
This is an electronic reprint of the original article.
This reprint may differ from the original in pagination and typographic detail.

Powered by TCPDF (www.tcpdf.org)

This material is protected by copyright and other intellectual property rights, and duplication or sale of all or 
part of any of the repository collections is not permitted, except that material may be duplicated by you for 
your research use or educational purposes in electronic or print form. You must obtain permission for any 
other use. Electronic or print copies may not be offered, whether for sale or otherwise to anyone who is not 
an authorised user.

Pham, Truong An; Wang, Junjue; Iyengar, Roger; Xiao, Yu; Pillai, Padmanabhan; Klatzky,
Roberta; Satyanarayanan, Mahadev
Ajalon

Published in:
Software - Practice and Experience

DOI:
10.1002/spe.2987

Published: 01/08/2021

Document Version
Publisher's PDF, also known as Version of record

Published under the following license:
CC BY

Please cite the original version:
Pham, T. A., Wang, J., Iyengar, R., Xiao, Y., Pillai, P., Klatzky, R., & Satyanarayanan, M. (2021). Ajalon:
Simplifying the authoring of wearable cognitive assistants. Software - Practice and Experience, 51(8), 1773-
1797. https://doi.org/10.1002/spe.2987

https://doi.org/10.1002/spe.2987
https://doi.org/10.1002/spe.2987


Received: 10 October 2020 Revised: 25 March 2021 Accepted: 23 April 2021

DOI: 10.1002/spe.2987

RE S EARCH ART I C L E

Ajalon: Simplifying the authoring of wearable
cognitive assistants

Truong An Pham1 JunjueWang2 Roger Iyengar2 Yu Xiao1

Padmanabhan Pillai3 Roberta Klatzky2 Mahadev Satyanarayanan2

1School of Electrical Engineering, Aalto
University, Espoo, Finland
2Computer Science Department, Carnegie
Mellon University, Pittsburgh,
Pennsylvania, USA
3Intel Labs, Pittsburgh, Pennsylvania, USA

Correspondence
Truong An Pham, Department of
Communications and Networking, School
of Electrical Engineering, Aalto
University, Konemiehentie 2, 02150 Espoo.
Email: truong.pham@aalto.fi

Funding information
Business Finland, Grant/Award Number:
1660/31/2018; Division of Computer and
Network Systems, Grant/Award Numbers:
CNS-1518865, DGE1252522, DGE1745016

Summary
Wearable Cognitive Assistance (WCA) amplifies human cognition in real time
through a wearable device and low-latency wireless access to edge computing
infrastructure. It is inspired by, and broadens, the metaphor of GPS navigation
tools that provide real-time step-by-step guidance, with prompt error detection
and correction. WCA applications are likely to be transformative in educa-
tion, health care, industrial troubleshooting, manufacturing, assisted driving,
and sports training. Today, WCA application development is difficult and slow,
requiring skills in areas such as machine learning and computer vision that
are not widespread among software developers. This paper describes Ajalon,
an authoring toolchain for WCA applications that reduces the skill and effort
needed at each step of the development pipeline. Our evaluation shows that
Ajalon significantly reduces the effort needed to create new WCA applications.

KEYWORD S

artificial intelligence, augmented reality, cloudlets, computer vision, edge computing, Gabriel,
machine learning, mobile computing, software productivity, wearables

1 INTRODUCTION

1.1 Motivation

Since its introduction in 2014,1 Wearable Cognitive Assistance (WCA) has attracted considerable attention. A WCA appli-
cation provides just-in-time guidance and error detection for a user who is performing an unfamiliar task. Prompt error
detection is also valuable for a user who is performing familiar tasks, since human errors cannot be completely avoided,
especially when the user is tired or stressed. Informally, WCA is like having “an angel on your shoulder.”2 It is inspired
by, and broadens, the metaphor of GPS navigation tools that provide real-time step-by-step guidance, with prompt error
detection and correction. Table 1 summarizes the attributes of a small sample of the many WCA applications that we
have built since 2014. A YouTube video of a WCA application to assemble an IKEA kit can be viewed at https://shorturl.
at/iEOZ0.

Abbreviation:WCA, wearable cognitive assistance

This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the
original work is properly cited.
© 2021 The Authors. Software: Practice and Experience published by John Wiley & Sons Ltd.

Softw: Pract Exper. 2021;51:1773–1797. wileyonlinelibrary.com/journal/spe 1773

https://orcid.org/0000-0002-6861-1495
https://shorturl.at/iEOZ0
https://shorturl.at/iEOZ0
http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1002%2Fspe.2987&domain=pdf&date_stamp=2021-05-18


1774 PHAM et al.

T
A
B
L
E

1
Ex
am

pl
e
w
ea
ra
bl
e
co
gn
iti
ve
as
si
st
an
ce
ap
pl
ic
at
io
ns
(S
ou
rc
e:
A
da
pt
ed

fr
om

Sa
ty
an
ar
ay
an
an

4 )

A
pp

na
m
e

Ex
am

pl
e
in
pu

t
vi
de
o
fr
am

e
D
es
cr
ip
ti
on

Sy
m
bo
lic

R
ep
re
se
nt
at
io
n

Ex
am

pl
e

G
ui
da
nc
e

Po
ol

H
el
ps
a
no
vi
ce
po
ol
pl
ay
er
ai
m
co
rr
ec
tly
.G
iv
es
co
nt
in
uo
us
vi
su
al

fe
ed
ba
ck
(le
ft
ar
ro
w
,r
ig
ht
ar
ro
w
,o
rt
hu
m
bs
up
)a
st
he

us
er
tu
rn
s

hi
sc
ue

st
ic
k.
Th
es
ym

bo
lic
re
pr
es
en
ta
tio
n
de
sc
rib
es
th
ep
os
iti
on
s

of
th
e
ba
lls
,t
ar
ge
tp
oc
ke
t,
an
d
th
e
to
p
an
d
bo
tto
m
of
cu
e
st
ic
k.

<
Po
ck
et
,o
bj
ec
tb
al
l,
cu
e
ba
ll,
cu
e

to
p,
cu
e
bo
tto
m
>

Pi
ng
-p
on
g

Te
lls
no
vi
ce
to
hi
tb
al
lt
o
th
e
le
ft
or
rig
ht
,d
ep
en
di
ng

on
w
hi
ch

is
m
or
e
lik
el
y
to
be
at
op
po
ne
nt
.U

se
sc
ol
or
,l
in
e,
an
d

op
tic
al
-fl
ow

-b
as
ed

m
ot
io
n
de
te
ct
io
n
to
de
te
ct
ba
ll,
ta
bl
e,
an
d

op
po
ne
nt
.V
id
eo

U
RL

:h
ttp
s:/
/y
ou
tu
.b
e/
_l
p3
2s
ow

yU
A

<
In
Ra
lly
,b
al
lp
os
iti
on
,o
pp
on
en
t

po
si
tio
n>

W
hi
sp
er
s“
Le
ft!
”

W
or
k-
ou
t

C
ou
nt
so
ut
re
pe
tit
io
ns
in
ph
ys
ic
al
ex
er
ci
se
s.
C
la
ss
ifi
ca
tio
n
is
do
ne

us
in
g
Vo
lu
m
et
ric

Te
m
pl
at
e
M
at
ch
in
g
on

a
10
-1
5
fr
am

e
vi
de
o

se
gm

en
t.
A
po
or
ly
pe
rf
or
m
ed

re
pe
tit
io
n
is
cl
as
si
fie
d
as
a
di
st
in
ct

ty
pe

of
ex
er
ci
se
(e
.g
.,
“g
oo
d
pu
sh
up
”
ve
rs
us
“b
ad

pu
sh
up
”)
.

<
A
ct
io
n,
co
un
t>

Sa
ys
“8
”

Fa
ce

Jo
gs
yo
ur
m
em

or
y
on

a
fa
m
ili
ar
fa
ce
w
ho
se
na
m
e
yo
u
ca
nn
ot

re
ca
ll.
D
et
ec
ts
an
d
ex
tr
ac
ts
a
tig
ht
ly
-c
ro
pp
ed

im
ag
e
of
ea
ch

fa
ce
,

an
d
th
en

ap
pl
ie
sa

st
at
e-
of
-a
rt
fa
ce
re
co
gn
iz
er
.W

hi
sp
er
st
he

na
m
e
of
th
e
pe
rs
on

re
co
gn
iz
ed
.

