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In brief
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generation through probabilistic

modeling, which allows the improvement

of data generation by incorporating prior

knowledge into the generativemodel. The

proposed approach allows us to

counteract reduction in quality, which

results from the obfuscation required for

privacy, and as a result produces high-

quality synthetic data with strong privacy

guarantees.
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SUMMARY

Differential privacy allows quantifying privacy loss resulting from accession of sensitive personal data.
Repeated accesses to underlying data incur increasing loss. Releasing data as privacy-preserving synthetic
data would avoid this limitation but would leave open the problem of designing what kind of synthetic data.
We propose formulating the problem of private data release through probabilistic modeling. This approach
transforms the problem of designing the synthetic data into choosing a model for the data, allowing also the
inclusion of prior knowledge, which improves the quality of the synthetic data.We demonstrate empirically, in
an epidemiological study, that statistical discoveries can be reliably reproduced from the synthetic data. We
expect the method to have broad use in creating high-quality anonymized data twins of key datasets for
research.

INTRODUCTION

The open release of data would be beneficial for research but is

not feasible for sensitive data, for instance, clinical and genomic

data. Since reliably anonymizing individual data entries is hard,

releasing synthetic microdata1 has been proposed as an alterna-

tive. To maximize the utility of the data, the distribution of the

released synthetic data should be as close as possible to that

of the original dataset, but should not contain synthetic exam-

ples that are too close to real individuals, as their privacy could

be compromised. Traditional methods of statistical disclosure

limitation cannot provide rigorous guarantees on the risk.2

However, differential privacy (DP) provides a natural means of

obtaining such guarantees.

DP3,4 provides a statistical definition of privacy and anonymity.

It gives strict controls on the risk that an individual can be iden-

tified from the result of an algorithm operating on personal data.

Formally, a randomized algorithm M is ðε;dÞ-DP, if for all data-
sets X;X0, where X and X0 agree in all but one entry, and for all

possible outputs S of M, it satisfies:

THE BIGGER PICTURE Open data are a key component of open science. Unrestricted access to datasets
would be necessary for the transparency and reproducibility that the scientific method requires. So far,
openness has been at odds with privacy requirements, which has prohibited the opening up of sensitive
data even after pseudonymization, which does not protect against privacy breaches using side information.
A recent solution for the data-sharing problem is to release synthetic data drawn from privacy-preserving
generativemodels.We propose to interpret privacy-preserving data sharing as amodeling task, allowing us
to incorporate prior knowledge of the data-generation process into the generator model using modern
probabilistic modeling methods. We demonstrate that this can significantly increase the utility of the gener-
ated data.

Proof-of-Concept: Data science output has been formulated,
implemented, and tested for one domain/problem
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PrðMðXÞ˛SÞ% eεPrðMðX0Þ˛SÞ+ d; (Equation 1)

where 0%d<1. The non-negative parameters ε; d define the

strength of the guarantee, with smaller values indicating stron-

ger guarantees. Privacy is usually achieved by introducing

noise into the algorithms. DP has many desirable properties,

such as composability: combining the results of several DP al-

gorithms still produces DP, with privacy guarantees depending

on how the algorithms are applied.4,5 Another important prop-

erty of DP is invariance to post-processing6, which ensures

that the privacy guarantees of a DP result remain valid after

any post-processing. Thus we can use the results of a DP algo-

rithm to answer future queries and still have the same privacy

guarantees.

Data-sharing techniques under DP can be broadly separated

into two categories as noted by Leoni7: input perturbation, where

noise is added to the original data to mask individuals, and syn-

thetic microdata, created from generative models learned under

DP. The input perturbation techniques lack generality as they are

often suitable for only very specific types of data, for example,

set-valued data.8 From now on we will focus only on synthetic-

data-based techniques. Using DP for releasing synthetic micro-

data provides a more generalizable solution and was first sug-

gested by Blum et al.9 for binary datasets. Since then, multiple

privacy-preserving data release techniques have been pro-

posed.10–16 However, the methods have so far been limited to

special cases, such as discrete data10,12–15,17 or having to

draw a synthetic dataset from noisy histograms.15,16 More

recent work has employed more powerful models.11,18,19 These

methods have been shown to be much more efficient and gen-

eral compared with previous attempts. However, these

methods, as well as other data-sharing works, share a limitation:

they are not able to use existing (prior) knowledge about the

dataset.

