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Abstract: Biophysical cues from the cellular microenvironment are detected by mechanosensitive
machineries that translate physical signals into biochemical signaling cascades. At the crossroads
of extracellular space and cell interior are located several ion channel families, including TRP
family proteins, that are triggered by mechanical stimuli and drive intracellular signaling pathways
through spatio-temporally controlled Ca2+-influx. Mechanosensitive Ca2+-channels, therefore, act
as critical components in the rapid transmission of physical signals into biologically compatible
information to impact crucial processes during development, morphogenesis and regeneration.
Given the mechanosensitive nature of many of the TRP family channels, they must also respond to
the biophysical changes along the development of several pathophysiological conditions and have
also been linked to cancer progression. In this review, we will focus on the TRPV, vanilloid family of
TRP proteins, and their connection to cancer progression through their mechanosensitive nature.

Keywords: TRPV; mechanosensing; cancer; invasion

1. Introduction

All tissues contain specific cellular machineries involved in sensing and converting
physical cues into biological responses [1,2]. Mechanosensing hence allows cells to adopt
their structure and functions according to the external stimuli, like changes in the compo-
sition of the matrix, pressure or shear forces, subsequently regulating all crucial cellular
functions and through that the homeostasis of different tissues. Along cancer progression,
biophysical properties of the stroma undergo drastic alterations [3,4]. Both stiffness and
pressure within the transformed tissues are usually much higher and stromal composition
is also commonly altered. Such mechanical cues are recognized by the mechanosensi-
tive machineries and can promote cancer progression f.i. by triggering proliferation and
cell migration through several intracellular cascades [5,6]. Additionally, mechanosens-
ing machineries can undergo changes in their function along the neoplastic progression,
impairing the ability of the cells to sense and respond normally to the changes in their
microenvironment [7,8].

Every step along the metastatic progression, including EMT, invasive migration and
angiogenesis, is directed by changes in Ca2+-homeostasis [9,10]. One of the central players
in regulating Ca2+-homeostasis and transmitting information about the extracellular bio-
physical cues is represented by plasma membrane-embedded calcium channels. Therefore,
many of the physical features, affecting cancer progression positively, may be mediated by
mechanosensitive ion channels that through Ca2+ influx favor activation of specific down-
stream pathways [8,10–14]. Perhaps the most studied Ca2+-triggered pathways include
calcium/calmodulin-dependent kinase II (CaMKII) and a nuclear factor kappa-light-chain-
enhancer of activated B cells (NF-κB) pathways that regulate cell cycle and apoptosis [15,16].
NF-κB protein complex controls the transcription of DNA upon various stresses and is
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involved in inflammatory and immune responses, regulation of proliferation and cell sur-
vival [17,18]. Other important calcium-dependent factors are calcium-dependent cysteine
proteases, calpains and the calcium-dependent serine-threonine phosphatase, calcineurin
that control f.i. cell cycle, apoptosis and cell migration [19–21]. Abnormal activity of
mechanosensitive Ca2+-channels could therefore play a major role in cancer progression
through these pathways or other less studied signaling cascades. Moreover, the expression
of such channels is also known to be altered along the neoplastic progression [14,22,23].
The mechanisms behind the abnormal Ca2+-channel expression in cancerous tissues are
still poorly known but they may be for example linked to the changes in the stromal
composition or hormonal status [24–27].

One major group of cell membrane-associated Ca2+-channels are formed by the Tran-
sient receptor potential (TRP) family proteins that can respond to various extracellular cues,
including biochemical compounds, pH, heat, osmolarity and physical stimuli, to trigger
activation of specific intracellular cascades through subtle changes in ion influx [28,29].
TRP protein family is composed of over 30 different cationic ion channels that display vital
functions in various tissues. This superfamily of proteins has been mostly studied in non-
excitable cell types but possesses also important functions in the nervous system [30,31].
Based on the sequence homology, the TRP superfamily is further divided into seven sub-
families, more specifically into the TRPV (vanilloid), TRPA (ankyrin), TRPC (canonical),
TRPM (melastatin), TRPML (mucolipin), TRPN (NOMPC) and TRPP (polycystin) fami-
lies [32]. TRPV subfamilies of channel proteins are widely expressed in both non-sensory
and sensory cells and display high sequence similarity across different species [33–35].
TRPV channels that are capable of sensing physical cues, act in concert with the other cell
membrane-linked mechanosensitive structures, including integrin-based cell adhesions,
and transmit mechanical signals into a cell readable format [36–42]. In addition to the
extracellular cues, activation of TRPV channels is affected by intracellular signaling, post-
translational modifications as well as lipid- and protein-protein interactions, constructing
a complex regulatory network [31,43,44]. Upon activation, these channels may then alter
membrane potential or concentration of intracellular Ca2+ that impacts cellular events.
Therefore, deregulation of TRPV and other TRP family channels also plays a major role
in the development of several pathophysiological conditions, including various cancers.
Mechanosensitive TRPV channels have been linked to cancer progression at least through
their ability to both sense and modify mechanically altered microenvironment [45–49],
through their association with mechanosensitive Rho GTPases and actin cytoskeleton, lead-
ing to altered migratory features [50–53], as well as due to their role in angiogenesis [54–57]
and cell proliferation [58–60]. Many of these channel proteins have also shown potential as
therapeutical targets [61,62]. In this short review, we will focus on the unique characteristics
of TRPV channels as mechanosensors and the possible connection of their mechanosensitive
nature to the progression of various cancers through altered Ca2+-signaling.

