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Abstract. Quantum control methods for three-level systems have become recently an important direction of research in quantum 
information science and technology. Here we present numerical simulations using realistic experimental parameters for quantum 
process tomography in STIRAP (stimulated Raman adiabatic passage) and saSTIRAP (superadiabatic STIRAP). Specifically, we 
identify a suitable basis in the operator space as the identity operator together with the 8 Gell-Mann operators, and we calculate the 
corresponding process matrices, which have 9 × 9 = 81 elements. We discuss these results for the ideal decoherence-free case, as 
well as for the experimentally-relevant case with decoherence included.

INTRODUCTION

With rapidly advancing experimental approach to quantum computation and quantum information [1], and especially 
with newly emerging era of cloud-based experimental quantum computing platforms [2, 3], the running of algorithms 
on few-qubits processors has become widely available [4, 5, 6, 7, 8, 9, 10, 11, 12]. At the core of these developments 
are key advancements in improving the fidelity of quantum gates, which require their precise characterization by 
quantum tomography. Quantum process tomography (QPT) is a method to characterize an arbitrary quantum operation 
by operating that process on a set of known test states forming a complete basis [13]. Despite being quite demanding in 
terms of resources, QPT is essential in quantum computing for specifying the accuracy of implementation of quantum 
gates. There have been several theoretical proposals as well as experimental demonstrations to obtain quantum process 
tomography [14, 15, 16] and also to reduce the resources [17, 18, 19, 20]. So far, most of the implementations aim 
at characterizing quantum processes in multi-qubit systems. Here we work out process tomography for a three-level 
system (qutrit). Multilevel processes provide an efficient way to quantum computing tasks [21] and they are directly 
relevant for quantum simulations of many-body systems [22, 23]. Other possible applications in the field of circuit 
QED concern operations via dissipative microwave links [24], multilevel metrology [25, 26], the characterization of 
qutrit-based quantum computing architectures [27], and the study of the ultrastrong coupling [28].

Here we show how to implement quantum process tomography for a three-level system (qutrit) undergoing adia-
batic and superadiabatic processes. Adiabatic processes are an important component of the control toolbox available 
in quantum physics. In three-level systems, a paradigmatic transfer process is STIRAP (stimulated Raman adiabatic 
passage) [29], which has been demonstrated with a superconducting circuit [30]. The superadiabatic STIRAP (saSTI-
RAP) is a process whereby the standard STIRAP is augmented by a counterdiabatic Hamiltonian, which has the role 
of keeping the system in the dark state and which is obtained by reverse Hamiltonian engineering [31]. This process 
has also been demonstrated experimentally [32]. Although developed as a way to transfer population, STIRAP and 
saSTIRAP can also assist in the realization of certain quantum gates [33] and can be applied to superpositions [34]. 
Recently a geometrical picture of these processes has been developed, based on the Majorana star representation [35].

QUANTUM PROCESS TOMOGRAPHY FOR QUTRITS

Introduction to quantum process tomography Let us consider a d−dimensional quantum system undergoing a 
process ε which takes an arbitrary state: ρ → ε(ρ). This, using the operator sum representation [1, 36], may be written 
as

ε(ρ) = ∑
i

EiρE†
i , (1)
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such that Ei = ∑eimẼm, where Ẽm form a complete basis in d2-dimensional operator space and eim are the complex
coefficients. We have

ε(ρ) = ∑
m,n

ẼmρẼ†
n χmn, (2)

where χmn = ∑i eime∗in. χmn is a complex positive Hermitian matrix that characterizes the process ε for a fixed set of
basis operators: {Ẽm}. The aim is to obtain the process matrix χ , but the complex coefficients eims are not directly
accessible. In practical situations however, the more accessible entity is the state of the system, which can be obtained
using standard procedures of quantum state tomography (QST) [1, 37]. In order to characterize this process via
QST-based alternative approach, the process ε is made to operate on d2 different linearly independent matrices (ρi,
i ∈ [1,d2]), which form a complete basis to represent a quantum state ρ . The resultant states are obtained as

ε(ρ j) = ∑
k

λ jkρk, (3)

where the coefficients λ jk can be obtained from the QST of respective states ε(ρ j). Exploiting the equivalence of the
two approaches in Eqns. 2 and 3 for a state ρ j, we obtain

ε(ρ j) = ∑
m,n

Ẽmρ jẼ†
n χmn,= ∑

k
λ jkρk (4)

or ∑
k

∑
m,n

β
mn
jk χmnρk = ∑

k
λ jkρk, (5)

where Ẽmρ jẼ†
n = ∑k β mn

jk ρk. Linear independence of ρks imply that the respective coefficients are to be equated, such
that

β χ = λ =⇒ χ = β
−1

λ , (6)

where χ and λ are d4− dimensional vectors, and β is d4×d4− dimensional invertible matrix with rows labelled by
jk and columns by mn [1]. The d4× 1 dimensional χ thus obtained is reshuffled to obtain the d2× d2 dimensional
process matrix, which uniquely represents the desired process ε for a fixed basis.

