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Abstract
This article provides a brief review of how various spectroscopies have been used to investitage
many-body quantum phenomena in the context of ultracold Fermi gases. In particular, work
done with RF spectroscopy, Bragg spectroscopy and lattice modulation spectroscopy is
considered. The theoretical basis of these spectroscopies, namely linear response theory in the
many-body quantum physics context is briefly presented. Experiments related to the BCS–BEC
crossover, imbalanced Fermi gases, polarons, possible pseudogap and Fermi liquid behaviour
and measuring the contact are discussed. Remaining open problems and goals in the field are
sketched from the perspective how spectroscopies could contribute.

Keywords: ultracold quantum gases, ultracold Fermi gases, RF spectroscopy, Bragg
spectroscopy, lattice modulation spectroscopy, BCS–BEC crossover, imbalanced Fermi gases

(Some figures may appear in colour only in the online journal)

1. Introduction

One remarkable use of light, or radiation in general, is
spectroscopy. Throughout the history of science, it has helped
the humankind to discover, analyse, diagnose and understand.
Here I discuss spectroscopies in one specific important context,
namely ultracold Fermi gases. Ultracold Fermi gases have
already enabled remarkable achievements, such as establishing
experimentally the existence of the Bardeen–Cooper–Schrieffer
(BCS)–Bose–Einstein condensation (BEC) crossover, i.e.
crossover between BCS type superfluidity and BEC. In the year
of light, 2015, it is timely to discuss how spectroscopies have
contributed to these successes and how they could be used for
solving remaining and new problems. It is timely also because
the year 2015 is the tenth anniversary of fermionic superfluidity
in ultracold gases.

The aim here is to briefly review some of the most
important topics explored by spectroscopies in the context of
ultracold Fermi gases. I have already written a book chapter
on the theory of spectroscopies in ultracold gases [1]; there,
the focus was on detailed explanation of the physics of the
spectroscopies themselves, from the quantum many-body
perspective, while the research done using them was hardly
reviewed at all. Here the focus is exactly the opposite: the
book chapter and this article are thus complementary and
together form a substantial study material for anybody who
wishes to start understanding the topic in depth. For a
researcher who begins to use a certain method in lab or in
calculations, it shoud be useful both to understand the
theoretical basis as well as get inspiration from research
problems the method has already been applied to. This gives
the motivation for me to write both the book chapter and this
article. In addition, although the focus on spectroscopies
makes it somewhat incomplete and biased, this article serves
also as a quick overview of the main physics explored with
ultracold Fermi gases within the last then years.

There are already several excellent review articles which
discuss physics of ultracold Fermi gases; here a few
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comments about the overlap and the differences comparted to
this article (and my related book chapter [1]). Two famous
reviews appeared in 2008, on many-body physics with
ultracold gases by Bloch, Dalibard and Zwerger [2], and on
theory of ultracold atomic Fermi gases by Giorgini, Pitaevskii
and Stringari [3]. Due to the vast scope of these reviews, the
discussion on physics of ultracold Fermi gases revealed by
spectroscopies is a bit more brief than presented here and in
[1]. This is the case also with some more recent reviews such
as the one by Randeria and Taylor 2014 [4]. A classic book
chapter on ultracold Fermi gases was written by Zwierlein
and Ketterle in 2008 [5]. Therein, presentation of spectro-
scopies and physics revealed by them is very thorough,
however, only developments until mid 2008 are discussed.
Reference [5] has a substantial overlap with this article con-
cerning the years 2003–2007, but for the sake of complete-
ness, I wish to repeat the discussions of the early experiments.
There is also a review focusing on the possibility of a pseudo-
gap in ultracold Fermi gases by Chen, Levin and coworkers
from 2009 [6] which has overlap with related discussions
here. Since 2009, reviews on specific topics within the
research of ultracold Fermi gases have appeared: on density
imbalanced gases by Sheehy and Radzihovsky [7, 8], by
Chevy and Mora [9], and by Gubbels and Stoof [10], on
lattice physics by Georges and Giamarchi [11], on polarons
by Massignan, Zaccati and Bruun [12], and on 2D Fermi
gases by Levinsen and Parish [13]. Some of these discuss
particular spectroscopy experiments related to the topic of this
article, and I will cite these in the sections below. This article
presents briefly all major ultracold Fermi gas physics
achievements where spectroscopies played a role during
2003–2015; it is therefore suited for a reader who wishes to
get a quick glance through all the doors that spectroscopies
have opened during the last decade.

I will first present in sections 2 and 3 the theoretical
formalism of the three spectroscopies that are in focus: RF
spectroscopy (see figure 1), Bragg spectroscopy, and lattice
modulation spectroscopy. Sections 2 and 3, and to some
extent section 4, consitute a summary of the theoretical
description of spectroscopies given my book chapter [1].
These sections provide a selection of the main steps in the
theoretical description for those readers that want an overall
picture of the theory and enough background information to
understand the rest of the article. In contrast, my lengthy book
chapter [1] serves a different purpose by providing details and
in-depth description for those who, for instance, wish to use
the theoretical formalism in their work. I then proceed to
describe the physics: how spectroscopies contributed to
understanding issues such as BCS-type pairing and molecule
formation, BCS–BEC crossover, the pairing gap, imbalanced
Fermi gases and quasiparticle spectroscopy, the Mott-insu-
lator phase for fermions in lattices, the contact, and the
pseudogap versus Fermi liquid nature of the normal state.
Future expected uses of spectroscopies, for instance in
probing the Fulde–Ferrel–Larkin–Ovchinnikov (FFLO) state,
are outlined as well.

2. The theoretical basis of the spectroscopies

Spectroscopies are usually based on the principles of linear
response. It is assumed that the probing field (light or other
electromagnetic field) is a weak perturbation to the system,
and the response thus represents basically properties of the
probed system of interest, not the dynamics of the combined
entity including the field and the system, see figure 1. Linear
response theory often leads to the Fermi’s golden rule, but in
case of interacting many-body systems, one should be cau-
tious to straighforwardly apply a simple Fermi golden rule
formula. It is better to start from general linear response
theory for many-body states, and carefully check which types
of approximations are justified in the particular case of study.
A detailed theoretical description suited for guiding such
analysis is given in my book chapter [1]. Here I will now
present the theoretical basis of ultracold gas spectroscopies
only briefly; for subtle details and further information please
see [1]. I will first discuss a typical system Hamiltonian for an
ultracold Fermi gas, then present the first and second order
linear response formulas in a general form, and finally discuss

Figure 1. Schematic of probing pairing by spectroscopies. The two
fermions of different species (different pseudospins) correspond to
either different internal states of an atom, or two different atomic
species or isotopes. They form Cooper pairs or molecules due
Feshbach-resonance enhanced interparticle interactions (yellow).
The probing field (the pink photon) transfers one of the species to a
third one (another internal state, depicted by the pink sphere). The
pair is broken. The energy needed for this process is shifted, due to
the pairing energy, from the energy difference between the two
internal states. This leads to spectral shifts that can be related to the
properties of the molecule or the many-body state. Picture by Antti
Paraoanu and reproduced with permission.

2

Phys. Scr. 91 (2016) 043006 Invited Comment



how they apply to RF, Bragg and lattice modulation
spectroscopies.

2.1. The system and its Hamiltonian

We are now interested in systems with several species of
fermionic particles, possibly interacting with each other, and
probed by a field. The fermions correspond to field operators

rˆ ( )ys where σ denotes the distinguishable species of particles,
that is, (pseudo)spins. The pseudospins can in general be for
instance atoms in different internal states or even different
atomic or molecular species. Let us denote the mass, internal
state energy and the external (trapping) potential for the dif-
ferent species by ms, Es andV rT , ( )s , respectively. In addition,
the particles may be interacting via a two-particle potential
V r r,( )¢ab . To describe spectroscopic response to a field, we
furthermore introduce the field tr,( )Wgd which couples two
species. Note that in order for two species to be coupled by a
field, they need to be internal states of the same atom (i.e. not
two species that are two different atoms). The Rabi coupling
has the usual definition t tr d r, ,( ) · ( ) W = -gd gd . Here
dgd is the transition dipole moment between the two internal
states and tr,( ) is the electric field amplitude. The Hamil-
tonian of such a system expressed in the second quantized
field theoretical formalism is
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Note that the sets of species corresponding to the indices ,a b
and ,g d are not necessarily the same. There can be, for
instance, interacting species that do not interact with any
fields. And the field may transfer one species to another one
that does not interact with the rest of the species. This
Hamiltonian describes the full many-body quantum physics
of the particles and the interaction with the field, albeit the
field is assumed to be classical. The Hamiltonian is written in
the canonical ensemble (C for canonical in HC

ˆ ). Correspon-
dinly, the chemical potentials ms are not part of the
Hamiltonian. This must be the case because the Hamiltonian
(1) (its last line) does not conserve particle number.