2. TRPV Family—Expression and Biological Functions

TRPs were originally identified in photoreceptors of Drosophila [63] and are expressed
in a range of species from yeast to humans. TRPs are expressed in a tissue specific manner
and they all have a common membrane structure with six transmembrane segments, S1-S6,
containing a TRP domain and a loop between S5 and S6, which defines the pore and
selectivity of the channel filter [64]. Similar to the voltage-gated potassium channels,
TRP tetramers form the functional unit of the cation channels and the ankyrin repeat
domain (ARD) is involved in the oligomerizations. TRPV subfamily is constituted by the
members TRPV1-6. These are further divided into two subgroups: TRPV1-4 and TRPV5-6.
The first group, TRPV1-4, form homo-and heteromeric channels that display mild Ca2+-
selectivity [20,65,66]. While TRPV5 and TRPV6 can form both homo- and heteromeric
channels that are highly selective for Ca2+. TRPV channels are structurally similar to the
other TRP channels, but they contain additional three to five ankyrin repeat domains in
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the N-terminus [31]. Despite the high sequence similarity, all of the TRPV family members
display specific activation mechanisms and physiological functions.

Many of the TRPV proteins are triggered by multiple stimuli, suggesting that they can
participate in the activation of several downstream cascades [33,67–69]. TRPV1 is highly
expressed in sensory neurons and mainly localized at the plasma membrane [64,70,71].
The channel is activated by heat, pH and compounds, such as capsaicin [31,72] and in-
volved in thermal nociception [41,72–74]. Accordingly, TRPV1 KO mice possess impaired
heat-evoked pain sensation [41]. While TRPV1 is expressed at the plasma membrane,
TRPV2 is mainly localized in the intracellular membranes [75,76]. It is found in the sensory
and motor neurons as well as in many non-neuronal cell types [64,77–79]. TRPV2 has
various physiological roles, from the perception of noxious stimuli to nociception and the
importance of its expression has also been demonstrated in the normal function of distinct
immune cell types [80,81]. TRPV2 can regulate intracellular calcium homeostasis by acting
as a lipid-, thermo- and mechanosensor. Some growth factors, hormones, cytokines and
endocannabinoids can also trigger the translocation of TRPV2 from the endosome to the
plasma membrane [82]. Additionally, TRPV2 functions can be regulated by Phosphatidyli-
nositol 4,5-bisphosphate (PIP2) and phosphorylation in an extracellular signal-regulated
kinase (ERK)-dependent manner [76,83]. Interestingly, TRPV2 is not activated in vivo by
vanilloids [70,75,76].

TRPV3 is a Ca2+-permeable, non-selective cation channel and widely expressed
throughout the tissues but especially abundant in various epithelial tissues, including
the specialized epithelial cells, keratinocytes of the skin [84,85]. In the skin keratinocytes,
TRPV3 can be activated at least by heat and its activation can regulate various downstream
functions, including skin barrier formation, wound healing, sensing of temperature, itch
and pain [20,71,86–90]. In general, TRPV3 seems to be important for the health of the skin,
and loss of TRPV3 function leads to skin inflammations, dermatitis, itchiness and hair
loss. Like the expression of TRPV3, the expression of TRPV4 is also very ubiquitous and
more prominent in epithelial tissues, where it can induce calcium influx in response to
various extracellular cues, such as heat, osmotic changes and mechanical stretching [91–93].
TRPV4-mediated Ca2+-influx directs various physiological functions in different cell types
and has an important role in cell volume regulation [65,94–96]. TRPV4−/− mice also
display drastic defects in osmoregulation [97,98]. In epithelial tissues, TRPV4 seems to be
important for the maintenance of junctional permeability through its impact on adherens
junction and tight junction proteins [99–101]. In mammary epithelial tissues, TRPV4 reg-
ulates the integrity of the cell-cell junctions specifically through the expression of tight
junction proteins [102]. TRPV4-mediated calcium influx is also important for the formation
of intact cell-cell junctions in skin keratinocytes, where it maintains intercellular barrier
function [103]. Besides its important role in tissue integrity, TRPV4 has been connected
to several other physiological functions, including its major role in the maintenance of
vascular development, tone and permeability [104,105]. TRPV4 has also been linked to the
central nervous system and nociceptive response in primary sensory neurons [106,107].

TRPV5 and TRPV6 display a high level of sequence similarity (75% amino acid iden-
tity) and are alike in many ways [108]. Both are highly Ca2+-selective, 1,25-dihydroxyvitamin
D3 responsive and have major roles in the maintenance of Ca2+ homeostasis in higher
organisms [109–111]. TRPV5 is mainly expressed in the kidney, more specifically in the
distal convoluted tubules (DCT) and connecting tubules (CNT) [112–114], while TRPV6 ex-
hibits a wider expression pattern and is expressed prominently f.i. in the kidney, pancreas,
prostate, placenta, and breast [111,115,116]. In Ca2+-transporting epithelial tissues, these
proteins are localized at the apical membrane and have an important role in intestinal and
renal reabsorption [109,113,117]. TRPV6 seems to be constitutively active, and Ca2+-influx
through this channel depends on the intracellular and extracellular Ca2+-balance [118]. The
activity of this channel can also be tuned by hormones, that is, estrogen and progesterone,
tamoxifen and vitamin D, leading to changes in cell proliferation and survival [119].



