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Abstract—Important service-level constraints in machine learn-
ing (ML) services must be communicated and agreed among
relevant stakeholders. Due to the lack of studies and support,
it is unclear which and how ML-specific attributes and con-
straints should be specified and assured in service contracts
for ML services. This paper examines service contracts in
the three stakeholders engagement model of ML services. We
identify key ML-specific attributes that should be specified
and monitored for the ML service provider, ML consumer
and ML infrastructure provider. Based on that, we propose
QoA4ML (Quality of Analytics for ML) as a framework to
support ML-specific service contracts. QoA4ML includes an
ML-specific service contract specification, monitoring utilities
and a contract observability service. To illustrate the usefulness
of QoA4ML, we present real-world examples for contract
terms and policies, monitoring and contract evaluation with
dynamic ML services in predictive maintenance.

1. Introduction

Machine Learning (ML) has been used pervasively in
many application domains. Besides the development of ML
models/algorithms, current research and industrial works are
focused on developing ML tools and ML serving platforms
[1], [2]. Such developments have fostered the adoption of a
new business model – ML as a service (MLaaS) [3]: an ML
provider can develop ML models and deploy these models
as software services in a suitable ML infrastructure for cus-
tomers. In MLaaS, there are different business engagement
models, which fall into two main categories. First, in the
two stakeholders engagement model, companies develop ML
models and provision both ML services encapsulating these
models and corresponding ML infrastructures for running
ML services. Two main stakeholders exist: the ML service
provider and the ML service customer. Examples of this case
are ML services that Amazon, Google and Microsoft offer
to many ML customers. Second, in the three stakeholders
engagement model, an ML provider develops ML models
and deploys the models in a third-party ML infrastructure
for the provider’s customers. In this case, the stakeholders
are: the ML service provider, the ML service customer and
the ML infrastructure provider; the ML service provider is
a consumer of the ML infrastructure provider. We focus on
MLaaS for the three stakeholders engagement model as it
has a wider range of applications and businesses.

Although service contracts (also known as service level
agreements – SLAs) have intensively been studied in cloud
and enterprise computing, they are not well researched in
the context of emerging MLaaS, which brings many new
ML-specific attributes and constraints [4], [5], [6] due to the
novel characteristics of ML and ML impacts on businesses.
In particular, ML services for dynamic on-demand inference,
such as making prediction with near real-time IoT data,
are required to fulfill various runtime accuracy, responsive
and bias constraints. For example, ML inference accuracy
is a crucial attribute but it is dependent on various factors
of ML models, input data and underlying computation. In
the case of IoT data, the quality of data might vary a lot
and the platform services and ML infrastructures have to
cope with the speed and changes of input data. However,
a violation of the inference accuracy might lead to strong
(harmful) consequences in regulation compliance and busi-
ness. Another contract aspect is that the ML consumer must
be able to understand how ML services make decisions,
at least through the trace of decisions within ML models
[7], because the resulting inference might lead to unequal
treatments, violating regulations. We see that contracts for
ML services are part of the answer for the reliable and
responsible ML [8], [9], helping to optimize the ML serving.

In this paper, we perform an analysis of ML attributes
for interactions among stakeholders. We contribute the
QoA4ML (Quality of Analytics for ML) framework for
supporting services contracts in MLaaS. QoA4ML presents
an abstract service contract specification for MLaaS that
consists of ML-specific attributes such as performance,
data quality, inference accuracy, privacy, fairness, and inter-
pretability. The QoA4ML specification enables the devel-
oper and the provider to associate ML contract constraints
with deployed ML services. To monitor ML attributes and
constraints based on the QoA4ML specification, we develop
monitoring utilities for capturing runtime attributes and an
observability service for evaluating ML-specific contract
values. We provide a prototype of the specification and
implement validation policies using the Open Policy Agent
framework [10] so that the QoA4ML framework can be
easily integrated with state-of-the-art monitoring tools and
ML systems in the edge and cloud environments.

The rest of this paper is organized as follows: Section
2 discusses the motivation of our work. Section 3 details
QoA4ML’s models and implementation. We present experi-
ments in Section 4. We discuss related work in Section 5 and
concludes the paper and outlines future work in Section 6.



Figure 1. A simplified view of service interactions in BTS MLaaS. An ML service consists of and interacts with many components.

2. Motivation

2.1. Predictive Maintenance Scenario

A telco T C operates many base transceiver stations
(BTS). In each BTS, many equipment and infrastructures
need to be monitored for predictive maintenance purposes,
e.g., the electricity from the grid supply, power generator,
air conditioner, and power backup system. T C contracts
a company M(BT S) to perform all the monitoring and
analysis of alarms in BTS. To enable predictive maintenance
of the equipment, M(BT S) relies on different ML services
offered for a specific type of equipment. An ML service
provider can offer an ML service – S(E) for a type of
equipment. In addition to that, M(BT S) also offers its own
service S(BT S) for T C and other telcos. Here we have
M(BT S) as an ML consumer as well as an ML provider.
(BT S) is a dynamic ML serving: serving inferences in
near real-time for IoT-based data. Figure 1 shows service
interactions. Since M(BT S) can deploy its S(BT S) on
third-party ML infrastructures for T C and other telcos,
M(BT S) needs to clarify its ML-specific contracts. Cur-
rently, S(BT S) is designed and deployed for both edge and
cloud ML infrastructures.

In terms of service contracts, as an example, the infer-
ence accuracy is an ML-specific attribute whereas the re-
sponse time is a common service attribute. The cost for ML
services could be expensive, if higher inference accuracy
and response time are changed elastically (e.g. due to the
use of underlying models and fine-grained prediction). The
ML service provider needs to agree on the tradeoffs of such
attributes with the ML customer.