A
SC
II
te
xt
of
na
m
e

W
hi
sp
er
s“
Ba
ra
ck

O
ba
m
a”

Le
go

G
ui
de
sa

us
er
in
as
se
m
bl
in
g
tw
o-
di
m
en
si
on
al
Le
go

m
od
el
s.
Th
e

sy
m
bo
lic

re
pr
es
en
ta
tio
n
is
a
m
at
rix

re
pr
es
en
tin
g
co
lo
rf
or
ea
ch

br
ic
k.
V
id
eo

U
RL

:h
ttp
s:/
/y
ou
tu
.b
e/
7L
9U

-n
29
ab
g

[[
0,
2,
1,
1]
,[
0,
2,
1,
6]
,[
2,
2,
2,
2]
]

Sa
ys
“P
ut
a
1x
3
gr
ee
n
pi
ec
e
on

to
p”

D
ra
w

H
el
ps
a
us
er
to
sk
et
ch

be
tte
r.
Bu
ild
so
n
th
ird
-p
ar
ty
ap
p
fo
r

de
sk
to
ps
.O

ur
im
pl
em

en
ta
tio
n
pr
es
er
ve
st
he

ba
ck
-e
nd

lo
gi
c.
A

G
la
ss
-b
as
ed

fr
on
t-e
nd

al
lo
w
sa

us
er
to
us
e
an
y
dr
aw
in
g
su
rf
ac
e

an
d
in
st
ru
m
en
t.
D
is
pl
ay
st
he

er
ro
ra
lig
nm

en
ti
n
sk
et
ch

on
G
la
ss
.

V
id
eo

U
RL

:h
ttp
s:/
/y
ou
tu
.b
e/
nu
Q
pP
tV
JC
6o

Sa
nd

w
ic
h

H
el
ps
a
co
ok
in
g
no
vi
ce
pr
ep
ar
e
sa
nd
w
ic
he
sa
cc
or
di
ng

to
a
re
ci
pe
.

Si
nc
e
re
al
fo
od

is
pe
ris
ha
bl
e,
w
e
us
e
a
fo
od

to
y
w
ith

pl
as
tic

in
gr
ed
ie
nt
s.
O
bj
ec
td
et
ec
tio
n
us
es
Fa
st
er
-R
C
N
N
de
ep

ne
ur
al
ne
t

ap
pr
oa
ch
.3
V
id
eo

U
RL

:h
ttp
s:/
/y
ou
tu
.b
e/
U
Sa
kP
P4
5W

vM

O
bj
ec
t:
“E
.g
.L
et
tu
ce
on

to
p
of
ha
m

an
d
br
ea
d”

Sa
ys
“P
ut
a
pi
ec
eo
fb
re
ad
on

th
el
et
tu
ce
”

https://youtu.be/_lp32sowyUA
https://youtu.be/7L9U-n29abg
https://youtu.be/nuQpPtVJC6o
https://youtu.be/USakPP45WvM


PHAM et al. 1775

TABLE 2 CPU load, latency bounds, and the required bandwidth of example wearable cognitive assistance (WCA) applications. The
implementations of the application servers7 were tested on a laptop (with an Intel® CoreTM i7-8500Y processor and 8GB RAM), running
the frontend on an Android phone, using 480p, 720p, and 1080p video resolutions. (*) End-to-end latency includes both the round trip
time (RTT) from the Android phone to the cloudlet and compute time in the cloudlet. Tight and loose bounds are adopted from Chen
et al.,7 where they are defined: “The tight bound represents an ideal target, below which the user is insensitive to improvements. Above
the loose bound, the user becomes aware of slowness, and user experience and performance is significantly impacted.”

Pool Ping-pong Face Lego Sandwich

CPU load(%) 72.10 45.40 75.60 52.20 85.10

End-to-end latency bounds (tight–loose, ms)* 95–105 150–230 370–1000 600–2700

Video streaming bandwidth requirement 480p: 3.6 / 7.0

(Average / Peak, Mbps) 720p: 6.8 / 9.9

1080p: 8.1 / 12.7

A WCA application runs on a wearable device such as Google Glass or Microsoft Hololens, leaving the user’s hands
free for task performance. It provides visual and verbal guidance through the video and audio channels of the wearable
device. It provides a user experience that is similar to the “look and feel” of augmented reality (AR) applications, while
being deeply dependent on artificial intelligence (AI) algorithms such as object recognition via computer visionusing deep
neural networks (DNNs). Because of the computational limitations of lightweight wearable devices that have acceptable
battery life, a WCA application uses a wireless network to offload its compute-intensive operations to a nearby cloudlet.5
Table 2 lists the resource consumption and end-to-end latency bounds of five offloading-basedWCAapplications. It shows
that WCA applications are simultaneously compute-intensive, bandwidth-hungry, and latency-sensitive. They are hence
perceived as a class of “killer apps” for edge computing.4,6

Based on our experience from authoring many WCA applications, this paper describes a toolchain that we have built
to simplify their creation.WCA applications are inherently task-specific because they embody deep knowledge of the task
being performed. The task-specific focus reduces the complexity of the WCA application, and prevents it from becoming
“AI-Complete.”8 There is a narrow context within which sensor data is interpreted, progress to completion is defined, and
ambiguities are resolved. For example, in the task of assembling a kit of parts, the computer vision module only needs
to be able to accurately recognize the parts in the kit. Everything else can be ignored as irrelevant information. Because
of the narrowing of context, the WCA application is able to resolve errors and provide detailed-enough instructions for a
user to complete the task.

1.2 Contributions

This paper focuses on a toolchain called Ajalon that simplifies the task-specific aspects of authoring a WCA application.
Ajalon layers task-specific components on top of a task-independent runtime platformcalledGabriel thatwehave released
open source.1,9 For ease of exposition, we will refer toWCA applications as “Gabriel applications” in the rest of this paper.
Developing a Gabriel application without Ajalon often requires multiple person-months. This is clearly not scalable.
Ajalon’s goal is to simplify the process so that a small team (1–2 people) of a task expert and a developer without computer
vision expertise can create an initial version of a Gabriel applicationwithin a few days. This is a productivity improvement
of at least one order of magnitude. Refinement and tuning may take longer, but can be guided by early use of the applica-
tion. We focus on vision-based Gabriel applications in this paper, but plan to extend Ajalon to multisensor applications.

As depicted in Figure 1, Ajalon has four stages:

• The first stage, Preprocessing Tool (PT), automatically extracts a workflow from videos that were created by task experts.
Some of these videos may demonstrate common errors a novice typically makes. PT automatically segments an input
video into working steps. At each step, a list of associated objects is discovered. The segmentation into working steps
and the list of associated objects are the output of PT.

• In the second stage, the application developer refines the output of PT using PTEditor. This refinement is needed
because workflow extraction by PT is imperfect even with state-of-the-art computer vision techniques. PTEditor



1776 PHAM et al.

F IGURE 1 Overview of Ajalon’s four
stages [Colour figure can be viewed at
wileyonlinelibrary.com]

provides merge and split functions for the task expert to modify the steps of the workflow. The task expert can also edit
the list of associated objects discovered by PT.

• The third stage addresses the computer vision aspect of the toolchain. It consists of associating task-specific object
detectors based onDNNs for each object in the task. In some cases, the necessary object detectorsmay already have been
created and available through a library. This is likely to happen over time, as the use ofWCA grows and object detectors
become available for every manufactured component in a standard parts catalog. For nonstandard components and in
the interim while WCA is still in its infancy, the creation of custom object detectors will be essential. For this purpose,
our toolchain includesOpenTPOD. This tool enables even a developer who has no skill in computer vision or machine
learning to easily create custom object detectors without writing a single line of code. At the end of this Ajalon stage,
object detectors are available for all task-relevant objects.

• In the fourth and final stage of Ajalon, the developer uses a finite state machine (FSM) editor called OpenWorkflow to
bring together all the pieces from the earlier stages. OpenWorkflowmodels user actions as transitions in a task-specific
FSM. Each state represents partial completion of the task, or an error. Object detectors are used to detect the current
state of the task, and the transitions are inferred from final and prior state. To trigger the next desired transition, the
developer can add visual and verbal guidance to a state. At runtime, when the FSM enters that state, the associated
visual and verbal guidance will be presented to the user. The output of OpenWorkflow is executable code for the new
Gabriel task.

We describe Ajalon in detail in the rest of the paper. Section 2 provides background on Gabriel. The four stages of
Ajalon are presented in depth in Section 3. Section 4 presents our evaluation of Ajalon through microbenchmarks of
individual components, as well as an end-to-end user study of the entire toolchain.

2 BACKGROUND AND RELATED WORK

In this section, we introduce technical background and prior work on the Gabriel platform, applications, and authoring
process. For brevity, we often shorten “the Gabriel platform” to just “Gabriel.”