Typically, the data-sharing methods are built around a similar

idea: learn a generative model from the sensitive data under pri-

vacy guarantees and then sample a synthetic dataset from the

trained model. These works differ mainly in the specific model

used and how the model is learned under DP. Now one might

ask, is this not sufficient, if the model is a universal approximator

(such as variational autoencoders in Ács et al.19) and a sufficient

amount of data are used to train it? The answer is yes, in princi-

ple, but in practice the amount of data required may be

completely infeasible, as the universal approximator would

need to learn from the data the structure of the problem, the

causality, and all parameters. All this is made more difficult by

the capacity of the models being more limited under DP and

the necessary tuning of hyperparameters coming with a privacy

cost.

If the human modeler has knowledge of how the data have

been generated, it is much more data efficient to put this knowl-

edge into the model structure than to learn everything from

scratch with general-purpose data-driven models. For example,

the data analyst might want to explicitly model structural zeros,

i.e., zeros that correspond to an impossible outcome due to

other features of the data, e.g., living subjects cannot have a

cause of death. This is where the general purpose models fall

short. Instead of building a new general purpose model for pri-

vate data sharing, we propose a new essential component to pri-

vate data sharing by augmenting the standard data-sharing

workflow with a modeling task. In this modeling task, the user

can encode existing knowledge of the problem and the data

into the model before the private learning, thus guiding the DP

learning task without actually accessing any private data yet.

We propose to give the modeler the tools of probabilistic

modeling that provide a natural language to describe existing

knowledge about how the data have been generated. This in-

cludes any prior knowledge, which can be seamlessly inte-

grated. In a continuous or high-dimensional data space there

is also another reason probabilistic modeling is needed: finite

datasets are often sparse and require smoothing that preserves

the important properties of the data.

In this paper we formulate the principle of ‘‘Bayesian DP data

release,’’ which employs a generative probabilistic model and

hence turns synthetic data release into a modeling problem.

We demonstrate how the modeling helps in data sharing by us-

ing a general purpose model as a starting point. We will increase

the amount of prior knowledge encoded into the model and

show empirically how the synthetic dataset becomes more

similar to the original onewhenwe guide it withmore prior knowl-

edge. We show how the modeling becomes pivotal in making

correct statistical discoveries from the synthetic data. Code for

applying the principle across model families and datasets is

available at https://github.com/DPBayes/twinify (code for exper-

iments in the paper is available at https://github.com/DPBayes/

data-sharing-examples).

RESULTS

Overview of methods used in the experiments
Our aim is to release a new synthetic dataset that preserves the

statistical properties of the original dataset while satisfying DP

guarantees. Consider a dataset X and a probabilistic model

pðXjqÞ with parameters q. We use the posterior predictive distri-

bution (PPD) pð~X
���XÞ,

p
�
~X
���X� =

Z
SuppðqÞ

p
�
~X
���q� pðqjXÞ dq; (Equation 2)

to generate the synthetic data. PPD tells us the probability of

observing a new sample conditioned on the data we have ob-

tained thus far. Therefore, if our model sufficiently captures the

generative process, the PPD is the natural choice for generating

the synthetic data. We sample the synthetic data from the PPD,

by first drawing ~q from the posterior distribution pðqjXÞ and then

drawing new data point ~x from the probabilistic model condi-

tioned on ~q, and repeating for all points.

Many of the previous differentially private data-sharing works

share a common workflow, namely, they learn a specific gener-

ative model from the data and share samples drawn from this

generator. This pipeline is depicted in Figure 1.

What we suggest is to augment this pipeline with domain

knowledge of the data holder. This is possible through probabi-

listicmodeling, which gives a natural language for encoding such

knowledge prior to learning. In out experiments, we have used

the new improved pipeline, depicted in Figure 2.
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Reproducing statistical discoveries from the
synthetic data
In order for private data sharing to be useful, we need to retain

important statistical information in the synthetic data while pre-

venting reidentification of data subjects. Next we will demon-

strate how encoding prior knowledge becomes essential in mak-

ing correct statistical discoveries from the synthetic data.