2.2. Research Questions

The above scenario highlights complex interactions
among stakeholders in ML services. The ML service con-
sumer, the ML service provider and the ML infrastructure
provider need different types of agreements. The ML ser-
vice provider might agree on common, non ML-specific

aspects with the ML infrastructure provider. Between the
ML provider and the ML service consumer, ML-specific
aspects are crucial. We focus on the following research
questions (RQs):
RQ1 – Which are the key attributes for ML contracts?:
Besides various common QoS attributes and constraints
found in cloud and enterprise computing, MLaaS brings
new, important ML-specific attributes w.r.t technical runtime
as well as legal and business aspects that must be supported
in service contracts. To date, we have many papers studying
ML attributes and their requirements and evaluation [5], [4],
[11], [12]. In ML, key metrics such as inference accuracy
and response time are often presented. However, correspond-
ing ML contract attributes have not been defined and tested
for ML services. MLaaS is a new model and so far it mainly
follows the two stakeholders engagement.
RQ2 – How would ML attributes and constraints be speci-
fied?: ML-specific attributes and constraints must be speci-
fied in a way that they can coexist with other types of service
constraints/configurations and be easily integrated into ML
serving runtime systems as well as be used by different
stakeholders. Furthermore, ML attributes/constraints must
coexist well with other common complex service contracts
in cloud services. Currently, the best practice of cloud/edge
service uses various types of policies and languages written
in JSON/YAML that can be easily deployed into the ML
infrastructures. In the research, service contracts are usually
based on formal models/languages. Therefore, they are not
well positioned in the current support in MLaaS.
RQ3 – How would ML-specific attributes/constraints be
monitored and evaluated?: It is hard to measure various
ML-specific attributes and an end-to-end observability of
these attributes is needed for contract monitoring. In case of
ML services providing near real-time predictions, detecting
and assuring the quality of input data within the services is
challenging and the accuracy must be tested and reported on-
demand. This requires an appropriate way that works well
with suitable existing monitoring mechanisms in dynamic
ML inference. For monitoring ML contracts, we need to



utilize suitable techniques for suitable attributes. Common
attributes like response time and cost can be directly mea-
sured. However, to evaluate inference accuracy or quality
of data attributes we may be required to use sampling,
instrumentation and black-box testing techniques.

These questions are challenging because ML attributes
have complex dependencies between models, data and com-
puting through complex components, pipelines, and infras-
tructures. Our approach is to address ML-specific attributes
and constraints first, before integrating them to other com-
mon, known aspects.

3. QoA4ML Framework

3.1. Important attributes for ML-specific contracts

Given an ML service – MLS, from the service contract
perspective, we can consider a service contract SC(MLS)
as SC(MLS) = (CSLA; MLSLA) whereas:

� CSLA representing well-studied service SLAs like
cost due to resource consumption, service availabil-
ity, security configuration, and resource elasticity.

� MLSLA representing ML-specific SLAs like infer-
ence accuracy, fairness, membership inference pri-
vacy and quality of input data.

Our goal is to develop MLSLA as this has not been well
studied. MLSLA replies on attributes associated with MLS
in the serving phase (prediction/inference). Such attributes
characterize the quality of analytics (QoA) of the ML. Many
research papers and benchmarks have discussed key ML
attributes [4], [12], [15] (also see the related work in Section
5). Therefore, in our work, we select important attributes for
ML contracts. We propose to group ML-specific attributes
for contracts into the following categories:
Inference Accuracy: reflects specific ML inference accuracy
of the ML serving. Typically, MLS offers different ML
models trained with a certain level of inference accuracy.
During the serving, the accuracy of the resulting inference
from these models might be varying. In some cases, service
customers could evaluate, after a short delay, if the ML ser-
vices give correct predictions (or with an acceptable/agreed
level of accuracy). For instance in the BTS scenario, the
maintenance company M(BT S) could utilize a human-in-
the-loop process to provide feedback on the accuracy of
backup battery prediction through post-mortem batch anal-
ysis of the monitoring data and the resulting classifications.
However, in other cases, it might not be possible to give the
feedback due to the nature of the dynamic IoT anomaly pre-
diction. The ML service provider needs to define constraints
of accuracy and to utilize suitable methods to assure such
constraints for the ML service consumer. Furthermore, the
ML customer expects a mechanism to validate constraints
and report problems w.r.t. inference accuracy. Generally,
specific metrics for inference accuracy are dependent on
providers. Our framework only provides a structure for
capturing these metrics into contracts.