2.1 Gabriel platform

Gabriel enables its applications to preserve crisp quality of experience (QoE) while overcoming the resource limitations
of small, lightweight, and energy-efficient mobile devices. A keymetric of QoE is the perceived end-to-end latency, which
ideally falls within into the range defined by the latency bounds listed in Figure 2. Gabriel achieves this by enabling a
mobile device to offload compute-intensive operations to a nearby cloudlet rather than to the distant cloud.4-6 As shown in
Figure 2, Gabriel is an extensible PaaS (Platform as a Service) layer that we have created forWCAapplications. Sensor data
collected from a wearable device is preprocessed (e.g., compression and encoding) before being streamed to a cloudlet via

http://wileyonlinelibrary.com


PHAM et al. 1777

F I GURE 2 Gabriel Architecture (Source:
Satyanarayanan et al.6) [Colour figure can be
viewed at wileyonlinelibrary.com]

F IGURE 3 Current Gabriel applications development process [Colour figure can be viewed at wileyonlinelibrary.com]

a wireless connection. The sensor streams are further processed on the cloudlet by a collection of cognitive modules that
employ compute-intensive algorithms such as object detection and speech recognition. Depending on the level of trust
in a particular setting, each module can be encapsulated within a virtual machine (VM), container, or process bound-
ary. The control module in Gabriel is the focal point for all interactions with the wearable device. A publish-subscribe
(PubSub) mechanism decodes and distributes the incoming sensor streams. Cognitive module outputs are integrated by
a task-specific user guidance module that performs higher-level cognitive processing. The application-specific code in
the user guidance module typically consists of a task state extractor and a guidance generator. The task state extractor
maps inputs from cognitive modules into the user’s current point of progress on the task. Detection of this state then trig-
gers task-appropriate visual, verbal, or tactile guidance that is transmitted back to the wearable device. Since the Gabriel
back-end embodies all task-specific components, applications can be easily ported to different wearable devices. We have
successfully used a diversity of devices such as Google Glass, Microsoft HoloLens, Vuzix Glass, and ODG R-7.7

2.2 Authoring Gabriel applications

Even using the Gabriel platform,WCA application development remains a nontrivial endeavor. The current development
process involves three main steps that are illustrated in Figure 3: (a) workflow extraction, (b) object detector creation, and
(c) workflowmodeling. These steps require very different types of expertise. First, for workflow extraction, a task expert is
neededwho understands how best to perform the task at hand, as well as the potentialmistakes someonemaymakewhen
trying to complete the task for the first time. Second, for creating task-specific object detectors using a DNN, a computer
vision expert is needed. Object detection is necessary for determiningwhen specific steps of the task have been completed.
Note that the vision and task experts may need to iterate on the task workflow to make it amenable to easily-trained and
accurate vision models. Third, a software developer combines the individual components into a front-end Android app
that can be published in the Google Play Store, and back-end software that can be deployed on cloudlets.

Ajalon’s goal is to simplify the process of creating a Gabriel application so that a single developer, working closely
with a task expert, can create the application in a short time. This requires creating higher-level abstractions, providing
common reusable modules, and reducing the amount of required computer vision and software engineering knowledge.
This goal is different from recent efforts in speeding up software development10 by leveraging parallelism across several
developers. While such efforts can shorten the elapsed time (i.e., wall clock time) for the development process, it does

http://wileyonlinelibrary.com
http://wileyonlinelibrary.com


1778 PHAM et al.

not reduce the total number of person-hours invested. In contrast, Ajalon’s goals are twofold. The first goal is reducing
the total number of person-hours required for development. The second goal is enabling developers who do not have
expertise in computer vision and machine learning.

2.3 Workflow extraction

Ajalon’s goal of simplifying the creation of Gabriel applications has some overlap with previous work on work-
flow extraction. In this context, the term “workflow” is defined as a machine-readable description of a sequence
of activities or working steps, that a user must carry out in order to complete a specific task. Workflows, by
definition, are task-specific and often crafted in an ad hoc fashion by task experts. Automatically extracting a
workflow from a video depicting a task reduces application development time, especially for lengthy tasks with
many steps.

Previous research on workflow extraction was concerned with creating tools for manual workflow extraction and
computer vision algorithms for automated video analysis. The Computer Cooking Contest, which has been run since
2008, challenges researchers to extract workflows from cooking recipes available from sources such as Wikipedia. In an
open-challenge system called CookingCakeWf, researchers described the steps required to make a recipe using a control
flow, and they described the ingredients and their products using a data flow.11 Mura et al.12 proposed a tool named IBES
that facilitates manual working step separation and annotation. Kim et al.13 developed ToolScape, which helps verify
workflow descriptions scripted bymultiple people fromvideos depicting tasks. For automated video analysis, Nater et al.14
developed an unsupervisedmachine learningmethod to extract the workflow information from the videos of an assembly
line. In contrast to these earlier efforts, Ajalon leverages the fact that our headsets capture videos from a first-person
perspective.

The current implementation of Ajalon assumes that the workflow of the target application has specific simplifying
attributes. First, Ajalon assumes a linear workflow that can be readily decomposed into a sequence of steps. This is a
common feature of tasks such as product assembly or equipment servicing. Second, Ajalon assumes that the task follows
a canonical workflow; that is, there is a single preferred procedure (or if several are comparable, one procedure can be
selected), and the steps in the task follow a prescribed order. Third, Ajalon assumes that the correct completion of a step
(and transitively, all steps that precede it) can be visually determined using object detection algorithms. This excludes, for
example, a step such as one that requires putting a small object inside of a large object but leaves the large object visually
unchanged. In spite of these simplifying assumptions, Ajalon is able to cover a wide range of WCA applications. Future
versions of Ajalon may relax some of these assumptions.

3 AJALON’S DESIGN

Ajalon enables a development team consisting of a task expert and a software developer to jointly create a Gabriel
application. We assume that the task expert understands the steps of the task well, but has no software skills. In con-
trast, the developer is skilled in software development, but is unfamiliar with the task. Neither person needs to be
an expert in computer vision or machine learning, even though these are central to Gabriel applications. Ajalon codi-
fies, simplifies and partially automates the end-to-end authoring steps to help the development team create a Gabriel
application.

Figure 4 illustrates the four steps of the Ajalon toolchain that were mentioned in Section 1. The process starts by
capturing an example video that shows the first-person viewpoint of a task performed by an expert. The video may also
illustrate common mistakes and guidance on how the expert fixes them. Second, the development team uses Preprocess-
ing Tool (PT) to automatically segment a video into time-stamped working steps, and to generate a list of task-relevant
objects seen in the video. The extracted set of working steps is imported into PTEditor to manually correct mistakes made
by PT. Third, the development team uses OpenTPOD to create a DNN-based object detector that can accurately distin-
guish between all the task-relevant objects discovered by PT. Finally, the outputs of PTEditor and OpenTPOD are used by
OpenWorkflow to create an FSM whose state transitions are triggered by visual changes in the task state. The output of
OpenWorkflow is executable code for the Gabriel application that embodies the workflow of the task. We next describe
the steps after capturing a video in detail.



PHAM et al. 1779

F I GURE 4 Ajalon pipeline overview [Colour figure can be viewed at wileyonlinelibrary.com]

3.1 Preprocessing tool

PT targets a manual assembly process in which parts are combined by human hands. The input to PT is a first-person
video of an assembly process in which parts are added in sequence. In such a video, assembly actions are viewed as
interactions between hands and objects (i.e., parts or workpieces). PT splits this video into segments, each correspond-
ing to a working step. PT assumes that only one part is added per step, and that each step changes the appearance of a
partially-assembled workpiece. Step completion can therefore be confirmed from workpiece appearance. PT detects the
boundary between working steps by finding a lull in hand-object interactions. This approach has proved to be statisti-
cally reliable,15 in that similar results are achieved under consistent conditions. According to our previous work,16 this
boundary-detection approach achieves over 80% accuracy on videos of different assembly tasks. The detailed process of
the approach is described below.

1. Run EgoNet,17 a two-stream network that predicts per-pixel likelihood of action-objects from first-person videos, to
obtain salient regions that represent the region of interest (ROI) of a video frame. Instead of going through each pixel
within the salient regions, PT applies clustering and contour extraction to obtain the bounding boxes of ROIs, as
illustrated in Figures 5 and 6. This narrows the search space for hand-object interaction to a few bounding boxes.

2. Run YOLOv3,18 a real-time object detector, to detect human hands in each frame. Assuming that the first-person video
only captures the operations of one worker, the object detector is trained to detect the regions where the left and/or
right hand of the worker appear.

3. Recognize hand-object interaction by detecting the overlap between hand regions and ROIs. In Figures 5(D) and
Figure 6(D), the detected interaction regions are highlighted by green boxes, while hand regions and other ROIs are
marked with blue and red boxes, respectively. After going through all frames, PT generates a one-dimensional binary
array that represents the occurrences of interaction in the video as an interaction signal.