To test whether the same discoveries can be reproduced from

the synthetic as from the original dataset, we generated a syn-

thetic replica of a dataset used in an epidemiological study20, us-

ing a general-purpose generative model family (mixture model).

Prior to learning, we encoded experts’ domain knowledge about

the data into the probabilistic model.

The data have previously been used to study the association

between diabetes and alcohol-related deaths (ARDs) using a

Poisson regression model.21 The study showed that males and

females exhibit different behaviors in terms of alcohol-related

mortalities. We encoded this prior knowledge into the model

by learning independent mixture models for males and females.

Another type of prior knowledge we had comes from the nature

of the study that produced the data: the data of each subject end

either on a specific date or at death. Hence, the status at the

endpoint is known to have a one-to-one correspondence on

certain features, such as duration of the follow-up and, most

importantly, the binary indicator that tells if an individual died

of alcohol-related causes. We encoded this prior knowledge

into the probabilistic model as well. For details on the models

we refer the reader to the experimental procedures.

After building the model, we learned the generative model un-

der DP and generated the synthetic data. We fit the same Pois-

son regression model that was used in the earlier study21 to the

synthetic data as well, and compared the regression coefficients

of the two models.

From the synthetic data, wemake two key observations. (1) We

can reproduce the discovery that diabetics have a higher risk of

ARD than non-diabetics, which agrees with the previous results

on the original data.21 The bar dubbed ‘‘Stratified’’ in Figure 3

shows that we can reproduce the discoveries with high probabil-

ity for males with relatively strict privacy guarantees (ε = 1). For

females, we need to loosen the privacy guarantees to ε= 4 in or-

der to reproduce the statistical discovery with high probability.

We discuss the difference between males and females in the

next section. (2) To reproduce the discovery, we need to have

the correct model. Figure 3 shows the results of three different

models: ‘‘Stratified,’’ equipped with prior knowledge on gender

and outcome of the follow-up; ‘‘No alive/dead strat.,’’ with prior

knowledge only on gender; and ‘‘Unstratified,’’ without either

type of prior knowledge. We see that the more prior knowledge

we encode into the model, the better reproducibility we get. For

males, with strict privacy (ε = 1) we increase the rate of reproduc-

ibility almost by 40% by having the correct model. For females,

the effect is even stronger; however, it is best visible with larger ε.

Performance of DP data sharing
Next wewill demonstrate the usability as well as the limitations of

the proposed general DP data-sharing solution.

DP data sharing works best when data are plentiful

As we saw in Figure 3, the utility is better for males than the fe-

males, especially for strict privacy guarantees. To understand

the difference between the two cases (males, females) in the

ARD study, we note the much smaller sample size for ARD inci-

dences among females (520 versus 2,312). Since DP guarantees

indistinguishability among individuals in the dataset, it is plau-

sible that the rarer a characteristic, the less well it can be pre-

served in DP-protected data. To assess whether this holds for

the regression coefficients in the ARD study, we divided the

regression coefficients, both male and female, into four equal-

sized bins based on how many cases exhibited the correspond-

ing feature and computed the mean absolute error between the

original and the synthetic coefficients within these bins. Figure 4

shows that the regression coefficients with higher numbers of

cases are more accurately discovered from the synthetic data.

Previously, Heikkil€a et al.22 showed that the error of estimating

parameter mean under ðε; dÞ-DP decreases proportional to

Oð1 =nÞ, where n is the size of the dataset. Figure 4 shows that

the error in the ARD study follows closely the expected behavior

as the number of cases increases. In this experiment, the inverse

group size was estimated with the average of the inverse group

sizes within a bin.

However, the data size is not the only determining factor for

the utility of DP data sharing. Next we will show how more

clear-cut characteristics of the data are easier to discover,

even with fewer samples.

Picking up aweak statistical signal is difficult for DPdata

sharing

The ARD study stratifies individuals based on three types of dia-

betes treatment: insulin only, orally administered drug (OAD)

only, and insulin + OAD treatment. Each of these therapies is

treated as an independent regressor. For a reproduced discov-

ery, we require that all of the regressors are positive and have

sufficient statistical significance (p < 0.05). From Figure 5 we

see that the probability of reproducing the discoveries for each

subgroup increases as ε grows. However, we also see that for

the insulin-only subgroup we recover the correct discovery

with higher rate compared with the larger subgroup, OAD only.