Biomolecules 2021, 11, 1019 4 of 23

TRPV family channels are thus widely expressed in a tissue-specific manner and
display numerous functions. The regulation of the activity of these channels is a complex
process and impacted by various extracellular and intracellular cues. As demonstrated
with TRPV4 [120], at least the N- and C-terminal cytoplasmic domains are important for
channel gating. Additionally, processes that affect the oligomerization and trafficking
of the TRPVs play a major role in the regulation of these channels and TRPV2, -4 and
-5 membrane transportation seems to be dependent on the N-terminal site of the pro-
teins, [121–123]. Alternative splice variants of TRPV2 mRNA can also inhibit the transloca-
tion of TRPV2, in this way affecting the activity of this channel protein [124]. Regulation
of channel trafficking is clearly a complex process and reviewed in more detail f.i. by
Doñate-Macián et al., 2019 [125].

3. Mechanosensitivity of TRPV Channels
3.1. Activation of Mechanosensitive Channels

As already mentioned, TRPV family channels are capable of sensing various ex-
tracellular cues to subsequently trigger specific cation-dependent intracellular signaling
pathways [126,127]. Initially, the role of these channels in sensing mechanical signals was
detected in Drosophila and Caenorhabditis elegans, displaying TRP gene mutants that had a
defective response to the mechanical or osmotic stress [128–131]. Later, analogous studies
were performed in the mammalian and prokaryotic model systems [11,132,133]. Currently,
it is known that sensing of physical changes by the channel proteins can take place in two
ways: By sensing ”force-from-lipids” or “force-from-filament”, that is, channels can directly
respond to membrane stress/stretch/tension or can feel the force through their interaction
with cytoskeletal/structural/adhesive components [134–138]. This leads to conformational
changes and gating of the channel [139–142]. The channel activation upon force sensing is
very rapid, arising in milliseconds and it insures fast transduction of mechanical stimuli
into an ion flux [143]. In case the channels are activated by intracellular mechanosensitive
signaling cascades, the activation process is indirect and slower.

3.2. Mechanical Stretching and Osmolarity

TRPV channels 1, 2 and 4 seem to be responsive to mechanical stretching and cell size
changes due to hypo-osmotic swelling. The activation of TRPV1 by stretch or cell shrinkage
has been linked to the mechanical nociception [144,145] and increased osmolarity has been
shown to associate with increased Ca2+-influx through this channel [146]. The response of
TRPV1 to stretch and osmotic stimuli is also dependent on the actin cytoskeleton [147,148].
Both TRPV2 and TRPV4 are also sensitive to membrane stretch [81,125]. In line with that,
they are playing an important role in tissues, which are under high mechanical stress, like
cardiac and skeletal muscle. In the cardiomyocytes, membrane stretching by hypotonic
swelling triggers TRPV2-mediated Ca2+-influx [149]. Consequently, TRPV2 has an im-
portant role in the maintenance of the structure and synchronized contractility of cardiac
muscle [150]. Stretch-dependent activation of TRPV2 has also a function in the regulation
of neural circuit formation [77]. In developing neurons, TRPV2 binds actin and has been
linked to the actin-dependent axonal outgrowth upon focal mechanical forces [151]. Upon
mechanical stimulation, TRPV2 has been shown to rapidly accumulate at the site of the
stress [151]. Clustering of TRPV2 at the sites of mechanical forces then leads to reorga-
nization of the actin cytoskeleton, subsequently promoting axonal outgrowth. It seems
that strict regulation of axonal out-growth also requires interplay between several other
mechanosensitive structures [152]. As the ankyrin repeats of TRPV2 interact with many
cytoskeletal proteins and the ankyrin repeats at the N-terminal region of TRPV proteins, are
important for their mechanosensitive features, the association of TRPV2 with the cytoskele-
tal structures may be necessary for its function as a mechanosensor [77,151,153]. The stretch
sensitivity of TRPV2 has also been studied f.i. in CHO and HEK293 cell lines. In both of
them, altered Ca2+-response was detected upon stretching on elastic substrates [77,149,154].
Additionally, studies on rat lung alveolar epithelial type II, ATII, cells showed that the
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strain-induced, TRPV2-dependent Ca2+-influx was dependent on the focal adhesions and
actomyosin structures [155], again linking the mechanosensitive activity of TRPV2 to the
cytoskeleton. There is also strong evidence that TRPV2 acts as a mechanosensor in the
circulatory organs and intestinal tract [78,81].

