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A comprehensive study is presented for the influence of misfit strain, adhesion strength, and lattice
symmetry on the complex Moiré patterns that form in ultrathin films of honeycomb symmetry
adsorbed on compact triangular or honeycomb substrates. The method used is based on a complex
Ginzburg-Landau model of the film that incorporates elastic strain energy and dislocations. The
results indicate that different symmetries of the heteroepitaxial systems lead to distinct types of
domain wall networks and phase transitions among various surface Moiré patterns and superstruc-
tures. More specifically, the results show a dramatic difference between the phase diagrams that
emerge when a honeycomb film is adsorbed on substrates of honeycomb versus triangular symmetry.
It is also shown that in the small deformation limit, the complex Ginzburg-Landau model reduces
to a two-dimensional sine-Gordon free energy form. This free energy can be solved exactly for one
dimensional patterns and reveals the role of domains walls and their crossings in determining the
nature of the phase diagrams. Published by AIP Publishing. [http://dx.doi.org/10.1063/1.4948370]

I. INTRODUCTION

Understanding and predicting the complex superstruc-
tures that emerge during surface ordering and the associated
phase transitions between these structures have been of
both fundamental and practical importances for decades.
Such systems, which are comprised of ultrathin strained
films deposited on compact ordered surfaces, usually exhibit
novel and tunable electronic, optical, catalytic, and magnetic
properties. Traditional systems include the case of rare-gas
(e.g., Kr, Ar, or Xe) absorbed monolayers on graphite1–5

and metal-metal heteroepitaxial overlayer systems (e.g., Cu,
Ni, or Co on Ru(0001) or Pd(111) and Pb on Si(111)6–14).
Most recently, the emergence of novel two-dimensional
materials such as graphene, hexagonal Boron Nitride (h-BN),
and transition metal dichalcogenides (TMDs)15–20 and their
epitaxial growth on solid substrates has re-ignited interest in
this field. While these systems involve very different atomistic
details, the fundamental mechanisms underlying their surface
ordering processes are largely governed by the interplay
of three pivotal factors: misfit strain (ε), adhesion strength
(V0), and the relative lattice symmetry of the overlayer film
with respect to the substrate surface. This latter mechanism
plays a major role in influencing both the symmetry of the
incommensurate superstructures or Moiré patterns that form
in the films and the nature of the phase transitions between
various incommensurate patterns and commensurate states.

The focus of this work is on the ordering of honeycomb
(H) films on compact triangular (T) and honeycomb (H)
substrates, where the magnitude of the lattice constants of the
substrate and film is reasonably close so as to avoid larger unit
commensurate phases. To clarify the terminology used in this
paper the terms H or T substrates refer to substrates where
the surface atoms form a honeycomb or triangular lattice,
respectively. Similarly a H or T film refers to a monolayer
that has density maxima that form a honeycomb or triangular
lattice in commensurate domains as well as in the completely
incommensurate state.

In this work it is assumed that the substrate surface
atoms represent adsorption potential maxima and the hollow
sites potential minima. For triangular substrates both the fcc
and hcp hollow sites represent potential minima. This means
neglecting the small difference between these two types of
adsorption sites due to the influence of the sub-surface layers
of the substrate. As can be seen in Fig. 1, under these
conditions the adsorption sites for the triangular substrate
form a honeycomb lattice whereas the adsorption sites for
a honeycomb substrate form a triangular (hexagonal) lattice.
Physically the H-T system is relevant to the 2D ordering of
graphene, h-BN, or TMD films on compact metallic (111) or
(0001) substrate surfaces, while the H-H system is relevant to
the graphene ordering on h-BN substrate.