The reason the smaller subgroup of insulin only is captured

with sufficient significancemore often than the largest subgroup,

OAD only, can be explained by the original regression coeffi-

cients shown in Table 1. The OAD-only subgroup has a signifi-

cantly smaller effect on the ARD than the insulin-only subgroup,

thus making it more difficult for the mixture model to capture.

However, as we increase ε, the correlation between OAD only

and ARD is more often captured. Both of these effects are also

visible in themale case, as we see from Figure 5, but on a smaller

scale.

Figure 1. Standard differentially private data-

sharing workflow
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Some of the regression coefficients learned from the synthetic

data diverge from the ground truth, which seems to also persist

without privacy (see column ε=N in Table 1). In our experiments

we have used a small number ofmixture components (k = 10) as

a compromise between sufficiently high resolution (we canmake

correct statistical discoveries) and private learning that becomes

more difficult as the number of parameters grows. Increasing the

number of mixture components resolves this inconsistency by

improving the fit in the non-private case (see Table S1 in the sup-

plemental information).

To evaluate the strength of the statistical signals in the female

ARD study, we ran the Poisson regression study with bootstrap-

ped original female data. Figure 6 shows that under 100 boot-

strap iterations,z30% of the repeats did not reach the required

statistical significance. This shows that the statistical signal in fe-

male data is weak to begin with, and therefore may be difficult for

a data-sharing model to capture.

Despite DP data sharing having difficulties with weak statisti-

cal signal and limited data, it provides an efficient solution for pri-

vacy-preserving learning, especially when we are not certain

about the future use of the data. Next we will discuss how DP-

based synthetic data stand against traditional query-based DP

approaches.

Performance against a tailored mechanism

As discussed, one of the greatest advantages of releasing a

synthetic dataset is that it can be used in arbitrary tasks without

further privacy concerns. Using traditional DP techniques, a

data holder that wants to allow DP access to a sensitive dataset

needs to set a privacy budget at the desired level of privacy and

split this budget for each access that the data are subjected to.

As soon as the privacy budget runs out, the data cannot be

used in any additional analysis without unacceptable pri-

vacy risk.

We will next show that the data-sharing methods can outper-

form traditional DP techniques, if the data are to be accessed

multiple times. We evaluate the performance on two datasets,

a mobile phone app dataset23 referred to as Carat and the pub-

licly available set of US census data, ‘‘Adult’’.24 As data-sharing

methods we apply a mixture-model-based PPD sampling

method (‘‘mixture model’’) and a Bayes-networks-based

method, PrivBayes25 (‘‘Bayes network’’).

Consider that the data holder splits the budget uniformly

among T anticipated queries. Figure 7 illustrates how the number

of anticipated queries will affect the accuracy. We compared the

data-sharing method against perturbing the covariance matrix

Figure 2. Bayesian DP data release

with Gaussian noise, according to the

Gaussian mechanism3 (‘‘tailored mecha-

nism’’). We measured the accuracy in

terms of the Frobenius norm (see Equa-

tion 8) between the true and the DP covari-

ancematrices. Already with T = 10 queries,

releasing a synthetic dataset outperforms

the tailored mechanism for these high-

dimensional data. We show results only

for the mixture model because the differ-

ence in performance between the mixture model and the Bayes

networks is small in this example (see Figure 8).

As another example, we compared the synthetic data release

on the Adult data against a private logistic regression classifier.26

Figure 7 shows that the Bayes network consistently outperforms

the tailored mechanism, and for strict privacy requirement (small

ε) themixturemodel also performs better than the tailoredmech-

anism, given 20 or more queries.

Demonstration on two parametric families of

distributions

Finally, we will demonstrate the results from two data-sharing

approaches using two very different universal probabilistic

models making different computational trade-offs. We evaluate

the performance between mixture models and Bayes networks

on the ARD, Carat, and Adult datasets.

