of the three

biopolymers in the cellulose-lignin samples are finally

summarized in Table 3. They were all satisfactory

when evaluating their respective RMSECVs, which

were in the same order of magnitude as the experi-

mental errors. The respective coefficients of determi-

nation were also all close to one.

The cellulose-chitosan samples

The model RMSECV decreased when adding up to

five LVs in the model, then became almost constant.

However, when visualizing the fifth LV loading

vector, this later appeared highly noisy and did not

describe meaningful information. Therefore, we

decided to exclude it from the TGA-PLSR model.

The four LVs model explained more than 99.9% of the

variability in the X and y blocks and predicted

remarkably well the chitosan content. The model

RMSECV was 2.1 wt.% within a range of 0–100 wt.%

of chitosan and the coefficient of determination was

higher than 0.99. It is interesting to note that the first

LV explained more than 97% of the X block variabil-

ity (see Fig. S10 in the ESI), but only about 72% of the

y block variability. The first LV loading vector and

score plots indicated that it separated the samples as a

function of their chitosan content. The loading vector

showed two main peaks, a positive one at * 298 �C
and a more pronounced negative one at * 347 �C.
Those two temperatures corresponded with the peak

decomposition temperatures of chitosan and cellulose,

respectively.

The regression vector, shown in the bottom-left

graph of Fig. 3, has five main peaks corresponding to

the most important regression coefficients. These

peaks can be related to the thermal decomposition

temperatures of cellulose and chitosan, as previously

discussed for the cellulose-lignin samples. The recon-

structed thermograms using the model scores and

loadings are shown together with the experimental

ones in Fig. S11 in the ESI. They are very well

reproduced by the model. We calculated that the

maximum difference between the measured and

modelled DTG curves was less than 0.2 wt.%/min

for all the samples and through the whole temperature

range. The fact that more LVs were needed to predict

the chitosan content in the samples is most likely due

the nonlinear effects generated by the synergy

between cellulose and chitosan during the pyrolysis

reaction. As the chitosan catalyzed the dehydration

and char formation during cellulose pyrolysis, the

observed cellulose and chitosan peak intensity and

position did not evolve linearly with their respective

shares in the hybrid samples. This is a very important

point which can explain how the TGA-PLSR models

can succeed where the classical modeling approaches

based on superposition or deconvolution fail. A

comparison of those modeling approaches will be

discussed in the next section.

Soft statistical models or hard physical models?

In this section, we will compare the TGA-PLSR

modelling approach, which we discussed so far, to

Table 3 TGA-PLSR results for the cellulose-lignin and cellulose-chitosan samples

Biopolymer LVs VarX , % Vary, % RMSEC , wt.% RMSECV , wt.% R2 Range, wt.%

Cellulose-lignin Lignin 5 99.9 99.96 0.37 1.46 0.999 0.6–96.4

Cellulose 5 99.9 99.96 0.35 1.36 0.999 0.3–91.9

Hemicelluloses 5 99.9 99.96 0.13 0.21 0.999 3.3–7.5

Cellulose-chitosan Chitosan 4 99.9 99.9 1.05 2.12 0.999 0–100
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more classical approaches based on linear superposi-

tion or deconvolution. To do so, we propose to test the

method of Saldarriaga et al. (Saldarriaga et al. 2015)

who suggested identifying the biopolymer contents

(hemicellulose, cellulose, lignin) in biomass by mod-

elling the kinetics of their respective pyrolysis

reactions.

The methodology is based on the well-known three

parallel reaction model (Grønli et al. 2002b). Follow-

ing this model, cellulose, hemicellulose, and lignin

undergo parallel pyrolysis reactions independently.

The sum of the released volatiles corresponds to the

total mass loss observed during a TGA experiment.

The pyrolysis dynamic of a biopolymer ‘‘i’’ is

described by a first-order reaction:

dmi

dt
¼ �Aie

�Ei
RTmi

mi 0ð Þ ¼ mi

where mi is the weigh fraction of a biopolymer ‘‘i’’ in

the fiber sample.

The dynamics of the fiber mass loss is hence

described by:

dmf

dt
¼

X

3

i¼1

ci
dmi

dt

where mf is the fiber mass and ci is the fraction of

volatiles released during the pyrolysis of the

biopolymer ‘‘i’’. A set of kinetic parameters and

volatile fractions for each of the biopolymers can be

identified by minimizing the following objective

function using a non-linear least square solver:

OF ¼
X

N

k¼1

mk � m̂kð Þ2

N

where mk and m̂k are the respective experimental and

modelled mass for the kth point and N is the number of

experimental points in a thermogram.

The fit quality is assessed through the following

parameter:

Fit% ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

PN
i¼1 mi � m̂ið Þ2

q

N

The modelling results for the cases of Cell90-BL10

and Cell50-BL50 samples are shown in Fig. 4.

The identified kinetic parameters and the fit quality

are given in Table 4. The reader can notice that the

model captured well the TGA data for both cases.

However, the values of the identified parameters for

the two samples were different.

