
This is an electronic reprint of the original article.
This reprint may differ from the original in pagination and typographic detail.

Powered by TCPDF (www.tcpdf.org)

This material is protected by copyright and other intellectual property rights, and duplication or sale of all or
part of any of the repository collections is not permitted, except that material may be duplicated by you for
your research use or educational purposes in electronic or print form. You must obtain permission for any
other use. Electronic or print copies may not be offered, whether for sale or otherwise to anyone who is not
an authorised user.

Raj, Rohit; Truong, Linh
On Analysis of Security and Elasticity Dependency in IIoT Platform Services

Published in:
2021 IEEE International Conference on Services Computing (SCC)

DOI:
10.1109/SCC53864.2021.00048

Published: 01/11/2021

Document Version
Peer-reviewed accepted author manuscript, also known as Final accepted manuscript or Post-print

Please cite the original version:
Raj, R., & Truong, L. (2021). On Analysis of Security and Elasticity Dependency in IIoT Platform Services. In B.
Carminati, C. K. Chang, E. Damiani, D. Shuiguang, W. Tan, Z. Wang, R. Ward, & J. Zhang (Eds.), 2021 IEEE
International Conference on Services Computing (SCC) (pp. 351-361). (Proceedings of the ... IEEE International
Conference on Services Computing). IEEE. https://doi.org/10.1109/SCC53864.2021.00048

https://doi.org/10.1109/SCC53864.2021.00048
https://doi.org/10.1109/SCC53864.2021.00048

On Analysis of Security and Elasticity Dependency
in IIoT Platform Services

Rohit Raj
Department of Computer Science

Aalto University, Finland
rohit.raj@aalto.fi

Hong-Linh Truong
Department of Computer Science

Aalto University, Finland
linh.truong@aalto.fi

Abstract—Modern IIoT (Industrial Internet of Things) systems
rely on highly decomposed platform services that are distributed
across the edge and cloud. Security attacks in these systems can
cause indirect and unwanted impacts on the elasticity of platform
services. These impacts can often manifest across subsystems
and not necessarily remain localized. However, there is a lack
of techniques to identify and model cross-layered, cross-system
concrete dependencies between specific security attacks and their
corresponding elasticity impacts. This paper presents a novel
framework SEDAICO that can model the elasticity relationship
among IIoT platform services due to a security attack. Secondly,
the framework supports the developer to identify concrete depen-
dency between specific security attacks and the corresponding
impacts on the elasticity of the platform services. We further
illustrate our work with experiments and evaluate the framework
through a real-world example.

Index Terms—cloud computing, edge computing, industrial
internet of things, cloud elasticity, cloud security analytics

I. INTRODUCTION

IIoT comprises of a wide range of services that con-
stitutes diverse “smart” things and devices integrated with
cloud infrastructures [1]. More recently, the edge computing
paradigm [2] has emerged to facilitate the low-latency, high-
QoS (Quality of Service) requirements by introducing com-
puting and data processing services in between these things
and devices and the cloud. The edge and cloud computing
paradigms coupled with the advent of containers and microser-
vices have led to a very microservice-oriented approach in the
implementation of IIoT architectures.

At the core of a microservice-oriented IIoT architecture,
various types of edge and cloud platform services are used.
Platform services are composed of heterogeneous and dis-
tributed services such as databases and message brokers, and
are deployed on a variety of subsystems. As these services
are often customized for an organization’s needs, they also
require tailor-made goals for security, elasticity and resilience.
For these goals, it is imperative to have a concrete mapping
of the dependency between security, elasticity and resilience.
For example, an IIoT infrastructure for monitoring equipment
needs to identify a dependency between a security attack on
an edge platform service and corresponding elasticity effects
on various downstream cloud platform services. Moreover, the
behavior of analytics on cloud platform services may vary
between an active attack vs a generic failure. An active attack

would usually publish/inject a malicious payload (such as
a stack-based buffer overflow payload) whereas a software
failure may just send harmless data. Generic monitoring sys-
tems [3], [4], [5] lack the ability to provide necessary depen-
dencies analytics to differentiate between these two situations.
To date, little attention has been paid to identify impacts on the
elasticity of different platform services under a specific attack
condition. As we discuss in the related work (Section V), there
is a lack of comprehensive analysis frameworks that can aid
the developer in establishing these dependencies.

This paper presents the SEDAICO (Security Elasticity De-
pendency Analysis In Computing cOntinuum) framework that
takes a holistic approach towards the analysis of security
attacks and their impacts on the elasticity of the IIoT platform
services. Through monitoring, our framework evaluates and
analyzes the elastic changes in these platform services during
attack conditions. By mapping these (elasticity) impacts to a
specific security attacks, our framework helps developers to
establish concrete dependencies between a specific security
attack condition and the elasticity of different platform services
across the sub-systems. Overall, we present the following
contributions of this paper:

1) Techniques to model relationships between the elasticity
of different IIoT platform services and a security attack.
The developer can then identify and consequently model
this into a security-elasticity relationship.

2) Techniques to identify concrete dependencies between
a security attack and the corresponding impact on the
elasticity of a platform service. This is done by the
framework through the analytics of data captured from
monitoring and tests profiles.

For example, using our framework, a developer could test
how exactly the elasticity of cloud database is dependent on
the security attack that is limited to only edge subsystem.
Through the use of declarative syntax, the developer can
very easily provide security-elasticity analytics specifications
to the framework and generate complex deployments, tests and
monitoring profiles suitable for their IIoT Under Test (IUT).
Finally, through security-elasticity dependency generated by
our framework’s analytics, the developer can also capture and
share the threat intelligence to detect a security attack based
on elasticity change patterns for their production IIoT platform

services. In this paper, we demonstrate our framework with
a real-world scenario using industrial data. The framework
prototype is available at https://github.com/rdsea/SEDAICO.

The rest of the paper is organized as follows: Section
II discusses the motivation and presents the research ques-
tions. Section III introduces the key models, techniques and
implementation of our framework. Section IV presents the
evaluation of our framework. In section V we review related
literature. Finally, the paper ends with concluding remarks in
Section VI.

II. MOTIVATION

A. Motivating scenario

Let us consider a system for monitoring and analysis of
an ISP’s (Internet Service Provider) equipment. We use the
monitoring infrastructure of an ISP network to emulate an IIoT
system. Fig. 1 describes a GPON (Gigabit Passive Optical
Networks) infrastructure; and the monitoring and analytics
services for this infrastructure. At the equipment side (similar
to remote factories/industrial sites), sensors are used to mon-
itor multiple types of equipment. GPON equipment such as
DSLAM (Digital Subscriber Line Access Multiplexer), PON
(Passive Optical Network) must be monitored by these sensors
to ensure proper network operations1. This motivating example
considers the case of monitoring of GPON equipment of a
single province-level network with roughly 1 GB of equip-
ment monitoring data per day that supports active monitoring
components and serves a total of 2048 ONUs.