For theCarat data, Figure 8, left, shows that the Bayes network

is accurate when the dimensionality of the data is low, but as the

dimensionality grows, synthetic data generated from the mixture

model achieve higher accuracy than data from Bayes networks,

which also become computationally exhausting as the dimen-

sion increases. From Figure 8, we can see that learning the

mixture model takes only a fraction of the Bayes networks’

computational time. Similarly, in the ARD study, the mixture

models outperforms Bayes networks (Figure 8, right).

As a final comparison between the Bayes networks and the

mixture model, we compared the two in the previously intro-

duced classification task using the Adult dataset, which has

fewer samples compared with ARD and Carat data (Adult

30,162 samples, Carat 66,754 samples, ARD females 208,148

samples, and ARD males 226,372). After the generative model

was learned, we used the synthetic data obtained from the

generative model to train a logistic regression classifier and

demonstrated the performance by predicting income classes.

Figure 7, right, illustrates that in this example, the Bayes net-

works outperform the mixture model in terms of classification

accuracy.

DISCUSSION

Dwork et al.27 showed theoretically that there is no computation-

ally efficient DP method for data sharing that would preserve all

properties of the data. They consider the problem from the

learning theory perspective, where the aim is to accurately

answer a set of queries. Accurate answers become infeasible

as the size of this query set grows. However, if we need only to
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preserve the most important properties of the data, the set of

queries wewant to accurately answer stays bounded in size, giv-

ing a way out. We argue that it would already be highly useful to

be able to answer questions of the important properties; and

moreover, the bigger picture may be more relevant than all the

unique characteristics in the data.

As we saw in the Adult example, the DP data release can

perform as well as the tailored mechanism, even when

answering just one query, and progressively better for multiple

queries. However, as our experiments exemplify, encoding of

the prior knowledge has a significant impact on the results. In

fact, what we are proposing is to transform the DP data release

problem into amodeling problem, which includes as an essential

part the selection of the model according to the data and task,

and bringing in available prior knowledge.

We illustrated in Figure 4 how increasing the number of rele-

vant samples improves the results. As is common with all differ-

entially private methods, the data release works better when the

original dataset has a large number of samples. This is because

of the nature of DP; it is easier to mask the contribution of one

element of the dataset when the number of samples is large.

Recently, Karwa et al.28 showed that DP has a broadening ef-

fect on the confidence intervals of statistical quantities learned

under DP. Their proof was for Gaussian mean estimation; how-

ever, intuitively, this property should translate to other differen-

tially private tasks as well. The width of the confidence intervals

depends on both the required level of privacy and the number of

samples. This suggests that we should not expect to necessarily

reproduce all the same discoveries under DP.

In the past, there has been discussion on whether standard

random number generators (RNGs) can be used to ensure

DP.29 In the actual data release setting we would need to

consider using cryptographically secure RNGs to properly pro-

vide individuals in the dataset the DP guarantees. Also, the

limited accuracy of floating point arithmetics makes it possible

for an attacker to break DP due to errors in approximation.30

However, these problems are by no means specific to DP data

release but apply to all DP methods.

One major question for all DP algorithms is how to set the pri-

vacy parameters ε and d. While the parameters are in principle

well defined, their interpretation depends, for example, on the

chosen neighborhood relation. Furthermore, the parameters

are worst-case bounds that do not fully capture, for example,

the fact that we do not release the full generative model but

only samples drawn from the PPD. Our use of εz1 is in line

with widely accepted standards derived from observed feasi-

bility of membership inference attacks. Given the complicated

relationship between the released and the original data, it seems

unlikely that the privacy of specific data subjects could be

compromised in this setting under this privacy level.

In this work, we have reformulated the standard differentially

private data sharing by formulating it as a modeling task. Using

probabilistic modeling, we can express prior knowledge about

the data and processes that generated the data before the

training, thus guiding the model toward the right directions

without additional privacy cost. This makes it possible to extend

the DP data sharing solution to datasets that are of limited size,

but for which there exists domain knowledge.