TRPV4 is probably the most studied TRPV family channel in respect of its mechanosen-
sitivity. Its activation has been explored in various tissue types and based on these studies
TRPV4 is clearly an important osmo-mechanosensitive channel, responding to variations in
membrane stretching upon osmotic changes. Some of the first reports on TRPV4 –/– mice
have shown the importance of TRPV4 in pressure sensation and a higher threshold for the
response to strong noxious mechanical stimulation [93,97,156]. Early studies on TRPV4
have also shown its prominent expression in the kidney [91,157–160]. Kidney cells are con-
stantly exposed to extracellular fluids/changes in the osmolarity and TRPV4 in the cortical
collecting ductal cells has an important role in the cell volume regulation in an aquaporin-2
and cytoskeleton-dependent manner [161]. Studies in HEK293 or CHO-K1 cells have
also shown the activation of TRPV4 by the application of hypotonic solutions [91,157,158]
and in primary sensory neurons, hypotonic solutions activate TRPV4 to trigger nocicep-
tors [106]. In line with the study of Galizia et al., 2012 [161], other studies have as well
presented evidence for the importance of intact actin cytoskeleton in TRPV4-dependent cell
volume regulation [162–165]. Furthermore, TRPV4 has an important role in the mechanical
regulation of calcium homeostasis of the cardiomyocytes, subsequently affecting their
contractility but also repair after cardiac infarction [166–168]. There are also indications
that TRPV4-mediated Ca2+-influx regulates the contractility of airway smooth muscle cells
and vascular endothelial cells [108,169]. Besides its expression in the artery endothelial
cells, TRPV4 can be found in the vascular smooth muscle cells of some arteries [170]. While
in these artery smooth muscle cells TRPV4 activation seems to be involved in the regulation
of arterial dilation, its upregulation in pulmonary arterial smooth muscle cells has been
reported to increase smooth muscle tone and cause pulmonary hypertension in chronically
hypoxic rats [171]. Moreover, TRPV4-triggered Ca2+-influx has also been studied in urothe-
lial cells, where this channel has been linked to ATP-release upon stretching, hypotonic
solutions or intravesicular pressure changes [172–174]. Furthermore, recent studies have
shown that some TRPV channels can also be triggered by chemical agonists through their
ability to sense mechanical perturbations in the plasma membrane [175]. At least with
TRPV4, this is linked to the regulation of innate defense mechanisms against bacterial
infections [176–178].

3.3. Activation upon Shear Forces

In addition to membrane-stretching, TRPV channels are also responsive to shear forces.
In the cardiovascular system, TRPV4 is prominently expressed in the endothelial cells
of larger arteries and arterioles and mediates shear-stress-induced relaxation [179–182].
This response can be disrupted by specific TRPV4 inhibitors or downregulation of the
channel protein. In contrast, TRPV4 activation leads to vasodilation [180]. Moreover,
shear stresses have been shown to regulate the clustering and translocation of the TRPV4
channel from the adherens junctions to the basal side of the endothelial cells, in a focal
adhesion kinase and integrin α5ß1-dependent manner [183]. Interestingly, both TRPV4
and TRPV6 have been functionally linked to the shear force-sensitive cilia and microvilli.
Cilia can sense various mechanical stimuli in distinct organs and TRPV4 seems to be
an important component of this mechanosensitive structure [184,185]. TRPV4 has been
shown to be associated with the primary cilia, through which it is involved in sensing
both hypo-osmotic solutions and mechanical cues, subsequently triggering Ca2+-response
in ciliated epithelial tissues [186,187]. For instance, in the airway epithelium, TRPV4 is
prominently expressed and responsive to the airflow-caused physical shear stresses [188].
Moreover, TRPV4-mediated Ca2+-influx can also couple changes in fluid viscosity to the
changes in ciliar beat frequency [189], creating a regulatory feedback loop. TRPV6 on the
other hand has been linked to microvilli, actin-based membrane protrusions that have an
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important role in the mechanotransduction within various epithelial tissues [190]. TRPV6
is responding to shear forces in human placental trophoblastic cells and the following
Ca2+-influx promotes the formation of microvilli in an Akt/Ezrin-dependent manner [190].
TRPV6 could therefore have a major role in microvilli-mediated mechanosensitive functions
in various epithelial tissues.

3.4. Stiffness-Sensing

Moreover, there are indications that some TRPV channels can act as stiffness-sensors.
In the mouse epidermal keratinocytes, TRPV4 has been shown to play a major role in
tissue stiffness-sensing and subsequently regulate YAP/TAZ localization [191,192]. On
the other hand, TRPV4 itself mediates collagen matrix assembly, matrix stiffening and
promoting fibrosis [193,194], in this way creating a feedback loop in both sensing and
creating a mechanically altered cellular environment. Additionally, TRPV6 expression
levels seem to be dependent on the stiffness of the underlying matrix, at least in the 2D
mammary epithelial cell culture model [45].

3.5. Sensing Forces through Integrin-Based Adhesions

Integrin-based adhesions act as central sensors of the biophysical changes in the
cellular microenvironment [195]. They respond to various physical cues, including stiffness,
composition and applied external forces [196]. Integrins and cytoskeletal structures also
directly form complexes with TRPV channel proteins and could in this way transmit
information on the biophysical changes to subsequently trigger the opening of the ion
channels [197]. TRPV4 interacts directly with α2-integrin and the Src tyrosine kinase
Lyn [198]. TRPV4 is also known to be triggered through forces applied to β1-integrin [199].
Mechanistically, forces from the cytoplasmic tail of β1-integrin are transmitted through the
CD98hc cytoplasmic tail to the TRPV4 ankyrin repeat domains to activate force-induced
Ca2+-influx [200]. Besides TRPV4, at least TRPV1 is linked to integrins: TRPV1 is expressed
together with integrin subunits that can bind fibronectin and TRPV1 translocation to the
cell membrane takes place in a fibronectin-dependent manner, playing a role in primary
sensory neuron sensitization [201]. Additionally, integrin-TRPV cooperation plays an
important role in osmosensation [197]. Most likely, integrins and TRPV channels have
many additional interconnections upon various external physical cues and their roles in
mechanotransduction should be further investigated.