Developing a comprehensive understanding of the
complex superstructures that form in these systems is

0021-9606/2016/144(17)/174703/11/$30.00 144, 174703-1 Published by AIP Publishing.
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FIG. 1. Schematics of the surface ordering. For a compact triangular (111) or
(0001) substrate the yellow dots correspond to the substrate potential maxima
and the red and blue to hcp and fcc surface absorption (potential minima)
locations, respectively. In this instance the honeycomb ring of six black atoms
on the left is in the lowest-energy commensurate state and the two rings of
black atoms on right are in higher energy commensurate states. For a substrate
of honeycomb symmetry the red and blue locations correspond to potential
maxima and the yellow to potential minima. In this case the ring on the left
is a high energy incommensurate state and the two lower energy states on the
right are equivalent.

hampered by the multiple scales involved, from microscopic
dislocations in the crystalline lattice to nano or even micron
scales of surface patterning. Continuum descriptions have
been used to examine the nature of the commensurate-
incommensurate (C-I) transitions from striped or hexagonal
phase to a commensurate phase, showing a continuous
transition in the former case and a discontinuous transition
for the latter.1–5 However, these descriptions neglect atomistic
details of the crystalline lattice which are expected to play
an important role at large strains and are not well understood
in the study of C-I transitions. Unfortunately it is difficult
to employ atomistic simulation methods as the length scale
of the patterns diverge at the C-I transition and is inversely
proportional to ε at small V0. Here a study is presented of the
ordering of 2D strained overlayers of honeycomb symmetry
on either triangular or honeycomb substrate, emphasizing both
atomistic and long range features of the system. The problem
of multiple length scales is resolved by employing a complex
amplitude model21–26 based on the phase-field crystal (PFC)
method.27–30 This approach has been applied to the modeling
of a large variety of elastic and plastic systems from nano
to micron length scales.11,12,29–39 The results of this work
elucidate the influence of overlayer lattice symmetry on the
nature of phase transitions between various superstructured
phases. Interestingly the results indicate a dramatic difference
between the H-H and H-T systems. This can be understood
in terms of different energy states of a honeycomb ring
commensurate with a triangular or honeycomb substrate as
illustrated in Fig. 1. For a compact triangular (111) or (0001)
substrate, a ring of six black atoms is in a lowest-energy
commensurate state when they are all adsorbed on the fcc or
hcp hollow sites. There are two higher-energy commensurate
states when the adatoms are half on atop sites and half in fcc
or hcp hollow sites. For a substrate of honeycomb symmetry,
adsorption of the ring on atop sites is a high energy state
whereas there are two lower energy states with half of the ring
on top sites and half in hollow sites. This difference in energy
of states of a commensurate ring in turn leads to different

energies at junctions or domain wall crossings for the two
types of adsorption systems.

This paper is organized in the following fashion. In Sec. II
the methodology used for the study is outlined, followed in
Sec. III by a presentation of the results of a numerical inves-
tigation of the patterns that form as a function of misfit strain
and adhesion strength. In Sec. IV analytic calculations in the
small deformation limit are presented to elucidate the nature
of the transitions observed numerically. Finally a discussion
of the results and some conclusions are given in Sec. V.

II. METHOD

To model the ordering process a method introduced in
prior publications11,12 for a triangular film ordering on a
triangular substrate will be exploited. The model is based
on the complex amplitude equations derived originally from
the PFC model by Goldenfeld and collaborators as described
in Refs. 21–26. In this approach the dimensionless atomic
number density field, n, is represented in terms of a set
of complex amplitudes, ηklm. Equations of motion for the
three lowest order amplitudes needed to construct a system
of triangular symmetry were derived. For simplicity the
substrate is approximated by a rigid potential which should be
appropriate for ultrathin films and particularly for graphene
ordering on metallic surface where the interaction is generally
weak. Extension of the amplitude model to include a fixed
surface potential, V (r⃗), was done in prior work.11,12 For a
compact (111) metallic surface this potential can be written as