The upper edge and cloud subsystems manage and process
the health telemetry data originating from the sensors. The
subsystems comprise multiple platform services. The platform
services on the edge subsystem in the motivating example are
less resource-intensive and consist of a message broker, an
edge analytics, and a local database such as SQLLite [6]. The
cloud platform services are highly scalable: such as Kafka
Broker for messaging or Apache Cassandra2 as a database.
These services all together create complex IIoT platform
services, which are typical in IIoT centric organizations.

It is important to note that we need to monitor these
platform services themselves to ensure proper capturing of
anomalies and SLA (Service Level Agreement) guarantees. A
typical IIoT system, like in the scenario is geo-distributed.
While the security related attacks in this IIoT system can
occur at different locations, repercussions (elasticity impacts)
of these attacks may not always be localized and may be
observed across different subsystems. For example, as shown
in Table I, in an unsecured broker configuration attack (such
as CVE-2018-125513) T01-UB, an attacker can publish on
the edge message broker. Since the attacker is publishing on
an incorrect topic, it will not cause data poisoning. However,
this scenario can still cause a decrease of edge message broker
throughput, resulting in a reduced load on the cloud database.

1A PON is one of the most common networks used for providing the
internet services (such as VoIP (Voice over IP), telephone)

2https://cassandra.apache.org
3https://nvd.nist.gov/vuln/detail/CVE-2018-12551

This is because the message broker on the edge subsystem
will try to allocate resources to the incoming messages on an
incorrect topic. Moreover, as the data is not being poisoned,
an automated monitoring system on the cloud would not be
able to pinpoint the cause to any specific security attack just
by looking at reduced database load or the incoming data.

B. Research statements and approach

RQ1: How to characterize the relationship between se-
curity attacks and elasticity: We must characterize possible
relationships between security attacks and the corresponding
elasticity impacts in IIoT platform services across different
subsystems. Developers need models capturing the relationship
between these two aspects. Such a model requires information
about the location of impact, duration of impact, etc. Current
IIoT monitoring frameworks do not support developers to
have a concrete specified model of the relationship between
security attacks and elasticity impacts. For example, through a
model that captures the relationship between an attack on edge
subsystem services such as unsecured edge message broker
and its effect on the cloud message broker, the developer can
quickly establish a correlation.

RQ2: How to analyze the propagation of security related
attacks and its impact on elasticity: We need techniques
through which we can attribute a specific security attack
on an IIoT platform service with a precise impact on the
elasticity of another (or a set of) platform service across the
system. For example, in the case of node poisoning, we must
be able to identify and differentiate between the anomalies
manifested on cloud subsystem’s stream-processing service
and determine if the poisoning is due to common failures
versus an active attack. The present monitoring and elasticity
modeling frameworks would tell the developer only about
the failure and not identify a concrete security attack related
underlying reason.

On the lines of these research questions, we focus on novel
techniques to model the security-elasticity relationship and
aid the developer in identifying concrete security-elasticity
dependencies between the platform services.

III. METHODS AND IMPLEMENTATION

A. Modelling the dependency between security attacks and
elasticity impacts

To capture a relationship between security attack and elastic-
ity impacts from the analytics, we use the What, Where, When,
and How aspects (W3H), which are popular for characterizing
the context associated with an entity [7].

1) What: The What context of an analytics characterization
deals with capturing the anomalous elasticity impacts (such as
unnecessary scaling, and slower performance) that can occur
in the IIoT infrastructure due to a security attack. The What
context helps the developer in studying the nature of the
attacks on the infrastructure.

For example, the first case of Table I (T01-UB) delineates
a What dependency between elasticity impacts and security
attack in an unsecured broker. In an unsecured broker, any

https://github.com/rdsea/SEDAICO

Name Description Example What Where When Developer challenges
T01-
UB

Unsecured Bro-
ker

An unsecured
broker allows
rogue nodes to
publish data on
random topics

Decreased broker
throughput and slower
database ingestion

On edge subsystem
(Broker) and cloud
system services

Run-time
performance changes,
unnecessary scaling
operation on edge and
cloud subsystem

End-to-end
observability
including message
brokers, data ingestion

T02-
PSN

Poisoned Sen-
sor Node

A sensor node
publishes wrong
data on the correct
topic

Incorrect analytics on
cloud, extra storage
consumed in database

On sensor, edge sub-
system and cloud sub-
system

Run-time:
unnecessary scaling
operations, increased
exception production
rate; long-term:
database consumed
faster

Correlation of outlier
data, batch processing
for anomalies in the
system

TABLE I: Examples of challenges in studying security attacks and elasticity dependencies

ElasticSearch

Kafka Broker

Cassandra
Database

CloudSensor

Apache Spark

Edge Batch
Processing and

Publishing

Edge
Analytics

PON
Ports

SBx8100

OLT
Internet
services

IoT Data Hub/
message broker

Local
Database

Edge

ONT(Optical Network Terminals)

DSLAM

ONT

Fig. 1: Platform services in GPON monitoring and analytics system

rouge entity can publish data on a random topic. This can
cause decreased broker throughput and result in a slower
ingestion rate into the backend cloud database.

2) Where: Indicates the locations where the elasticity ef-
fects can manifest as a result of a security attack across
the IIoT infrastructure. The location is in the interest of
the developer – to know or to be aware of – where the
elasticity impacts can be localized. To analyze the Where,
we need to characterize the location of the security attack
based on the result and monitoring data of the elasticity of
IIoT infrastructure.

For example, Table I identifies the Where dependency
between the location of a security attack and the elasticity
impacts in the system. In the case of T01-UB, the location of
the security attack is on the edge message broker. However,
its elastic dependency might affect the cloud database as well
as the other cloud platform services. Similarly, in the case
of T02-PSN, the security attack takes place on the sensor
subsystem, however, the elasticity of cloud analytics might
get affected.

3) When: This aspect of analytics characterization deals
with the frequency and timing of anomalies in the elasticity
impacts. They can show up immediately during a security
attack or might manifest at a later point in time. One common
way of information augmentation of such elasticity impacts is

to monitor and actively capture the timing data (event and
processing). This may have both short-term and long-term
When context. For example, we can see in example T01-UB,
the Where context relates to the increase in the frequency
of the publishing incidents on the edge subsystem. It will
cause extra scale-up and scale-down operations dynamically
during the runtime. The increase in processing throughput on
the edge subsystem can provide us with When information.
In the case T02-PSN, the security attack takes place on the
sensor subsystem, however, the elastic dependency of cloud
analytics might get affected.