Reliability and Elasticity: refers to the capability of provid-
ing elasticity and reliability of ML inferences. Here we note
that the elasticity and reliability are from the service function
viewpoint: it is whether the ML services can offer elastic
quality and inference features, e.g., to deal with different
tradeoffs of performance loss and inference accuracy or
reliable inferences under varying quality and distribution
of input data. This aspect of reliability and elasticity is
ML-specific and is in the responsibility of the ML service
provider. It is not similar to the common service reliability
and elasticity in CSLA in ML infrastructures (e.g., service
availability, service failure or resource elasticity), which is
under the responsibility of the ML infrastructure provider.
In this aspect, the ML inferences have to deal with changes
of dynamic data volume and velocity. This might require
the ML services to utilize different techniques to invoke
parallel/concurrent inferences as well as to switch/select
suitable ML models. Furthermore, since dynamic inferences
rely on other service platform capabilities, such as message
brokers, this ML-specific aspect is also strongly related to
the elasticity and reliability of the ML infrastructures (from
the infrastructure provider).
Quality of Data: includes quality of data attributes that
strongly influence the ML inference. The ML service
provider expects the input data with certain quality con-
straints to ensure the quality of the ML serving. Since the
ML consumer provides the input data and the ML service
provider performs inferences based on the quality of data,
the ML consumer must assure quality of input data met
constraints and the ML provider can reject serving or hold
no assurance, if the quality of input data is not met. Another
contract aspect is the ability to detect data drift/quality for
the customer. This feature is important as in many situations
the input data is collected and sent for inferences in real-
time, e.g., from IoT devices.
Security and Privacy: refers to the ML service’s security
and private setting, in terms of stakeholder contracts, not
internal security of the ML service, such as adversarial
protection, data poisoning, and transfer learning protection
[16], [17]. Common service security and privacy would be
about secured communication, GDPR-compliant personal
data handling, or restricted location of services. ML-specific
attributes can be privacy risk measured from inference attack
tests and inference support for encrypted input data.
Fairness and Interpretability: refers to the ability of ML
models and results to be verified and interpreted. Fairness
is the expectation from the ML consumer when using ML
services. Service consumers expect to obtain and test mea-
sures of fairness to avoid unfair treatment and misuse of
results. We thus mainly support (i) the customer to check
the algorithmic fairness [11] caused by the service provider
and (ii) the provider to check root-cause due to data bias. In
principle, there might not be an absolute fairness guarantee
in terms of service contracts. However, the ML service could
provide additional information and fairness implementation
in ML models. Interpretability details could be a “tracing”
feature that the ML service provider can turn on/off on-
demand [6]. Implementation of fairness and interpretability



Category Examples of ML-specific attributes Examples of contract constraints and possible monitoring
Inference Accuracy Accuracy of the inference result, ROC, AUC,

Root Mean Squared Error [5]
The ML service guarantees minimum 90% & 95% inference accuracy in
an edge deployment and in a cloud deployment, respectively.

Reliability & Elasticity Reliable output under concept drift, elastic ac-
curacy via an ensemble of models

Detecting and dealing with concept drift must be supported; elasticity
w.r.t. dynamic versus static inference.

Quality of data Data accuracy & completeness, outlier of input
data, data drift, data distribution

The ML service must specify outlier score and data drift report for the ML
customer since data distribution change, ML models become outdated

Security and Privacy Privacy risk from membership inference [13] The ML consumer needs the probability of privacy risk due to member-
ship inference less than 1%

Fairness Demographic parity, equalized odds, equal op-
portunity, bounded group loss [11]

The ML service must not have the disparity in prediction performance
higher than 15% (e.g., given gender as a representative sensitive data) and
the ML consumer can periodically check using known data and result

Interpretability Traces of ML inferences and explanations for
inference results [7], [6], [14]

The ML consumer needs to obtain detailed trace for explaining the
inference result (explainability mode)

Cost The whole cost, breakdowns of cost for serving
and for other ML tasks

The ML service must provide details costing items for inference versus
for preparation and other activities

TABLE 1. EXAMPLES OF ML-SPECIFIC ATTRIBUTES AND CONSTRAINTS

features will strongly affect the performance, inference ac-
curacy and cost. However, they help to address the liability
of the ML service and of the ML consumer, if wrong things
happen. Therefore, they must be part of the service contract.
Cost: refers to the aspect of financial costs related to the ML
inference results, instead of common resource and service
costs in CSLA. Between the ML service consumer and the
ML service provider, cost elements might be dependent on,
e.g., the number of requests, the accuracy of the result
and the serving time. Between the ML service provider
and the ML infrastructure provider, cost elements fall into
common factors in CSLA, such as infrastructural resource
consumption and service platforms usage.

Table 1 shows examples of ML contract attributes and
constraints. In principle, the list of attributes, which should
be supported in ML service contracts, can be extended. From
these categories, we define MLSLA as a contractual means
that consists of ML-specific attributes, establishing ML-
specific (sub)contract in a general MLaaS service contract.

3.2. QoA4ML Specification

To support MLSLA we introduce the abstract QoA4ML
(Quality of Analytics for ML) specification. The ab-
stract QoA4ML specification includes terms and constraints,
which can be used to (i) implement ML-specific service
contracts, (ii) monitor ML services and their contracts, and
(iii) allow runtime changes and updates of ML services
according to specific contexts. Figure 2 shows the structure
of the abstract QoA4ML specification. The main categories
of resources are services, data and ML models, whereas
services can be further divided into different types, such
as, for computing, storage and communication. The abstract
QoA4ML specification contains term definitions and guide-
lines to build service contracts. Thus, a concrete implemen-
tation of the abstract QoA4ML can be based on a suitable
syntax; we do not enforce the syntax in order to allow
the flexible integration with underlying ML frameworks and
common service contracts.

The QoA4ML specification covers two aspects:

� specifying required attributes and their constraints:
this allows us to specify required attributes without

indicating how we can verify them. Such a specifi-
cation can be reused and allows us to use different
techniques to verify the attributes and constraints.

� specifying policies as functions for evaluating at-
tributes and their constraints: policies are functions
used to evaluate the specified attributes and concrete
observed behaviors to validate the contract. This
allows us to use different languages to implement
the policies as well as to integrate with different
monitoring systems.

In principle, two aspects can be merged into a single
language and toolset. However, separating them will help
to improve the reusability, integration and adaptation of
contracts at runtime. There are different ways to implement
QoA4ML, such as formal models or high-level languages
with corresponding tools. We will detail our implementation
in the following.

3.2.1. QoA4ML Specification of Attributes and Con-
straints. Our current work is focused on the implementation
that can be easily integrated with other runtime requirements
in state-of-the-art ML services. Consider that ML services
are strongly dependent on cloud and edge platform services
whereas many other types of policies will have to be devel-
oped, our first implementation is to be based on JSON and
the OPA framework for contract constraint validation [10].