V = V0


klm

eiG⃗
s
klm
·r⃗ + c.c., (1)

where G⃗s
klm
= kq⃗1 + lq⃗2 + mq⃗3, (q⃗1, q⃗2, q⃗3) are principle

reciprocal lattice vectors of the substrate potential, and
klm are the Miller indices. For a triangular Bravais lattice,
q⃗1 = q(−√3/2,−1/2,0), q⃗2 = q(0,1,0), and q⃗3 = (0,0,0), and
q sets the length scale of the system. To construct a triangular
lattice with minimal number of plane waves, three wave
vectors are needed, corresponding to (klm) = (100), (010),
and (1̄1̄0). In this approach n is expanded around a strained
state, i.e.,

n =

klm


ηklmeiG⃗

s
klm
·r⃗ + c.c.


, (2)

where the equilibrium reciprocal lattice vectors of the film are
such that G⃗ f

klm
= G⃗s

klm
/α for a misfit strain of ε = 1 − α. In

the PFC model the dynamics of n is governed by

∂n
∂t
= Γ∇2 δF

δn
, (3)

where Γ sets the time scale and the free energy functional is
given by

F =
F

kBT ρ̄
=


dr⃗


∆B

n2

2
+ Bx n

2
�
1 + ∇2�2n

− t
n3

3
+ v

n4

4
+ V n


. (4)

Here kB is Boltzmann constant, T is temperature, and ρ̄
is the average atomic number density. The parameters ∆B,
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Bx, t, and v are phenomenological as described in Refs. 25,
26, and 29. In brief, Bx is related to the elastic moduli,
∆B is related to a temperature difference from melting, and
t and v control the amplitude of density fluctuations. As
shown in prior work,21–26 if the lowest-order wave vectors
((klm) = (100), (010), and (1̄1̄0)) are used to describe a film
of triangular symmetry the equation of motion for ηklm can
be written as

∂ηklm
∂t

= −Γ
δFη

δη∗
klm

, (5)

where

Fη =


dr⃗




klm

(
Bx |Gklmηklm |2 − 3v

2
|ηklm |4

)

+
∆B
2

A2 +
3v
4

A4 − 2t *
,


klm

ηklm + c.c.+
-

+V0 *
,


klm

ηklm + c.c.+
-


. (6)

Here A2 ≡ 2


klm |ηklm |2 and Gklm ≡ ∇2 + 2iαG⃗ f

klm
· ∇⃗ + 1

− α2.
It is useful to note that the equilibrium states of this free

energy functional are described by η
eq

klm
= φ where

φ =
t ±


t2 − 15v∆B0

15v
. (7)

The “+” solution is the minimum energy solution when t > 0,
and reconstruction of the density field from Eq. (2) gives rise
to a pattern in which the density maxima form a triangular
pattern. The “−” solution is the equilibrium solution when
t < 0 and the reconstructed density is a honeycomb array of
maxima. Thus for the purposes of this work t > 0 will be
used to describe a triangular film and t < 0 for a honeycomb
film. Another way to see this relation between the honeycomb
and triangular film through a change of sign of the density
expansion is to start with the density maxima centered on a
honeycomb lattice described by a two-dimensional triangular
Bravais lattice with a two-point basis, i.e.,

n =
2
j=1


klm

ηklmeiG⃗
s
klm
·(r⃗ −⃗r j) + c.c., (8)

where r⃗1 = 0, r⃗2 = δ⃗ = (0,−4π/3q,0), and the G⃗s
klm

are for
a triangular lattice as described previously. If only the basic
wave vectors (klm) = (100), (010), and (1̄1̄0) are used to
described the triangular lattice then it is straightforward to
show that the equilibrium states are given by

n = 2φ

klm


cos

(
G⃗s

klm · r⃗
)
+ cos

(
G⃗s

klm · (r⃗ − r⃗2)
)

= −2φ

klm


cos(G⃗s

klm · (r⃗ + r⃗2))