4) How: This analytics context maps a security attack to the
impacts on the elasticity of the IIoT infrastructure. The “How”
is also logical information integrated into the framework’s
code. One of the usages of this “How” information is in the
selection and recommendation of the tools, analytics and other
experiment utilities to the developer. For example, from a
database with the catalog of artefacts, the “How” information
can be used to select appropriate recommendations.

B. Methods of W3H specification

1) Declarative methodology: To aid the developer in spec-
ifying the context characterizing the analysis, we follow the
approach of directive specifications. This provides high-level
of abstraction required to enable capture of the W3H context.
Since the format is declarative, the relevant stakeholders (such

as the developer) can provide information without describing
the control flow. We can then extract one or more of the W3H
context from the information. Thus, the two relevant aspects
are a) the syntax of declaration and b) how the framework
extracts possible W3H information from this syntax.

a) Annotation syntax: To capture specifications declar-
atively, we use an annotation based approach in the con-
figuration documents. Each annotation can be declared as a
set of name and value as a comment in the configuration
file. For our current implementation, the developer provides
annotations in the YAML configuration files of the IUT.

An example representation of an annotated
docker-compose4 artefact on edge subsystem for
W3H can be seen in Listing 1. Similarly, an example of
annotated cloud database artefact can be seen in Listing 2.

@framework: SEDAICOFramework
@test-type: T01-UB
v e r s i o n : "3.7"
s e r v i c e s :
@subsystem: edge
@type: broker
vmq−main:

image: vernemq / vernemq
p o r t s :

- 1883:1883
...

Listing 1: Sample annotated edge docker-compose file

@framework: SEDAICOFramework
@test-type: T02-PSN
v e r s i o n : '2'
s e r v i c e s :
@subsystem: cloud
@type: database
c a s s a n d r a−s eed :

c o n t a i n e r n a m e : c a s s a n d r a−s eed
b u i l d : b u i l d / .

...

Listing 2: Sample cloud docker-compose file

b) Extracting “How” information from annotations: The
second relevant aspect of our declarative methodology is how
our framework parses and maps the annotations provided by
the developer into W3H specifications. The post-processor
component in Fig. 3 first parses annotated documents. For
the parsing to begin, the configuration file must begin with
annotation @framework: SEDAICOFramework. It then
extracts all the detected name and value pairs. Each of these
pair represents a set of “What” and “Where” information. This
information is then used for a) selecting the profiles from the
information database and b) in the final analytics to identify
concrete security-elasticity dependency. Fig. 2 demonstrates
how this information is used in selection of profiles for Listing

4https://www.docker.com/

sub-system ::=
"cloud"

type ::=
"database"

test-type ::=
"T02-PSN"AND AND

SEDAICO-
Framework

sub-system ::=
"edge" type ::= "broker" type ::= "broker"

Fig. 2: Using “What” and “Where” information in selection
of artefacts

SEDAICO Framework

:Monitoring Profiles:Test Profiles

«Test Profile»
Test Profile

Configuration <<Monitoring
Profile>>

Monitoring
Profile

Configuration

:PostProcessor
«IoT Profile

Configurations»

<<
M

on
ito

rin
g-

IU
T

in
te

rfa
ci

ng
>>

:IUT Models
<<Test-IUT interfacing>><<Annotated

Documents>>

Fig. 3: Components of the SEDAICO framework

2. The solid boxes represent the filters applied while selecting
the artefacts, whereas the dotted boxes are alternate filters.

While this kind of annotation can be extended for many
types of configuration representation, our current implementa-
tion supports docker and kubernetes5 configuration files.

C. SEDAICO – utilities and artefacts

Based on the methods of capturing W3H from the artefacts,
we present SEDAICO framework for analytics of security-
elasticity dependency in edge-cloud platform services. The
framework consists of multiple profiles and presents a rec-
ommendation of profiles to users based on their IUT choice.
As mentioned in the previous subsections, these profiles are
filtered through the annotation information provided by the
developer.

Each profile of our framework is associated with some
component. The various components of our framework can
be seen in Fig. 3. We first describe the different utilities that
constitute our framework’s components.

Our framework distinguishes the following types of utilities
and artefacts:

• Public IUT artefacts (Puiut): They are artefacts from
existing providers and are used by the developer in the
IUT. For example, in one of our scenarios, a dockerized
configuration of Cassandra database is used as a public
IUT artefact.

5https://kubernetes.io

Edge/IIoT Infrastructure

<<Annotated
Documents>>

Developer

<<Provides>>

SEDAICO
Specifications

Monitoring
ArtefactsTest Profiles

IIoT under Test
(IUT)

Monitoring
ServicesTest Utilities

Monitoring Status
Test Results

<<
Sele

cti
on

>>
<<Selection>>

IUT Models

Test Profile
Configurations

<<extracts>>

<<deploys>>

<<Configures>>
<<

R
ea

ds
 re

su
lts

>>

Devops tasks

SEDAICO Models and configurations

External models

<<deployment>>

<<
ex

ec
ut

io
n>

>

<<deployment>>

IoT Profile
Configurations

Monitoring
Configurations

Information
Database

Result aggregator
and monitor

Dependency
Analytics

Fig. 4: Generic experiment workflow

• Private IUT artefacts (Priut): They include custom arte-
facts available for the developer that have been tailored
for the IIoT monitoring and analysis scenario. An exam-
ple of private IUT artefacts is “mini-batching artefact”
that captures and collates data from edge MQTT message
broker, adds extra edge related metadata and finally
publishes at periodic intervals to a cloud message broker.

• Test Utilities (Ta): They are utilities that are specifically
designed for running and deploying the tests. They in-
teract with the above-mentioned IUT artefacts and help
simulate the different security attacks. In our framework,
they are available as easy to use configurations by the
stakeholders.

• Monitoring artefacts (Mau): These work alongside the
testing utility and help in monitoring the different com-
ponents. The data captured from them are used for
the security-elasticity analytics. Prometheus6 is one such
example.

• Analytics artefacts: They are responsible for generating
the concrete dependency between security and elasticity.
An example of analytics artefact is a Jupyer7 notebook
that can evaluate and plot the elasticity of platform
services during an attack scenario.

D. Framework design

Fig. 4 shows the different methods involved and used in the
framework. In this section, we describe these methods used
during the workflow.