To proceed with the calculations, it is convenient to
divide the Hamiltonian (1) so that H tL

ˆ ( )¢ refers to the last line
and the rest of the Hamiltonian is labeled by H C0

ˆ .

2.2. Linear response for many-body quantum states

We now proceed to give the linear response formulas that
describe the spectroscopic response. For that purpose, we
make the Hamiltonian (1) slightly more specific.

Let us consider only one field that couples only two
species (internal states). In the Hamiltonian (1) the last line

then will not have summation over species indices but only
two of them, say e and g. The state g does not need to be the
ground state but is chosen to be lower in energy than the state
e. In the rest of the Hamiltonian, which describes a compli-
cated many-body system, also other species and indices than e
and g may also appear. The Hamiltonian becomes
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The response can be calculated in several ways. One
option is to monitor the number of particles in, say, state e,
namely neˆ . Here we consider, instead, the rate of change in the
particle number, n r r ;e t e e

d

d
˙̂ ( ˆ ( ) ˆ ( ))†

y y= this is like calculating
the transition rate instead of the transition probablility. We
made this choice because ne˙̂ is the same as current in electrical
transport. Currents are conveniently given by the so-called
Kubo formulas, described, for instance, in [14] section 3.8.
Note, however, that we will actually use n̂ when describing
the Bragg spectroscopy response.

Let us continue by a reminder of some basic concepts of
linear response theory in general. To obtain the expectation
value for any observable (operator) Ô, one can make a per-
turbation expansion with respect to the perturbation part of
the Hamiltonian HL

ˆ ¢. In our case HL
ˆ ¢ equals the last line of (2)

while the remaining terms of the Hamiltonian are denoted by
H C0
ˆ . In the interaction picture one has

tr r, e e , 3C
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Only the first two terms are of this expasion are considered
when calculating the linear response approximation of

O tr,∣ ˆ ( )∣áY Yñ. This gives only the constant t O t0 0( )∣ ˆ∣ ( )áY Y ñ
and terms linear (first order) in HL

ˆ . A quantity that naturally
emerges is the first order susceptibility

t t t t O t H tr,
1

i
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The result for the expectation value of the operator becomes
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here the notation t0∣ ∣ ( )ñ = Y ñ is used. Putting together terms
of second order in HL

ˆ leads to
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A concept similar to the first order susceptibility, namely the
second order one, is used here:

t t t
t t t t
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2.3. Including the chemical potential and making the rotating
wave approximation

Although the initial Hamiltonian (2) is canonical, one would
like to include the chemical potentials in order to be able to
use, for instance, mean-field descriptions that are done using
the grand canonical ensemble. Furthermore, we wish to per-
form the standard rotating wave approximation to the fields.
For these purposes, we consider the fields in the interaction

picture as introduced above, tr,C
ˆ ( )†
ys = e H ti C0 ˆˆ †ys

r e H ti C0( ) ˆ - . In case of electromagnetic fields, the time
dependence of the field amplitude tr,( )W is harmonic, for
instance tsin L( )w . We proceed to do the standard rotating
wave approximation: only the resonant terms e ti L eg( )w w- are
kept (the non-resonant e ti L eg( )w w+ are removed) [15]. We now
aim to use operators that are the interaction picture operators
but transformed with a grand canonical Hamiltonian. For this

purpose a chemical potential term r rˆ ( ) ˆ ( )†
m y yås s s s is added

to the Hamiltonian H C0
ˆ : it is also subtracted from it so that

nothing has been effectively done. Furthermore, terms pro-
portional to the internal state energy are separated from H C0

ˆ .

With these manipulations, we have
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where now the operators tr,g e
ˆ ( )y are the interaction picture

operators with respect to a grand canonical Hamiltonian that
does not include the field, namely:
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This transformation is applied to modify the observable Nê̇á ñ
which leads to factors of e E E ti e g e g( ) m m - + - . Multiplying the

tsin e e 2iL
t ti iL L( ) ( ) ( )w = -w w- terms with these, one is

now able to make the usual rotating wave approximation.
In the rotating wave approximation, only terms of the
form E EL e g( ) w d- - = are considered those with

E EL e g( ) w + - are ignored. The chemical potential
difference g em m- now acts in the same way as the detuning
δ. This makes it convenient to define a generalized detuning

g e
˜ ( ) d d m m= + - . The particle number current becomes
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The general form of the current, equation (13) describes
various types of spectroscopies, only that the species e and g
coupled by the fields may be different in each type. Moreover,
the r-dependence of the coupling r( )W determines whether
momentum is given by the field to the system.

2.4. Linear response with mean-field approximation

In equation (13), correlations arising from operator combi-
nations ˆ ˆy ys s are neglected [1]. Otherwise, however, it is the
exact formula for the first order linear response. Further
closed formulas for the response can be calculated when one
of the states, for instace e, is a non-interacting one (or at least
has no interactions with the state g). In other words, only the
field couples the states e and g. Then the four-operator cor-
relators can be factorized:

t t t t
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There are, however, cases when this a factorization is not
justifiable, for instance if the final state e interacts strongly
with some of the initial states. In that case evaluating the
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whole four-operator correlator, for instance using self-
consistent schemes, is the way to approach.

2.5. Response for initial BCS state and final normal state

As an illustrative example, let us consider the case when the
system is intially in the BCS state. The Bogoliubov trans-
formation [16] gives new quasiparticle operators ĝ . The
relation to the original operators (choosing the species g to be
initially in the BCS state, paired with another state g¢) is
c u vlg l lg l lg
ˆ ˆ ˆ †g g= + ¢. Here ul and vl are the Bogoliubov coef-

ficients, and l is a generic index referring to momentum or
other quantum number, such as the trap quantum number. It is
assumed that the final state in the spectroscopy is non-inter-
acting. Now we apply this simple mean-field theory to the
linear response formula, doing the approximation to the fac-
torized form as in equation (14). The current, for species e is
in the normal state and g in the BCS one, is now
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Here rk ( )j s is the basis wave function related to the quantum
number k (for instance plane waves or harmonic trap
eigenfunctions) and Eks are the quasiparticle energies labelled
by k and σ.

The discussion so far has assumed zero temperature.
Finite temperatures are often treated with the so-called Mat-
subara formalism, based on Green’s functions. Then the zero-
temperature Fermi distributions nF(E) above are simply the
finite temperature distributions. The rest of the results in this
article are presented in the finite temperature formalism.

2.6. RF spectroscopy

An RF field can be used to transfer an atom or molecule
between two of its internal state (denoted g and e here) to
obtain spectroscopic information about the system. The total
system may have more species than e and g. Actually,
usually one of the species, for instance e, is not present
before applying the field. In this case the state e is called the
final state (and g would be the initial state). The spatial
dependence of the field, r exp k ri L( ) ·W = W can be simplified
in case of RF spectroscopy. The wavelength of the RF field
is large compared to size of the atom cloud. This means that
the momentum of the RF photon kL is negligible compared
to the Fermi momentum and one can approxiamate k 0L  .
Also the intensity of the RF field is approximately constant
over the cloud. The field amplitude is thus simplified to

r( )W W . A constant field amplitude Ω means that
momentum is conserved in the transfer process, as seen

equation (15) by calculating the overlap integrals that
contain now only the orthonormal basis functions. The
momentum of the final particles may or may not be resolved,
depending on the case.

The version of RF spectroscopy where momentum is not
resolved is, for historical reasons, the ‘usual’ or ‘standard’ RF
spectroscopy. If both e and g are in a normal state the current
is

I n E n E

n E n E

E E

2
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1
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One can make a direct connection to Fermi’s golden
rule by changing the momentum summation into
energy integration, which brings in the density of states.
For instance energy shifts caused by interactions
can be observed with RF spectroscopy. This is because,
if the kinetic and potential energy terms in E Eke kg( ) ˜ d- -
cancel, we obtain E Eke e kg gint, int,( ) ˜m m d- - + - =
E E Eke e int kg g g e keint, , int,( ) ( ) ( m m d m m- - + - - - =
E kgint, )  d- - .