. (9)

which corresponds to the solution of Eq. (7) with a negative
amplitude. This same argument applies to the substrate
potential. If V0 > 0 (<0) it describes a triangular array
of potential maxima (minima) and a honeycomb array of
potential minima (maxima). These results taken together with

the free energy given in Eq. (6) imply that the solutions
for which both t and V0 are positive (i.e., a triangular film
on a triangular surface, the T-T system) are identical to the
solutions when they are both negative (i.e., a honeycomb
film on a honeycomb substrate, the H-H system) except for a
change in the sign of the amplitudes. For this reason the prior
results11,12 for a T-T system can be used to describe the H-H
case and to compare with the honeycomb-on-triangular (H-T)
scenario presented in Sec. III.

III. NUMERICAL RESULTS

Simulations were conducted to determine the equilibrium
phase diagram of the H-T system by numerically evolving

FIG. 2. Phase diagrams for (a) H-T and (b) H-H systems. The dashed lines
correspond to U/Ka2= π2ε2/16. (b) is redrawn from Ref. 12 for the H-H
system. The black dots correspond to triple points.
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FIG. 3. Examples of equilibrium triangular Moiré patterns for the H-T system at ε = 5% and U/Ka2= 1.4375×10−4, 7.1876×10−4, and 1.4088×10−3 in
(a)–(c), respectively. Light (yellow) and dark (red and blue) areas correspond to commensurate and incommensurate regions, respectively.

Eq. (5) until the free energy was no longer changing in
time. The initial conditions were a uniformly strained film
for the two dimensional patterns and a uniform strain in
one direction for the stripe states. In all cases periodic
boundary conditions were employed. The parameters used for
the simulations were (∆B,Bx, t, v) = (0.02,0.98,∓1/2,1/3).
A semi-implicit spectral relaxation method was used with
a grid spacing of ∆x = 2.0 and time step of ∆t = 0.5. The
system size was determined by the size of the pattern being
considered and varied to determine which length minimized
the free energy per unit area. For convenience the selected
states were determined as a function of a dimensionless
adhesion strength, U/(Ka2) ∼ V0, and misfit strain ε. The
expressions of adhesion energy U, elastic modulus K , and
lattice constant a and the relationship between U/(Ka2) and
V0 will be given in detail in Sec. IV. In essence U/(Ka2)
represents the ratio of substrate potential to elastic energy,
such that when U/(Ka2) = π2ε2/16 the stripe state of the
Moiré pattern has the same energy as the commensurate phase
in the small deformation limit. Expressing the results in terms
of this dimensionless parameter removes the influence of the
simulation parameters at small strains. Different choices of
simulation parameter may quantitatively alter the large strain
results but are unlikely to qualitatively change the basic phase
diagrams shown later in this section.

The numerically determined phase diagram for the H-T
systems is shown in Fig. 2(a). At small strains and adhesion

FIG. 4. Examples of metastable stripe patterns for the H-T system at ε = 5%
and U/Ka2= 7.1876×10−4, 1.3872×10−3, and 1.428 90×10−3 in (a)–(c),
respectively.

strengths the lowest energy state is a triangular network of
commensurate regions (or equivalently a honeycomb network
of incommensurate domain walls), as illustrated in Fig. 3.
When U/(Ka2) is increased a first order phase transition to
a completely commensurate state occurs. At larger strains
a transition from a triangular to stripe phase occurs first,
followed by a transition to the commensurate state for larger
U/Ka2. As indicated by the dot in Fig. 2(a) a triple point exists

FIG. 5. Examples of equilibrium honeycomb Moiré patterns for the H-H system at ε = 7% and U/Ka2= 7.9862×10−4 and 3.5938×10−3 in (a) and (b),
respectively. In (c) a zigzag pattern is shown at U/Ka2= 4.9914×10−3 and a defect is highlighted in the inset. In this figure the light (yellow) and dark (red
and blue) areas correspond to incommensurate and commensurate regions, respectively.
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FIG. 6. Free energy per unit area as a function ofU/Ka2 for the H-T system
at strains of 5% and 13.5 % in (a) and (b), respectively. The solid line, the
solid line with open circles, and the solid line with filled circles correspond to
commensurate, striped, and triangular states, respectively.

where the energy of the commensurate, striped, and triangular
states is equal. Samples of the striped state are shown in
Fig. 4. It is interesting to note that the stripe-commensurate
transition is continuous for small strains (when the stripe state
is metastable) and discontinuous or first order at larger strains
as will be discussed later.