6https://prometheus.io
7https://jupyter.org/

1) Selection of utilities and artefacts: As seen in Fig. 4,
the developer first provides the annotated documents. The
framework then extracts the annotated data as well as IUT
to deploy from these documents. It further validates if this ex-
tracted data conforms to SEDAICO specifications. For exam-
ple, if the @subsystem value is either edge or cloud etc.
The next step then iteratively selects the appropriate profiles
(and artefacts) from the information database. This relational
database holds the information about annotation values and
the corresponding relevant utilities and artefacts. The “What”
and “Where” information from all the annotation values is
used as filters for selection. The framework selects suitable
a) test profiles and b) monitoring artefact. For example, if
the annotation value is “cloud”, the database will select all
the monitoring utilities that are suitable for cloud platform
services. The next filter will be applied for database monitoring
utilities if the @type annotation value is a database. They are
finally presented as a recommendation to the developer. Since
this annotation is filled manually, it provides flexibility to the
developer in customizing their tests and IUT.

a) Monitoring artefact selection: The monitoring artefact
selection is based on the “What” and “Where” information
annotations data provided by the developer. For example, if
the @subsystem value is ”cloud”, and the @type value is
”database”, a query will select from this information database
monitoring utility that has these values. So Grafana which is
suitable for cloud services “AND” database monitoring will
be selected. Such a filtered selection ensures that we capture
maximum relevant data during the tests.

b) Test case selection: Similar to monitoring artefacts,
the test selection is based on the annotation provided by

the developer and is selected from the information database.
However, in addition to reading the two previously mentioned
annotations, this also requires that the developer provides
test-type as an annotation. One such example can be seen
in Listing 2 and the selection query can be seen in Fig. 2. Test
profiles are selected as a set of profile configurations, meaning
that the developer needs to fill these configurations based on
their requirements.

2) Profile configuration and deployment: The next method
in our framework is setting (filling) up of various profile
configurations for the test cases and IUT before they can
be deployed. Our framework supports three distinct profile
configurations (as YAML files), each of them requires DevOps
activities from the developer. Our framework needs them to
accurately configure, deploy run all the artefacts and tests.
These three can be seen in Fig. 4.

a) IoT configuration and deployment: The framework
requires IoT configuration to be filled in by the developer. This
requires providing the details of the sensor such as the number
and duration of sensors that will simulate the sensor subsystem
of the IUT. It is required by the framework to kickstart the
complete IUT and mimic the real-world scenario that the
developer wants to test. It is important to distinguish that
the IUT model is separate (and external) from this and these
configurations do not deploy the IUT edge-cloud platform
services.

b) Test profile configuration: Test profiles emulate the
elasticity conditions under security attacks. We represent test
profiles by a configuration file. Every test case requires a
different type of configuration value to be filled in by the
developer. Using test cases as configuration ensures that the
developer can specify and test for various types of use-cases
on the same IUT.

One example of test profiles is in the first part of Listing 3.
This configuration is for case T01-UB and describes the
information such as the number of sensors, message broker
publication topic, type of broker. The framework then reads
this configuration to initiate the tests.

c) Test deployment and steering: Our framework does
the test deployment based on configuration profiles. This is

Test Profile Configuration
name: "unsecured_broker"
b r o k e r :

t y p e : "mqtt"
a d d r e s s : "localhost"
p o r t : 1883
t o p i c : "TEST_TOPIC"

Test Steering Configuration
dep loyment :

t y p e : "sensor"
r a t e : "10" # per second
number: "5"
d u r a t i o n : "1000" # in seconds

Listing 3: Example of test utility profile

done by simulating through the test utility profile which is
usually a set of malicious IoT subsystem. The developer can
steer the tests during runtime by editing them. In some cases,
the deployment of testing can also be done reactively by the
developer (manually controlled after looking at monitoring
data) in order to accurately measure the elasticity of the
system during tests. For example, the test steering section
in the sample Listing 3 requires the type of sensor, rate of
publication, number of parallel sensors and total duration of
the test scenario.

Through the use of simple configuration files, our frame-
work makes the dynamic steering of tests easy for developer to
configure. By editing these files, they can emulate the elasticity
scenario by supplying the rate, number and duration of the
poisoned sensors. Based on the configuration, the developer
can define the exact test parameters in the test steering section.

d) Monitoring profile configuration: The monitoring pro-
file configurations are available as a set of YAML configu-
ration files of the monitoring artefacts. They contain details
that are required to properly interface with tests and IUT
artefacts. Hence, the monitoring profile configuration will
change depending on the type of artefacts selected for IUT and
tests. An example of a monitoring configuration that connects
with the VermeMQ broker is shown in Listing 4.

E. Artefact coupling and workflow between various configu-
rations

Our framework ensures that the service (test and monitor-
ing) deployment process is mostly automatic. However, the
developer needs to provide proper configurations before our
framework can deploy and run them. The general artefact
deployment order is IUT →Monitoring → Test.

We can see the workflow of the experiment in Fig. 4. It
also shows distinct components of the framework as well as
the activities that the developer must undertake. The developer
first 〈〈Creates〉〉 IUT (along with integration points) with
necessary annotations in the deployment files. The framework
then selects these profile configurations and artefacts from the
information database based on these annotations. Next, the
developer needs to provide suitable configurations for both
the monitoring and testing profiles that gets deployed via our
framework. The analytic utilities can then be used to perform
the security-elasticity dependency analytics on the collected
data.

− job name: 'vernemq'
s c r a p e i n t e r v a l : 10 s
s t a t i c c o n f i g s :

- t a r g e t s :
location of verneMQ IUT broker

- 1 9 5 . 1 4 8 . 2 0 . 1 2 :8888

Listing 4: A sample of monitoring utility profile

F. Dependency analytics

To examine the dependency, the developer can use a set
of analytics utilities to get the final results of the analytics
in the form of a concrete security-elasticity dependency. The
analytics utilities interface with the result aggregators as seen
in Fig. 4. The input to these analytics constitutes monitoring
and test result data. For example, the collected Prometheus
metrics are converted in Grafana dashboards and the csv files
exported from Grafana can be an input to the utilities.

To generate the dependency, an analytics utility performs
two different types of operations on the monitoring and test
data:

a) Transformations: This step normalizes the data during
the normal and test conditions. These transformations are
important as they enable the subsequent analytics steps to
directly evaluate the elasticity of the platform services. For
example, a transformation could average a discreet time-series
of 10 seconds interval values to a minute average interval.
This would help in evaluating the fluctuation of elasticity of a
service that has a scrape interval of 10 seconds with services
that have scrape interval of 1minute.

b) Evaluation: The next step of the analytics evaluates
elasticity impacts using the approach described in section
III-A. This includes a comparative mapping with the attack
scenario. It requires three aspects, the “What”, “When” and
“Where” (such as edge, cloud) of the elastic anomalies that
happened during the test conditions. Additionally, the “How”
comes from the framework’s internal information. Table II
presents an example in the real world use-case.