Differentially private data sharing shows great potential, and

would be particularly useful for datasets that will be used in

multiple analyses. Census data are a great example of such

data. Also, as private data sharing allows arbitrary downstream

Figure 3. ARD study: Encoding prior knowl-

edge into the generative model improves per-

formance

For both males (left) and females (right), we recover

the correct statistical discovery with high probability

when we guide the model sufficiently with prior

knowledge. The prior knowledge is increased from

right to left in both groups. In ‘‘Stratified,’’ we have

independent mixture models for the genders and

deterministic features due to study outcomes. In

‘‘No alive/dead strat.’’ we have independent models

for the genders, and in ‘‘Unstratified’’ we treat

all features within a mixture component as independent. For a reproduced discovery, we required the association between ARD and medication type to be found

for all medication types with significance (p < 0.05). The results of 100 independent repeats of each method with three levels of privacy (parametrized by ε)

are shown.

Figure 4. Accuracy of findings from synthetic data as a function of

their rarity: ARD study

The accuracy of regression coefficients learned from synthetic data rapidly

improves as the number of relevant samples grows. The solid curves show

mean absolute error within a prevalence bin between the regression co-

efficients learned from original and synthetic data. The average result over 100

independent runs of the algorithm is shown. The dashed line is proportional to

the expected behavior of an optimal estimator (see text); note the different

scale on the y axis (shown on the right). Results are from the stratified model.

Tick marks on the x axis are (min, max) number of relevant samples within the

respective bin. Error bars denote the standard error of the mean. Results

shown are for three values of the privacy parameter ε.

ll
OPEN ACCESSArticle

Patterns 2, 100271, July 9, 2021 5



tasks with no further privacy cost, it is a good alternative for

tasks for which there is no existing privacy-preserving

counterpart.

Our results demonstrate the importance of guiding the data-

sharing task with prior knowledge about the data domain, and

that when this prior knowledge is encoded into the probabilistic

model, the synthetic data maintain the usability of the original

data in non-trivial tasks.

EXPERIMENTAL PROCEDURES

Resource availability
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Materials availability

Synthetic datasets generated for the publicly available Adult dataset can be re-

quested from the authors.
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The code used in our experiments is available at https://github.com/DPBayes/

data-sharing-examples.

The Adult dataset is available from the UCI machine learning repository

(https://archive.ics.uci.edu/ml/datasets/adult).

The ARD and Carat datasets contain personal information and therefore are

not publicly available.

Regarding the Carat data gathering process, the user was informed about

the data gathering and the research usage of the data (including app data)

when installing the application in the End-User License Agreement. The pro-

cess complies with EU’s General Data Protection Regulation. The app requires

user consent for the installation. The developers have IRB (ethical board)

approval for the Carat data gathering and analysis. An anonymized subset of

Carat data can be found at https://www.cs.helsinki.fi/group/carat/data-

sharing/.

The ARD data were a collection from multiple sources: Social Insurance

Institute (SII; permission Kela 16/522/2012), the Finnish Cancer Registry, Na-

tional Institute for Health and Welfare (THL/264/5.05.00/2012), and Statistics

Finland (TK-53-214-12). This is a register-based study with pseudonymous

data and no patient contact, thus no consents from pseudonymized patients

were required according to Finnish law. The ethical committee of the Faculty

of Medicine, University of Helsinki, Finland (02/2012) reviewed the protocol.

Data permits were received from the SII (16/522/2012), the National Institute

for Health and Welfare (THL/264/5.05.00/2012), and Statistics Finland (TK-

53-214-12). The SII pseudonymized the data.

Figure 5. The statistical signal is weaker in female data (ARD study)

(Left) Likelihood of reproducing findings as a function of privacy guarantee, female case. The statistical discoveries are reliably reproduced from the synthetic data

for the strictest privacy requirements. Results are for the combined case and each subgroup separately. In the combined results, all subgroups are required to

have the correct sign and p < 0.05 to call the discovery reproduced. The size of each subgroup is shown in parentheses. Results are from the stratified model.

(Right) Likelihood of reproducing findings from synthetic data. For males (226,372 samples), the discoveries can be reproduced with high probability from the

synthetic data. For females (208,148 samples), the probability of reproducing discoveries is lower. Bars show discoveries for each type of diabetes medication

separately and for all combined. In the combined case, for a reproduced discovery, we required the association between ARD andmedication type to be found for

all medication types with significance (p < 0.05). The results of 100 independent repeats of the method with privacy level ðε = 1:0; d = 10�6Þ using the stratified

model are shown.