3.6. Are All the TRPV Channels Mechanosensitive?

While TRPV2 and 4 seem to be clearly mechanoresponsive, the other channels are
less studied and there are no clear indications f.i. for the role of TRPV3 or TRPV5 in the
mechanotransduction. Additionally, in the study by Higashikawa et al., TRPV3 was not
found to be stimulated by mechanical stretching [202]. It has, however, been shown that
TRPV3 forms a signaling complex with TGF-α and EGFR and that this complex plays a
role in the mechanical skin barrier function [203]. TGF-α and EGFR are also known to
regulate mechanotransduction pathways, involved in contractility and cell migration [204].
Furthermore, TRPV1, TRPV3 and TRPV4 ankyrin repeat domains bind ATP and calmodulin
(CaM) [205]. CaM is also linked to the regulation of mechanosensitive cascades, affecting
cell migration [206]. Besides these, there are other known TRPV channel interactions with
unknown consequences and the functional significance of these associations for the cellular
mechanotransduction events should be studied in the future.

4. Expression and Activity of TRPV Channels along Cancer Progression

Among other TRP family channels, TRPV channels have been associated with a wide
variety of human cancers [58,59,207]. Altered expression of TRP channels has been linked to
cancer progression through enhanced cell proliferation, changes in differentiation and im-
paired cell death, leading to the uncontrolled expansion of the transformed cells [58–60,124].
The major Ca2+-triggered pathways, affecting the above features, include CaMKII, NF-κB,
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calpains and calcineurin pathways [15,16,19–21]. Besides them, other less studied signaling
cascades may affect cancer progression through TRP-triggered Ca2+-influx.

Changes in the expression of TRP channel proteins are thought to play a role in the
later stages of various cancers—not in the actual carcinogenesis or initial phases in the
cancer progression. Mutations in the TRP genes are not common, and mostly either the
expression or activity of these channels is deregulated along the progression [12,16,124,208].
TRPV1 is abnormally expressed at least in breast, prostate and urothelial cancers as well as
in human papillary thyroid carcinoma and gliomas [209–214]. The upregulation of TRPV1
in high-grade prostate and breast cancer samples correlates with the tumor grade [209,210],
while downregulation of TRPV1 expression is associated with the progression of urothelial
cancers [215]. In androgen-responsive NCaP prostate cancer cells, Capsaicin, a TRPV1
agonist, was found to enhance TRPV1-dependent cell proliferation through Akt and ERK
pathways [216]. Cross-talk in between α1D-adrenoceptors and TRPV1 seems to enhance
cell proliferation and targeting both TRPV1 and α1D-adrenoceptors could act as a thera-
peutical choice [217]. In another study, performed with PC3 prostate cancer cells, Capsaicin
was, however, found to inhibit proliferation and induce apoptosis [218]. This took place
via inhibition of coenzyme Q activity, leading to increased ROS generation and caspase-3
activation. Interestingly, in the MCF-7 breast cancer cell line, both TRPV1 agonists and
antagonists significantly reduce cell growth with yet poorly known mechanisms [219].
Therefore, both too high and too low TRPV1 expression, through specific intracellular
pathways in a cell type specific-manner, may provide an advantage for the expansion
of cancer cells. Other than proliferation, TRPV1 has been associated with cell migration
and in human hepatoblastoma HepG2 cells TRPV1-triggered Ca2+-influx promotes cell
migration [220].

The link between abnormal TRPV2 expression and cancer progression has been widely
studied and TRPV2 seems to exhibit oncogenic activity in cancers of the prostate and breast,
as well as in esophageal squamous cell carcinoma, leukemia, multiple myeloma and
glioblastomas [82,221–223]. Overexpression of TRPV2 in urothelial-, prostate-, esophageal
squamous cell- and hepatocarcinoma tissues, as well as cell lines of the same cancer types,
correlates with advanced disease and metastasis [224–228]. As with other TRP channels,
changes in TRPV2-mediated signaling result in uncontrolled proliferation, impaired apop-
tosis and changes in the migratory features of the cells [82,221,229,230]. In the prostate
carcinoma model, trafficking of TRPV2 to the plasma membrane correlated with enhanced
cell migration through the phosphoinositide 3-kinase (PI3K) pathway [231]. In bladder
cancer cells, TRPV2 also enhanced cell migration and invasion but did not affect cell prolif-
eration in vitro [89,232,233]. In hepatoma and hepatocarcinoma models, TRPV2 may also
increase drug resistance [234] and suppression of TRPV2 activity in nude mice xenografts
reduced tumor growth and invasion [226]. On the other hand, in glioblastoma cells, stim-
ulation of TRPV2 could sensitize cancer cells to cytotoxic chemotherapeutic agents [235].
Furthermore, Mizuno et al. 2014 reported that lower TRPV2 levels in bladder cancer cells
are associated with increased proliferation, again indicating cell-type-specific differences
in the role of this TRPV channel during cancer progression [233]. In contrast to TRPV2,
TRPV3 has been much less studied but it is a known regulator of growth and survival
of the skin cell populations and its overexpression has been associated at least with the
proliferation of lung cancer cells [236,237]. As TRPV3 is present in the same signaling
complex with EGFR and EGFR activity triggers TRPV3 [203], there is a clear functional
interplay in between these factors and it potentially plays a role along cancer progression.