The QoA4ML specification includes key terms that an
ML-specific contract can reuse. Listing 1 presents an exam-
ple of terms. The structure of an QoA4ML-based contract
can follow a similar structure, given in Figure 2, using
terms defined in Listing 1. For example, consider the BTS
scenario, based on the QoA4ML specification, metadata
about ML-specific attributes for the ML service – S(BT S)
– a contract can be defined in JSON as shown in Listing
2. Listing 2 shows an excerpt of the contract. mlmodels
will be deployed on ML infrastructures within 2 types of
computing resources: small (edge machine) and normal
(cloud server). The contract defines maximum 0.1 seconds
for response time, minimum 80% accuracy for input data,
and minimum 80% ML inference accuracy.

Listing 2. Excerpt of a BTS contract for dynamic inference in the edge
"resources": {



Figure 2. Examples of the structural elements in the QoA4ML specification

"mlmodels":[
{"id": "ml_inference", "mlinfrastructures": "

tensorflow", "machinetypes": ["edge", "cloud"],
"inferencemodes": "dynamic"}

]
},

"quality": {
"services": [

{"ResponseTime":{"operators":"max","unit":"s
","value":0.05,"class": ["performance"],
"machinetypes": ["edge"]}}

],
"data":[

{"Accuracy":{"operators":"min","unit":"
percentage","value":80, "class": ["
qualityofdata"]}}

],
"mlmodels": [

{"Accuracy":{"operators":"min","unit":"
percentage","value":80, "class": ["
Accuracy"], "machinetypes": ["edge"]}}

]
}

3.2.2. Policies for validating runtime QoA4ML at-
tributes. The ML-specific attributes in our focus are ob-
servable: these attributes can be measured/estimated through
observability techniques. While certain attributes can be
reported and extracted inside ML services (can only be done
by the ML provider/developer through instrumentation),
others have to be observed outside the service by the ML
provider or consumer (see Section 3.3). Based on the con-
tract, policies for evaluating contract constraints can be gen-
erated/written. Currently, we implement the policies based
on the Rego language in the OPA, e.g., shown in Listing 3
for the BTS contract. We use Rego/OPA because the ML-
specific contract policies can also be easily integrated with
other system/infrastructure policies. Both concrete contract
and policy specifications are stored in the ML observability
service. There are many steps that can be automated and
required supporting tools, such as service discovery and
user interface for contract definition and policy generation.
However, we have not performed such works.

Listing 3. Example of policies for validating contract constraints
package qoa4ml.bts.alarm
import data.bts.contract as contract
default contract_violation = false
contract_violation = true {

count(violation) > 0
}

# The policy checker will receive the contract and the
runtime information

# input variable: the input of runtime metrics
violation[[input.client_info, "Accuracy violation on edge

resource"]]{
input.service_info.machinetypes == "edge"
input.service_info.metric[_] == "Accuracy"
some i, j
contract.quality.mlmodels[i].Accuracy.machinetypes[j]

== "edge"
input.metric.Accuracy < contract.quality.mlmodels[i].

Accuracy.value
}
violation[[input.client_info, "ResponseTime violation on

edge resource"]]{
input.service_info.machinetypes == "edge"
input.service_info.metric[_] == "ResponseTime"
some i, j
contract.quality.services[i].ResponseTime.

machinetypes[j] == "edge"
input.metric.ResponseTime > contract.quality.services

[i].ResponseTime.value
}
violation[[input.client_info, "Data quality violation"]]{

input.service_info.metric[_] == "DataAccuracy"
some i
contract.quality.data[i].Accuracy.operators == "min"
input.metric.DataAccuracy < contract.quality.data[i].

Accuracy.value
}

3.3. Monitoring Utilities and Observability Service

Figure 3 shows our observability system. We develop
different QoA4MLprobes as monitoring utilities for captur-
ing ML-specific runtime attributes that will be instrumented
into ML services and ML infrastructures as well as used by
the ML consumer applications to produce QoA4ML reports.
These probes, together with common monitoring features
(e.g., for common contract metrics), collect different runtime
attributes for evaluating QoA4ML. The probes are designed
to work with common cloud and edge monitoring systems.
In our case, the Monitoring Service is based on Prometheus
[18]. QoA4ML contracts and policies are managed by the
QoA4ML Observability Service, which is a microservice
leveraging the OPA framework for evaluating contracts. In
order to evaluate contracts at runtime, QoA4ML reports
will be aggregated and sent to the QoA4ML Observability
Service, which will check the policies and report any viola-
tion. Hence, the ML consumer or the ML service can build
such qoa4ml report itself together with the Monitor-



Listing 1. Excerpt of core terms (simplified) in JSON in the QoA4ML specification
"resources": {

"services":[
{"id": "service_id", "serviceapis": ["rest", "mqtt","kafka", "amqp", "coapp"], "machinetypes":["micro","

small","normal"],"processortypes":["CPU","GPU", "TPU"]}
],
"data": [

{"id": "data_id", "datatypes": ["video","image","message"], "formats": ["binary","csv","json","avro"]}
],
"mlmodels": [

{"id": "mlmodel_id", "formats": ["kerash5","onnx"], "mlinfrastructures": ["tensorflow","predictio"], "
modelclasses":["SVM","DT","CNN","RNN","LR","KMeans","ANN"], "inferencemodes":["static","dynamic"]}

]
},
"quality": {

"__comment": "when define a contract, we replace @ATTRIBUTE with a real attribute name",
"services": {