For instance, using the set of identified parameters

for the Cell50-BL50 sample to model the thermogram

of the Cell90-BL10 sample resulted into a Fit % of

4.01% instead of 0.53%, and into a Fit % of 2.2% and

6.09% respectively for the Cell70-BL30 and Cellulose

samples. Deriving a single set of kinetic parameters

Fig. 4 Experimental and modelling results for the E90-BL10 and E50-BL50 samples
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which is applicable to all the samples will inevitably

result in poor biopolymer content estimation. This is

mainly due to the peak shift observed when increasing

the lignin content in the hybrid fibers, which indicated

a synergy between the closely packed cellulose and

lignin during the pyrolysis reaction. A comparison

between the measured hybrid fibers TGA and DTG

curves and the calculated TGA and DTG curves

following a superposition law is shown in Fig. 5. This

figure illustrateswell the difference between the hybrid

fiber thermograms and those reconstrued using the

superposition law. This difference becomes more

pronounced when increasing the share of lignin in

the fiber and explains why a model based on decon-

volution or a superposition law fails to reproduce the

original thermograms of the hybrid fibers.

The cellulose-chitosan case shown in Fig. 6 illus-

trates even more the limitations of the superposition

law for predicting the composition of the hybrid fibers.

The synergy between cellulose and chitosan during

pyrolysis led to thermograms that were very different

from the linear superposition cases. Moreover, it

would be too complex and highly uncertain to come up

with a pyrolysis model that describes those thermo-

grams with sufficient accuracy and which can be used

to identify the cellulose and chitosan shares in

unknown samples. Clearly, the parallel reaction model

cannot be used in this case.

To sum up, the synergy between the biopolymers

during the pyrolysis reaction prevents using models

based on superposition laws or models based on

parallel pyrolysis reactions for predicting biopolymer

contents in unknown fibers. In the presence of synergy

Table 4 Identified pyrolysis model parameters for the E90-BL10 and E50-BL50 samples

Sample log (A1) log (A2) log (A3) E1, kJ/mol E2, kJ/mol E3, kJ/mol c1 c2 c3 Fit, %

Cell50-BL50 0.67 18.10 6.20 42.4 242.6 91.0 0.70 0.82 0.90 1.41

Cell90-BL10 0.63 17.87 6.11 49.5 239.4 94.4 0.70 0.89 0.90 0.53

*The indices 1, 2 and 3 correspond respectively to lignin, cellulose, and hemicelluloses

Fig. 5 Comparison between the measured TGA and DTG curves of the cellulose-lignin hybrid fibers with the TGA and DTG curves

(black dashed line) calculated following a superposition law
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between the biopolymers, the statistical modelling

based on PLSR leads to more accurate predictions of

the hybrid fibers composition.

Discussion on the versatility of the TGA-PLSR

thermoanalytical method

In this paper, we discussed the application of the TGA-

PLSR method for analysing the composition of novel

man-made regenerated fibers in which biopolymers

were closely packed at the nanoscale level. This close

packing leads to synergetic effects during the thermal

decomposition, which make the prediction of a

biopolymer content very challenging using classical

modelling methods based on the linear superposition

or on the deconvolution of thermograms. In that sense,

the TGA-PLSR method is a more robust and reliable

method for linking the information in the sample

thermogram to its macromolecular composition.

The TGA-PLSR method can be applied to a wider

class of composite materials in which the components

show different thermal signatures. To illustrate our

claim, we considered the example of textile blends

composed of cellulose and polyethylene terephthalate

(PET) fibers. Determining the composition of textile

blends is important for the related industry since it is

mandatory for textile producers to inform the cus-

tomers about the composition of textile and garment

products. The accepted tolerance for a fiber content is

in the range of ± 2–5 wt.%.

Moreover, characterizing different textile fiber

blends is crucial for determining the efficiency of

emerging textile upcycling processes, where polyester

fibers are quantitatively separated from cellulose

fibers (Haslinger et al. 2019b). The classical wet

chemical method for determining the cellulose or PET

content in Cell-PET blends involves a harsh sulfuric

acid treatment (ISO 1833–11: 2017) that depolymer-

izes and dissolves the cellulose chains, leaving the

PET as a residue. The PET is afterwards washed, dried

and weighed to calculate its share in the blend. The

method is time consuming and involves the use of

substantial amounts of inorganic acid and water.

Researchers developed alternative methods for the

compositional analysis of similar textile blends using

near infrared spectroscopy coupled to multivariate

PLSR (Ruckebusch et al. 2006; Mäkelä et al. 2020) or

using solid state NMR (Haslinger et al. 2019a).

The TGA-PLSR can also be applied to analyze the

composition of Cell-PET blends. The thermograms of

the Cell-PET blends as well as their derivative signals

Fig. 6 Comparison between the measured TGA and DTG curves of the cellulose-chitosan hybrid fibers with the TGA and DTG curves

(black dashed line) calculated following a superposition law
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are shown in Fig. 7. The details of the experimental

procedure and the characteristic thermograms param-

eters are given in the Sect. 5 of the ESI.