Table 1. ARD study

Coefficient Number of cases Original coefficient ± SE ε = 1.0 ε = 2.0 ε = 4.0 ε = N

Females

OAD only 254 0.657 ± 0.108 0.303 ± 0.197 0.474 ± 0.209 0.591 ± 0.189 0.887 ± 0.149

OAD + insulin 12 0.873 ± 0.304 0.658 ± 0.516 0.846 ± 0.44 1.074 ± 0.427 1.124 ± 0.366

Insulin only 117 1.68 ± 0.135 0.91 ± 0.379 1.085 ± 0.312 1.313 ± 0.293 1.521 ± 0.206

Males

OAD only 1,052 0.435 ± 0.049 0.412 ± 0.166 0.502 ± 0.152 0.538 ± 0.12 0.532 ± 0.089

OAD + insulin 66 0.582 ± 0.129 0.748 ± 0.304 0.816 ± 0.282 0.858 ± 0.234 0.864 ± 0.17

Insulin only 480 1.209 ± 0.063 1.033 ± 0.189 1.188 ± 0.205 1.257 ± 0.138 1.262 ± 0.123

The magnitude of the statistical effect in the male case is well preserved in synthetic data. DP and synthetic non-DP (ε = N) results are averaged over

100 runs, with error denoting the standard deviation. The error in the original coefficients shows the standard error for the regression model.
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Materials

For the ARD study20, the data came from 208,148 females and 226,372

males and comprised three continuous, five binary, and two categorical

features.

Carat23 is a research project that maintains a mobile phone app that helps

users understand their battery usage. For the Carat dataset, we obtained a

subset of Carat data from the research project. Our aim was to privately

release a dataset that consists of installed apps of 66,754 Carat users. To

have some variance in the data, we dropped out the 100 most popular apps

that were installed on almost every device and used the 96 next most popular

apps to subsample in the experiments.

In the Adult study of the UCI machine learning repository,24 we trained the

generative model with 30,162 samples with 13 features of both continuous

and discrete types. A separate test set consisted of 15,060 instances, of which

75.4% were labeled %50k$.

Differential privacy

In our experiments, we used approximate DP, as defined below.

Definition 1 (approximate DP3): a randomized algorithm M : XN/ I sat-

isfies ðε; dÞ DP, if for all adjacent datasets X;X0˛XN and for all measurable

S3I it holds that:

PrðMðXÞ˛SÞ% eεPrðMðX 0Þ˛SÞ+ d: (Equation 3)

We consider datasets as adjacent in the substitute relation, i.e., if we get one

by replacing a single element of the other and vice versa. The privacy param-

eter d used in the experiments was set to 10�6 for the ARD study and 10�5 for

both the Carat and the Adult studies.

Probabilistic models

Mixture model

Mixture model is a universal approximator of densities. The probability density

for a mixture model with K mixture components is given as:

p

 
Xjq;pÞ =

XK
k = 1

pkp
�
XjqðkÞ

!
: (Equation 4)

It allows the capture of complex dependency structures through the differ-

ences between less complex mixture components (the densities pðX��qðkÞÞ).
There is no limitation on what kinds of distributions can be used for the mixture

components, and thus amixture model is suitable for arbitrary types of data. In

this work we assume independence of features within each mixture compo-

nent. This means that the component distribution factorizes over the features,

and we can write:

p

 
Xjq;pÞ =

XK
k =1

pk

YD
j =1

p
�
Xj

��qðkÞ
j

!
; (Equation 5)

where Xj ; j = 1;.;D denotes the D features of the data and q
ðkÞ
j the parameters

associated with the jth feature of the kth component distribution. Intuitively the

problem can be seen as finding clusters of features such that each cluster has

an axis-aligned covariance structure. As the number of such clusters in-

creases, we can cover the data more accurately.

In our experiments with mixture models, we used PPD as the generative

model. The only access to data is through the posteriors of the model param-

eters, which we learned under DP using the differentially private variational

inference (DPVI) method.26 DPVI learns a mean field approximation for the

posterior distributions of model parameters using DP-SGD.31 The number of

mixture components K was set to 10 for data with fewer dimensions (<20)

and to 20 for data with more dimensions (R20). If necessary, this number,

along with hyperparameters of DPVI, could be optimized under DP32, with

potentially significant extra computational cost.