The case of qutrits We perform the quantum process tomography for the case of a qutrit, which is a three-level
quantum system (d = 3). A set of nine matrices, which form a complete basis to represent an arbitrary quantum
state in 3× 3−dimensional operator space is |p〉〈q|, where p,q = 0,1,2, which consist of three Hermitian and six
non-Hermitian matrices. The procedure for QPT as described earlier is also valid for the non-Hermitian basis, as
being used here. For the real situations such as experiments, these non-Hermitian matrices can be realized as a linear
combination of Hermitian density operators. The basis set to represent the Ẽm’s is chosen to be a 3× 3 identity
operator (Ẽ1 = I) and the eight Gell Mann matrices (Ẽi+1 = Λi, i ∈ [1,8]). The Gell-Mann lambda matrices are a set
of 8 matrices that form a representation of the generators of the Lie algebra associated with the group SU(3). They
are defined as

Λ1 =

 0 1 0
1 0 0
0 0 0

 , Λ3 =

 1 0 0
0 −1 0
0 0 0

 , Λ5 =

 0 0 −i
0 0 0
i 0 0

 , Λ7 =

 0 0 0
0 0 −i
0 i 0

 ,

Λ2 =

 0 −i 0
i 0 0
0 0 0

 , Λ4 =

 0 0 1
0 0 0
1 0 0

 , Λ6 =

 0 0 0
0 0 1
0 1 0

 , Λ8 =
1√
3

 1 0 0
0 1 0
0 0 −2

 . (7)

Together with the identity matrix I3×3, these matrices can be used to generate any unitary transformations of a qutrit.
In order to characterize an arbitrary process ε in a qutrit, we simulate the qutrit in nine different initial states |p〉〈q|.
Corresponding to each of these states states, the qutrit is then allowed to undergo the same process ε . At the end of
which, respective final states are obtained via quantum state tomography. These nine final states contibute 81 complex
elements, which form 81× 1−dimensional vector λ . The 81× 81−dimensional β results from the combinations of
Ẽms, finally giving rise to the process matrix χ .

Evaluating a process matrix is of particular importance in experimental situations in order to determine how differ-
ent is the actual quantum process with decoherence from the intended operation. It is also quite interesting to perform
QPT in case of non-trivial evolutions such as with time dependent Hamiltonians (H(t) and/or [H(t),H(t ′)] 6= 0). QPT
also helps to strengthen the understanding of various decoherence models. We obtain these process matrices for the
case of widely applicable counter-intuitive STIRAP and saSTIRAP processes in a qutrit.
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QPT OF STIRAP AND SASTIRAP

Stimulated Adiabatic Raman Passage (STIRAP) ensures the precise population transfer from one quantum state to an-
other [38]. Considering a three-level quantum system with basis states {|0〉, |1〉, |2〉}, the STIRAP process is exploited
here to transfer the population from ground state (|0〉) to the second excited state (|2〉). In the light of selection rules
that forbid a direct |0〉−|2〉 transfer, this process turns out to be quite useful. STIRAP realizes an adiabatic evolution of
the system initialized in state |0〉 to final state−|2〉 using two Gaussian drives Ω01 and Ω12 acting in a counter-intuitive
temporal order. During the evolution, the system at any time t is in instantaneous eigenstate (|D〉= cosΘ|0〉−sinΘ|2〉)
of the STIRAP Hamiltonian, where |D〉 is called the dark state and Θ = tan−1(Ω01(t)/Ω12(t)) is the mixing angle.
The effective STIRAP Hamiltonian [30] is obtained by applying the rotating-wave approximation (RWA)

H0 =
h̄
2

Ω01(t) [cos(φ01)Λ1 + sin(φ01)Λ2]+
h̄
2

Ω12(t) [cos(φ12)Λ6 + sin(φ12)Λ7]

− h̄
2

[
δ01Λ3 +

δ01 +2δ12√
3

Λ8−
2δ01 +δ12

3
I3

]
, (8)

where 0−1 and 1−2 drives have Gaussian envelopes with standard deviation σ and relative separation ts, given by

Ω01(t) = Ω01e−t2/2σ2
and Ω12(t) = Ω12e−(t−ts)2/2σ2

,

with phases φ01 and φ12 respectively. These microwave fields may be slightly detuned from the respective transmon
transition frequencies ω01 and ω12 by δ01 and δ12 respectively.