An interesting case is the one where one of the states (g)
is in a BCS state. Assuming that the final state e is non-
interacting and therefore in normal state, one can derive the
formula for the current from (15) resulting to
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using the BCS quasiparticle energy Ekg kg
2 2x= + D , where

Δ is the superfluid order parameter (the excitation gap) and

kg kg gx m= - , where kg is the kinetic energy.

2.6.1. Momentum-resolved RF spectroscopy (photoemission
spectroscopy). In case of momentum resolved spectroscopy,
one removes the k-summation from the above formulas. Then
one can understand the peak of the resulting spectrum
I k I E k, ,(˜ ) ( )d º as the dispersion relation E(k). This is the
important feature of the momentum-resolved RF
spectroscopy: it is quite directly linked to the spectral
function A k,( )w . The spectral function can be defined
using Green’s functions, it is the imaginary part of the
retarded Green’s function: A k m G k, 2 ,ret( ) ( ( ))w w= - .
The final result for momentum-resolved RF spectroscopy is,
given in terms of spectral functions as derived in [17] and
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The second line follows because for the RF field r( )W W
(within the scale of the trap) and thus momentum conserved.
We have also taken the final state e to be in a normal state
for which the spectral function is straightforward:
A k, 2e ke( ) ( ) pd x= - . Note that to correspond to the
definition of field-matter interaction in equation (1) a factor of
1/4 is added. As seen from the result (18), the momentum-
resolved RF spectrum directly gives the spectral function of
the initial state.

2.6.2. Imbalanced gases. The general formalism presented
above applies directly to imbalanced gases as well. The only
extension needed is to apply the Bogoliubov eigenenergies
and eigenfunctions of the imbalanced case. For further
information on the details of the Bogoliubov transformation
for imbalanced gases, describing a superfluid, see for instance
[19]. For the probing of the normal state for imbalanced gases
see for instance [20]. For further theory literature on the topic
of imbalanced gases see the reviews by Radzihovsky and
Sheehy [8], Chevy and Mora [9] and Gubbels and Stoof [10].

2.7. Bragg spectroscopy

Bragg spectroscopy does not change the internal state of the
particle and there the field can give a finite amount of
momentum q to the particle. Let us associate the initial state
with the operator ckgˆ† and the final state with ck q g,ˆ†

+ . Typically,
the atoms experience two (nearly) counterpropagating laser
beams are used so that photons can be absorbed from one
beam and emitted to the other. In this process, the atom
returns to its initial state in the final emission process. The
Bragg process is resonant at the frequency difference k m2 L

2
between the beams if there are no line shifts due to interac-
tions, etc. Here k m2 L

2 corresponds to the recoil energy. The
detuning δ can be tuned to be larger than this in order to create
excitations in an interacting gas.

Density–density correlations and spin susceptibility are
the important quantities that can be measured by Bragg
spectroscopy. Linear response derivation for Bragg
spectroscopy proceeds following the steps outlined in
section 2.2. Now that the internal state does not change in the
process, one has to modify the description by replacing the
label e by g. Note, however, that in a spin-flip process, which
is applied when studying spin susceptibility, the label e stays
but it now simply means the other component in the gas (say
g¢). The intermediate state involved in the middle of the
Bragg process is adiabatically eliminated, giving an effective

coupling of the two-photon transition effW that is proportional
to 1 2W W , the product of the individual Rabi frequencies.
The final effective field coupling becomes reff ( )W
= tq rcoseff ( · )dW - .

The response is calculated by evaluating the density (or
particle number) as a function of the momentum and energy
given, q and δ, setting t=0 and t0 = -¥. The essential
quantity is now the density–density susceptibility
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where Z is the partition function. The Bragg response within
linear response theory becomes

N q q,
2

, , 20eff( ) ( ) ( )
d c d=

W
¢¢

where c¢¢ is the imaginary part of the density–density
susceptibility. It gives the dynamic structure factor S q,( )d :

S Sq q q, , , , 21( ) ( ( ) ( )) ( )c d p d d¢¢ = - - -

which at zero temperature simplifies to

Sq q, , . 22( ) ( ) ( )c d p d¢¢ =

At finite temperature the imaginary part of the susceptibility is

Sq q, 1 e , . 23k TB( ) ( ) ( ) ( )( )c d p d¢¢ = - d-

Bragg spectroscopy therefore reveals the dynamic structure
factor. The dynamic structure factor incorporates all excita-
tions available in the system at frequency ω and momentum
k. In principle, both the density–density correlations and the
spin susceptibility are contained in the dynamic structure
factor:

S S S S Sk k k k k, , , , , .

24

( ) ( ) ( ) ( ) ( )
( )

w w w w w= + + +   

Experimentally, in case of a specific spectroscopy, one has to
pay attention to the coupling of the perturbation. It may
couple to the density or the spin or both. Importantly, the
Bragg response contains both single particle and collective
excitations of the systems. For further information, see [1],
section 10.5.4. A derivation of the Bragg spectroscopy
response by perturbation theory, using a slightly different
approach from the one in [1], can be found in the book by
Pitaevskii and Stringari [21].

2.8. Lattice modulation spectroscopy

In the lattice modulation spectroscopy, the light potential that
traps the particles into a lattice configuration is modulated
with the frequency Lw . The potential is coupled to the density
and thereby excites the system.

Let us now consider a Hubbard type Hamiltonian in the
lattice basis. The tunnelling within the tight-binding approx-
imation is described by the energy J, and U is the onsite
interaction energy. Modulation of the trap potential follows
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the function g(t). The Hamiltonian is

H JH UH g t H , 25K U Kˆ ˆ ˆ ( ) ˆ ( )= - + +

H c c h.c., 26K
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j i
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s s
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H u n n , 27U
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i i
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ˆ ˆ ˆ ( )å=
s s

ss s s
¢

¢ ¢

where uss¢ tells which types of interactions are present. For
bosons, the relevant observable can be the heating caused by
the lattice modulation. This is not, however, straightforward
to detect in case of fermions, so another observable is needed.
The double occupancy D n ni i i

ˆ ˆ ˆ= å s s¢ is able to provide
useful information about the response. As this observable
does not include the field, the first order perturbation terms in
equation (8) are not sufficient. Applying the second order
ones, the double occupancy becomes (choose t0 = -¥)

t D t t t t g t g t t t td d , , .

28

( )∣ ˆ ( )∣ ( ) ( ) ( ) ( )

( )
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Here we now have the second order susceptibility instead of
the first order one:

t t t
t t t t

H t H t H t
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, , . 29U K K
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( ) ( ) ( )
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c
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Some terms from this expression average to zero so that only
the non-oscillating term remains [22]

t D t t D

U
g t m

0 0 0
1

2
0 . 30K

2

( )∣ ˆ ( )∣ ( ) ( )∣ ˆ ( )∣ ( )

( ) ( ) ( )w c w
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-

Here K ( )c w is obtained from t H t H1 , 0K K( ) ( ) [ ( ) ( )]c = á ñ
by a Fourier transform.

3. Early theory for spectroscopies of ultracold Fermi
gases

3.1. Spectroscopy for measuring the pairing gap

In the year 2000, Törmä and Zoller suggested that the pairing
gap in attractively interacting Fermi gases could be probed
spectroscopically [17]. This work provides the basic theory
results for RF spectroscopy response for superfluids within
the BCS theory. Originally, Raman spectroscopy was sug-
gested in [17] but the concept and the theory description is are
the same independent of whether RF field or a Raman con-
figuration is used.

For trapped ultracold gases, the trapping geometry, often
harmonic, may affect the spectroscopy. Reference [17] gave
results both for a homogeneous system and for the trapped
case where the basis states are the harmonic oscillator states
instead of the plane waves. The trapped case was considered
in more depth by Bruun, Törmä, Rodríguez and Zoller [18],
and also in later works by Ohashi and Griffin [23] and He,
Chen and Levin [24]. Another approach is the local density

approximation. The external potential is assumed to be locally
constant and is taken into account only as a simple shift in the
chemical potential, V xTeff ( )m m= - . Now one can calculate
the spectra for each position simply using xeff ( )m and the
homogeneous case formulas. The results can finally be
averaged over all positions in the trap. Local density
approximation was used by Kinnunen, Rodrígues and Törmä
in [25] and in many subsequent works.