4. Smooth and threshold the interaction signal to reduce false-positive and false-negative errors in the previous steps.
For example, a false-positive error may occur when an unintentional hand movement that has no interaction with
objects is detected in an ROI. A false-negative errormay occur if PTmisses hands or ROIs. PT overcomes such errors by
assuming continuity of hand–object interaction, and taking into account detection in neighboring frames. A smooth-
ing technique is used to estimate the interaction between the interaction signal of a video and the frame index. As
illustrated in Figure 7, the interaction signal is represented as a probability of hand-object interaction along a video

http://wileyonlinelibrary.com


1780 PHAM et al.

F IGURE 5 Working step
separation in themaking sandwich
assembly example. (A) Original frame.
(B) EgoNet saliency detection. (C)
Region of interest (ROI) bounding box
extraction. (D) Hand-object interaction
detection [Colour figure can be viewed at
wileyonlinelibrary.com]

F IGURE 6 Working step
separation in the IKEA lamp assembly
example. (A) Original frame. (B) EgoNet
saliency detection. (C) Region of interest
(ROI) bounding box extraction. (D)
Hand-object interaction detection.
[Colour figure can be viewed at
wileyonlinelibrary.com]

frame index. In Figure 7(A), the interaction signal from the detector described above is visualized as a binary 0/1 sig-
nal. Then, based on our prior experience in extracting task steps from video, we smooth the results by convolving with
a Hanning window of size 19, selected empirically as in other approaches to activity recognition.19 After smoothing
the signal, we use a threshold of 0.5 to determine if an interaction happens at the considered frame. We set the thresh-
old value to 0.5, assuming that no prior knowledge about the assembly process is available. As illustrated in Figure 8,
with different threshold values, we obtain different working step segmentation results on an 8-s video example. For
instance, with a lower threshold value (i.e., 0.4), more frames are classified as ones that contain hand–object interac-
tion. As a result, more working-step segments are generated. In contrast, with a higher threshold value (i.e., 0.6), fewer
hand–object interactions and thus fewer working-step segments are detected. By tuning the threshold value, PT can
capture actualworking stepswhile removingmost erroneous hand–object interactions due to occasionalmisdetections
of hands or object ROIs in some frames.

5. Cluster successive frames containing hand-object interactions to represent a continuous working step. With 25-fps
videos, the system eliminates small clusters that are shorter than 12 frames, because we assume that meaningful
actions or steps require time intervals of greater than half a second. The result of the entire process is illustrated in
Figure 9. Here, PT has segmented the video into six steps (labeled A–F) of intense hand–object interactions, separated
by periods of no interactions between hands and objects in the video.

http://wileyonlinelibrary.com
http://wileyonlinelibrary.com


PHAM et al. 1781

0.0

0.2

0.4

0.6

0.8

1.0

1 21 41 61 81 101 121 141 161

in
te

ra
ct

io
n 

pr
ob

ab
ili

ty

frame index

(A) (B)

(C) (D)

0.0

0.2

0.4

0.6

0.8

1.0

1 3 5 7 9 11 13 15 17 19

am
pl

itu
de

sample

0.0

0.2

0.4

0.6

0.8

1.0

1 21 41 61 81 101 121 141 161

in
te

ra
ct

io
n 

pr
ob

ab
ili

ty

frame index

0.0

0.2

0.4

0.6

0.8

1.0

1 21 41 61 81 101 121 141 161
in

te
ra

ct
io

n 
pr

ob
ab

ili
ty

frame index

F IGURE 7 Noise reduction in working step detection. (A) Raw binary data. (B) Hanning window with size of 19. (C) Smoothing result.
(D) Noise reduction after applying thresholding [Colour figure can be viewed at wileyonlinelibrary.com]

0.0

0.2

0.4

0.6

0.8

1.0

1 21 41 61 81 101 121 141 161 181 201

in
te

ra
ct

io
n 

pr
ob

ab
ili

ty

frame index

0.0

0.2

0.4

0.6

0.8

1.0

1 21 41 61 81 101 121 141 161 181 201

in
te

ra
ct

io
n 

pr
ob

ab
ili

ty

frame index

0.0

0.2

0.4

0.6

0.8

1.0

1 21 41 61 81 101 121 141 161 181 201

in
te

ra
ct

io
n 

pr
ob

ab
ili

ty

frame index

0.0

0.2

0.4

0.6

0.8

1.0

1 21 41 61 81 101 121 141 161 181 201

in
te

ra
ct

io
n 

pr
ob

ab
ili

ty

frame index

(A) (B)

(C) (D)

F IGURE 8 Results of hand-object interaction detection with different threshold values. (A) Interaction probability over time. (B) With
a threshold value of 0.4, four clusters of hand-object interaction frames are detected. (C) With a threshold value of 0.5, two clusters of
hand-object interaction frames are detected. (D) With a threshold value of 0.6, only one cluster of hand-object interaction frames is detected
[Colour figure can be viewed at wileyonlinelibrary.com]

http://wileyonlinelibrary.com
http://wileyonlinelibrary.com


1782 PHAM et al.

0.0

0.2

0.4

0.6

0.8

1.0

1 201 401 601 801 1001 1201 1401

in
te

ra
ct

io
n 

pr
ob

ab
ili

ty

frame index

0.0

0.2

0.4

0.6

0.8

1.0

1 201 401 601 801 1001 1201 1401

in
te

ra
ct

io
n 

pr
ob

ab
ili

ty

frame index

         A            B     C          D              E       F

(A) (B)

F IGURE 9 Refined working steps segmentation result on 1500 frames using smoothing, thresholding, and clustering. (A) Raw binary
interaction result. (B) Refined sequence with six working steps including A, B, C, D, E, and F [Colour figure can be viewed at
wileyonlinelibrary.com]

Algorithm 1. Extracting objects that the person interacted with

1: procedure Process(video)
2: Initialize object_dictionary with boxes of interest and their features in frame 0.
3: Initialize multiple trackers with those boxes.
4: for frame in [frame1, frameN] in video do
5: Extract boxes of interest in frame.
6: Filter boxes of interest to reduce noisy frames. The result is filtered_boxes.
7: Extract features for those filtered_boxes.
8: Match features of filtered_boxes with features of object_dictionary.
9: Store retrieved boxes as d_boxes and retrieved labels as d_labels.
10: Track boxes by using trackers. Store the boxes as t_boxes and their labels as t_labels.
11: Pick boxes in d_boxes that do not overlap with t_boxes for creating new trackers.
12: Update object_dictionary with d_boxes and t_boxes.
13: Detect hands in the frame. Store bounding boxes for hands in h_boxes.
14: end for
15: return object boxes in d_boxes and t_boxes that overlap with the hand boxes h_boxes across all frames.
16: end procedure

Algorithm 1 shows the final part of preprocessing, which extracts the list of objects used in each step. The output of
this algorithm is an object association list that maps each working step to objects involved in interactions in that step.
We bootstrap the algorithm by using unsupervised object recognition on the frames, as described by Pham et al.16 Only a
subset of these objects may be used in any particular step. The lists d_boxes, t_boxes, and h_boxes are three crucial
elements for recognizingwhich objects likely used in a particular segmented step. The first,d_boxes, is a set of bounding
boxes of objects detected in the frames of the segment. We track these objects using a tracker, which helps fill in gaps
where detections fails because the object is partially occluded, and store the tracked bounding boxes in h_boxes. We
store the set of unique visible objects based on feature similarity in object_dictionary, which is updated on each
frame. Finally, we return the set of objects that consistently associate closely with the hands, assuming these are the
objects that are used in the step. The end results of PT are a temporal segmentation of the video into a sequence of steps,
and a list of visual regions corresponding to objects associated with each working step. Note that the real-world identities
of the objects are not actually determined here. In other words, the algorithm can detect the objects and can label/assign
each a unique id, but cannot actually name the object. For instance, if tables and chairs appear in a video, the algorithm
may label tables as Type 1 and chairs as Type 2. However, the algorithm cannot associate the names “table” and “chair”
with them.

http://wileyonlinelibrary.com


PHAM et al. 1783

3.2 PTEditor: correcting errors in preprocessing

Because of the limitations of computer vision, the workflow extraction process described in Section 3.1 is imperfect. For
example, the object association list for a working step may miss an object, or include one in error. Another possible error
is wrong lull detection. This happens when no hand–object interaction has been detected for a short while during a
working step, due to inaccuracy of RoIs detected by EgoNet and/or hand detection errors from the YOLOv3 model. Such
errors would result in an incorrect demarcation of a working step. These errors have to be manually corrected by the
development team before the extracted workflow can be used. PTEditor, shown in Figure 10, is created for this purpose.
This tool provides support for browsing and editing a workflow, as described below.

Browsing: A video can be loaded and viewed on the window in the left panel. The “«” and “»” buttons at the
bottom of that panel enable quick navigation to the first frame of the previous, or next, working step, respectively.
Frame-by-frame advance through the video is also possible. A horizontal scrollbar presented under the window shows
segments representing working steps in different colors.

Editing: The “Split” and “Merge” buttons under the horizontal scrollbar can be used to correct erroneous demarca-
tions of a working step. As their names imply, these buttons can divide a step, or merge two consecutive steps centered
at the current frame. For each frame, the right panel shows the visual completion state and object association list for the
working step of the current frame. Objects can bemanually added to or deleted from an association list. Upon completion
of edits, pressing the “SAVE” button at the bottom creates a JSON file that is the external representation of the extracted
workflow.

3.3 OpenTPOD: an open toolkit for painless object detection

The next component of the Ajalon toolchain is OpenTPOD (Open Toolkit for Painless Object Detection). The use of
computer vision in a Gabriel application relies on accurate detection of objects in the association lists of working steps.
OpenTPOD enables the creation of an accurate detector for these objects even if the development team lacks machine
learning and computer vision skills. It does this by helping create a training set for a DNN, and then training the DNN.
To reduce the size of the training set required, OpenTPOD uses a technique called transfer learning that starts with a
pretrained model for a set of objects from a public dataset, such as Pascal VOC,20 and ImageNet,21,22 leveraging the pre-
trained representation to bootstrap training on custom data. Even with transfer learning, the accuracy of DNN-based
object detectors is correlated with the amount of labeled training data.23 However, capturing images and labeling them

F IGURE 10 Graphical user interface of PTEditor [Colour figure can be viewed at wileyonlinelibrary.com]

http://wileyonlinelibrary.com


1784 PHAM et al.

with bounding boxes is laborious. OpenTPOD seeks to greatly reduce the human effort in capturing an labeling training
data. OpenTPOD also automates and simplifies the process of training the DNN.