For example, in a simple case of a poisoned sensor attack
scenario, an analytics evaluates the rate of change of elas-
ticity every minute of the cloud message broker by varying
the sensor load. It then evaluates the elasticity change rate
that occurs during the test scenario by varying the poisoned
sensors. If this time is higher during test conditions, it is
treated as an anomaly. Other cloud platform services (such
as a cloud database) that didn’t show the deviation are not
flagged as anomalous. Additionally, the utility also builds a
graph comparing the two operations. We present one concrete
example of an analytics in the section IV-C.

Our framework includes analytics as Jupyter python note-
books to ensure proactivity of the developer in the analytics
phase. If the developer notices during the analytics that the
results are not clear/concrete they can update and re-run
the analytics from specific points after steering the tests.
Additionally, this also gives flexibility to the developer in
selecting different types of analytics such as complex machine
learning-based analytics.

IV. EVALUATION

We evaluate SEDAICO framework8 through the study of
the propagation of elasticity impacts due to an attack on
the message broker service on the edge subsystem. We use

8Current prototype: https://github.com/rdsea/SEDAICO

the analytics of our framework for finding concrete security-
elasticity relationships between different services due to an
attack on this broker.

A. Experiment settings

The evaluation testbed comprised of the real-world GPON9

motivating scenario described in section II-A and presented
in Fig. 1. The baseline IUT edge platform services include
a VerneMQ MQTT broker “cluster” of two nodes, a mini-
batching service for collating the sensor values and a service to
push this data to cloud platform services. The cloud platform
services had a Cassandra distributed database with 3 nodes and
Kafka broker with 3 nodes. Finally, there is a Python service
to ingest data from Kafka to the Cassandra database. All these
services are containerized as docker containers.

The rate of data production, consumption, and load-
distribution of this testbed were configured as follows:

• Real monitoring dataset: The dataset for the experimentation
was captured from different equipment (ONU devices) of
a single province with 104 distinct network equipments
sending a total of 478-479 messages every 6 minutes.

• Edge infrastructure & sensors: VM’s (Virtual Machines)
were used to emulate the edge infrastructure. Each VM
had platform services running on containers in a dockerized
environment. These services included the edge platform
services as mentioned in the baseline IUT. Additionally,
sensors were simulated through scripts running on the same
machine. A simulated sensor produced approx 80 messages
per minute onto the edge message broker. Each VM had
a varying number of simulated sensor depending on the
experiment phase through IoT profile configurations. We
created two VMs running same set of platform services at
different locations each representing an edge infrastructure.

• Distributed infrastructures: To simulate distributed geo-
environments, we used GCP10 (Google Cloud Platform).
GCP’s compute instance created VM’s (along with the
platform services running atop) at two different locations.
Each VM represents an edge infrastructure as described
above. The locations were europe-west-1 (Belgium)
and europe-west-3 (Frankfurt). CSC’s11 Redhat Open-
shift was used for hosting cloud platform services. All these
cloud platform services were located in Finland.

• Scalability: We configured the rate of sensor data publishing
and the number of sensors using the IUT Profile configu-
ration. Our cloud platform services had higher horizontal
scalability within reasonable resource limitations compared
to the constrained simulated edge infrastructure. These ser-
vices could be scaled manually by providing the resource
description into the IUT profile configuration. For example,
we can add a node to the cloud message broker by providing
an additional service and suitable environment variable.

9The implementation of this GPON scenario can be found in the repository
https://github.com/rdsea/IoTCloudSamples/tree/master/scenarios/netops/

10https://cloud.google.com/
11CSC-Tieteen tietotekniikan keskus Oy, https://www.csc.fi/en/csc

https://github.com/rdsea/SEDAICO
https://github.com/rdsea/IoTCloudSamples/tree/master/scenarios/netops/

Testing and monitoring profiles: We performed experimen-
tation on T01-UB use-case (the “Unsecured broker” from
Table I) test case and used filtered test profiles to steer
the tests. The rate of publishing varied by increment of 10
messages/sec onto the edge message broker. Prometheus and
Grafana were filtered by the framework as data gathering tools.
The monitoring profile configurations constituted of the IP
address and the JMX (Java Management eXtention) ports of
these IUT services.

Analytics utilities: The analytics was done on a Jupyter
Python notebook. We exported the monitoring data as a .csv
file for analytics of dependencies. The notebook’s Python
code performed transformation and evaluation on the elasticity
values of the platform services.

B. Running the experiment
We varied the number of concurrent normal and malicious

sensors publishing in their respective profiles while keeping
the publish rate the same. This was steered using the steering
profile configurations. Each of the scenario, i.e. the normal
and attack scenario, has multiple phases. The different phases
of normal conditions are described below:
• t0: 0 sensors on both the edge locations
• t1: 3 sensors (6 in total) each on both edge locations
• t2: 6 sensors each on both edge locations
• t3: 10 sensors each on both edge locations
• t4: 0 sensors. (Removed with a controlled rate of decrease)

On the other hand, the attack scenario had 7 different time
phases:
• t0-t2: Same as in normal condition
• t3: 10 sensors each on both edge locations. 5 poisoned

sensors on Frankfurt edge location
• t4: 6 sensors each on both edge locations. 15 poisoned

sensors on Frankfurt edge location
• t5: 3 sensors each on both edge locations. 15 poisoned

sensors on Frankfurt edge location
• t6: 0 sensors each on both edge locations. 20 poisoned

sensors on Frankfurt edge location
• t7: 0 sensors each on both edge locations. 23 poisoned

sensors on Frankfurt edge location
1) Experiments: During the normal scenario, the message

throughput rates in the cloud platform services and edge
platform services have similar patterns. This is true for both
the scale-up and scale-down operations. Since the values were
pushed into the cloud message broker in batches, there are
periodic sharp peaks from phase t1-t3 on the platform
services of cloud subsystem (refer to Fig. 5a). During phase
t4, the drop in cloud message broker throughput follows the
same trend as edge message brokers.

In the scenario of attack condition, there is a similar scale-up
between phases t0-t3. That is, adding 5 poisoned sensors on
edge didn’t produce any difference on cloud platform services.
However, at phase t4-t6 there is a visible slowdown in the
frequency of ingestion on the cloud location. At time phase
t7, a constant rate can be seen after healthy sensors were
decreased to 0.