The equations (15), (17) and (18) are given by [17]. They
predict that in an experiment, in case of BCS pairing, the
spectral peak that would in non-interacting case coincide with
zero detuning 0d = will shift. Also the shape of the peak
changes since the density of states has a gap and corresp-
onding strong peaks at the edges of the gapped area. Intui-
tively, one can think that the probing field has to provide extra
energy to break a Cooper pair so that is it possible to transfer
a particle to a third state that is not part of the superfluid state.
Thus there is a threshold for the RF response.

3.2. RF threshold

Choosing 0d > and assuming a constant density of states ρ,
as well as no particles initially in the non-interacting e final
state, at zero temperature one obtains [17] from (17)

I
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d
=

W
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D

where θ is the Heaviside step function. Applying the actual
density of states of the BCS state brings in the particle mass m
and the system volume V. The result becomes [17, 18]
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Here one could also use k N V3F
3 2p= where N is the total

particle number. Let us now discuss three important issues
that can be observed from these results.

Firstly, the equations (31) and (32) give the threshold for
the RF response. It is set by the theta-function and becomes
[17]

. 33threshold
2 2 ( )d m m= + D -

The threshold does not equal the gap energy. This is because
the final state is initially empty and the smallest energies for
particle transfer are given by the particles in the lowest
momentum states. The chemical potential can include the
Hartree energy, which thereby also affects the threshold. Note
that approximately (Taylor expansion) 2threshold

2 ( )d m~ D
∼ E22

F( )D although one should be cautious with this since in
unitary Fermi gases the gap is not extremely small compared
to the chemical potential, and the chemical potential and the
Fermi energy deviate from each other considerably. In case
the final state is occupied to the same Fermi level as the rest of
the gas, only particles near the Fermi level are transferred.
Then d = D is the threshold. In this way the gap energy
could be directly obtained, in a way similar to the gap
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measured in the superconductor-normal metal tunnelling
experiments by Giaver [26].

The second observation is that the equation (32) gives the
high-energy tail of the spectrum. Assuming large δ drops out
all but the d contribution in the square root term of
equation (32). The approximate form of the equation becomes

I
V

m

m

4

1
. 34

2 2 2

4 3 2
( ) ( )


d

p d
=

W D
d¥

The power-law dependence of the tail of the RF spectrum
I ( )w is thus 3 2w- . Note that this result is derived within the
BCS theory which treats normal-state interparticle interac-
tions with a simple Hartree approach where they merely shift
the chemical potential. More accurate derivation of the tail of
the RF spectrum can be done using the concept of contact, see
section 12, equation (42), which shows that the tail is
proportional to the contact. The contact contains both pairing
contributions, related to Δ, and Hartree-type interaction
effects also present in the normal state. Far in the BCS limit
where the scattering length a 0 and Δ is exponentially
suppressed, the result derived using the contact shows that the
tail becomes proportional to an2 where n is the density.

Finally, the equations (31) (and (32)) shows that, within
the simple BCS theory, the current is directly proportional to
the square of the pairing gap 2D .

Note that the decay of the tail is in contrast to the
superconductor—normal metal experiments where the current
simply grows after the threshold. This is explained by the
difference that momentum is not conserved in the tunnelling
(particle transfer) process, while RF spectroscopy preserves
momentum.

3.3. Early theory work on Bragg spectroscopy

In the context of ultracold Fermi gases, some of the first
studies considering the prospects of Bragg spectroscopy
theoretically are by Minguzzi, Ferrari and Castin [27],
Rodríguez and Törmä [28], Büchler, Zoller and Zwerger [29],
Bruun and Baym [30], Combescot, Giorgini and Stringari
[31], and Challis, Ballagh and Gardiner [32].

4. Early RF spectroscopy experiments: mean-field
effects

RF spectroscopy has been used for probing condensates of
bosonic atoms since the early days of alkali BECs (see, e.g.,
the introduction in [33]) Concerning studies of fermionic
many-body physics, the pioneering experiments on the use of
RF spectroscopy were the works of Regal and Jin [34] and
Gupta, Ketterle and coworkers [33] in the year 2003. In these
works, RF spectroscopy was used to study mean-field ener-
gies in strongly interacting Fermi gases. In [34] 40K atoms in
two hyperfine states F m9 2, 9 2F∣ = = - ñ and 9 2, 7 2∣ - ñ
were prepared. The atoms were basically non-interacting.
Then an RF pulse was applied to move atoms from the state
the 9 2, 7 2∣ - ñ to the state 9 2, 5 2∣ - ñ which was strongly
interacting with atoms in state 9 2, 9 2∣ - ñ due to a Feshbach

resonance. The resulting mean-field energy shift, see
equation (16) and the discussion following it, was observed.
In [33], the system was prepared in a mixture of two lowest
hyperfine states of 6Li, 1 2, 1 2 1∣ ∣ñ º ñ and
1 2, 1 2 2∣ ∣- ñ º ñ and an RF pulse was applied between the
latter and a third state, 3 2, 3 2 3∣ ∣- ñ º ñ, to observe mean-
field shifts in the energy (the shorthand notation 1∣ ñ, 2∣ ñ, 3∣ ñ for
6Li will be used later in this article). Also another experiment,
tranferring atoms initially in the state 6Li, 1 2, 1 2∣ ñ to the
state 1 2, 1 2∣ - ñ with an RF pulse, was performed and
resulted in a totally different outcome, as discussed in the
following section.

4.1. RF spectroscopy reveals symmetries of the Hamiltonian

In ultracold gas spectroscopies, the process can often be
highly coherent. When applying a field that couples atoms in
an internal state g to another one, say e, for a certain time
duration τ, for each atom a coherent superposition
a g b e( )∣ ( )∣t tñ + ñ of the two internal states is created. This
corresponds to a rotation in the space spanned by the two
states. Now if the Hamiltonian of the system has symmetries
that are related to the applied rotation, one has to be cautious.
It is important to check whether the Hamiltonian is invariant
under the rotation. An intriguing experimental example of this
is presented by Gupta, Hadzibabic, Zwierlein and Ketterle,
first in [33], and then in [35] which also contains a theoretical
analysis of the phenomenon. In [35] a two-component (here
labeled g and e) Fermi gas is considered. The many-body
Hamiltonian (see equation (1); contact interaction and no trap
potential are assumed) of the system, with no field, is

H r
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V r

r r

r r r r
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Assuming Hartree energy given by mean-field theory (but no
pairing), the interaction term of the last line of equation (35)
means that the component g has a simple form of interaction

energy: E Vne g gint
ˆ ˆ†
y y= where ne e e

ˆ ˆ†
y y= á ñ. If all atoms are

initially in state g, then ne = 0 means that E 0int = . Now think
that one particle would be transferred to the state e: clearly
Eint is finite. Correspondingly, the frequency required to
transfer the particle from one internal state to another should
be shifted from 0d = to E 0intd - = . However, the case
where the gas is probed by a coherent field actually produces
a completely different result. The coherent rotation caused by
the field can be parametrized by angles θ and f:

cos 2 e sin 2 e , 36g e1
2 2ˆ ( ) ˆ ( ) ˆ ( )y q y q y= +f f-

sin 2 e cos 2 e . 37g e2
2 2ˆ ( ) ˆ ( ) ˆ ( )y q y q y= - +f f-

Applying this transformation to the Hamiltonian (35) actually
keeps the Hamiltonian unchanged. This was indeed observed
in the experiments: the RF transfer between the states 1∣ ñ and
2∣ ñ did not show any interaction energy shift in [33]. In the
further study [35], the same group connected the absence of
the mean-field energy shift to the symmetries of the
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Hamiltonian and thereby showed that no shifts should be
observed even in the case of a paired superfluid. Analogous
phenomena have been observed in NMR experiments of 3He
superfluids by Osheroff, Gully, Richardson, and Lee [36].
There, in an NMR experiment a coherent superposition of two
spin states is created in a similar way as in the RF
spectroscopy experiments here. If the Hamiltonian is sym-
metric with respect to the rotation, no shifts are expected. The
appearance of a shift in [36] for certain parameter regimes
was suggested by Leggett [37] to be related to spontaneous
breaking of the symmetry in question, such as an unisotropic
BCS-type superfluid with pairing in a higher angular
momentum state. Note that in a typical ultracold gas Fermi
superfluid, any shifts should be absent, as mentioned above.
This is because even when the superfluid has a spontaneously
broken symmetry in the global phase, it is still symmetric
with respect to a coherent rotation of the components, see
above. In a usual s-wave BCS superfluid, one can rotate the
spins to a new basis, and the physics will be the same. This is,
however, not necessarily the case for more complicated
superfluids, such as the 3He example.