The developer captures a few short videos of each object used for the task. These are typically captured with a smart-
phone, from different viewing angles and against multiple backgrounds. The videos are uploaded to OpenTPOD using
a web browser. A few minutes of video will contain several thousand frames with the object. Fortunately, as described
below, only a handful of these frames need to be manually labeled. This is done by drawing a bounding box around the
object in those frames.

Figure 11(A) illustrates the labeling process. First, the developer finds the initial occurrence of the object in the video
and labels that frame. Then, using a correlation tracking algorithm,24 OpenTPOD extrapolates the position of the object
(and hence, the bounding box) in subsequent frames. Because of imperfect tracking, the bounding box will drift relative
to the actual object in later frames. When the developer judges that the drift is excessive, he pauses OpenTPOD and
explicitly labels that later frame. This reinitializes the position of the bounding box for tracking in subsequent frames.
Then, OpenTPOD continues its extrapolation until the drift is again judged to be excessive by the developer. This process
of extrapolation and explicit labeling is continued until the end of the video. In our experience, this approach of labeling
followed by tracking can reduce the number of frames that need to be manually labeled by a factor of 10 or 20.

Next, OpenTPOD performs a data cleaning and augmentation pass. Because of interframe correlations, many of the
object examples may be close to identical. OpenTPOD will eliminate the near duplicate examples, as these will not help
in the training process. Optionally, data augmentation can be employed. This creates more images by applying image
manipulation techniques on the original image such as rotation, flipping, changes to the color scheme, and distortion.
Such augmentation has been shown to help produce more robust object detectors.25

Finally, OpenTPOD can automate the transfer learning of a DNN model using the collected dataset with the user
interface shown in Figure 11(B). By default, OpenTPOD uses a state-of-the-art Faster R-CNN VGG network3 pretrained
on the Pascal VOC dataset,20 though other network architectures can be used as well. The transfer learning process used
by OpenTPOD is shown in Figure 12. Negative examples are mined from the video background; these are parts of the
frames not included in the object bounding boxes. The training is started as a batch process that uses a standard, scripted
learning schedule, and generates both the final Tensorflowmodel, and aDocker container with the code to run themodel.

Overall, OpenTPOD can greatly reduce both the labeling effort and in-depth machine learning knowledge needed to
effectively train and deploy a DNN-based detector. We note that OpenTPOD is largely a stand-alone tool that can be used
separately from the rest of Ajalon.

3.4 OpenWorkflow: bringing the pieces together

The final stage of Ajalon is OpenWorkflow, a FSM editor that automatically generates executable code for an FSM. Each
state can be viewed as a program counter value in theworkflow of the task. At the start, the states of the FSMcorrespond to
the output of PTEditor. The editing function ofOpenWorkflow can be used to add new states that, for example, correspond
to distinct error states resulting from frequently committed errors by users. The editing function lets one specify the visual
cues that distinguish a state, using one or more object detectors that were created by OpenTPOD. As mentioned earlier,
Ajalon assumes that progress on a task can be detected by the visual appearance of its parts. For example, the user might
put a piece of ham on top of a piece of bread when making a sandwich. The detection of a “ham-on-top-of-bread” object
in a video frame indicates transition into this state. Figure 13 shows a sample task workflow as an FSM that can be edited
using this tool. The editing process can also indicate the visual and verbal guidance provided to a user as annotations
on state transitions. When the editing process is complete, OpenWorkflow generates compiled code that implements the
FSM as an executable application.

4 EVALUATION

We explore the effectiveness and usability of Ajalon through two sets of questions. There are four questions in the first set,
each pertaining to a different element of the Ajalon toolchain. These are answered via microbenchmarks in Section 4.1:

1. Is the automatic working-step segmentation of PT accurate?
2. Can a PT-extracted workflow be easily edited using PTEditor?



PHAM et al. 1785

F I GURE 11 OpenTPOD GUI. (A) Data labeling user interface. (B) Deep neural network training and testing user interface. [Colour
figure can be viewed at wileyonlinelibrary.com]

http://wileyonlinelibrary.com


1786 PHAM et al.

F IGURE 12 Transfer learning process used by Open Toolkit
for Painless Object Detection (OpenTPOD). The initial model
weights come from a pretrained deep neural network model. Then
weights are tuned by training on labeled data of the new object we
wish to detect [Colour figure can be viewed at
wileyonlinelibrary.com]

F IGURE 13 A finite state machine (FSM) for an application that assists in making a sandwich. White circles represent the start and
end states of the process. Green circles represent correct states that help the user finish the task. The red circle represents an error state that
requires the user to recover to the last correct state to finish the task [Colour figure can be viewed at wileyonlinelibrary.com]

3. Can facility with OpenTPOD easily be acquired, and how good are its object detectors?
4. Is OpenWorkflow easy and effective to use for adding error cases, modelingworkflow, and generating executable code?

Questions in the second set pertain to the Ajalon toolchain as a whole, and are answered in Section 4.2 through a
user study:

5. Do developers find Ajalon easy and effective to use?
6. Does Ajalon improve developer productivity?

4.1 Microbenchmarks

Dataset. We used 40 videos, with a total length of 5.44 h, for evaluating the accuracy of PT. Half of these videos show the
process of assemblingHAPE toymodel 1, as shown in Figure 14, while the other half showHAPE toymodel 2, as depicted
in Figure 15. In addition, we used one 58-s first-person video that captures the process ofmaking sandwich (see Figure 16)
to evaluate the whole pipeline of Ajalon and the performance of eachmodule involved. The detailed experimental results
are presented as follows.

4.1.1 Accuracy of PT

Metric: First, precision, recall, and intersection over union (IoU) are used for evaluating the accuracy of EgoNet-based
ROI detection. IoU represents how close a detected bounding box is to the ground truth. In practice, the groundtruth boxes

http://wileyonlinelibrary.com
http://wileyonlinelibrary.com


PHAM et al. 1787

F I GURE 14 Assembly instructions for HAPE toy model 116 [Colour figure can be viewed at wileyonlinelibrary.com]

F IGURE 15 Assembly instructions for HAPE toy model 216 [Colour figure can be viewed at wileyonlinelibrary.com]

are manually labeled, as shown in Figure 17. A detection is classified as true positive if its IoU value exceeds a predefined
threshold. We measured the effectiveness of automated working step segmentation using Boundary Detection Accuracy
(BDA),26 which compares automated and manual results using the following equation:

BDA = 𝜏db ∩ 𝜏mb

max(𝜏db, 𝜏mb)
∈ [0, 1], (1)

𝜏db is the working step boundary detected automatically. 𝜏mb is the one labeled manually.

http://wileyonlinelibrary.com
http://wileyonlinelibrary.com


1788 PHAM et al.

F IGURE 16 Workflow process of making a sandwich toy with the toy set. (A) Toy set box containing all components. (B–F) Assembly
steps in order [Colour figure can be viewed at wileyonlinelibrary.com]

F IGURE 17 Examples of groundtruth region of interest (ROI). (A) A groundtruth bounding box in green over an ROI before the
interaction. (B) A groundtruth bounding box in green over an ROI during the interaction. (C) A groundtruth bounding box in green over an
ROI at the end of the interaction [Colour figure can be viewed at wileyonlinelibrary.com]

Results.As shown inFigure 18,when the IoU threshold gets lower than 0.4, the accuracy is reasonably high,with over
0.8 recall and 0.52 precision at IoU threshold of 0.3. However, the precision and recall decrease as the IoU threshold value
increases, with the degradation rate accelerating as the IoU threshold passes 0.4. Although the accuracy of EgoNet-based
ROI detection is only acceptable, the EgoNet-based method is still able to make the working-step segmentation accu-
racy reasonably high. The average BDA on the entire dataset was 0.85, confirming that the working-step segmentation
algorithm effectively detects working steps in the video. However, this result also indicates that significant manual effort
is required to eliminate the residual error. To achieve that result, Hanning smoothing must be used while grouping work-
ing steps. As shown in Figure 19, using Hanning smoothing increases the average BDA by approximately 13%. Notably,
in HAPE toy model 2, the average BDA increases by 16%. On the other hand, it still requires significant manual effort to
eliminate the residual error. We will discuss potential improvements to PT in the next section.

http://wileyonlinelibrary.com
http://wileyonlinelibrary.com


PHAM et al. 1789

F I GURE 18 Recall and precision of Region of interest detection
with different intersection over union threshold values [Colour figure
can be viewed at wileyonlinelibrary.com]

F IGURE 19 Comparison of average boundary detection accuracy
with and without Hanning-based smoothing [Colour figure can be
viewed at wileyonlinelibrary.com]

4.1.2 Effectiveness of PTEditor

Approach: A sandwich toy assembly video was used as an editing benchmark. One of the authors, who was very
familiar with the assembly process, played the role of a task expert. He was given four sample workflow videos,
each showing a different variant of making a sandwich. These four variants consisted of the following items between
two slices of bread: (a) cheese, on top of tomato, on top of ham, on top of cucumber; (b) tomato, on top of ham,
on top of lettuce, on top of cucumber; (c) tomato, on top of cucumber, on top of egg; and, (d) ham, on top of egg,
on top of cucumber. The task expert used PTEditor on two of the videos, and a separate documenting tool on the
other two.