(a) Normal Operation

(b) Test Operation

Fig. 5: Elasticity of Services under unsecured broker configu-
rations

Characterization Value
What Database Elasticity
Where Cloud
When 6m averages of time-series monitoring data of

cloud database
How

• Perform elasticity change detection at each
data point

• Derive the rate of increase in elasticity of a
service from this change detection

• Measure the frequency of message ingestion
(i.e. how long it takes to ingest x data) and
rate of message ingestion (i.e. how many
messages are ingested every minute)

TABLE II: Using W3H characterization in analytics

C. Analytics and results

The analytics measured the elastic behaviour of the platform
services under the two scenarios. They are plotted in Fig. 5.
Fig. 5a shows scalability changes in the infrastructure with
respect to different number of sensors. On the other hand,
Fig. 5b plots the effect on services under the unsecured broker

Time (sec)

R
a
te

 o
f

In
g
e
s
ti

o
n
 (

m
s
g
/s

e
c
)

Fig. 6: Comparison of average overall ingestion rate on the
cloud database

test condition.
To derive the results, the analytics scripts first normalized,

cleaned, and transformed the monitoring data into 2 minute
average for edge platform services and 6 minutes average
for cloud platform services. This was done to ensure all
the data points used in the elasticity evaluation represented
accurate batch sizes. The evaluation maps the changes in
elasticity points of the services at different intervals and
contrasted them with the attack scenario. The notebook used
the W3H information to find the dependency between the
edge message broker and the cloud database. It looked at the
“What”, “Where” and “When” and utilized the “How” from
Table II. From the “How” information, it performed change
point detection as well as the calculation of the duration of
elasticity peaks from on the data points in both the normal
and attack scenario.

1) Result – security attack on unsecured edge message
broker and propagation of elasticity impacts: This analyzes
the propagation and impact of elasticity on the various services
on the cloud and edge system when the edge message broker
service is on an attack. During phase t4-t6, the decrease
in the elasticity of different cloud platform services is slower
than the normal condition. This can be seen in the Fig. 5b as
there are flatter peaks at larger intervals compared to normal
condition. Another observation about impact is that of the
elasticity of edge message broker and its attempts to clear the
queue of unsubscribed messages at periodic intervals. It can
be observed by the decrease in rate after few minutes. After
setting up the IUT, test profiles and monitoring profiles, the
analytics utilities in our framework gives an idea about how
different services in the IUT would behave (elasticity) during
the attack conditions.

2) Results – characterizing dependency of elastic impacts
and attack on unsecured broker: To characterize the depen-
dency between the elasticity of the cloud database and the
attack on an unsecured broker, the analytics utilities performed
an evaluation of the elasticity during the attack and normal
scenarios. The comparative plot can be seen in Fig. 6. Based

on the analytics (and the graph), the following two character-
izations can be made:

• Cloud platform services scale down slowly during the
attack on the unsecured broker on edge: In the case of
attack, the scale-down rate is slightly slower than the
normal operation scenario (the circled annotations in the
graph). This is partly due to an increased load on the
MQTT message broker leading to a larger message queue.
A longer message queue at the edge message broker
causes an overall latency delay during the scale-down
operations.

• The frequency of message ingestion on the cloud platform
services slows down while the rate of ingestion remains
the same: It is important to differentiate here that while
the frequency of messages that are pushed onto the cloud
slows down (i.e. it took more time to ingest the data),
the average rate (per 6 minutes) of ingestion remain
the same (See the crossed annotations while scaling
up). For example, Kafka still receives ∼1400 messages
every minute. But under normal condition, a batch of
700 messages is published from the edge location in 2
seconds whereas it took around 15 seconds when the
edge message broker is under attack. Since the average
ingestion rate still remained the same, it is very easy for
developers to miss the attack on the edge device by just
looking at cloud dashboards.

D. Discussion

The above subsection demonstrates the analytics of two
concrete security-elasticity dependency during attack on an
unsecured edge message broker. While the framework simpli-
fies the selection of appropriate monitoring and test utilities,
the developer still needs to be actively involved to provide
necessary profile configuration and steer the tests. Also, the
framework only aids the developer in security-elasticity de-
pendency by presenting the results. The concrete result still
needs to be identified by the developer and is limited by their
domain-expertise to infer the outcomes.

Nonetheless, it can be easily seen why such a dependency
cannot be generated directly by using monitoring dashboards
and how the framework aids in every aspect such as tests,
IUT, deployment and analytics etc. Moreover, it is easy for the
developer to adapt this framework for their use-case and study
the security-elasticity dependency through simple models and
configurations.

V. RELATED WORK

Security-elasticity dependencies: There are not a lot of re-
searches that analyze the security attacks and elasticity impacts
among different platform services. However, many researches
aim to solve this problem by increasing the observability of the
system. The work presented in [8] and [9] describes a multi-
level observability of the cloud orchestration system such as
Kubernetes. However, container orchestration systems are not
yet used extensively on the edge devices as they are resource
heavy. Hence, this approach cannot be directly used in a multi

subsystem distributed IIoT infrastructure that requires resource
constrained processing. Similarly, an observability enhancing
framework such as [10] discusses the feasibility only over
cloud subsystem microservices. Systems such as [11], [12] for
observability in IoT and edge networks usually do not integrate
with cloud native applications and hence are not scalable
onto the cloud subsystems [13]. The BonFIRE framework by
Kavoussanakis et al. [14] aims to create a testbed for cloud
applications and allows the user to host wide scenarios of
services that are not yet deployed to the cloud. This work,
however, does not provide its user with the analytics services
to help generate security-elasticity dependency. Moreover, it
is only able to evaluate cloud platform services. The work
by Jiang et al. in [15] analyzes the security of IIoT devices
especially against a variation of a popular botnet attack. This
work (and the attack) focuses on the impacts on the IIoT
devices and not on the platform services. The work in [16]
uses a CUmulative SUM (CUSUM) to model state and residual
parameters in an IIoT platform service. Unlike our work,
the methods used in this framework only focus on anomaly
detection for the elasticity impacts of the underlying IIoT
network subsystem.
Monitoring utilities: VARYS [3] is a model-driven
technology-agnostic monitoring tool that observes the cloud
stack at multiple levels. However, this framework is
framework-agnostic only at the cloud subsystem and has not
been extended to the IoT or edge subsystem. C’Mon [17]
defines security related monitoring as a compliance of any
service to secSLAs (Security Service Level Agreements). SE-
CUPerf [18] assesses the end-to-end performance and security
of a cloud system. Unlike our framework, this work determines
security attacks from performance based on certain heuristics
and is static unless these heuristics are updated.