5. RF spectroscopy in understanding the BCS–BEC
crossover: experiments and theory using the
density balanced gas

5.1. The pioneering experiments

Fermionic many-body pairing and superfluidity in ultracold
gases was gradually established during 2003–2005 by con-
tributions from several groups. Insprired by predictions of
superfluidity in ultracold Fermi gases by Houbiers, Stoof,
Hulet and coworkers [38], and by the breakthrough experi-
ment reaching Fermi degeneracy of potassium atoms by
DeMarco and Jin [39], the field had set going in the late
1990s. One great achievement of the ultracold Fermi gas
research so far is the experimental verification of the BCS–
BEC crossover. Already in the 1960s and 1980s it was sug-
gested by Keldysh (see [40]), Eagles [41], Leggett [42], and
Nozieres and Schmitt-Rink [43] that the apparently different
phenomena of superconductivity as condensation of deloca-
lized Cooper pairs and BEC of tightly bound, localized pairs
(such as molecules) could actually be connected to each other
via a smooth crossover. Leggett showed that the simple
wavefunctions describing both ends, BEC∣Yñ and BCS∣Yñ , are
actually smoothly connected to each other, that is

u v c c

e 0

0 , 38

c c

k
k k k k

BEC

BCS

k k k k∣ ∣
( ˆ ˆ )∣ ∣ ( )

ˆ ˆ

† †

† †



Yñ = ñ

= + ñ = Yñ

ål j

 - 

 - 

if one requires v uk k klj= and uk k =  . Here kj
describe the internal structure of the composite boson, ∣ ∣l
divided by the volume gives the condensate fraction, and vk,
uk are the BCS coherence factors (for more details see, e.g.,
[5] or [44]).

However, these arguments were based on mean-field
theory, with approximate ways of including fluctuations;

exact calculations of the intermediate regime between the
BCS and BEC regimes, at finite temperature, are exceedingly
difficult. Experimentally it was difficult to find a system
where one could tune the parameters in a controlled and
continuous manner: the various types of superconductors and
superfluids discovered were naturally in a certain place in the
crossover and dramatic tuning of the interaction was not
possible [45]. Therefore it remained as an open question
whether the transition from one regime to the other is a
smooth crossover or whether, for instance, quantum phase
transitions occur. It was only when the ultracold Fermi gas
experiments arrived that the existence of the crossover could
be confirmed experimentally.

Basically, the achievement of fermionic pairing and
superfluidity went hand in hand with the studies of the BCS–
BEC crossover in ultracold Fermi gases. Molecule formation
at the BEC side of the crossover was first observed by the
groups of Jin, Hulet, Salomon and Grimm, see Regal et al
[46], Strecker et al [47], Cubizolles et al [48] and Jochim
et al [49]. Such molecules were found to form a BEC by
Jochim, Grimm and coworkers [50], Regal, Greiner and Jin
[51] and Zwierlein, Ketterle and coworkers [52]. Con-
densation of pairs at the unitarity regime between the BCS
and BEC sides was achieved by Regal, Greiner and Jin [53]
and Zwierlein, Ketterle and coworkers [54]. The whole
crossover was studied in various experiments showing,
among other things, continuous development of the critical
temperature, collective modes, and pairing energies over the
crossover, by Bartenstein, Grimm and coworkers [55],
Kinast, Thomas and coworkers [56] and Bourdel, Salomon
and coworkers [57]. The smoking gun proof of superfluidity
of the gas was provided by the experiment by Zwierlein,
Ketterle and coworkers [58, 59] where quantized vorticies
were observed throughout the crossover.

Here, I will say a few more words about a work which
was one of the crucial experiments establishing the cross-
over and where RF spectroscopy was used. In 2004, RF
spectroscopy revealed signatures of fermionic many-body
pairing in a strongly interacting Fermi gas in an experiment
by Chin, Grimm and coworkers [60]. As discussed above
(equations (17), (31)–(33)), existence of a pairing gap
should lead to a shift of the RF response with respect to the
non-interacting case. Indeed a shift in the response was
observed when the gas was cooled down, see figure 2. It
was also observed that the shift was proportional to the
Fermi energy: this showed that non-trivial fermion pairing
was taking place instead of only molecule formation, where
the binding energy also leads to shifts in RF spectra [61, 62]
but with no significant dependence on density. Interest-
ingly, the spectra at higher temperatures displayed a two-
peak structure as visible in figure 2. In an accompanying
work, Kinnunen, Rodrígues and Törmä [25] provided a
theoretical framework which supported the conclusion that
the two peaks originate from paired particles in the middle
of the harmonic trap and unpaired ones at the edges. The
density of particles decreases in a harmonic trap from the
centre towards the edges, and with it also the critical
temperature related to many-body pairing. In the lowest
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temperatures, only one peak was observed. Other theory
work following the experiment by He, Chen and Levin [24],
and Ohashi and Griffin [23, 63] reached similar
conclusions.

The standard RF spectroscopy basically gives the spectral
function A k,( )w integrated over the momentum k. Therefore
the experiment [60] was somewhat analogous to the first
tunnelling spectroscopy measurements by Giaver that
revealed the pairing gap in superconductors [26]. However,
the RF response has a spectral shape different from the IV-
curve due to momentum conservation in the spectroscopy
[17]; the IV curve has an onset at the gap energy and there-
after simply grows, while as seen in figure 2, the RF response
has a decaying tail. This tail, exactly due to the momentum
conservation, actually contains interesting information, as will
be discussed in section 12 of this article.

Although trapping effects may be considered even
helpful in analysing the RF spectroscopy experiments, such
as the case of the two peaks discussed above, it is desirable
to be able to probe also the bulk properties of the gas without
trap averaging. Shin, Ketterle and coworkers developed in
2007 a tomographic version of RF spectroscopy [64] which
is very powerful since it is spatially resolved: different
spatial locations of the trap correspond to different densities,
thereby one receives information, for instance about pairing,
that corresponds to bulk systems with different chemical
potentials. This thinking, of course, assumes that the local

density approximation is valid. In 2012, Sagi, Jin and co-
workers developed another method to avoid trap averaging
in RF spectroscopy [65]: they intersect two perpendicularly
propagating hollow light beams that optically pump atoms at
the edge of the cloud into a spin state that is dark to the
detection.

5.2. Exploring fermion pairing by RF spectroscopy

In section 2.4, it was discussed that the simple factorization of
the four-point correlator in equation (14) is accurate only if
the final state in the spectroscopy does not significantly
interact with the rest of the system. Sometimes this is, how-
ever, not the case in ultracold gases. For instance in case of
6Li, if one uses in RF spectroscopy the hyperfine states 1∣ ñ
(F m1 2, 1 2F∣ = = ñ) and 2∣ ñ (F m1 2, 1 2F∣ = = - ñ) as
the ones that are strongly interacting or paired, and as the final
state the state 3∣ ñ (F m3 2, 3 2F∣ = = - ñ) (as is the case in
[33] and [60] and several subsequent works), then final state
interactions cannot be neglected.

It was pointed out by Yu and Baym that final state
interactions should be taken into account in extracting the
value of the pairing gap from RF data [66]. This can be done
with the help of elaborate theoretical analysis as in the theory
work of Perali, Pieri and Strinati [67, 68], and the work
combining experiment and theory by the Grimm and Strinati
groups [69]. The other option is to avoid final-state
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Figure 2. Left: RF spectroscopy was used in [60] to study many-body pairing of fermions. The shift of the peak away from zero RF offset
(detuning) reflects pairing which emerges when temperature is lowered. Reproduced with permission from Chin et al [60]. Copyright AAAS
2004. Right: theoretical modelling of the spectra in [25]. The double peak structure originates from paired particles in the middle of the trap
and unpaired ones (the zero detuning 0d = peak) at the trap edges where the local chemical potential is lower. Here TF is the Fermi
temperature. Reproduced with permission from Kinnunen et al [25]. Copyright AAAS 2004.
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interactions altogether. For 40K, final state interactions can be
neglected because the Feshbach resonances are narrow and
there are no overlaps between different resonances. Con-
cerning 6Li, Schunck, Ketterle and coworkers discovered that
if one uses 1∣ ñ and 3∣ ñ as the initial states and 2∣ ñ as the final
one, the final state interactions become negligible [70]. This is
because 6Li has broad resonances and the ones between 1∣ ñ
and 2∣ ñ as well as 2∣ ñ and 3∣ ñ are partly overlapping while the
1∣ ñ and 3∣ ñ resonance is well separated in magnetic field from
the others. They used RF spectroscopy in this new setting to
determine the fermion pair size. Knowing μ, one can obtain
the gapΔ from observing the threshold, equation (33). Such a
threshold and RF line shapes of the form of equations (31)
and (32) were observed in [71], as will be discussed in
section 7.