Metric and results. Our metric is the amount of time needed to complete workflow information for each working
step. Without PTEditor, it took approximately 4.5 min, whereas with PTEditor, it took only 2.6 min, a savings of 42%.
With the support of extracted workflow information from PT, the task expert easily captured the process in the video and
quickly documented workflow information by using PTEditor.

4.1.3 Effort saved by OpenTPOD

Approach: Using two different tools and playing the role of a developer, one of the authors built an object detector for
six different pieces of the sandwich toy mentioned earlier. The two tools were OpenTPOD and CVAT27 from OpenCV.
CVAT is a widely used tool for data labeling. By holding the GUI for the labeling of a single frame constant across the two
tools, the comparison isolates the value of OpenTPOD’s mechanisms for optimizing labeling effort, and for setting up the
training. As mentioned earlier, the mechanisms for optimizing labeling effort include propagation of labels across frames
through tracking, and the elimination of training examples that are of low value.

Metrics: Three metrics are relevant. The first is labeled objects per frame (lof ). This is defined as the total number of
labels, divided by the number of frames in the videos. The second metric is the number of lines of code (loc) that were
written by the developer to format annotations, train, and test the DNN. The third metric is the total time in hours (hr)
that the developer spent in writing these lines of code.

http://wileyonlinelibrary.com
http://wileyonlinelibrary.com


1790 PHAM et al.

Task/method Without OpenTPOD With OpenTPOD

(a) Data collecting 0.33 hr

(b) Data labeling 4497/ 6356 lof 1695/6356 lof

(c) Annotation formatting 104 loc, 1.08 hr 0 loc, 0 hr

(d) Coding for training 5 loc, 0.58 hr 0 loc, 0 hr

(e) Coding for testing 7 loc, 0.33 hr 0 loc, 0 hr

Abbreviations: hr, hour; loc, number of lines of code; lof , manual labeled boxes over number of frames.

TABLE 3 Benefit of using OpenTPOD

Task/method Non-OpenWorkflow OpenWorkflow

(a) Adding error cases 0.21 hr/error 0.29 hr/error

(b) Workflow modeling 0.17 hr 0 hr

(c) Programming 352 loc, 22.5 hr 0 loc, 0 hr

(d) Testing and bugs fixing 9.5 hr 0 hr

Abbreviations: hr, hour; hr/error, hour per error; loc, number of lines of code.

TABLE 4 Performance
comparison between
non-OpenWorkflow and
OpenWorkflow method in modeling
the workflow and programming the
Gabriel application

Results: Table 3 illustrates the breakdown of metrics in five steps for the two methods. The five steps include: (a)
collection of five videos that contain six sandwich pieces of interest; (b) labeling the videos using OpenTPOD; (c) format-
ting annotations for training; (d) training the DNN; (e) testing the DNN on a small test set of five images. The results in
Table 3 show that OpenTPOD offers a clear advantage. It requires much less manual effort in labeling (fewer than 40%
the number of labels), and does not require writing code.

4.1.4 Effort saved by OpenWorkflow

Approach:To evaluate the benefit of usingOpenWorkflow,we conducted a case study. One of the authors, an experienced
programmer, was provided with the workflow for the sandwich assembly task and a prebuilt object detector for all the
relevant objects in that task. Using these inputs, his goal was to create a Gabriel application for the task twice: once using
OpenWorkflow, and once without it.

Metrics:Threemetrics are relevant. The first is the time spent in adding error states to theworkflow. This ismeasured
by total time in hours divided by number of error states (hr/error). The second metric is the number of lines of code
written to create the Gabriel application (loc). The third metric is the time in hours (hr) spent in writing these lines of
code, including the conceptual effort of mapping the task workflow and error states to code.

Results: Table 4 presents our results, broken down into four components. Using OpenWorkflow consumes slightly
more time to add error cases.However, thatmodest increase ismore than compensated by the fact that zero effort is needed
for the other three steps when using OpenWorkflow. The results thus show a clear savings when using OpenWorkflow.

4.2 End-to-end user study

To complement the microbenchmarks described in Section 4.1, we conducted a user study of the full Ajalon toolchain.
This user study answers Questions 5 and 6 that were posed earlier.

4.2.1 Protocol

Approach: Our user study asks subjects to write a WCA application under two conditions: with and without Ajalon.
The target application should guide a user in making a sandwich from a toy kit, as described earlier. We provide a 58-s



PHAM et al. 1791

first-person video of the making sandwich process to the subject. Some key frames of this video are shown in Figure 16.
The application produced by the subject should be capable of handling three test cases illustrated in Figure 20. In the
first test case, the tester performs the nonerror steps of sandwich building, as presented in the original video. This process
corresponds to the state machine represented by the white boxes in Figure 20. In the second and third test case, the tester
performed the the nonerror steps and one error, shown as a red parallelogram in the figure. In the second test case, the
error was introduced after the first step: put a tomato on the bread. In the third test case, the error step occurred after the
second nonerror step: put a cucumber on the ham. A functional target application for making sandwiches should provide
appropriate instructions to users for all test cases.

Subjects: The subjects were eight students pursuing their Master’s degrees in Computer Science or Electrical Engi-
neering at Aalto University in Finland. They were taking part in a course that included three lectures on the concepts
and development process for producing a Gabriel application. The subjects had an average of 5.38 years (SD = 2.13) of
programming experience. Their proficiency with different programming languages is shown in Table 5. Their knowledge
of computer vision and deep learning is shown in Table 6, with values interpreted as follows: (a) “No experience:” subject
has no knowledge about the area; (b) “Beginner:” subject has taken some courses related to the area; (c) “Intermediate:”
subject has studied or worked in the area for at least 3 years; (d)“Advanced:” subject has studied or worked in the area for
at least 5 years.We divided our subjects into two groups, junior and intermediate, with four subjects in each. Intermediate
developers had at least 6 years of programming or were experienced with both computer vision and machine learning,
while junior ones had less than 6 years of programming experience and 1 year of computer vision or machine learning
study.

Methods. The subjects took part in two application development conditions. The first required them to develop the
making sandwich application by using Ajalon as described above. Oneweek later, the same subjects were asked to develop
the same application without using Ajalon. The time gap between the two experiments is expected to reduce anymemory
bias on the same workflow video. Moreover, any carryover learning from Ajalon should aid performance in the manual
version and reduce efficiency differences between the methods. The total time for the user study was 3 weeks, including
one week for the Ajalon method, one week for the non-Ajalon method, and one week for the time delay.

All subjects played dual roles of task expert and developer. This is possible because the task is simple: it can bemastered
by a 5-min training session. Future work with more complex domains will test teams that combine developers and task
experts. The subjects carried out development with and without Ajalon. For the non-Ajalon case, we provided additional

F IGURE 20 Test cases for sandwich application evaluation.
Nonerror steps for case 1 are in the white boxes; errors for case 2 and
3 are introduced as shown in pink [Colour figure can be viewed at
wileyonlinelibrary.com]

TABLE 5 Proficiency of study participants Programming language C/C++ Python Java Others

Participants proficient 63% 88% 38% 13%

TABLE 6 Participants’ backgrounds in computer vision
and deep learning

Background level Computer vision Deep learning

No experience 25% 37%

Beginner 62% 50 %

Intermediate 13% 13%

Advanced 0 % 0%

http://wileyonlinelibrary.com


1792 PHAM et al.

F IGURE 21 The Gabriel application
development process with and without Ajalon.
Orange boxes represent tasks that Ajalon offers a
specific tool for [Colour figure can be viewed at
wileyonlinelibrary.com]

tools for data labeling27,28 and DNN training.3,18,29 Figure 21 shows how the four major development steps of the Gabriel
development process differ in the two cases. Workflow extraction in the Ajalon case is done using PT and PTEditor. In the
non-Ajalon case, this is done using a video player. Creation of object detectors in theAjalon case is done usingOpenTPOD.
In the non-Ajalon case, this is done using amanual setup of data labeling tools, training, and testing. The implementation
of the FSM for the Gabriel application, including additions of error states, is done via OpenWorkflow in the Ajalon case.
Since code is generated by OpenWorkflow, no manual coding is necessary. In the non-Ajalon case, the representation of
the FSM is created using a UML drawing tool, and the code for the FSM is written manually.