We also need to monitor these services to ensure proper
capturing of anomalies that creep up in the system. One of
the most common techniques to achieve this is through the
use of dedicated monitoring frameworks such as SONATA
monitoring project [4] or work by Boncea et al. [5]. Both
these works discuss monitoring data collection from platform
services (through probes), use of push gateways and user alerts
through rules via an alert manager. Another important aspect
is performing the association of security attacks and its impact
on the elasticity of the cloud [19]. The tools used by popular
monitoring frameworks such as [20], [4], [5] lack the ability
to correlate the monitoring data. Researches such as [21] that
attempt to automate testing of elasticity are limited in scope.
That is, they are able to only monitor and test the elasticity
of infrastructure (such as VM) and not an individual platform
service.
Security of IIoT platform services elasticity: While there
are multiple literatures that address security in edge and cloud
subsystems [22], [23]; there exists little literature that attempt
to perform a holistic analysis of the IIoT infrastructure and
study the underlying dependence with respect to security
attack and elasticity impacts. STRATFram [24] framework
allows the users to specify elasticity models and evaluates

the elasticity strategies on the cloud. However, this work
does not focus on the security (attack) aspect of elasticity.
Moreover, the framework has only been evaluated in the
context of cloud platform services and not on an edge-cloud
continuum like ours. IntelligentSDS [25] employs multiple
security agents to perform white-box testing to identify threats
on edge-cloud network services. However, this framework
does not provide any clarity on the elasticity impacts of
these network services. Fadi Al-Turjman and Sinem Alturjman
propose an access control framework named “CSIP” [26]
that performs analytics and provisions healthcare applications
with context-aware features. However, this framework lacks a
mechanism to support users’ custom analytics. Kingfisher [27]
security framework works on intrusion detection using VAE
(Variational AutoEncoders) from the incoming data. The scope
of this framework only supports the detection of network
attacks such as SYN Flood through a pre-trained VAE model.
Moreover, we cannot use it to analyze a rich set of elasticity
impacts. Many of the other works however are either context-
specific ([26], [28]) or application-specific ([29], [30]) and
hence, unlike our framework, they do not allow the developer
to perform analytics over diverse IIoT infrastructure contexts
and applications.

VI. CONCLUSIONS AND FUTURE WORK

Complex interactions between platform services in an IIoT
infrastructure create security-elasticity dependencies that are
often inconspicuous and hence are often difficult to identify by
the developer of the system. In this paper, we have presented
our SEDAICO framework and described the methodologies
that it uses to capture and analyze these security-elasticity
dependencies. Through the use of these analytics, the de-
veloper can a) find a relationship between the elasticity of
platform services during a test scenario, and b) establish
a concrete dependency between the elasticity impacts on a
platform service and a specific security attack.

We evaluated the dependency analytics on different sce-
narios and utilized the use-case of an unsecured broker for
the evaluation of our framework. In future, this framework
can be expanded for multiple different use-cases of security
attacks and modeling of a data model that can be used to
represent the various types of dependency. A key issue before
this expansion will require a fine-grained approach for creating
the security attack data and test case characterization. Inclusion
and integration of domain expertise from the ML and deep
learning domains will be useful. For example, an integration of
a CRA (Convolutional Recurrent Autoencoder) based anomaly
detection engine [31] into the analytics can be done.

ACKNOWLEDGMENTS

We thank our collaborators in Vietnam for sharing the
real dataset used in this paper. The authors also wish to
acknowledge CSC – IT Center for Science, Finland, for cloud
resources.

REFERENCES

[1] E. Sisinni, A. Saifullah, S. Han, U. Jennehag, and M. Gidlund, “Indus-
trial internet of things: Challenges, opportunities, and directions,” IEEE
Transactions on Industrial Informatics, vol. 14, no. 11, pp. 4724–4734,
2018.

[2] W. Shi, J. Cao, Q. Zhang, Y. Li, and L. Xu, “Edge computing: Vision
and challenges,” IEEE Internet of Things Journal, vol. 3, no. 5, pp.
637–646, 2016.

[3] A. Tundo, M. Mobilio, M. Orrù, O. Riganelli, M. Guzmàn, and
L. Mariani, “Varys: An agnostic model-driven monitoring-as-a-service
framework for the cloud,” in Proceedings of the 2019 27th ACM Joint
Meeting on European Software Engineering Conference and Symposium
on the Foundations of Software Engineering, ser. ESEC/FSE 2019.
New York, NY, USA: Association for Computing Machinery, 2019, p.
10851089.

[4] P. Trakadas, P. Karkazis, H.-C. Leligou, T. Zahariadis, W. Tavernier,
T. Soenen, S. Van Rossem, and L. Miguel Contreras Murillo, “Scalable
monitoring for multiple virtualized infrastructures for 5g services,” in
SoftNetworking 2018, The International Symposium on Advances in
Software Defined Networking and Network Functions Virtualization,
2018, pp. 1–4.

[5] R. Boncea and I. Bacivarov, “A system architecture for monitoring the
reliability of iot,” in Proceedings of the 15th International Conference
on Quality and Dependability, 2016, pp. 143–150.

[6] R. D. Hipp, “SQLite,” 2020. [Online]. Available: https://www.sqlite.
org/index.html

[7] D. R. Morse, S. Armstrong, and A. K. Dey, “The what, who, where,
when, why and how of context-awareness,” in CHI 00 Extended Ab-
stracts on Human Factors in Computing Systems, ser. CHI EA 00. New
York, NY, USA: Association for Computing Machinery, 2000, p. 371.

[8] R. Picoreti, A. Pereira do Carmo, F. Mendona de Queiroz, A. Salles
Garcia, R. Frizera Vassallo, and D. Simeonidou, “Multilevel observabil-
ity in cloud orchestration,” in 2018 IEEE 16th Intl Conf on Dependable,
Autonomic and Secure Computing, 2018, pp. 776–784.

[9] S. Taherizadeh and V. Stankovski, “Incremental learning from multi-
level monitoring data and its application to component based software
engineering,” in 2017 IEEE 41st Annual Computer Software and Appli-
cations Conference (COMPSAC), vol. 2, 2017, pp. 378–383.

[10] N. Marie-Magdelaine, T. Ahmed, and G. Astruc-Amato, “Demonstration
of an observability framework for cloud native microservices,” in 2019
IFIP/IEEE Symposium on Integrated Network and Service Management
(IM), 2019, pp. 722–724.

[11] A. Johnsson and C. Rohner, “On performance observability in iot
systems using active measurements,” in NOMS 2018 - 2018 IEEE/IFIP
Network Operations and Management Symposium, 2018, pp. 1–5.

[12] N. Jacobs, S. Hossain-McKenzie, A. Summers, C. B. Jones, B. Wright,
and A. Chavez, “Cyber-physical observability for the electric grid,” in
2020 IEEE Texas Power and Energy Conference (TPEC), 2020, pp. 1–6.

[13] S. Niedermaier, F. Koetter, A. Freymann, and S. Wagner, “On observabil-
ity and monitoring of distributed systems – an industry interview study,”
in Service-Oriented Computing, S. Yangui, I. Bouassida Rodriguez,
K. Drira, and Z. Tari, Eds. Cham: Springer International Publishing,
2019, pp. 36–52.