Sum rules can be used for finding the average peak
position in RF spectroscopy. This was done by Yu and Baym
[66] (see also the works of Punk and Zwerger [72], Baym,
Pethick, Yu and Zwierlein [73], and Basu and Mueller [74]).
When there are strong final state interactions, the spectrum is
expected to be quite symmetric, and the result becomes (in the
notation of [66])

g g
n g g

, 39eg gg
eg gg

peak

2

0
( ) ( )d = -

D
¢

¢

where geg is the interaction coupling between the initial and
final states and ggg¢ marks the coupling responsible for the
BCS pairing between the initial state and the other component
of the gas (g¢), and n0 is the density. From equation (39) one
can see that if the symmetry of the Hamiltonian is preserved
under the perturbation, here the case is g geg gg= ¢, there is no
shift; this is consistent with the discussion in section 4.1.
Furthermore, the peak position is proportional to 2D . If there
are no final state interactions (g 0eg = ), the derivation in
sections 2.6 and 3.2, following to the early work by Törmä
and coworkers [17, 18], gives the threshold of equation (33),
namely threshold

2 2
2

2

d m m= + D -
m

D . Therefore, both in

cases of finite and no final state interactions there is a 2D
dependence, although there is no direct comparison since (39)
is not valid for g 0eg = . Similarly as discussed after
equation (34), this is a BCS derivation, and the more accurate
result contains the contact, see equation (43) in section 12.

In case of no final-state interactions, g 0eg = , the spec-
trum has an asymmetric shape with a long, slowly decaying
tail. Sum-rule given mean values of the response then become
cut-off-dependent within the BCS theory [66]. Thus for such
shapes a mean value of the frequency is not a useful char-
acterization and other approaches are preferred over sum
rules, such as those discussed in sections 2.6 and 3.2.

5.3. Momentum-resolved RF spectroscopy (photoemission
spectroscopy)

A momentum-resolved version of RF spectroscopy was
introduced by Stewart, Gaebler and Jin [75]. Avoiding the
momentum integration, the spectral function A k,( )w was
directly observed in the experiment. In this sense,

momentum-resolved RF spectroscopy is analogous to angle-
resolved photo-emission spectroscopy; for further information
see for instance [6, 11]

5.4. Beyond BCS theory

All the analytical results in sections 2.6 and 3.2 in this article
are based on the BCS mean-field theory. Although this is
instrutive to understand what kind of qualitative behaviour
might be expected from spectroscopies, strongly interacting
ultracold Fermi gases are obviously asking for beyond mean-
field theoretical treatments. Simple mean-field theories are
based on having well-defined quasiparticles and this
assumption might not be valid in strongly interacting systems.
Even if yes, the properties of the quasiparticles may have to
be evaluated beyond BCS theory. The BCS–BEC crossover at
low temperature is surprisingly well qualitatively described
by the BCS–Leggett theory. But at higher temperatures the
quantitative agreement is not good.

Theoretical calculations of RF spectra, with the correla-
tors evaluated with various many-body theories and approa-
ches that go beyond the simple BCS theory are presented for
instance in [24, 25, 67, 76–78] and in other works by these
and several other groups. In particular, it was noted by Kin-
nunen, Rodrígues and Törmä [25, 76] and by He, Chen and
Levin [24] that since pairing features may appear also above
Tc in beyond-BCS scenarios, the shift of the RF spectral peak
may appear already in the normal state and is thus not alone a
signature of superfluidity.

6. Spin-imbalanced Fermi gases

Although the topics discussed from here on are conceptually
very related to the ones above, I separate them to a dedicated
section because imposing a spin-density imbalance in a Fermi
gas has spun off such an enourmous amount of interesting
physics and perspectives, many still unexplored. In ultracold
gases, it is possible to prepare an initial condition with dif-
ferent amounts of particles in different internal states (spe-
cies). In ultracold Fermi gases, such studies were pioneered
by experiments published in 2006 by Zwierlein, Shin, Ket-
terle and coworkers [59, 79], and by Partridge, Hulet and
coworkers [80]. In [59], the stability of vortices was studied
as a function of polarization P n n n n( ) ( )= - +    where
nσ are the densities of the species, that is, the spin-density
imbalance, on both sides of the BCS–BEC crossover. The
famous Chandrasekhar–Clogston limit [81, 82] of chemical
potential imbalance that destroys fermionic superfluidity was
observed, leading to a critical polarization of about 0.8 in a
harmonic trap in the works [59, 79]. Similar critical polar-
ization was later obtained in the experiments by Nascimbène,
Salomon and coworkers [83], and was also confirmed with
quantum Monte Carlo calculations by Lobo, Recati, Giorgini
and Stringari [84], and by a dynamical mean-field theory
method by Kim, Kinnunen, Martikainen and Törmä [85]. In
[80], a critical polarization close to one was reported, but it
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was later found to be due to depolarization in the evaporative
cooling process [86, 87].

The work by Shin, Ketterle and coworkers in 2008 [88]
established by tomographic imaging of the densities that, in a
harmonic trap, there is a balanced superfluid in the middle,
then a sharp change, reflecting a first order phase transition, to
a partially polarized normal state. Finally, at the very edges of
the trap, the gas is fully polarized. The normal gas in the
edges allows very accurate determination of temperature from
cloud profiles. Utilizing this, Shin et al determined the critical
temperature of a balanced unitary Fermi gas to be
T T 0.15c F  , where T mk n2 6BF

2 2 2 3( )( ) p= s is the Fermi
temperature of the gas, m the mass, and nσ the density of one
species. This is very close to values given by various theor-
etical approaches and later experiments.

The spin-imbalanced gases offered new interesting pro-
spects for the use of spectroscopies as well, in particular
precision measurements of the quasiparticle energies and the
pairing gap and the studies of polarons, which will be dis-
cussed below.

7. Quasiparticle spectroscopy utilizing the spin-
imbalance

An important work where spectrocopies were heavily uti-
lized is the one by Schirotzek, Ketterle and coworkers [71].
There tomographic RF spectroscopy was used in different
areas of the trap: the fully balanced middle part and various
polarized areas around it. Majority and minority spectra
were separately analysed: in the balanced case, both spectra
overlap and show a shift due to pairing, while in the
imbalanced case unpaired majority particles show a
contribution with no shift. Intriguinly, the chemical potential
imbalance induces quasiparticles in the middle superfluid
region already at a low temperature [89]. Therefore
Schirotzerk et alwere able to measure accurately the qua-
siparticle energies by the RF spectroscopy, see figure 3.
According to the predictions by Törmä, Zoller, Bruun

and Rodríguez [17, 18], the quasiparticle energies
E Uk k

2 2( ) m= D + + - , where U is the Hartree
energy, appear in the RF spectra according to equations (17),
(31)–(33). This allows extracting the pairing gap and the
Hartree shift in high precision from the RF spectra. Schir-
otzek et al obtained 0.44 3 F( )D =  and U 0.43 3 F( )= - 
which are in excellent agreement with the value

0.46 FD  predicted by a Luttinger–Ward approach by
Haussmann, Zwerger and coworkers [90] and by quantum
Monte Carlo calculations by Carlson and Reddy [91]. By
studying the extremely polarized gas, the work [71] con-
tributed to the start of polaron physics studies in ultracold
Fermi gases.

8. Spectroscopies in polaron studies

The research on imbalanced Fermi gases naturally led to
polaron studies. Thinking in terms of a single impurity
immersed in a system, in order to reveal information about the
ground state or even excitations, has been a very powerful
approach in physics. Sometimes the behaviour of the impurity
can be effectively described by the concept of a polaron: an
object that deforms its surroundings slightly, causing for
instance excitations, and thereby obtains an effective mass
different from the bare mass of the impurity. A polaron fulfils
the Fermi liquid paradigm and is associated with a quasi-
particle weight/residue.