Bayes networks

A Bayes network is a graphical model that presents the dependencies across

random variables as a directed acyclic graph. In the graph, the nodes repre-

sent random variables and the edges dependencies between the variables.

To learn the graphs privately and to sample the synthetic data, we used the

PrivBayes method,25 which builds the graph between the features of the

data, and no additional latent variables were assumed. The topology of the

network is chosen under DP by using the exponential mechanism,33 and the

conditional distributions that describe the probability mass function are

released using the Laplace mechanism.4

Model details

For the mixture model, we need to choose how to model each feature in the

datasets. In all our experiments we used the following distributions: contin-

uous features were scaled to the unit interval andmodeled as beta distributed.

Figure 6. ARD study

The statistical signal is weak in the female data, and discoveries cannot be

made with sufficient significance. On the left, the bars show results for private

synthetic data with ε= 1:0 of 100 independent runs using the stratified model.

On the right, the bars show results for 100 times bootstrapped original data.

Figure 7. Performance against tailored

mechanisms

(Left) Carat study. The data-sharing method out-

performs the tailored mechanism as the number of

anticipated future queries (T) grows, in terms of

classification accuracy. Curves show the Frobenius

norm between original and synthetic covariance

matrices. Privacy budget was fixed to ð1:0; 10�5Þ.
The average of 10 runs is shown. Error bars denote

the standard error of mean. (Right) Adult study.

Synthetic data from the Bayes network model

outperform the tailored mechanism. While a tailored

mechanism is more accurate for loose privacy

guarantees (large ε) and few queries (small T), the

mixture-model-based data release ismore accurate for multiple queries and tighter privacy guarantees. The average classification accuracy over 10 independent

runs is shown. Error bars denote standard error of mean.
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The parameters for beta-distributed variables were given a gammað1; 1Þ prior.
Discrete features were modeled as either Bernoulli or categorical random vari-

ables based on the domain. In both Bernoulli and categorical cases, the pa-

rameters were given a uniform prior. Table 2 summarizes the mixture models

used in the experiments.

Prior knowledge used in the ARD study

In the ARD study, we showed how incorporating prior knowledge into the

model improves the utility of data sharing. Next we will describe in detail the

type of knowledge we used to model the data. We will encode the prior knowl-

edge into the mixture model given in Equation (5). This corresponds to the

model referred to as ‘‘Unstratified’’ in Figure 3.

We start by splitting the probabilistic model based on gender of the subject.

This yields the following likelihood function:

pðXjq;pÞ = pðxsexjqsexÞ
XK
k = 1

pkp
�
X fsexg

��qðkÞ; xsex
�
: (Equation 6)

We refer to this model as ‘‘No alive/dead strat.’’

The ARD data are an aggregate of a follow-up study, which ended either on

December 31, 2012, or on the subject’s death. In this study, wewere interested

in whether an individual died due to alcohol-related reasons. Since the subject

cannot be dead due to alcohol-related reasons while still continuing to the end

of the follow-up, we separated the model according to subjects’ status by the

end of the follow-up. This led to the final ‘‘Stratified’’ model used in our exper-

iments, with likelihood given as:

pðXjq;pÞ =pðxsexjqsexÞpðxdeadjxsex; qdeadÞPK
k =1

pkp
�
X fdead; sexg

��qðkÞ; xdead; xsex
�
:

(Equation 7)

Here, xdead denotes the end-of-follow-up indicator and X fdeadg the features

of the data excluding the end-of-follow-up indicator. Now we could learn two

mixturemodels, one for living and the other for dead subjects, for both females

and males. Since the living subjects stayed in the study until the end of the

follow-up, we could model the feature pair (‘‘start date’’ and ‘‘duration of

follow-up’’) using just one of the features. In our experiments we used the

‘‘start date’’ feature. Similar to the ARD, as death could occur only in dead sub-

jects, we could remove this feature from the living model.

Similarity measures

In the Carat experiments, we measured the performance in terms of the sim-

ilarity between the covariance matrices of the original and the synthetic

data. The Frobenius norm between two matrices, A and B, is given as:

����A�B
����

F
=

 Xn
i = 1

Xd
j = 1

ðaij � bijÞ2
!1=2

: (Equation 8)
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