Metrics:As a basis for efficiencymeasures, subjects were required to create working logs recording the time spent on
their specific steps of developing the application. A quantitative measure of savings is provided by the difference in time
for the two conditions, relative to the with-Ajalon time baseline.

savings factor =
Non-Ajalon time − Ajalon time

Ajalon time
. (2)

Qualitative measures of the two conditions were obtained from a postexperiment survey questionnaire that subjects
filled out upon completion of the study. This questionnaire rated the usefulness, ease, and enjoyment of each component
of Ajalon on a discrete numeric scale (1 = strongly disagree and 7 = strongly agree). PT, which was fully automated, was
not rated. The survey questionnaire was designed based on the guidance of Brooke et al.30 and Gordillo et al.31

4.2.2 Qualitative results

Figure 22 shows the results of the ratings for each component of Ajalon. Mean ratings ranged from 4 to 6 on the 7-point
scale, indicating fairly high levels of usefulness (mean: 5.1) and ease of use (mean: 5.5), and moderately high enjoyment
(mean: 4.2). Ratings were similar across all components. On the whole, these results indicate that subjects perceived
benefit from using Ajalon in developing the application.

Some insight into the enjoyment scores being relatively low can be gained from feedback given in the survey. Subjects
found the interface components, such as buttons and scroll bars, somewhat annoying to use. They also experienced some
problemswith the tracking algorithm of OpenTPOD during labeling. These comments underscore the importance of user
experience design for Ajalon, as the enjoyment during use affects the performance of developing an application.

http://wileyonlinelibrary.com


PHAM et al. 1793

F I GURE 22 Rated user
experience of using Ajalon; the scales
ranged from 1 to 7 [Colour figure can
be viewed at wileyonlinelibrary.com]

TABLE 7 Time spent in component steps and the whole process of developing a Gabriel application for sandwich making, by junior
and intermediate subjects when working with and without the aid of Ajalon. With Ajalon, OpenTPOD is used for creating the DNN-based
object detectors, PT and PTEditor are used for workflow extraction, and OpenWorkflow is used for workflow modeling. Without Ajalon, the
subjects can freely select their desired tools to achieve the required task

Mean time (SD) in hours Junior Intermediate

Task Subtask Without Ajalon With Ajalon Without Ajalon With Ajalon

Data labeling 7.63 (1.6) 3.25 (0.96) 5.56 (0.52) 3.13 (0.95)

Object detector Coding for training 3.84(0.74) 0 0.35 (0.10) 0

creation Coding for testing 0.88 (0.32) 0 0.17 (0.07) 0

Workflow extraction 0.79 (0.17) 0.35 (0.10) 1.08 (0.24) 0.42 (0.10)

Workflow modeling 0.75 (0.17) 0.83 (0.53) 0.90 (0.24) 1.88 (1.11)

Other aspects 15.54 (0.95) 0 7.98 (4.18) 0

All tasks 29.41(2.20) 4.44 (1.21) 15.91(4.78) 5.42 (1.40)

4.2.3 Quantitative results

The subjects’ logs of time spent in different stages of developing the application with and without Ajalon revealed clear
advantages for using Ajalon. Means by stage of application development for each of the two subject groups, working with
and without Ajalon, are shown in Table 7.

Overall, subjects spent 22.7 h in development without the aid of Ajalon, as compared to 4.9 h with it. This savings
factor amounts to 3.6 overall and is greater for junior-level subjects (5.6) than intermediates (1.9). Another implication of
the table is that Ajalon aid leveled the playing field for the two groups, bringing the average time for juniors and interme-
diates to a few hours each. Figure 23 shows the savings factor for individual subjects in each component of application
development and Figure 24 for the application as a whole.

Total application time: Although the statistical power is limited by the small number of subjects, we conducted a
mixed-model ANOVAon the between-subject factor of expertise level (junior, intermediate) and thewithin-subject factor,
presence/absence of Ajalon.32 The ANOVA indicates whether each factor has an effect, averaged over the other (the main
effects), and whether there are mutual dependencies (indicated by an interaction). For the overall application time, both
main effects were significant, showing the expected advantage for greater expertise, (F1, 6 = 15.90, p= 0.007), and for the
presence of Ajalon (F1, 6 = 221.51, p< 0.001). In addition, there was a significant interaction term (F1, 6 = 36.92, p= 0.001),
reflecting the finding that subjects at the junior level of expertise had a greater overall advantage from using Ajalon. This
is evident from the individual-subject data in Figure 23, where all four junior subjects show greater savings than any
intermediate.

http://wileyonlinelibrary.com


1794 PHAM et al.

0

1

2

3

4

5

6
sa

vi
ng

s 
fa

ct
or

Workflow Extraction (with PT and PTEditor)

Junior Intermediate
  J1         J2         J3         J4             I1         I2         I3          I4

-1

0

1

2

sa
vi

ng
s 

fa
ct

or
Workflow Modeling (with OpenWorkflow)

Junior Intermediate
  J1         J2         J3         J4             I1         I2         I3          I4

0

1

2

3

4

5

6

sa
vi

ng
s 

fa
ct

or

Object Detector Creation (with OpenTPOD)

Junior Intermediate
  J1         J2         J3         J4             I1         I2         I3          I4

(A) (B)

(C)

F IGURE 23 Breakdown of the savings factor for each of the three steps, by junior and intermediate subjects. (A) Workflow extraction
with PT and PTEditor. (B) Object detector creation with OpenTPOD. (C) Workflow modeling with OpenWorkflow [Colour figure can be
viewed at wileyonlinelibrary.com]

0

2

4

6

8

10

12

sa
vi

ng
s 

fa
ct

or

Junior Intermediate
   J1          J2         J3          J4            I1          I2          I3         I4

F IGURE 24 Savings factor (see Equation (2)) across all tools for
Ajalon by junior and intermediate subjects. The higher the savings
factor, the greater the time-cost of not using Ajalon tools [Colour figure
can be viewed at wileyonlinelibrary.com]

We next assess the contributions of the various components of Ajalon, using the same ANOVA approach on the times
for each component. Only statistically significant F-tests on the presence/absence of Ajalon will be reported below.

Data labeling from OpenTPOD: Essentially, OpenTPOD halved the time for the data-labeling step in building the
expected-object detectors. As shown in Figure 23, all subjects showed a positive savings for the object detector creation,
resulting in a significant effect of using Ajalon (F1, 6 = 69.75, p< 0.001). The magnitude of the savings, 1.06 overall, was
similar for the two subject groups. In comments, four of six subjects pointed to the benefits of using OpenTPOD to create
object detectors, which reduced the amount of time spent on tasks like data annotation, converting data to different file
formats, and complicated installation steps.

Workflow extraction using the PTEditor: Note that workflow extraction with Ajalon uses PT and PTEditor, but
as the former is fully automatic, the time essentially measures the use of PTEditor. Although the average savings factor
for this step (1.43) is comparable to that of the data labeling component of building object detectors with OpenTPOD, the
absolute time benefit of using Ajalon to extract workflow information is small. On average, subjects spent 0.9 h without
PTEditor while spending 0.4 h with it, a significant difference, (F1, 6 = 64.374, p< 0.001). Three of six subjects reported
that PTEditor helped them determine what information was needed.

http://wileyonlinelibrary.com
http://wileyonlinelibrary.com


PHAM et al. 1795

Workflow modeling from OpenWorkflow: This component is used to include error cases when describing and
modeling workflow. In contrast to the other tools of Ajalon, OpenWorkflow did not reduce the time spent on this task.
On average, subjects spent 0.8 h for describing the error cases and modeling the workflow without OpenWorkflow, as
compared to 1.4 hours with it. As illustrated in Figure 23, only two out of six subjects benefitted from OpenWorkflow.
Feedback from subjects suggested two main reasons that lead to the results. The first is that the interface of OpenWork-
flow is not easy to use, particularly because the visualized state machine window is not large enough to manipulate the
workflow for adding error states. The second reason is that adding error cases is complicated because subjectsmust report
processing functions and conditions in each node. Subjects suggested that the tool should provide a copy and paste func-
tion to reduce the manual effort required to add text. Although OpenWorkflow has low points in enjoyment and ease, its
output, which is the modeled workflow, allows the automatic code generator to build a Gabriel application in 1 s.

Other aspects: This component refers to programming that is required to complete developing a Gabriel application
with the modeled workflow and qualified object detectors. Because the OpenWorkflow of Ajalon appropriately mod-
els workflow, OpenWorkflow can directly generate the target Gabriel application. In contrast, programming without
OpenWorkflow requires several hours, as reported in other implementation task of Table 7. Specifically, Ajalon saved
approximately 20.3 h for junior subjects and 8.5 h for intermediate ones. The reduction in manual effort from developers
and experts in building the required Gabriel application is an affirmative answer for questions 5 and 6 above.

5 CONCLUSION AND FUTURE WORK

WCA has gained considerable visibility in a short time, and is likely to be transformative in education, health care, indus-
trial troubleshooting,manufacturing, assisted driving, and sports training. An important enabler for widespread adoption
of WCA will be the lowering of barriers to creating applications of this genre. Today, WCA development is much more
difficult and slower than, for example, web development. Further, it requires skills in areas such as machine learning and
computer vision that are not widespread among software developers. Lowering this barrier is an important step toward
democratizing the creation of WCA applications.