It turned out that at the limit of large polarization (large
imbalance), the physics of the ultracold Fermi gas is well
described by polaron physics. Throughout the BCS–BEC
crossover, there is a non-trivial evolution to a bound mole-
cule. We do not discuss here all the important theory and
experiments on this topic but refer to excellent reviews by
Chevy and Mora [9] and by Massignan, Zaccanti and Bruun
[12]. We only wish to point out those experiments where
spectroscopies provided crucial insight to polaron physics.

Schirotzek, Zwierlein and coworkers measured the
polaron energies in [92] by using RF spectroscopy. The RF

Figure 3. (a) RF spectra from [71] for increasing local polarizations ranging from near zero in (a) and 0.64 in (d). The red curve is the
majority spectrum and the blue the minority. Different polarizations are naturally obtained by considering spectra from different areas in the
trapped gas, see the leftmost picture. In panels (b) and (c), the majority component shows both pairing and quasiparticles; from such data,
values of the pairing gap and Hartree energy can be extracted. In (d), the majority component does not show a peak feature under the minority
peak which indicates that polaron-type physics takes place instead of pairing. Reproduced with permission from Schirotzek et al [71].
Copyright APS 2008.
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spectra of the minority species revealed not only the polaron
energy, but also the quasiparticle weight or quasiparticle
residue Z: it is basically given by the spectral weight under the
narrow quasiparticle peak in comparison to a broad inco-
herent background. They also observed that, during the BCS–
BEC crossover, the Fermi polaron transfers into a bound
molecule and this is connected to a quantum phase transition
from a Fermi gas to a coexistence of Bose and Fermi gases.

In May 2012, two breakthrough works using RF
spectroscopy to study polarons were published back-to-back
in Nature, namely a study of 6Li–40K mixture by Kohstall,
Grimm and coworkers [93], and experiments on a 2D ultra-
cold 40K gas by Koschorrek, Köhl and coworkers [94].

Kohstall et al studied polaron energies with RF
spectroscopy in a system where the majority atoms were 6Li
but the minority was another, heavier, species namely 40K.
RF spectroscopy is typically done, as discussed already many
times in this article, in such a way that particles in a species
that is strongly interacting with another species are transferred
by the RF pulse to a third state. Kohstall et al did it, however,
the other way round: they started with an initial state of
potassium that does not interact strongly with lithium, and
then transferred the potassium atoms (which were only a
small amount, corresponding to the polaron/impurity limit) to
a state that has a Feshbach resonance and thus interacts
strongly with the lithium internal state. For historical reasons,
this is called the inverse RF spectroscopy (curiously, the very
first RF spectroscopy experiment on Fermi gases by Regal
and Jin [34] also used the ‘inverse’ version, but since then all
the works used the ‘standard’ RF spectroscopy until the work
of Kohstall et al). One remarkable aspect of the inverse RF
spectroscopy is that it can easily probe excitations of the
system: while in the usual version one typically probes
properties of the ground state, and of the excitations present
due to the (low) temperature, with the inverse process it is
easy to provide the right amount of energy by the RF field to
create a specific excitation of the interacting system. Kohstall
et al studied the whole crossover from attractive to repulsive
polarons, and observed the polaron branches as well as a
molecule-hole continuum.

The work by Koschorrek et al [94] also explored both the
repulsive and attractive polarons. They used momentum-
resolved RF spectroscopy (momentum-resolved photo-emis-
sion spectroscopy), which directly gives the single particle
spectral functions, to study how the polaron energy behaves
in two dimensions. Note that in two dimensions, a bound state
(molecule) exists throughout the crossover and competes with
the polaron branches. The repulsive polaron branch decay
times were determined.

9. Two-dimensional gases: studies of polarons and
interaction energies by spectroscopies

RF spectroscopy was used for measuring interaction energies
and confinement induced resonances in a two-dimensional
Fermi gas by Fröhlich, Köhl and coworkers [95]. Sommer,
Zwierlein and coworkers studied the interaction and binding

energies over the 2D–3D crossover [96]. RF spectroscopy
was also used for studying quasi-2D Fermi gases by Zhang,
Thomas and coworkers [97]. They discovered polaron states
also in the quasi-2D setting. More about all these, and other
work on 2D gases which did not use spectroscopies, can be
read from the review by Levinsen and Parish [13] and from,
for instance, the recent work by Murthy, Jochim and co-
workers [98] observing the Berezinskii–Kosterlitz–Thouless
transition in a two-dimensinal Fermi gas.

10. Static and dynamic structure factors by Bragg
spectroscopy

Bragg scattering and spectroscopy have been used as a tool in
ultracold gases research since the late 1980s. BECs were for
the first time studied by Bragg spectroscopy in [99] and [100].
Bragg spectroscopy provides not only the single particle but
also the collective mode spectrum of the gas. This is impor-
tant concerning both bosonic and fermionic superfluids, and
any other many-body states. The dynamic S k,( )w and static
S k( ) structure factors for Fermi gases were measured with
this spectroscopy for the first time by Veeravalli, Vale and
coworkers [101].

11. RF, hopping modulation and Bragg
spectroscopies in lattices

The use of RF spectroscopy for fermions in the context of
optical lattices was pioneered by the group of Esslinger in
Moritz et al [102] (1D tubes) and in Stöferle et al [103] (3D
lattices).

Lattice modulation spectroscopy, applicable to both
bosons and fermion in lattices, was invented by Esslinger and
coworkers in Stöferle et al [104] where it was used for

Figure 4. Lattice modulation spectroscopy was used in [106] to
verify the existence of a gap, characteristic for the Mott state, for
two-component repulsively interacting Fermions in optical lattices.
In the Mott state, there is peak in the spectrum whose position and
shape depend on the Mott gap given by U. Reproduced with
permission from Jördens et al [106]. Copyright Macmillan 2008.
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studying the superfluid-Mott insulator transition in a 1D
boson gas. In [22] Kollath, Giamarchi and coworkers pro-
posed that this method could be used for fermions as well and
theory description of the response in the fermion case was
given. For an excellent detailed description of lattice mod-
ulation spectroscopy experiments see the book chapter by
Tarruell [105].

Breakthroughs observing Mott insulators of fermions in
lattices were achieved by Jördens, Esslinger and coworkers
[106] and by Schneider, Bloch and coworkers [107]. Lattice
modulation spectroscopy was used in [106] to identify the
phases, see figure 4. Recently, even short range magnetic
correlations have been observed by Greif, Esslinger and co-
workers [108], and by Hart, Hulet and coworkers [109]. In
[109], spin-sensitive Bragg scattering of light was used to
detect the correlations.

12. Universal relations and measuring the contact by
the spectroscopies

In ultracold gases, the interparticle interactions have typically
a short range but the scattering length is large. Systems with
such interactions show universal properties, namely proper-
ties that depend on the scattering length only and not on
details of the interaction potential. Strong correlations are
often resulting from the large scattering lengt. Strongly cor-
related systems are usually impossible to fully describe with
theoretical methods, even non-perturbative ones. Never-
theless, universal relations can be derivat that give essential
information about the system. An important quantity in the
universal relations is so-called contact. A lot of universal
relations have been found for the two-component interacting
Fermi gas. Many universal relations were derived first by Tan
[110–112], therefore the name Tan’s relations (Tan’s contact)
that is sometimes used for the universal relations (contact).
Derivations that are based on other approaches have been
made by Braaten and Platter [113] and by Zhang and Leggett
[114]. An excellent in-depth review is given in a book chapter
by Braaten [115]. For a reader who wishes a briefer intro-
duction to the topic I recommend section 10.8. of my book
chapter [1].

The contact can be defined as [113]

C R Rd . 403 ( ) ( )†ò= áF F ñ

Here g0 is a coupling constant that depends on the cut-off and
gR R0 2 1( ) ( )y yF = . Clearly, the contact is very close to the

expectation value of the interaction term in the Hamiltonian.
It can be understood as a measure of the increased likelihood,
due to the strong interactions, of finding two particles close,
i.e., closer than the scale of the scattering length, to each
other. This means that in the momentum domain, it is a
measure of atoms with large momentum. It is usually very
difficult to evaluate the contact exactly. Fortunately, it is part
of several universal relations which can each be experimen-
tally verified and then compared.