This behavior is considerably different for a H-H (or
T-T) system. For comparison the phase diagram for this
system is shown in Fig. 2(b) (redrawn from Refs. 11 and 12).
At very small adhesion strengths the commensurate regions
form a honeycomb network as shown in Figs. 5(a) and 5(b). In
between this honeycomb state and a completely commensurate
state that appears at large enough adhesion, a transition to the

FIG. 7. Free energy difference, ∆F ≡ F(Q)−F(0), per unit area as a func-
tion of stripe wavenumber Q for strains of 5% and 7% in (a) and (b),
respectively. In (a) the lines from bottom to top correspond to U/Ka2

= 1.429 985 181×10−3, 1.429 985 468×10−3, and 1.429 985 756×10−3. In
(b) the lines from bottom to top correspond toU/Ka2= 2.703 711 52×10−3,
U/Ka2= 2.703 712 95×10−3, and U/Ka2= 2.703 715 11×10−3.

stripe phase always occurs in contrast to the H-T case. At
large strains and intermediate adhesion strengths a zigzag
state (formerly referred to as a triangular state in Refs. 11
and 12) appears, consisting of an array of dislocation pairs as
illustrated in Fig. 5(c). A triple point also occurs in this system
where the zigzag, stripe, and honeycomb states can coexist.
The dramatic difference between the H-T and H-H systems
can be attributed to the difference in energy at the domain wall
junctions that form in the triangular (H-T) and honeycomb
(H-H) patterns, as will be discussed in the next section.
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FIG. 8. Displacement vectors and do-
main walls for (a) H-T and (b) H-H sys-
tems. The arrows represent the direction
and magnitude of the displacement vec-
tors within each commensurate region.
The thin lines in the figures are guides
to the eye for path across domain walls
(lower lines) and through junctions (up-
per vertical lines).

FIG. 9. Energy density profiles for H-T
case at ε = 5% and U/Ka2= 1.3656
×10−3 for (a) and ε = 15% andU/Ka2

= 1.0350×10−2 for (b). In (c) the en-
ergy density along the white lines in (a)
and (b) is shown as the solid and dashed
curves, respectively. The left (right) axis
labels correspond to the solid (dashed)
curve. In (a) and (b) red corresponds to
higher energy density regions.
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All calculations were done in the absence of fluctuations,
i.e., in the mean field limit. In this limit the numerical results
indicate that in the H-T case the triangular to commensurate
and the triangular to stripe transitions are both first order. The
stripe to commensurate transition is second order for small
strains and first order for large strains. Evidences of the first
order transitions are given in Figs. 6 and 7. As seen in Fig. 6(a)
the stripe phase at ε = 5% is never the lowest energy state
and the free energy of this state never goes above the energy
of the commensurate state. As further illustrated in Fig. 7,
at a strain of 5% there appears to be a single minima at a
finite wavelength, L, (or wavenumber Q), while at ε = 7%
there are clearly two minima, with one at Q = 0 (i.e., the
commensurate state) and the other at a finite value of Q. In
the latter case there exists a value of U/Ka2 for which the
two minima have the same free energy per unit area. While
the purpose of this work is not to accurately determine the
precise strain at which the change in the nature of the stripe-
commensurate transition occurs the results indicate that the
transition changes from continuous to discontinuous around
a strain of 6%. In the case of the H-H (or T-T) system
first order or discontinuous transitions were observed for
the honeycomb-stripe, honeycomb-zigzag and zigzag-stripe
transitions. Similar to the H-T case the stripe-commensurate
transition was found to be continuous for strains up to 6% and
discontinuous for larger strains.