The thermograms preprocessing steps were the

same as for the two previous cases and are illustrated

in Fig.S13 in the ESI. The preprocessed spectra were

used in the TGA-PLSR model for the determination of

the PET content and the results are also shown in

Fig. 7. Though the first LV captured more than 99% of

the variance in the X and y blocks, we chose to

integrate four LVs in the model as the RMSECV

showed a local minimum at four LVs. The scores and

loading plots are shown in Fig. S14 in the ESI, and the

reconstructed thermograms are shown in Fig. S15 in

the ESI.

The cellulose and PET thermograms overlapped

and were only partially resolved when blended. The

TGA-PLSR method, however, fully resolved them by

capturing their respective thermal signatures and

generated a satisfactory calibration model with an

RMSECV of 1.94 wt.% and a coefficient of determi-

nation higher than 0.99. According to the standard

method (ISO 1833–11: 2017), the confidence limits of

the results obtained by the sulfuric acid method are not

greater than ± 1 percentage point for the confidence

level of 95%, which is in the same order of magnitude

as the RMSECV of the TGA-PLSR model.

Before we conclude this paper, we would like to

add some final comments on possible sources of error

that a diligent user of the TGA-PLSR method should

be aware of. A list of recommendations is also given in

the following section.

Comments on possible source of errors and good

experimental practices when using the TGA-PLSR

method for the compositional analysis of composite

materials

TGA-PLSRmodels can predict calibrated responses in

unknown samples provided that the composition of the

samples is within the model calibration range. How-

ever, a good prediction depends first and foremost on

the quality of the predictorX block data supplied to the

model. Therefore, users of the TGA-PLSR method

should pay particular attention to external sources of

errors that can affect a sample thermogram and hence

lead to incorrect calibration and prediction of biopoly-

mers content.

Fig. 7 TGA (a) and DTG (b) curves of cellulose, PET, and their blends. The TGA-PLSRmodel RMSEs (c), predicted Vs observed PET
content (d), and model regression vector (e)

123

Cellulose (2021) 28:6797–6812 6809



Experts on thermal analysis wrote extensively

about external factors that can modify the thermogram

(Brown 2005; Haines 2012). Those include, for

example, the sample mass, the crucible geometry

and material, the blank measurement, the gas flow

rate, and the heating rate. These factors can cause

temperature shifts in the thermogram or modify the

sample mass loss rate. To avoid these unwanted

effects, the user should design carefully the TGA

protocol and stick to it during the calibration and the

analysis of unknown samples. A non-exhaustive list of

recommendations could be the following:

• The crucible material and geometry, the heating

rate and the gas flow rate should be always the

same during the calibration and the analysis of

unknown samples.

• The sample mass and the heating rate should be

low enough to minimize the influence of heat and

mass transfer limitations. In this way, the mass loss

dynamics will be controlled by the reaction

kinetics.

• A blank measurement should be systematically

performed when measuring a new set of samples,

especially when a long period of time separates the

calibration and the prediction stages. This blank

measurement will correct any variation in mass

which is not due to the sample thermal

decomposition.

• A reference sample could be measured in parallel

with unknown samples and hence serve to check

for any change in the measurement conditions.

• It would be preferable to operate in inert atmo-

spheres and avoid the use of reacting gases (e.g.

oxygen when using air) because heterogenous

reactions (exothermic combustion in this case) are

much more subtle and difficult to control. Slight

changes in the experimental conditions (e.g.,

changing the sample mass) can have significant

effects on the thermogram.

• When predicting the composition of a new sample,

the thermogram pre-processing steps should be the

same as in the model calibration.

Conclusion

We have shown in this paper that thermogravimetry

and partial least square regression (TGA-PLSR) make

a powerful combination for the analysis of biopoly-

mers share in novel man-made cellulose-lignin and

cellulose-chitosan hybrid fibers. No chemicals are

used in this thermoanalytical method, the analytical

time is relatively short (about 1 h), and the accuracy is

good (cross validation error lower than 2 wt.% for

lignin and chitosan contents in the range of 0–46

wt.%).

The present study also suggests that the TGA-PLSR

method could be applied to a wider range of composite

materials, as far as their components can be thermally

resolved. We illustrated this versality by applying the

TGA-PLSR method for the analysis of PET content in

cellulose-PET fiber blends. The model results were as

good as for the regenerated hybrid fibers. The method

could predict the PET content in the cellulose-

polyester fiber blends with a cross validation error of

1.94 wt.% in the range of 0–100 wt.%.

A comparison of the modelling methods that can be

used for extracting compositional information from

the thermograms of composite materials showed that

the TGA-PLSR method outperforms more common

modeling methods, which are based on linear super-

position of reference thermograms or on thermogram

deconvolution. The application of the TGA-PLSR

method is particularly successful in the case of

synergetic interactions between the (bio)polymers

during their thermal decomposition. In such cases,

the TGA-PLSR model can capture non-linear effects

due to biopolymers synergism during pyrolysis, and

leads to better predictions of their content than the two

other modeling methods.
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