Abnormal TRPV4 expression is linked to at least gastric, liver, pancreatic, colorectal,
lung and breast cancers [59,238,239]. A significant upregulation of TRPV4 has been detected
in breast cancer cell lines with the potential to metastasize and its expression seems to
increase with tumor grade and size, subsequently correlating with poor survival [240–242].
Additionally, TRPV4 has been linked to cell proliferation through the CaMKII pathway
and regulation of apoptosis in distinct cancer models [243,244]. The expression of TRPV5 is
more restricted, and this TRPV family protein is also less studied in comparison to highly
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similar TRPV6. The role of TRPV6 has been extensively investigated upon malignant
transformation in various tissues and its expression is known to be elevated in many
cancers [111,116]. Expression of TRPV6 is upregulated in prostate, breast, colon, esophageal
and cervical tumor tissues, as well as in the corresponding tumor cell lines. Increased
expression of TRPV6 stimulates the metastasis of cancer cells and confers chemotherapy
resistance [116,245–248]. In at least prostate and breast cancer, high TRPV6 expression is
linked to cellular proliferation and invasion through Ca2+-dependent pathways and its
high levels have been proposed to act as a prognostic factor [119,249–251]. Additionally,
in prostate cancer, TRPV6 contributes to cell survival and resistance to apoptosis [247].
Distinct TRPV channels thus act as central regulators of the hallmarks of cancer, but they
also display clear functional differences in a cancer-type-dependent manner.

5. TRPVs and Cancer Progression—Links to Mechanosensitive Pathways
5.1. Interplay in between Small Rho GTPases and TRPVs

Deregulation of TRP channels and altered Ca2+ homeostasis have been directly linked
to the hallmarks of cancers [60]. Spatio-temporal activation and duration of Ca2+-influx
determine the activation of specific signaling cascades and transcription factors that guide
various cellular processes but also play a role in cancer progression [21,252]. Besides
the most studied Ca2+-triggered pathways, CaMKII, NF-κB, calpains and calcineurin
pathways, also specific mechanosignaling routes may favor cancer progression through
TRP-triggered Ca2+-influx.

Small GTPases (Rho- and Ras-like) that act as major regulators of the mechanical
signaling are linked to cancer progression through their impact on actin dynamics, cell
polarity, differentiation and proliferation [204,253–255]. Interestingly, there is interplay
between TRPs and small GTPases along cancer progression: Many small GTPases interact
with calcium-dependent signaling cascades and can trigger Ca2+-associated effectors,
impact TRP trafficking to the plasma membrane or directly affect the gating and activity
of certain TRP channels [50–53]. Conversely, the activity of small GTPases has a strong
association with Ca2+-homeostasis [50], suggesting a reciprocal interaction between TRPs
and small GTPases. TRPs are associated with Rho-dependent cytoskeletal reorganizations,
cellular contractility and cell adhesion turnover, subsequently affecting migratory features
of the cancer cells [256,257]. In breast cancer cells, treatment with Rho-kinase inhibitors
leads to a reduction in TRPV2 levels [258], indicating a Rho-dependent regulation of
TRPV2 activity. Additionally, Rac1 is able to dictate intracellular trafficking of TRPV2
in fibrosarcoma cells [259], implicating a central role of these Rho GTPases in TRPV2
regulation. While in some cancer cell lines TRPV2 seems to have a positive impact on
cancer cell migration [223,226,260], the interplay between TRPV2 and RhoA/Rac1 seems
to suppress invasion of Fibroblast-like Synoviocytes (FLS cells) [261]. In this model setup,
TRPV2 stimulation caused a decrease in RhoA and Rac1 activity, consequently leading
to a lower number of contractile actin bundles and cell adhesions as well as inhibition
of lamellipodia formation [261]. As Activation of Rac1 through the PI3 pathway leads
to TRPV2 translocation to the plasma membrane, subsequently resulting in increased
Ca2+-triggered invasiveness in some cell types [259] and active TRPV2 seems to inhibit
Rac1 [261], there may be a regulatory feedback loop in between these two factors and TRPV2
could display both invasion-promoting or inhibiting features in a cell-type-specific manner.

The role of TRPV4 in cancer metastases has been investigated in several model sys-
tems [239,262] and TRPV4 has also been most thoroughly studied with respect to its
mechanosensitive character along cancer progression [240,262–264]. Like TRPV2, TRPV4
has also been connected to cancers through Rho GTPases that act as major mediators of
mechanical signaling. TRPV4 has recently been found to form complexes with RhoA and
the TRPV4-mediated Ca2+-influx positively affected RhoA activity, subsequently leading to
cytoskeletal changes [265]. Additionally, upon growth factor stimulation, TRPV4-mediated
Ca2+-influx leads to activation of RhoA/ROCK pathway and subsequently causes increased
contractility of ECM-modifying fibroblasts [49,166,266,267]. On the other hand, in tumor
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endothelial cells, overexpression of TRPV4 seems to have an opposite effect on RhoA
activity [57]. TRPV4 has also been associated with Rho/ROCK pathway, cytoskeletal
changes and invasion in cancer models: In endometrial cancer, TRPV4 promotes metas-
tasis by Rho/ROCK-induced cytoskeletal changes [268]. In line with this, breast cancer
models have shown that TRPV4 over-expression impacts cancer cell migration by leading
to the higher activity of ROCK-regulated cofilin that promotes actin filament depolymer-
ization [240]. Such cells become mechanically more compliant, enabling transendothelial
migration. Additionally, in endometrial cancers, TRPV4 regulates cancer cell invasion
through RhoA/ROCK1-dependent cytoskeletal changes [268] and in glioma cancer cells
TRPV4 promotes invasion through Akt/Rac1 signaling pathway [269]. Akt pathway is also
involved in gastric cancer invasion through, TRPV4-triggered Ca2+ influx [264]. Akt itself
has been suggested to play a role in the adhesiveness of metastasizing cancer cells in a
force-triggered manner [270]. Furthermore, TRPV4 impacts cell-exerted forces in migratory
cells and affects dynamics of the trailing adhesions, probably through its interactions with
some Rho-responsive focal adhesion proteins and co-operation with other cation chan-
nels [271]. Moreover, there are indications that deregulation of TRPV4 could potentiate
cancer invasion by affecting scattering of cancer cells: Adherens junctions seem to be
regulated through TRPV4-mediated activation of Rho GTPases that induce reorganization
of actin-based structures along junction formation [272]. High TRPV4 levels thus favor
breast cancer metastasis by regulating cell-cell contacts, actin-dependent cell compliance,
cell migration and extravasation through the AKT-E-cadherin signaling [240,241].