IV. SMALL DEFORMATION LIMIT

To understand the nature of surface ordering in these two
systems it is useful to consider the limit of small deformations.
In this limit the amplitudes can be represented as

ηklm = φeiG⃗
f
klm
·u⃗, (10)

where u⃗ is the lattice displacement field used in standard
continuum elasticity theory. For small ∇⃗u⃗ the elastic and
external potential contributions to the free energy given in
Eq. (6) become

Fu ≈


dr⃗


C11

2

(uxx − ε)2 + �uy y − ε
�2

+ 2C44u2
xy + C12(uxx − ε)(uy y − ε)

+ 2V0φ

klm

cos
(
G⃗ f

klm
· u⃗

)

, (11)

where ui j = (∂iu j + ∂jui)/2 and the elastic constants are C11
= 9Bxφ2 and C12 = C44 = C11/3. This form is similar to that
used in previous studies of commensurate-incommensurate
(C-I) transitions.2–4 While this equation is difficult to solve
in two dimensions for the boundary conditions of interest,
it is possible to gain some insights into the nature of the
two-dimensional patterns and to solve the one-dimensional
stripe patterns exactly.

A. Two-dimensional patterns

In two dimensions the potential term in Eq. (11) has
extrema at ux = na/2 and uy =

√
3ma/2, where n and m are

integers such that n + m = even, and a is the lattice constant
shown in Fig. 1 (a = 4π/

√
3 in this system). In this instance

the potential contribution to the free energy reduces simply to
6V0φ. In addition, the extrema also occur when ux = na/2 and
uy = a(√3m ± 1/

√
3)/2, where n and m are integers such that

n + m is odd, and the corresponding potential contribution is
−3φV0. The ± sign here corresponds to the two separate but
equivalent sublattices. For the H-T system φ < 0 and V0 > 0
so that (φV0)H−T < 0, in contrast to the H-H system in which
φ < 0 and V0 < 0 so that (φV0)H−H > 0. These considerations

FIG. 10. Energy density profiles for
H-H case at ε = 7% and U/Ka2

= 3.9931×10−4 for (a) and U/Ka2

= 4.9914×10−4 for (b).
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FIG. 11. Displacement across a domain wall in (a) H-T and (b) H-H systems.

imply the potential minima occur when

H–T : (ux,uy) = a(n,√3m)/2, n + m = even,
H–H : (ux,uy) = a

(
n,
√

3m ± 1/
√

3
)
/2, n + m = odd.

The Moiré patterns that form in these systems are different
due to the different numbers of commensurate states. In
the H-T case the commensurate regions form a triangular
pattern separated by a honeycomb network of domain walls
as illustrated in Fig. 8(a). In contrast, in the H-H (or T-T)
system the commensurate regions form a honeycomb pattern
separated by a triangular network of domain walls as illustrated
in Fig. 8(b). An interesting aspect of this comparison is the
change in the displacement vector across a domain as opposed
to that through a junction. In the H-T case |∆u⃗| across a domain
wall is equal to a, while it is

√
3a/2 through a junction (see

the path shown in Fig. 8(a)). Thus the related contribution to
the elastic energy is smaller when going through a junction,
as compared to that across a domain wall. In the H-H case the
change is a/

√
3 across a domain wall and 2a/

√
3 through a

junction, implying a much larger energy cost to the junction
than the domain wall.