"@ATTRIBUTE":{ "id":"id",
"attributenames":["ResponseTime","Reliability"], "operators":["min","max","range"],
"unit":["ms","second","percentage"], "value":"value", "class":["performance"]}

},
"data": {

"@ATTRIBUTE":{
"id":"id",
"attributenames":["Accuracy","Completeness"],"operators":["min","max","range"],
"unit":["percentage"], "value":"value","class":["qualityofdata"]

}
},
"mlmodels": {

"@ATTRIBUTE":{
"id":"id",
"attributenames":["Accuracy","Precision","Recall","AUC","MSE"], "operators":["min","max","range"],
"unit":["percentage"], "value":"value", "class":["accuracy"]

}
}

},
"security": {

"encryption":{"types": ["end2end"]},
"encryptedinference": {"mode":[true,false]}

},
"privacy": {

"membershipinferencerisk":{"operators":["min","max"],"unit":"float","range":[0,1],"value":"value", "class": ["
Privacy"]}

},
"fairness":{

"predictionbias":{"operators":["min","max"],"unit":"percentage","value":"value", "class": ["Accuracy"]}
},
"interpretability": {

"explainability": {"modes": ["full","compact"]}
},

Figure 3. High-level view of probes, monitoring service and observability service and their interactions for ML service contracts

ing Service. For the evaluation of violation, we implement
specific evaluation functions for OPA-based. An OPA-based
engine service is deployed whereas contracts (MLSLA) are
described in JSON documents and rules for evaluation are

described/written in Policies (Rego).
Monitoring utilities – QoA4ML probes – implemented

as plugins can be used in different scenarios:
Integrating with the ML consumer application, service and



infrastructure: such probes should be integrated by the de-
veloper and the provider. The ML service developer exports
measurements and metrics needed for ML-specific attributes
using specific probes for making QoA reports. For example,
our current Python-based probes can be instrumented into
the ML service with a few lines of code. The ML service
developers can measure metrics themselves e.g., using data
quality tools to capture data accuracy and logging the ML in-
ference accuracy and response time, then trigger our probes
during serving requests for submitting those metrics to
Observability Service. On the other hand, several probes are
complex, capturing ML-specific attributes for the developer
and they can be used for sampling infrastructure metrics or
integrated into the existing monitoring system. Such probes
are expected independent from ML services/consumer appli-
cations, e.g., using API wrappers (e.g., using API gateway
and service mesh technologies) and external component
invocations (e.g., sampling quality of data in a queue).
Integrating with human-in-the-loop feedback for ML: such
probes could be implemented as separated functions that
are part of human-in-the-loop feedback processes for ML.
Such processes can act as a stand-alone or be integrated into
ML customer applications and monitoring tools. They allow
the end-user to check and test the ML-specific attributes.
Examples are (i) monitoring availability and response time,
(ii) evaluating inference accuracy and fairness.

Note that certain probes, especially for measuring quality
of data and fairness, are data-dependent. Therefore, such
probes are customized for certain domains and types of
data. In our current implementation for BTS, probes for
data quality, inference accuracy and response time have been
implemented. Other probes are currently being developed.

3.4. On dependencies among contract attributes

Many ML-specific attributes are related to common well-
studied attributes, especially the case of the reliability, re-
sponse time, and accuracy attributes. In this paper, we do not
focus on identifying/defining their complex relationships.
From the perspective of service contracts, the specification
of attributes and constraints are independent from the study
of such complex relationships. In our view, the stakeholders
must understand such relationships to define constraints of
ML attributes. Furthermore, the policies can be complex
when there are many attributes. However, how to write the
best policies for specific ML services is not our goal.

We believe that understanding the complexity of depen-
dencies should be the subject of other papers. In particular,
such dependencies might be very specific to ML services
and domains. Hence the service stakeholders, especial the
ML provider, must have a way to characterize the dependen-
cies and reflect the work into attributes and constraints. If
the dependencies are not studied carefully, either the service
provider cannot provide complex attributes for the contract
or cannot optimize the ML runtime. Both aspects are out
of the scope of our work but they are important for the
adoption of service contracts.

4. Illustrating Examples and Experiments

4.1. Experiment Settings

4.1.1. Experimental models. We illustrate monitoring of
ML contracts with the BTS predictive maintenance scenario.
While monitoring data is collected across many BTS, an
ML service predicts anomaly behavior by using historical
data captured from sensors in near real-time. In our experi-
ments, the prediction is customized for each station regard-
ing its conditions and settings. The prediction employs an
attention-based neural network [19] using the core LSTM
[20] (called LSTM model) to predict the Load of Power
Grid at a single station. We trained the LSTM model using
a real dataset provided by a company in Vietnam1. First, the
BTS ML model is trained in the cloud and then exported
for the edge, creating a version for the edge ML service,
called BTS-model-edge. From the initial cloud version,
we retrained it in the cloud several times, creating some
other versions called BTS-model-cloud, which improves
inference accuracy at different periods of a day. Since the
goal of our experiments is not to study the prediction
model, but possible ML contracts, we trained these versions
of the LSTM model with a limited amount of data. All
versions of the trained model are able to run on different
ML infrastructures – either in the cloud or in the edge
infrastructures using TensorFlow and TensorFlow Lite with
Python. BTS-model-edge and BTS-model-cloud are
loaded into the BTS ML service instances in the edge and
cloud ML infrastructures, respectively.