5.2. TRPV-Linked Epithelial Mesenchymal Transition and Stiffness of the Microenvironment

Loss of E-cadherin and intact cell-ell junctions are important features in the process of
epithelial mesenchymal transition, EMT, eventually leading to invasion and metastases of
the transformed epithelial cells [273]. As reviewed above, TRPV4 can possibly potentiate
invasion of breast cancer cells through Ca2+-dependent activation of AKT that leads to
changes in actin dynamics and downregulation of junctional E-cadherin [240,241]. Silencing
or inhibition of TRPV4 by chemical compounds also clearly suppresses the migratory
features of TRPV4-expressing 4T07 breast cancer cells, further confirming the role of
TRPV4 in cancer metastasis [240]. The direct link between EMT and TRPV4 has been
shown by other studies as well [191,192,274]. Furthermore, these studies revealed the
connection of TRPV4 to the stiffness of the matrix, and TRPV4 itself has also been linked
to the modulation of the ECM. TRPV4 is responsive to the biophysical changes of the
surrounding matrix and can be triggered through signals transmitted through specific
ECM polymers [46,47]. Consecutively, it can affect the remodeling of collagen in the ECM,
affecting the mechanical features of the matrix [48,49]. In line with these observations, in
breast cancer models, TRPV4 regulates ECM stiffness by affecting the expression of matrix
proteins [241]. As fibrosis is very common in tumors, leading to tissue stiffening, such an
environment creates a feedback loop through TRPV4 activity to further promote mechanical
changes in the stroma. TRPV4 therefore seems to have a major role in several steps of the
cancer progression through its mechanosensitive nature and ability to both respond and
regulate the stiffness of the environment. Increased stiffness could also further alter the
function of other mechanosensitive TRPV channels and at least TRPV6 has been shown
to be responsive to elevated stiffness with increased expression in a breast epithelial cell
model [45]. Increased levels of TRPV6 resulted in upregulation of EMT markers, possibly
explaining the earlier findings on high TRPV6 levels in the invasive regions of mammary
carcinomas [45].

5.3. Matrix Degradation

One of the features that makes cancer cells more invasive, is their ability to secrete
matrix metalloproteinases (MMPs) through invadopodias, actin-rich cellular protrusions,
to degrade the surrounding ECM [275]. Intriguingly, TRPs and Rho GTPase are also
linked to the expression of MMPs. Rho GTPases and PI3K together with several other
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signaling factors regulate the formation of invadopodia core structure to enable MMP
secretion [276,277]. Many of these players, regulating invadosome formation, are triggered
in a mechanosensitive manner and MMP secretion is also dependent on the stiffness of the
surrounding matrix [278–280]. Interestingly, the same signaling pathways (inc. PI3K/Rac1
pathway) that are responsible for MMP upregulation, also control TRPV2 trafficking to the
plasma membrane [24,259,260,281–284]. Further, TRPV2 translocation is force-dependent
and its expression leads to elevated levels of MMPs [226,259]. In contrast, depletion of
TRPV2 by siRNAs led to lower levels of MMP-2 and MMP-9 in prostate tumors of nude
mice xenografts [226]. It may be therefore hypothesized that stiffening of the matrix leads
to TRPV2 translocation to the plasma membrane in a PI3K/Rac1-dependent manner and
that TRPV2-mediated Ca2+- influx plays a role in MMP production through yet unknown
mechanism, at least in prostate and ovarian cancer models [226,259,285]. Additionally,
in bladder tumor models, high TRPV2 activity correlates with MMP-2 levels, playing an
important role in the progression and invasion of this cancer type [232].

5.4. Angiogenesis

Besides matrix degradation, utilization of vasculature is extremely important for the
spreading of cancer cells. Angiogenesis is a typical feature for the progressing tumors
and the new vessels, induced by signaling within the cancerous tissue, are usually more
fragile to allow intravasation of the invading cancer cells [286]. Mechanosensitive TRPV4
has been clearly linked with VEGF/VEGFR2 signaling and tumor angiogenesis [54,55],
further indicating that TRPV4 can play a role in various processes that potentiate cancer
cell invasion. Mechanical signaling, mediated by TRPV4, has been shown to regulate the
vasculature: It is known to be essential for the shear-stress induced endothelial cell (EC)
reorientation downstream of mechanosensitive integrins [47]. In tumor endothelial cells
(TECs), TRPV4-mediated Ca2+-influx impacts actin dynamics and migration of TECs in
a membrane-stretch-dependent manner [56]. In a lung carcinoma model, TECs seem to
express lower TRPV4 levels and display abnormal mechanoresponse to ECM stiffness. This
results in aberrant migratory features of the endothelial cells and TEC-promoted angiogen-
esis, consequently affecting tumor growth in a mouse model [57]. In contrast, stimulation
of TRPV4 in the same model system leads to normalization of the vascular endothelium
through restored mechanosensitivity and inhibits tumor growth [57]. It has also been
noticed that such TRPV4-defective cells possess a lower expression of VE-cadherin, which
possibly impacts the angiogenetic process and leads to vascular leakage [287]. Other than
low TRPV4 levels, the upregulation of TRPV4 is also harmful to the intact endothelial
junctions, as high TRPV4 activity in lung vasculature causes disruption of the intact en-
dothelial walls [288]. This indicates that TRPV4 may possess both pro- and anti-angiogenic
features, depending on the cancer type and genetic background or that up- or alternatively
downregulation of TRPV4 impacts distinct mechanosensitive pathways.