A comparison of domain wall energy can be obtained by
examining the local free energy density (i.e., the integrand of
Eq. (6)). This quantity is shown at two different strains for
the H-T case in Fig. 9 and for the H-H case in Fig. 10(a).
A comparison of these figures shows that the elastic energy
at junctions is much larger in the H-H system compared to
that in the H-T case, which explains why the striped phase

FIG. 12. A kink profile of domain wall (points) is compared with the analytic
form given in Eq. (16) (line), at ε = 5% andU/Ka2= 1.429×10−3 (H-T) and
1.732×10−3 (H-H) for (a) and (b), respectively. The best fit values of λ are
20.4 and 10.2 for (a) and (b), respectively, compared with theoretical values
of 22.8 and 8.5.

could occur in the phase diagram for all strains in the H-H
system (with small enough adhesion strength). In Fig. 9(c)
the free energy density is plotted along a domain wall and
through a junction for two different strains. As can be seen in
this figure for small strains there is a slight dip in the energy
at the junction, indicating that the junctions cost less energy
than domain walls. This is consistent with the absence of
the striped state in the H-T case at low strains. This figure
also shows that at higher strains (dashed curve) the junction
energy is higher than the domain wall energy, which explains
why the striped phase appears in the phase diagram at high
misfit strains. Figure 10(b) shows the free energy density in
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FIG. 13. In (a) comparison of numerical and analytic (dashed black line)
results for H-H (red square points) and H-T (blue circular points) stripe-
commensurate transitions. In (b) the stripe wavelength is shown as a function
of ln(∆U/U sc). The slopes for H-H and H-T cases are λ = 18.6 and 9.9,
respectively, compared to analytic predictions of 22.8 and 8.7.

the zigzag region of the H-H phase diagram, which contains a
periodic array of dislocations. Essentially the junction energy
becomes so large that it is preferable for the junctions to split
into dislocation pairs.

B. One-dimensional stripes

While it is difficult to solve Eq. (11) for the two-
dimensional Moiré patterns, it can be solved exactly for the
one-dimensional stripe phase. The stripe superstructures can
be described by a one-dimensional displacement vector of the
form u⃗ = (Φ(x)/2π)δ⃗ in the H-T system, where δ⃗ = −ax̂, and

for the H-H case u⃗ = δ⃗1 + (Φ(x)/2π)δ⃗2 with δ⃗1 = a/
√

3 ŷ and
δ⃗2 = −a(x̂ + ŷ/

√
3)/2, as shown in Fig. 11. Eq. (11) can then

be transformed to the well-known sine-Gordon free energy

F1d
u ≈


dr⃗



K
2

(
∂Φ

∂x
− ε

)2

+
U
a2 cosΦ


, (12)

where the elastic modulus K is given by

K =



(C11 + C12)2/C11 H–T
(C11 + C12)2/(C11 + C44/3) H–H

, (13)

and the adhesion energy U is

U
a2 =




4V0φ H–T
V0φ/2 H–H

. (14)

Equation (12) can be solved exactly4,5,11 near the stripe-
commensurate transition which occurs when the ratio of
adhesion to elastic energy is equal to π2/16, i.e.,

U sc =
π2

16
Ka2ε2. (15)

The kink profile for the domain walls is given by

Φ(x) = 2 sin−1[tanh (x/λ)], (16)

where λ =


Ka2/U is the domain wall width. When
approaching the transition point the stripe wavelength diverges
as L = −2λ ln(∆U/U sc) + constant, with ∆U = U sc −U. A
comparison of the prediction of Eq. (16) and domain wall
profiles obtained numerically is given in Fig. 12, showing a
very good agreement for both H-T and H-H cases.

At small ε these analytic predictions agree very well with
the numerical results, as shown in Fig. 13 for critical stripe-
commensurate transition. At larger strains the qualitative
predictions of a continuous phase transition with a diverging L
for both H-T and H-H systems are still accurate up to roughly
ε ≈ 6%, as seen, for example, in Fig. 13(b) for L and Fig. 12
for Φ(x). For large enough ε the prediction of a continuous
stripe-commensurate transition breaks down, as evidenced in
Figs. 6(b) and 7(b).