4.1.2. Experimental ML serving platform deployment.
Figure 4 shows the main configuration of our experi-
ments. The customer application, illustrated by the Python
Application was deployed in the edge that pushes IoT
data for the ML service; it is assumed to run within a BTS
and uses a message broker to communicate with the BTS
ML service. When the BTS ML service is configured in
the edge infrastructure, both the BTS ML service and the
ML consumer application are deployed at the edge using
Raspberry Pis. When the BTS ML service is configured in
the cloud infrastructure, it is deployed within a container.
Note that the edge deployment is not movable: our scenario
is not a mobile edge cloud deployment.

The QoA4ML Observabilility Service and the Monitor-
ing Service (Prometheus) are run on Pouta - CSC Cloud Ser-
vice2. All the ML requests/responses and QoA4ML reports
are transmitted via a messaging system, a common method
for transferring data in IoT. In the dynamic ML serving
context, we evaluated different deployments of message
brokers on either the edge or the cloud for different cases.

4.1.3. Experimental contracts. For all experiments, we
defined the contracts to examine three attributes: Respon-

1. https://github.com/rdsea/IoTCloudSamples/tree/master/MLUnits/
BTSPrediction

2. https://research.csc.fi/-/cpouta



Figure 4. Experiment configurations for the BTS ML scenario

seTime, Inference Accuracy, and Data Quality (for the in-
put data), as shown in Listing 2. Assuming the role of
the ML provider, we can specify different conditions on
these attributes that must be guaranteed in ML contracts
between the ML service provider (running the BTS ML
service) and the customer (the company doing predictive
maintenance). For example, when serving the BTS ML
model in the edge (BTS-edge-model), we assumed the
BTS-edge-model could not be trained periodically due
to limited resources, the expected Inference Accuracy could
be 80%. When the BTS ML service was deployed in the
cloud, with BTS-model-cloud, we expect the BTS ML
service to achieve 90% accuracy or even higher. In terms
of ResponseTime, clearly the underlying ML infrastructures
and other platform services (e.g., message brokers) will have
a strong impact on the response time, due to the network and
compute resource configurations. Data Quality is considered
in our contract as low-quality input data can affect the pre-
diction, leading to potential disputes in the service contract.
To experiment our framework, we changed the policies to
demonstrate their deciding role in detecting violation (see
Listing 3). For example, when Inference Accuracy does not
meet the expectation because Data Quality is not satisfied,
the system only counts a violation of Data Quality.

4.2. Experiments

4.2.1. Effect of edge and cloud serving platform deploy-
ment in ML contracts. In the first experiment, we used
two deployments of message brokers (messaging systems
for transferring IoT data and other types of observability
reports): MQTT (HiveMQ Community Edition3) and AMQP
(RabbitMQ4). The brokers were deployed in the edge and in
the cloud to demonstrate the flexibility of changing contract
constraints and violation detection of our framework with
different system setups, which should be considered in the
ML contract. Table 2 shows the violation rates observed
when the customer application sent the prediction request
based on the data of a day including more than 3.000 records
within 15 minutes. Here, the ResponseTime in our ML
contract is simply set as the average ResponseTime observed
in each test case. When the brokers are deployed in the edge,
all the communications are performed within the internal

3. https://www.hivemq.com/developers/community/
4. https://www.rabbitmq.com/

edge network. We can only recognize several violations due
to unstable connections of the local network (home-setting
wireless with Raspberry Pis due to COVID-19). With the
brokers deployed in the cloud, AMQP shows only a few
spikes causing violations, and most requests are responded
on time (showed in Figure 5). Using MQTT broker, the
ResponseTime fluctuates with bigger amplitudes (�70ms)
around the average value. Nearly a half of responses cause
violations. We performed an additional experiment where
we keep the broker in the edge and moved the ML service
between edge and cloud. We simulated the edge environ-
ment using Google Cloud Platform. Table 3 shows that
the violation rates when using external network are always
higher. Since the internal network on Google service is more
stable, we observed only a few spikes. The amplitude of the
variation observed in ResponseTime is also smaller (�25ms)
so that if we just simply set the expected ResponseTime as
the average value, there will be a lot of violations.

With dynamic configurations of ML services and their
ML infrastructures for customers, the ML providers have
to carefully examine the ResponseTime to make a suit-
able contract offering a flexible service to their customers.
However, it will be difficult if they cannot find a suitable
solution to dynamically monitor, change, update and deploy
the ML service contract. QoA4ML allows developers to
define ML attributes in the contract considering different
system conditions and settings. Meanwhile, the violation
monitoring would show the actual quality of service that
ML providers deliver to their customers. Based on that, they
can add, remove, or adjust the contract/policy flexibly in run-
time due to condition changes. That builds a life cycle for
the ML contract helping all the involved stakeholders avoid
unexpected compensation.

Broker Deployment Broker Type Violation Rate
Edge (Raspberry PI, local
network)

MQTT 12%
AMQP 8%

CSC - Cloud MQTT 41%
AMQP 16%

TABLE 2. ResponseTime VIOLATIONS IN BROKER DEPLOYMENTS

ML Service Deployment Broker Type Violation Rate
Edge (container, Google
Cloud)

MQTT 20%
AMQP 18%

CSC - Cloud MQTT 38%
AMQP 21%

TABLE 3. ResponseTime VIOLATIONS WHEN MOVING ML SERVICE

Figure 5. ResponseTime when the broker and ML service in the edge



4.2.2. Impact of violation monitoring. In the second ex-
periment, to demonstrate the importance of service contracts
for Inference Accuracy and Data Quality attributes, our
BTS ML model was trained with only some parts of the
dataset as training the model with the whole dataset makes
it hard to demonstrate these attributes with IoT data. In this
experiment, the BTS ML consumer application, the BTS
ML service and the message broker were deployed in the
edge, whereas other services were in the cloud (Figure 4).
Figure 6 shows the number of violations on three criteria:
ResponseTime, Data Quality, and Inference Accuracy. We
observe that the violation patterns of Data Quality and
Inference Accuracy are fairly similar since the data quality
always affects the prediction results. Taking a closer look
at the quality monitoring in Figure 7, we can see that
the Inference Accuracy drops every time the Data Quality
falls down. In this case, the ML provider should set up
suitable contracts and policies specifying at which level of
data quality, the ML service would work properly to avoid
Inference Accuracy violations.