5.5. Concerted Action of Various Biophysical Changes through TRPV Channels

Other than the above mechanisms involved in cancer progression through mechanosen-
sitive TRPV channels, TRPVs may play a role in cancer progression through several other
yet unidentified ways. As cancer progression involves various biophysical changes in the
extracellular environment, including stiffness, composition, hydrostatic pressure, compres-
sion and stretching, it is expected that all the mechanosensitive TRPV channels undergo
some functional alterations. Combinations of various extracellular cues and signaling
through several channels result in complex cellular phenotypes that may be difficult to
mimic in in vitro assays. Besides the direct impact on the channel activity, transformation
in other mechanosensitive structures that regulate TRPVs can take place. For instance,
altered expression of cilia has been linked to the mechanical regulation of cancer progres-
sion [289]. TRPV channels that are directly linked to these structures and sensing force
changes through them are clearly not able to respond normally to the mechanical sig-
nals. Additionally, other mechanosensitive structures, including integrin-based adhesion
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and the associated actin cytoskeleton can undergo various changes along cancer progres-
sion, also leading to changes in the activity of Ca2+-channels, either directly or indirectly.
The possible association of distinct TRPV channels with cancer progression through their
mechanosensitive features is summarized in Table 1 and a hypothetical model on the role
of mechanosensitive TRPV channels in cancer progression is drawn in Figure 1.

Table 1. Mechanosensitive TRPV channels in cancer progression.

Possible Role in
Cancer Progression Channel Mechanical

Activation
Mechanosensitive
Pathways Involved Cell or Cancer Type References

Migration TRPV2 Focal stimulation Ca2+/PI3K/Akt/Rac1 Fibroblasts [259,284]

EMT TRPV4 Matrix stiffness Ca2+/YAP/TAZ NHEKs [192]

EMT TRPV4 Matrix stiffness Ca2+/YAP/TAZ/PI3K/Akt NHEKs [191]

EMT TRPV6 Stroma stiffness Ca2+/CaMK Breast epithelial cells [45]

Angiogenesis TRPV4 Matrix stiffness VE-cadherin WT/TRPV4KO mice [287]

Angiogenesis TRPV4 Matrix stiffness Ca2+/Rho CE cells [57]

Angiogenesis TRPV4 Stretch Ca2+/PI3K/β1 integrin CE cells [47,199]
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6. Conclusions and Future Perspectives

Widely expressed mechanosensitive calcium channels are crucial mediators of phys-
ical signaling in various cellular processes and play a role in tumor pathophysiology.
Alterations in cancer tissues, such as stiffness, composition, shear stress and pressure, act
as physical stimuli that must impact the activity of these cationic channels. Although
extensive studies have been performed on cancer-associated changes in mechanosensi-
tive cell-adhesive and cytoskeletal structures, the membrane-embedded channels have
obtained less attention and clearly require more studies in the future. What is still not
well understood is how these mechanosensitive calcium channels handle forces, sensed
through the plasma membrane, adhesive/cytoskeletal structures and the ECM fibers, as
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well as what extent of force changes are they dealing with. Many mechanisms that con-
trol f.i. cellular proliferation or apoptosis are extremely sensitive to modest changes in
the Ca2+- homeostasis. Drastic changes in spatio-temporal calcium regulation through
various channels in the transformed tissues may therefore reprogram cellular functions
towards a more aggressive phenotype through several cascades. Although most of the
TRP-mediated pathways involved in cancer progression are linked to the abnormal Ca2+

homeostasis, there are also indications for pore-independent functions for TRPs during
metastatic development [290]. Clearly, this topic requires more studies in the future. One
should also note that besides TRP channels, other mechanosensitive channels, like Piezo
family channels, are important factors in sensing mechanical changes and in regulating
mechanosensitive pathways that are linked to cancer progression [8,291,292]. These chan-
nels are also deregulated in various cancers and their cooperation with other ion channels
along cancer progression should be investigated in the future.

Of the TRPV channel family, TRPV2 and TRPV4 have been mostly studied with respect
to their altered mechanoresponsive features along cancer progression. However, it may
well be that the other family members are as important in mediating abnormal mechanical
signaling within transformed tissues. Hence, the mechanisms of how these distinct TRPV
channels are responding to various biophysical changes in the tumor microenvironment,
f.i. through gating or expression of the channel protein, needs more attention. Additionally,
the intracellular signaling cascades downstream of these channels requires further studies
and the exact mechanisms behind TRPV4-triggered alterations in contractile structures
should be investigated. Moreover, the activation of the channels through direct and indirect
mechanisms as well as the cross-talk in between these processes needs more attention.
After all, these channels represent promising therapeutical targets that could be utilized in
the management of advanced cancers.
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