V. DISCUSSION AND CONCLUSIONS

The main difference between the phase diagrams of the
H-T and H-H systems can be attributed to the nature of the
junctions or domain wall crossing in the two systems. In the
former case the energy at a junction is similar to that of a
domain wall, whereas in the latter case the junction energy
is significantly higher than at a domain wall. This occurs
as the change in the displacement vector through a junction
is much larger in the H-H system than in the H-T case. At
small strains this difference results in the appearance of the
striped state at relatively low adhesion strengths in the H-H
system and a direct transition from a triangular Moiré pattern
to the commensurate state in the H-T system. The transition
in the latter case is discontinuous. In principle it is possible
for the triangular-commensurate transition to be continuous
since a triangular pattern can continuously change into the
commensurate state by increasing its length scale to infinity.
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However, this continuous transition can never occur because at
some point the striped state would have a lower energy, given
that it has a lower density of domain walls than the triangular
state and the importance of the junctions diminishes as the
length scale of the patterns increases.

For the other discontinuous transitions most are
straightforward to understand. For example, the triangular-
stripe, honeycomb-stripe, honeycomb-zigzag, and zigzag-
stripe transitions are discontinuous since there is a distinct
change of pattern symmetry and hence it is impossible to
evolve continuously from one state to another. However,
this does not apply to the stripe-commensurate transition as
a commensurate state is simply a stripe state with infinite
wavelength. While there is no a priori reason to believe
that this implies the transition must be continuous, this
is what is observed at low strains and in the prediction
of the simplified sine-Gordon model. At large strains the
stripe-commensurate transition is found to be discontinuous
in both H-T and H-H systems. This is likely due to the
discrete nature of the crystalline lattice, which is captured by
the amplitude description used in this work but lost in the
continuum approximation leading to Eq. (11) and in previous
studies using continuum elasticity theory and the sine-Gordon
formulation. This breakdown at large ε is not unexpected
since the nominal Moiré length scale at zero V0 is given by
a f /ε (where a f is the film lattice constant), which becomes
small for large ε.

While the predictions of this work rely on a relatively
simple model (i.e., a 2D complex amplitude description
coupled to a fixed substrate potential), the results are mainly
based on basic symmetry arguments and the competition
between strain and adhesion energy. As such the fundamental
features of the phase diagrams identified should be applicable
to other models and systems. It is also important to note that
the method adopted here incorporates both microscopic and
mesoscopic descriptions and thus is able to simultaneously
capture the large-scale features of the complex superstructures
that emerge as well as resolve the atomistic and discrete nature
of the underlying crystalline lattices. To compare the results of
this work with a given physical system the parameter U/Ka2

needs to be evaluated. The parameter K can be evaluated
by knowledge of the elastic constant through Eq. (13). The
parameter U is related to the magnitude of the surface potential
magnitude V0 through Eq. (14). This parameter can be related
to the interaction energy of the film with respect to the
substrate, which can be calculated from density functional
theory.11 The validity of this modeling scheme has been
verified in the previous work for the T-T system where
quantitative agreements with experiments of Cu/Ru(0001)
and Cu/Pd(111) were obtained.11 For some H-T systems such
as graphene or h-BN layers on metallic surfaces, typically
the coupling between film and substrate is quite weak and
thus the results of this work are relevant to these graphene-
type materials at very small V0, leading to the emergence of
triangular Moiré patterns as observed experimentally.17,18 To
further validate the H-T results particularly those at large
V0, sample simulations of a three-mode PFC model for
honeycomb lattice36 were also conducted. The outcomes were
consistent with the predictions described above in particular

the phenomena of transitions among triangular, stripe, and
commensurate phases. It should be noted that very close to
the continuous stripe-commensurate transitions fluctuations
(not considered in this work) may alter the nature of the
transition. It would be interesting to experimentally test the
predictions of this work and to extend the modeling approach
to a broader range of systems that are of experimental
relevance.
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