[14] K. Kavoussanakis, A. Hume, J. Martrat, C. Ragusa, M. Gienger,
K. Campowsky, G. V. Seghbroeck, C. Vzquez, C. Velayos, F. Git-
tler, P. Inglesant, G. Carella, V. Engen, M. Giertych, G. Landi, and
D. Margery, “Bonfire: The clouds and services testbed,” in 2013 IEEE
5th International Conference on Cloud Computing Technology and
Science, vol. 2, 2013, pp. 321–326.

[15] X. Jiang, M. Lora, and S. Chattopadhyay, “An experimental analysis
of security vulnerabilities in industrial iot devices,” ACM Trans.
Internet Technol., vol. 20, no. 2, May 2020. [Online]. Available:
https://doi.org/10.1145/3379542

[16] H. R. Ghaeini, D. Antonioli, F. Brasser, A.-R. Sadeghi, and N. O.
Tippenhauer, “State-aware anomaly detection for industrial control
systems,” in Proceedings of the 33rd Annual ACM Symposium on
Applied Computing, ser. SAC ’18. New York, NY, USA: Association
for Computing Machinery, 2018, p. 16201628. [Online]. Available:
https://doi.org/10.1145/3167132.3167305

[17] S. Alboghdady, S. Winter, A. Taha, H. Zhang, and N. Suri, “C’mon:
Monitoring the compliance of cloud services to contracted properties,”
in Proceedings of the 12th International Conference on Availability,

Reliability and Security, ser. ARES ’17. New York, NY, USA:
Association for Computing Machinery, 2017.

[18] K. Xiong and M. Makati, “Assessing end-to-end performance and
security in cloud computing,” in Proceedings of the Symposium on
Applied Computing, ser. SAC ’17. New York, NY, USA: Association
for Computing Machinery, 2017, p. 405410.

[19] H. J. Syed, A. Gani, R. W. Ahmad, M. K. Khan, and A. I. A.
Ahmed, “Cloud monitoring: A review, taxonomy, and open research
issues,” Journal of Network and Computer Applications, vol. 98,
pp. 11–26, 2017. [Online]. Available: https://www.sciencedirect.com/
science/article/pii/S1084804517302783

[20] M. Yang and M. Huang, “An microservices-based openstack monitoring
tool,” in 2019 IEEE 10th International Conference on Software Engi-
neering and Service Science (ICSESS). IEEE, 2019, pp. 706–709.

[21] A. Alourani, M. A. N. Bikas, and M. Grechanik, “Search-based stress
testing the elastic resource provisioning for cloud-based applications,”
in Search-Based Software Engineering, T. E. Colanzi and P. McMinn,
Eds. Cham: Springer International Publishing, 2018, pp. 149–165.

[22] P. Zhang, M. Zhou, and G. Fortino, “Security and trust issues in fog
computing: A survey,” Future Generation Computer Systems, vol. 88,
pp. 16–27, 2018. [Online]. Available: https://www.sciencedirect.com/
science/article/pii/S0167739X17329722

[23] A. Sinha, G. Shrivastava, P. Kumar, and D. Gupta, “A community-
based hierarchical user authentication scheme for industry 4.0,”
Software: Practice and Experience, 2020. [Online]. Available: https:
//onlinelibrary.wiley.com/doi/abs/10.1002/spe.2832

[24] A. B. Jrad, S. Bhiri, and S. Tata, “Stratfram: A framework
for describing and evaluating elasticity strategies for service-based
business processes in the cloud,” Future Generation Computer
Systems, vol. 97, pp. 69–89, 2019. [Online]. Available: https:
//www.sciencedirect.com/science/article/pii/S0167739X18306125

[25] F. Yang, S. Zhang, S. Song, R. Li, Z. Zhao, and H. Zhang, “A testbed
for intelligent software defined security framework,” in Proceedings of
the ACM Turing Celebration Conference - China, ser. ACM TURC
’19. New York, NY, USA: Association for Computing Machinery,
2019. [Online]. Available: https://doi.org/10.1145/3321408.3321610

[26] F. Al-Turjman and S. Alturjman, “Context-sensitive access in industrial
internet of things (iiot) healthcare applications,” IEEE Transactions on
Industrial Informatics, vol. 14, no. 6, pp. 2736–2744, 2018.

[27] G. Bernieri, M. Conti, and F. Turrin, “Kingfisher: An industrial
security framework based on variational autoencoders,” in Proceedings
of the 1st Workshop on Machine Learning on Edge in Sensor
Systems, ser. SenSys-ML 2019. New York, NY, USA: Association
for Computing Machinery, 2019, pp. 7–12. [Online]. Available:
https://doi.org/10.1145/3362743.3362961

[28] Z. Khan, A. Anjum, and S. L. Kiani, “Cloud based big data analytics for
smart future cities,” in 2013 IEEE/ACM 6th International Conference on
Utility and Cloud Computing, 2013, pp. 381–386.

[29] K. Gai, M. Qiu, and S. A. Elnagdy, “A novel secure big data cyber
incident analytics framework for cloud-based cybersecurity insurance,”
in 2016 IEEE 2nd International Conference on Big Data Security
on Cloud (BigDataSecurity), IEEE International Conference on High
Performance and Smart Computing (HPSC), and IEEE International
Conference on Intelligent Data and Security (IDS), 2016, pp. 171–176.

[30] K. A. Torkura, M. I. H. Sukmana, F. Cheng, and C. Meinel, “Slingshot -
automated threat detection and incident response in multi cloud storage
systems,” in 2019 IEEE 18th International Symposium on Network
Computing and Applications (NCA), 2019, pp. 1–5.

[31] C. Yin, S. Zhang, J. Wang, and N. N. Xiong, “Anomaly detection
based on convolutional recurrent autoencoder for iot time series,” IEEE
Transactions on Systems, Man, and Cybernetics: Systems, pp. 1–11,
2020.

https://www.sqlite.org/index.html
https://www.sqlite.org/index.html
https://doi.org/10.1145/3379542
https://doi.org/10.1145/3167132.3167305
https://www.sciencedirect.com/science/article/pii/S1084804517302783
https://www.sciencedirect.com/science/article/pii/S1084804517302783
https://www.sciencedirect.com/science/article/pii/S0167739X17329722
https://www.sciencedirect.com/science/article/pii/S0167739X17329722
https://onlinelibrary.wiley.com/doi/abs/10.1002/spe.2832
https://onlinelibrary.wiley.com/doi/abs/10.1002/spe.2832
https://www.sciencedirect.com/science/article/pii/S0167739X18306125
https://www.sciencedirect.com/science/article/pii/S0167739X18306125
https://doi.org/10.1145/3321408.3321610
https://doi.org/10.1145/3362743.3362961