In previous tests, the model was only trained with 80%
random data collected from 0am to 2am and the data quality
was examined using the data distribution in this period.
Because the IoT data in different periods of a day may
have various distributions, we decided to retrain our model
every 2-hour using the most recent data. The violation rates,
when evaluating our ML model with data from different
periods, are recorded in Table 4. Since the model is trained
periodically, the violation rates have been reduced signifi-
cantly. With violation monitoring, we can perform further
analysis and understand why the customer requirements are
not satisfied during some period of service usage time, for
example, the ML model is outdated for dealing with IoT data
at the peak time of business – from 6am-10am is when the
BTS usage is intensive due to active mobile users. Thereby,
the ML service provider knows when the ML models need to
be updated to sustain the quality of ML services, e.g., using
domain knowledge (IoT data and telcos as a business sector).
Given a comprehensive set of attributes and monitoring
probes, we can learn from violations, discover their root
causes, and improve ML services.

Figure 6. ResponseTime, Data Quality, Inference Accuracy violations

4.3. Benefits, flexibility and extensibility discussion

The obvious benefit for stakeholders is to establish
agreed constraints and to monitor them at runtime. Different

Figure 7. Data Quality & Inference Accuracy monitoring

Time
Period

Violation Rate (training
once)

Violation Rate (training
every 2-hour)

0am-2am 2% 2%
2am-4am 4% 3%
4am-6am 18% 4%
6am-8am 15% 6%
8am-10am 10% 4%
10am-12pm 7% 4%
12pm-2pm 3% 3%
2pm-4pm 5% 5%
4pm-6pm 10% 7%
6pm-8pm 15% 5%
8pm-10pm 4% 2%
10pm-0am 1% 3%
TABLE 4. VIOLATION RATES (Inference Accuracy) WITH DIFFERENT

TRAINING STRATEGIES

stakeholders carry out their own ways of monitoring and
evaluation but they can use the results to discuss and explain
unexpected behavior of the ML service. However, using our
framework, we could move to the step of continuous testing
and observability of ML production, like the Netflix method
[21]: critical attributes like data quality, inference accuracy
and bias can be continuously evaluated by also injecting
suitable test data via designed test cases.

In the context of dynamic ML services, flexible con-
tracts and policies are important. Our proposed ML con-
tract framework consists of various attributes that can be
implemented in different ways. Given contract constraints
in JSON, the developer and provider can easily describe
stakeholders requirements. Meanwhile, the contract policy
is written in Rego, an easy-to-use declarative language. The
decoupling between policies and attribute constraints en-
ables flexibility in terms of monitoring and evaluation. The
contract and policies can be updated using REST API during
operation due to requirements and conditions changing.
With JSON and Rego, we can also integrate with other com-
plex policies seen nowadays in state-of-the-art virtualized
environments for ML services. QoA4ML also offers a high
reusable contract and policy. An ML contract can be reused
by adjusting the values corresponding to the requirements
and policies for each customer. Since ML services often
have many attributes in common, the developer only has
to adapt appropriate parts to create separate contracts for
multiple services.



Frameworks Types of service de-
velopment

ML-specific attributes ML contract specifica-
tions

ML contract monitor-
ing

Google AI
Platform [22]

ML models, services
& infrastructures

Response time, training and serv-
ing cost for resource usage

No (common metrics for
the ML infrastructure)

no (only resource moni-
toring)

Azure ML
[23]

ML models, services
& infrastructures

Inference accuracy (up to the de-
veloper); data drift

No ML specific contract
(just for the infrastructure)

Fairness scores; model
monitoring

Amazon
Sager [24]

ML models, services
and infrastructures

Self-specified and managed by
developers but not included in
service contract

No ML specific contract
(pricing based on time, re-
source instance)

No (only resource moni-
toring)

Hopsworks
[25]

ML services develop-
ment and operation

Network security (TSL/SSL),
data analysis & quality control

No specification for pro-
gramming contracts

Monitoring tool but it is
not part of contract

Algorithmia
[26]

Framework for
MLOps

Security, cost based on execution
time

No specification for pro-
gramming contracts

No (only resource and
service monitoring)

Seldon [27] Deploying ML mod-
els on Kubernetes

Data quality, runtime model man-
agement

Subscription plans No (contract for SLA
and service availability)

Hydrosphere
[28]

Serving and monitor-
ing for ML models

Outlier data score, data drift met-
rics, interpretability feature,

No contract Monitoring of drift,
model performance

TABLE 5. EXAMPLES OF SERVICE CONTRACTS IN SYSTEMS FOR ML DEVELOPMENT AND OPERATION

5. Related Work

ML service contracts: Service contracts have been re-
searched intensively, e.g., [29], [30], [31], [32], but they do
not support ML-specific attributes. In [4], important non-
functional attributes for ML and their research questions
are discussed. The work in [33] also discussed some ML-
specific attributes related to the explainability and trans-
parency in ML analysis. Our QoA4ML specification relies
on existing identified metrics and attributes in these works
and in extensive literature of ML. However, we introduce a
specification for ML-specific attributes. Although the service
contracts for ML are not clearly defined and developed,
there exist many works for optimizing SLA for ML, such as
Swayam [34], MArk [35], Clipper [36] and Clockwork [37].
Such optimization works are important and relevant to the
implementation of contract enforcement, e.g., maximizing
inference accuracy while minimizing costs and response
time. Our work is related to ML optimization but, in this
paper, we do not focus on ML optimization.