For instance, the adiabatic relation
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is a thermodynamic relation (including the energy E, the free
energy F E TS= - and the entropy S) that connects the
contact and the scattering length a.

Also spectroscopies can be used for measuring the con-
tact. The tail of the RF spectrum can be connected to the
contact. In a two-component gas with the RF transfer to a
third (final) state that does not interact significantly with the
two components the result for the tail becomes [116]
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where C is the contact between the two species. The scaling
of the decay with ω was given in [68] as well, and can be
obtained from BCS theory [1]. For RF spectroscopy, there
exists a sum rule involving the contact [72, 73]
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The structure factor as well has a tail that gives universal
relations. Namely, for the dynamic structure factor
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Here  is the contact density which, when integrated over
position, gives the contact C r rd3 ( )ò= .

Universal relations have been verified in a large number
of experiments. Here I mention only some related to

Figure 5. The dependence of the static structure factor S(k) on k kF
as measured in [117], for different interactions k a1 F( ). The slope
gives the contact according to equation (45) close to unitarity where
the second term in the equation is small. Reproduced with
permission from Kuhnle et al [117]. Copyright APS 2010.
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spectroscopies. Kuhnle, Hoinka, Vale and coworkers used
Bragg spectroscopy for verifying the universal relation for the
tail of the static structure factor as given by equation (45)
[117, 118], see figure 5. The contact was obtained by Stewart,
Jin and coworkers from a set of universal relations. They
measured the tail of the momentum distribution from ballistic
expansion and by the momentum-resolved RF spectroscopy
(photoemission spectroscopy), and determined the tail of the
RF spectrum, equation (42) [119]. These three independent
measurements gave values of contact that were in good
agreement with each other.

As already discussed, the decaying tail of the RF spec-
trum is in striking contrast to the superconductor—normal
metal experiments where the current continues to grow after
the threshold. This is due to momentum conservation in RF
spectroscopy. The momentum conservation leads to the fact
that the RF spectrum contains information about the spatial
correlations, and since the pairing here was based on contact-
interaction, the tail reflects the short-range nature of the
pairing. This makes intuitive the relation between the tail of
the spectrum and the contact.

13. The question of a pseudogap versus a Fermi
liquid

One of the outstanding questions that ultracold Fermi gases
may give the answer to is the following: what is the nature of
the normal state of a strongly interacting Fermi system right
above the superfluid critical temperature? Understanding the
nature of the normal state is thought to provide a route for
discovering even the underlying mechanism of high temper-
ature superconductivity. There are differing theoretical pre-
dictions of what the state might be, ranging from a Fermi
liquid to the so-called pseudogap state where a gap appears in
the single particle excitation spectum already above Tc but
corresponds to incoherent Cooper pairs without long-range
order. For more information, see for instance various chapters
in the book edited by Zwerger [120], such as the one by
Strinati [121]. For a description of how pseudogap theories
may be probed both in ultracold gases and in cuprates, see the
review by Chen, Levin and coworkers [6].

The intriguing situation in the field of ultracold gases is
now that there seems to be experimental evidence both for a
pseudogap and a Fermi liquid state. Gaebler, Jin, Strinati, and
coworkers presented an experiment [122] that combined
measurement of the condensate fraction to determine Tc and
momentum-resolved RF spectroscopy to measure the single
particle spectral function. The observed back-bending of the
spectral function around k kF= matched with a pseudogap
theory by Perali, Pieri and Strinati (see also [123]).

Feld, Köhl and coworkers have reported evidence for
pseudogap behaviour in two-dimensional Fermi gases [124]
using momentum-resolved RF spectroscopy (photoemission
spectroscopy). Clear shifts of the RF peaks, caused by pairing
effects, existed in the spectra well above any superfluid
transition. However, the subtle difference between many-
body pseudogap and two-body (no Fermi surface needed)

pairing in 2D warrants further experimental and theoretical
study [13].

All the above reports on pseudogap behaviour were
based on photoemission spectroscopy of 40K atoms. On the
other hand, Fermi liquid description was found to be suffi-
cient for desribing the strongly interacting normal state in the
experiments of Nascimbène, Navon, Jiang, Chevy and Salo-
mon [125, 126] for 6Li atoms. They developed a method to
extract the homogeneous equation of state from the density
profiles of the trapped gas, which allowed obtaining ther-
modynamic quantities at high and low temperatures, for
balanced and imbalanced gases. Also in the work of Sommer,
Zwierlein and coworkers [127] the spin susceptibility of a gas
of 6Li was found to agree with a Fermi liquid picture
above Tc.

Note that the choice of atom, 40K or 6Li, should not
matter even when it seems to do so, because the behaviour of
the gas is universal. The apparent differences may better be
explained by noting that different atoms allow different
probing techniques. For instance the momentum-resolved
photoemission spectroscopy is well suited for 40K but not for
6Li. Different probing techniques can emphasize different
features of the system.

Recently, Sagi, Jin and coworkers made an interesting
experiment [128] with 40K where they removed trapping
effects from the momentum-resolved RF spectroscopy
response and then modelled it with a simple ansatz that
contains a quasiparticle as given by Fermi liquid theory,
together with an incoherent background that can describe the
physics of pairing:

I k ZI k Z I k, , 1 , . 46coherent incoherent( ) ( ) ( ) ( ) ( )w w w= + -

The behaviour of the quasiparticle weight Z is expected to
depend on temperature [129]. The spectroscopy data was
found to match well this description on the BCS side of the
crossover and at unitarity, with the quasiparticle weight Z
disappearing on the BEC side at k a1 0.28 0.02F( ) ( )= . Thus
Fermi liquid theory seems consistent with the experimental
observations until a breakdown point, see figure 6. The article
also presents comparisons of the results, for instance the
Hartree energy extracted from the data, with quantum Monte-
Carlo calculation by Magierski et al [77] and crossover
theories by Haussmann, Punk and Zwerger [78], Kinnunen
[130], and Bruun and Baym [30], with reasonably good
match. The work of Haussmann et al is based on Luttinger–
Ward approach which does not include a pseudogap
explicitly; neither does the Brueckner–Goldstone approach
by Kinnunen where pairing is not considered but only
scattering. On the other hand the work of Bruun and Baym
was based on a Nozieres–Schmitt-Rink approach where a
pseudogap can be identified.

Incorporating both the superfluid and the normal phase in
a sufficiently correct manner to a crossover theory is a for-
midable theoretical challenge, and even the best crossover
theories have their known pitfalls. The experiments have
evolved enourmously, nevertheless they still have their lim-
itations in precision and range of parameters that can be
explored. Therefore I consider it still an extremely important
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future challenge for theory and experiment to nail down the
nature of the normal state in a unitary Fermi gas—although at
the time of this writing, the Fermi liquid seems to have a
slight lead.

14. Outlook

Further experiments and theory on the question whether the
strongly interacting normal state is pseudogapped, Fermi
liquid, or possibly something else is an obvious important
direction of future research. Since the spectral function, gap,
and single particle exctitations are essential for this question,
spectroscopies are likely to turn out to be central in finding
the answer.

One-dimensional systems [131] are likely to be an
exciting arena to use spectroscopies, not only due to the
physics to be expected but because the full field-matter
dynamics of a many-body system can be exactly simulated
[132, 133]. This allows to study also beyond linear response
phenomena.

Concerning many predicted superfluid and strongly cor-
related states in optical lattices, such as the antiferromagnetic
state, the temperatures and entropies have not yet at the time
of this writing reached low enough values. Spectroscopies,
especially the lattice modulation and Bragg ones, may turn
out to play a role in characterizing these states once low
enough entropies are reached. The exotic FFLO state is pre-
dicted to be stabilized in lattices [134, 135]. In a one-
dimensional lattice, it was predicted by exact simulations that
the width of the lattice modulation spectra gives direct

signatures of the FFLO state [136]. Also RF spectra may
show in interesting ways the contributions of the non-paired
quasiparticles in the FFLO state [19].

By recent breakthrough experiments [137–140], the field
of ultracold gases has entered the rich playground of topo-
logically non-trivial quantum systems. Ultracold gases may
be especially suited, for instance, to confirm the recently
predicted connection between flat band high-Tc super-
conductivity and the quantum geometric tensor and the Chern
number [141]. How Chern numbers, edge currents, and the
like might be characterized by various spectroscopies is a
challenge both for theory and experiments. The future of
spectroscopies in ultracold Fermi gases seems bright.
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