Adiabatic processes are demanding in terms of time, which is not always affordable in real situations. The superadi-
abatic STIRAP is a protocol that offers a shortcut to the STIRAP process, in order to have a precise population transfer
in experimentally feasible time scales [31]. The superadiabatic STIRAP is obtained by adding a counterdiabatic term,

Hcd =−
h̄
2

Ω02(t) [cos(φ02)Λ4 + sin(φ02)Λ5] , (9)

which is experimentally realized by a two-photon process [39]. Here we obtain an effective Rabi coupling with
absolute value Ω02(t) = 2Θ̇(t) and complex phase φ02; also it is convenient to use the notation φ02 = −φ20. The
counteradiabatic condition also implies φ01 +φ12 +φ20 = −π/2. Based on an analysis of gauge invariance [32, 39],
we can take for simplicity φ01 = φ12 = 0. Note that for φ02 = π/2, the counterdiabatic Hamiltonian Hcd yields the
evolution exp

[
ih̄Λ5

∫ t
ti Θ̇(t)dt

]
.

This is experimentally realized by a two-photon resonance pulse [39],

H2ph =
h̄
2

Ω2ph
[
cos(φ2ph−∆t)Λ1− sin(φ2ph−∆t)Λ2

]
+

h̄√
2

Ω2ph
[
cos(φ2ph +∆t)Λ6− sin(φ2ph +∆t)Λ7

]
.

(10)

with the amplitude of the drive |Ω2ph|=
√√

2∆Ω02 and phase φ2ph =−(φ20 +π)/2, which simultaneously drives the
|0〉−|1〉 and |1〉−|2〉 transitions with detunings∓∆ respectively, where ∆=(ω1−ω2)/2. The saSTIRAP Hamiltonian
is thus given by

HsaSTIRAP = H0 +H2ph. (11)

We characterize STIRAP, saSTIRAP and two-photon resonance processes within the limits of experimentally feasi-
ble parameters via quantum process tomography. We simulate a qutrit with |0〉−|1〉 and |1〉−|2〉 transition frequencies
ω01/2π = 5.27 GHZ and ω12/2π = 4.82 GHz respectively. The STIRAP and saSTIRAP drives consist of overlapping
Gaussian pulses with maximum amplitudes Ω̄01/2π = Ω̄12/2π = 45 MHz and standard deviation, σ = 35 ns. The
relative separation between these Gaussian pulses is given by ts = −0.8×σ . We consider a qutrit initialized in nine
different initial states, which are then evolved from ti = −182 ns to t f = 140 ns with T = t f − ti in 1800 time steps.
The frequencies of the Gaussian pulses are taken to be same as the respective qutrit transition frequencies.

We also perform quantum process tomography of STIRAP and saSTIRAP in the presence of decoherence. The
evolution of the system is governed by the Lindblad master equation, ρ̇ = −i/h̄[H,ρ] +L [ρ], where L [ρ] =
Γ21ρ22(|1〉〈1|− |2〉〈2|)+Γ10ρ11(|0〉〈0|− |1〉〈1|)−∑ j,k∈0,1,2, j 6=k γ jkρ jk| j〉〈k| is the Lindblad qutrit superoperator [30]
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(a) χ
(STIRAP)
(0) (b) χ

(STIRAP)
(d1) (c) χ

(STIRAP)
(d2)

(d) χ
(saSTIRAP)
(0) (e) χ

(saSTIRAP)
(d1) (f) χ

(saSTIRAP)
(d2)

(g) χ
(2ph)
(0) (h) χ

(2ph)
(d1) (i) χ

(2ph)
(d2)

FIGURE 1. The process matrices for (a,b,c) STIRAP, (d,e,f) saSTIRAP, (g,h,i) two-photon processes are represented without
decoherence, and with two different sets of decoherence parameters labelled by (d1) and (d2). Labels 1−9 along the x and y axes
correspond to the set of single-qutrit bases in the operator space, where label 1 corresponds to the identity operator (I) and labels
2− 9 stand for the Gell Mann matrices Λ1−Λ8 respectively. The colorbars for sub figures in each row are shown at the right of
that row.

with decoherence rates γ10 = Γ10/2+Γ
φ

10, γ20 = Γ21/2+Γ
φ

20, and γ21 = (Γ10 +Γ21)/2+Γ
φ

21. We simulate the evo-
lution of this equation with two different sets of relaxation rates. The first set, labelled by (d1), has Γ10 = 0.5 MHz
and Γ21 = 0.71 MHz and pure dephasing rates Γ