Supporting ML contracts development in ML systems:
Many ML systems/platform-as-a-service support the devel-
opment and operation of ML services. They include ML
frameworks, supporting ML service DevOps and ML in-
frastructures, for example, Google Cloud AI [22], Microsoft
Azure ML, Hopsworks [25], Algorithmia [26], Seldon [27]
and Hydrosphere [28]. Most of them, together with offerings
of ML infrastructures, enable features for obtaining and re-
porting common and ML-specific metrics, such as inference
accuracy, response time, and cost. However, most of them do
not have the notion of ML service contracts and the support
for programming contracts. Table 5 shows a short summary
of service contracts in existing development frameworks.
Overall, our work differs from these frameworks by provid-
ing high-level contract support. In principle, our work can
be integrated into these frameworks for the developer.

6. Conclusions and Future Work

Supporting ML contracts in ML services is important
as many businesses develop and deploy ML models for
consumers using existing third-party complex ML infras-
tructures. In this paper, we address ML-specific attributes
and constraints in service contracts for MLaaS, focusing
on ML serving for dynamic inference. We have proposed
the QoA4ML framework to capture important ML-specific
attributes for service contracts and to provide specifications
for ML service providers and ML service consumers to
consider part of their contracts. We implemented a prototype
of QoA4ML and demonstrated how to support QoA4ML
through monitoring and contract evaluations (the current
prototype is available at https://github.com/rdsea/QoA4ML).

We have just experimented contracts between ML
providers and consumers. For future experiments, we will
need to deal with more complex situations when also con-
sidering the contracts between ML service provider and ML
infrastructure provider, which mostly fall into the current
cloud service contract model. We are working on extending
ML attributes and advanced QoA4ML probes on accuracy,
fairness and security. The future work will also be focused
on combining QoA4ML with common contract specifica-
tions to provide a full-fledged service contract and optimiza-
tion for MLaaS.
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learning frameworks and libraries for large-scale data mining: a
survey,” Artificial Intelligence Review, vol. 52, no. 1, pp. 77–124,
2019.

[3] R. Bianchini, M. Fontoura, E. Cortez, A. Bonde, A. Muzio, A.-M.
Constantin, T. Moscibroda, G. Magalhaes, G. Bablani, and M. Russi-
novich, “Toward ml-centric cloud platforms,” Commun. ACM, vol. 63,
no. 2, p. 5059, Jan. 2020.

[4] J. Horkoff, “Non-functional requirements for machine learning: Chal-
lenges and new directions,” in 2019 IEEE 27th International Require-
ments Engineering Conference (RE), 2019, pp. 386–391.

[5] D. M. W. Powers, “Evaluation: from precision, recall and f-measure
to roc, informedness, markedness and correlation,” 2020.

[6] L. H. Gilpin, D. Bau, B. Z. Yuan, A. Bajwa, M. Specter, and
L. Kagal, “Explaining explanations: An overview of interpretability
of machine learning,” in 2018 IEEE 5th International Conference on
Data Science and Advanced Analytics (DSAA), 2018, pp. 80–89.

[7] M. Du, N. Liu, and X. Hu, “Techniques for interpretable machine
learning,” Commun. ACM, vol. 63, no. 1, p. 6877, Dec. 2019.

[8] C. Reed, E. Kennedy, and S. N. Silva, “Responsibility, autonomy
and accountability: Legal liability for machine learning,” Queen
Mary School of Law Legal Studies Research Paper No. 243/2016,
2016. [Online]. Available: https://ssrn.com/abstract=2853462

[9] P. Hacker, R. Krestel, S. Grundmann, and F. Naumann, “Explain-
able AI under contract and tort law: legal incentives and technical
challenges,” Artificial Intelligence and Law, jan 2020.

[10] “Open Policy Agent,” https://www.openpolicyagent.org, accessed:
Nov 30, 2020.

[11] N. Mehrabi, F. Morstatter, N. Saxena, K. Lerman, and A. Galstyan,
“A survey on bias and fairness in machine learning,” ACM Comput.
Surv., vol. 54, no. 6, Jul. 2021.

[12] P. Mattson, C. Cheng, C. Coleman, G. Diamos, P. Micikevicius,
D. A. Patterson, H. Tang, G. Wei, P. Bailis, V. Bittorf, D. Brooks,
D. Chen, D. Dutta, U. Gupta, K. M. Hazelwood, A. Hock, X. Huang,
B. Jia, D. Kang, D. Kanter, N. Kumar, J. Liao, G. Ma, D. Narayanan,
T. Oguntebi, G. Pekhimenko, L. Pentecost, V. J. Reddi, T. Robie, T. S.
John, C. Wu, L. Xu, C. Young, and M. Zaharia, “Mlperf training
benchmark,” CoRR, vol. abs/1910.01500, 2019.

[13] L. Song and P. Mittal, “Systematic evaluation of privacy
risks of machine learning models,” in 30th USENIX Security
Symposium (USENIX Security 21). USENIX Association,
Aug. 2021. [Online]. Available: https://www.usenix.org/conference/
usenixsecurity21/presentation/song

[14] P. Hacker, R. Krestel, S. Grundmann, and F. Naumann, “Explainable
ai under contract and tort law: legal incentives and technical chal-
lenges,” Artificial Intelligence and Law, pp. 1 – 25, 2020.

[15] C. Coleman, D. Kang, D. Narayanan, L. Nardi, T. Zhao, J. Zhang,
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