To this end, we have created Ajalon, an authoring toolchain for WCA applications that reduces the skill and effort
needed at each step of the development pipeline. Starting from a video of an expert performing a task, Ajalon automates
the extraction of working steps. It enables the creation of DNN-based object detectors and an FSM that models the task,
without writing any code. Our evaluation shows that Ajalon is effective in significantly reducing the barrier to creating
newWCA applications.

While Ajalon is clearly a helpful and effective toolchain, challenges remain. Our user study has given us valuable
insights into areas for improvement. First, the GUIs of OpenTPOD and OpenWorkflow can be improved. In OpenT-
POD, subjects wanted an estimate of the time remaining until models would be fully trained. In OpenWorkflow, nearly
half the subjects expressed a desire to interact with the editor using hotkeys and a command line. In addition to these
improvements, we are also considering the use of voice commands rather than mouse-and-keyboard interaction.

The format of workflow information in Ajalon could be improved along the lines suggested by Jelodar et al.,33 who
propose amore comprehensivemethod that describes both activities and object association lists. They found that describ-
ing activities leads to a boost in the accuracy of modeling a cooking activity. We plan to incorporate activity recognition
into Ajalon, in order to automate more of the process of generating WCA applications.

The size of our user study was limited, with only eight subjects. A principal reason for the small number is the amount
of time required for participation. As Ajalon improves and matures, we anticipate that it will be easier to recruit users.
This will enable us to run user studies that are larger, ideally closer to the 15–20 subjects that are typical for a user study
of this kind.34,35

Our user study involved a task (building a sandwich) that almost all subjects were familiar with. This enabled them
to play the dual roles of task expert and developer. In the future, we plan to run studies involving more complex and
unfamiliar tasks, where the roles of a task expert and a developer are distinct.

ACKNOWLEDGEMENTS
We thank the editor, Dr. Satish Srirama, and the anonymous reviewers for their guidance in improving the presenta-
tion of our work. This research was supported by Business Finland under the grant number 1660/31/2018, and by the
National Science Foundation (NSF) under grant number CNS-1518865. Roger Iyengar was supported by an NSF Gradu-
ate Research Fellowship under Grants DGE1252522 and DGE1745016. Additional support was provided by CableLabs,



1796 PHAM et al.

Crown Castle, Deutsche Telekom, Intel, InterDigital, Microsoft, Seagate, VMware, Vodafone, and the Conklin Kistler
family fund. Any opinions, findings, conclusions or recommendations expressed in this material are those of the authors
and do not necessarily reflect the view(s) of their employers or the above funding sources.

ORCID
Truong An Pham https://orcid.org/0000-0002-6861-1495

REFERENCES
1. Ha K, Chen Z, Hu W, Richter W, Pillai P, Satyanarayanan M. Towards wearable cognitive assistance. MobiSys ’14. New York, NY:

Association for Computing Machinery; 2014:68-81.
2. Ray T. An angel on your shoulder: who will build A.I.? Barron’s; 2018.
3. Ren S, He K, Girshick R, Sun J. Faster R-CNN: towards real-time object detection with region proposal networks. IEEE Trans Pattern Anal

Mach Intell. 2016;39(6):1137-1149.
4. Satyanarayanan M. The emergence of edge computing. IEEE Comput. 2017;50(1):30–39.
5. Satyanarayanan M, Bahl P, Caceres R, Davies N. The case for VM-based cloudlets in mobile computing. IEEE Pervas Comput.

2009;8(4):14–23.
6. Satyanarayanan M, Davies N. Augmenting cognition through edge computing. IEEE Comput. 2019;52(7):37–46.
7. Chen Z, Hu W, Wang J, et al. An empirical study of latency in an emerging class of edge computing applications for wearable cognitive

assistance; 2017:14, ACM.
8. Yampolskiy RV. AI-Complete, AI-Hard, or AI-Easy: Classification of Problems in Artificial Intelligence. Technical Report No. 2. Louisville,

KY: University of Louisville; 2011.
9. Gabriel: platform for wearable cognitive assistance applications; 2018. https://github.com/cmusatyalab/gabriel.
10. RosenbergD, BoehmBW,WangB,QiK. The parallel agile process: applying parallel processing techniques to software engineering. J Softw

Evolut Process. 2019;31(6):e2144.
11. Minor M, Bergmann R, Görg S, Walter K. Adaptation of cooking instructions following the workflow paradigm; 2010:199-208.
12. Mura K, Petersen N, Huff M, Ghose T. IBES: a tool for creating instructions based on event segmentation. Front Psychol. 2013;4:994.
13. Kim J, Nguyen PT, Weir S, Guo PJ, Miller RC, Gajos KZ. Crowdsourcing step-by-step information extraction to enhance existing how-to

videos. CHI ’14. New York, NY: Association for Computing Machinery; 2014:4017-4026.
14. Nater F, Grabner H, Van Gool L. Unsupervised workflow discovery in industrial environments; 2011:1912-1919.
15. Carmines EG, Zeller RA. Reliability and Validity Assessment. Los Angeles, CA: SAGE Publications; 1979:11–12.
16. Pham TA, Xiao Y. Unsupervised workflow extraction from first-person video of mechanical assembly; 2018:31-36; ACM.
17. Bertasius G, Park HS, Yu SX, Shi J. First-person action-object detection with EgoNet. Robotics: Science and Systems. Cambridge, MA: MIT

Press; 2017.
18. Redmon J, Farhadi A. Yolov3: an incremental improvement; 2018. arXiv preprint arXiv:1804.02767
19. Jalal A, Kim Y-H, Kim Y-J, Kamal S, Kim D. Robust human activity recognition from depth video using spatiotemporal multi-fused

features. Pattern Recogn. 2017;61:295-308.
20. EveringhamM, Eslami SMA, Van Gool L, Williams CKI, Winn J, Zisserman A. The pascal visual object classes challenge: a retrospective.

Int J Comput Vis. 2015;111(1):98-136.
21. Russakovsky O, Deng J, Su H, et al. Imagenet large scale visual recognition challenge. Int J Comput Vis. 2015;115(3):211-252.
22. Li X, Grandvalet Y, Davoine F, et al. Transfer learning in computer vision tasks: remember where you come from. Image Vis Comput.

2020;93:103853.
23. Zhang S, Yao L, Sun A, Tay Y. Deep learning based recommender system: a survey and new perspectives. ACM Comput Surv.

2019;52(1):1-38.
24. Danelljan M, Häger G, Khan FS, Felsberg M. Accurate Scale Estimation for Robust Visual Tracking. Nottingham, UK: BMVA Press; 2014.
25. Shorten C, Khoshgoftaar TM. A survey on image data augmentation for deep learning. J Big Data. 2019;6(1):60.
26. Wang J, Xu C, Chng E, Duan L,Wan K, Qi T. Automatic generation of personalized music sports video.MULTIMEDIA ’05. New York, NY:

ACM; 2005:735-744.
27. Computer vision annotation tool (CVAT); 2018. https://github.com/openvinotoolkit/cvat. Accessed October 1, 2019.
28. Russell BC, Torralba A, Murphy KP, Freeman WT. LabelMe: a database and web-based tool for image annotation. Int J Comput Vis.

2008;77(1):157-173.
29. Lin TY, Goyal P, Girshick R, He K, Dollár P. Focal loss for dense object detection; 2017:2980-2988
30. Brooke J. SUS-A quick and dirty usability scale. Usability Evaluation in Industry. Boca Raton, FL: CRC Press; 1996.
31. Gordillo A, Barra E, Quemada J. An easy to use open source authoring tool to create effective and reusable learning objects. Comput Appl

Eng Educ. 2017;25(2):188-199.
32. Gagnon JC, Barber BR. The SAGE Encyclopedia of Educational Research, Measurement, and Evaluation. Los Angeles, CA: Sage;

2018:668.
33. Jelodar AB, Paulius D, Sun Y. Long activity video understanding using functional object-oriented network. IEEE Trans Multimed.

2019;21(7):1813-1824.

https://orcid.org/0000-0002-6861-1495
https://orcid.org/0000-0002-6861-1495
https://github.com/cmusatyalab/gabriel
https://github.com/openvinotoolkit/cvat


PHAM et al. 1797

34. Kim Y, Choi Y, Lee H, Lee G, Bianchi A. VirtualComponent: a mixed-reality tool for designing and tuning breadboarded circuits. CHI ’19.
New York, NY: ACM; 2019:177:1-177:13.

35. Lo J-Y, Huang D-Y, Kuo T-S, et al. AutoFritz: autocomplete for prototyping virtual breadboard circuits. CHI ’19. New York, NY: ACM;
2019:403:1-403:13.

How to cite this article: Pham TA, Wang J, Iyengar R, et al. Ajalon: Simplifying the authoring of wearable
cognitive assistants. Softw: Pract Exper. 2021;51:1773–1797. https://doi.org/10.1002/spe.2987