φ

10 = 0.4 MHz, Γ
φ

21 = 0.56 MHz, and Γ
φ

20 = 0.96 MHz, which cor-
respond to realistic experimental values for transmons. The second set of decoherence parameters, labelled by (d2),
simulate a situation with much higher decoherence. The parameters are Γ10 = 2.5 MHz, Γ21 = 3.55 MHz, Γ

φ

10 = 2
MHz, Γ

φ

21 = 2.80 MHz, and Γ
φ

20 = 4.8 MHz. The process matrices resulting from these simulations are shown in
Figs. 1(a,b,c) for STIRAP with H = H0 (Eq. 8), Figs. 1(d,e,f) for saSTIRAP governed by H = HsaSTIRAP (Eq. 11) and
Figs. 1(g,h,i) for the process resulting from two-photon resonance drive H = H2ph (Eq. 10). Figs. 1(a,d,e) do not in-
volve decoherence, Figs. 1(b,e,h) result from the first set of typical experimental parameters determining decoherence,
and Figs. 1(c,f,i) present the process matrices with much higher decoherence which has a higher tedency to enhance
the elements at the diagonal.

Further, we obtain the fidelity of the process matrices obtained after decoherence χ(d) with respect to the one
without decoherence χ(0) by employing the Uhlmann-Josza fidelity

F0,d =
[
Tr
√√

χ(0)χ(d)
√

χ(0)

]2
.

Interestingly, comparing the process matrices for STIRAP and saSTIRAP, the saSTIRAP process seems to be rel-
atively more robust against decoherence. This can be observed from the respective fidelities between χ(0), χ(d1)
represented by F0,d1 and χ(0), χ(d2) represented by F0,d2 in Table I. As another measure for observing how differ-
ent the processes are with and without decoherence, we calculate the trace distance between the respective process
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F0,d1 F0,d2 D0,d1 D0,d2 F0 Fd1 Fd2
STIRAP 0.76 0.31 0.25 0.74 0.916 0.796 0.464

saSTIRAP 0.78 0.33 0.24 0.72 0.999 0.861 0.487
Two-photon process 0.78 0.33 0.24 0.72 0.888 0.770 0.446

TABLE I. Fidelity and trace distance values to compare different processes.

matrices by

D0,d =

√
Tr
[
χ(0)−χ(d)

]2
.

Using this we obtain the trace distances: D0,d1 and D0,d2 between χ(0), χ(d1) and χ(0), χ(d2) respectively.
The fidelity F0/d = 〈2|ρ0/d |2〉 with which the final state ρ0/d without/with decoherence matches with the theoreti-

cally expected state |2〉 is highest in case of saSTIRAP as shown in last three columns of Table I, where F0, Fd1, and
Fd2 represent the quantum state fidelities obtained in case of no decoherence, decohering environment with parameter
set d1 and decoherence via parameter set d2 respectively. Thus saSTIRAP retains the precision of adiabatic STIRAP
as well as the robustness of the two-photon drive.

DISCUSSION

The set of d×d-dimensional operators, which span the complete operator space of a d-dimensional quantum system,
also serve as a very convenient basis for a process matrix. Here, in case of 3-dimensional quantum system, a set of
eight Gell-Mann matrices alongwith the identity operator serve as the basis for the process matrix and as the generator
of various unitary transformations. In the simplest case of one of the generators Λi as the Hamiltonian, there is a direct
mapping of Λi to the (i+ 1)th diagonal element of the process matrix, while involvement of two or more generators
give rise to the cross terms in the process matrix. Interestingly, the STIRAP Hamiltonian involves terms containing
Λ1, Λ2 Λ3, Λ6, Λ7, Λ8, and I, while it is designed to effectively obtain the 0− 2 transition, which in case of direct
transition would correspond to Λ4 and/or Λ5. Characterizing the STIRAP process clearly presents the dominated
Λ5 term in Fig. 1(a). Therefore, despite the STIRAP Hamiltonian being non-trivially hiding the 0−2 coupling, the
quantum process tomography correctly identifies the actual process. The saSTIRAP process matrix shown in Fig. 1(d)
seem to have additional terms, due to the addition of the superadiabatic part of the Hamiltonian. The process matrices
for STIRAP and saSTIRAP with decoherence are shown in Fig. 1(b,c,e,f) respectively. We notice that the involvement
of decoherence tends to enhance the diagonal elements and suppress the cross terms depending upon the decoherence
model in simulations or the actual decoherence observed in the physical systems.
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