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Computing dynamical distributions in quantum many-body systems represents one of the paradigmatic
open problems in theoretical condensed matter physics. Despite the existence of different techniques both in
real-time and frequency space, computational limitations often dramatically constrain the physical regimes
in which quantum many-body dynamics can be efficiently solved. Here we show that the combination of
machine-learning methods and complementary many-body tensor network techniques substantially decreases
the computational cost of quantum many-body dynamics. We demonstrate that combining kernel polynomial
techniques and real-time evolution, together with deep neural networks, allows to compute dynamical quantities
faithfully. Focusing on many-body dynamical distributions, we show that this hybrid neural-network many-body
algorithm, trained with single-particle data only, can efficiently extrapolate dynamics for many-body systems
without prior knowledge. Importantly, this algorithm is shown to be substantially resilient to numerical noise,
a feature of major importance when using this algorithm together with noisy many-body methods. Ultimately,
our results provide a starting point towards neural-network powered algorithms to support a variety of quantum
many-body dynamical methods, that could potentially solve computationally expensive many-body systems in a

more efficient manner.
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I. INTRODUCTION

The dynamical and spectral properties of quantum many-
body systems represents one of the central directions of
modern quantum many-body physics. In particular, the devel-
opment of powerful methods, such as auxiliary field quantum
Monte Carlo [1-3], tensor networks [4—7], and neural network
quantum states [8—15] have shed light onto the properties of
paradigmatic quantum many-problems that just a few years
ago well drastically beyond conventional methods [7,16,17].
While the previous methods have been shown highly suc-
cessful for tacking static properties of many-body systems,
time-dependent and dynamical properties represent still a crit-
ical open problem [18-26]. Spectral properties of many-body
systems represent a central issue in several novel directions of
quantum-many body physics, including non-equilibrium dy-
namics [27,28], many-body localization [29], many-body time
crystals [30-32], and dynamical phase transitions [33,34].
Interestingly, although a variety of methods to compute dy-
namical properties exist that are affected in different forms
by numerical limitations and noise [18,19,35-44], combin-
ing these methods simultaneously is a highly nontrivial
problem.

Deep learning [45,46] has risen as a disruptive method for
different fields of physics, including condensed matter physics
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[47,48]. Examples of these successful applications are neural
network quantum states [8—15], the detection of phases of
matter [49-55], and machine-learning strategies for quantum
control [56,57]. Interestingly, the integration of machine-
learning methods with conventional many-body formalism
has the potential of drastically extending the applicabil-
ity of typical methods, and even overcoming conventional
computational limitations [58-62]. However, up to date, the
calculation of specific quantum many-body quantities is usu-
ally performed with a single method at a time, and potential
synergies of combining them through in a nontrivial way
several of them have remained relatively unexplored.

Here we demonstrate that machine-learning methods com-
bined with conventional dynamical-many body techniques
allows computing spectral properties with dramatically in-
creased accuracy. In particular, we developed an algorithm
combining results of the Kernel polynomial method (KPM)
[63] and time evolution (TE) to calculate dynamical spectral
distributions of single-particle and many-body systems. This
hybrid neural-network algorithm is able to drastically enhance
the spectral properties of quantum many-body systems being
trained solely in single-particle data. We further demonstrate
that our neural-network algorithm is extremely robust, being
resilient to up to 10% noise, making it ideal for real applica-
tions with state of the art methods showing numerical noise.
This paper is organized as follows: in Sec. II we present
the details of our time-frequency algorithm, in Sec. III we
show its application to a family of single particle problems,
in Sec. IV we show its extension to many-body systems
without prior knowledge, finally in Sec. V we summarize our
conclusions.

Published by the American Physical Society
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FIG. 1. (a) Sketch of the hybrid neural-network many-body al-
gorithm. The input of the ANN consists of Chebyshev moments
and time evolution, predicting higher-order moments and longer
time evolution. The network is trained with single-particle, random-
generated data and is able to make predictions of many-body
systems. (b) Comparison between the input low-quality data taken
as input of the algorithm, and the output high-quality prediction
together with its comparison with the real high-quality data.

II. METHODS

The method we put forward in this paper combines two
well-established techniques, kernel polynomial expansions,
and time evolution, to compute the dynamical spectral prop-
erties of many-body system powered by a neural-network
algorithm. The basic idea of our proposal is shown in Fig. 1.
When the machine-learning algorithm is trained, initial many-
body data of the distribution is taken as input, and the neural
network returns as output a greatly enhanced many-body dis-
tribution. The many-body algorithm is solely trained on in
single-particle data, much cheaper to generate, and as we will
show proves to successfully enhance many-body data. We
now elaborate on the different parts of the full method.

A. The kernel polynomial method and Chebyshev expansion

Quantity of critical interest in a variety of single particle
and many-body systems can be written in the form

Jx) = (¥|AS(x — H)B|Y) = (a]d(x — H)|B), (1)

with A, B, H operators and Y a certain state. In particular,
dynamical spectral functions, such as dynamical spin struc-
ture factors in spin systems, electronic many-body density
of states, and many-body magnetization distributions can be
represented in the previous form. From the computational
point of view, a formal way of computing such objects re-
lies on full diagonalization of the operator H. However, the
computation of the eigenvalues and eigenvectors of a matrix

is for large systems, in particular in a many-body system, an
almost unfeasible task. A greatly efficient alternative method
is the Kernel polynomial method and expansion in terms of
Chebyshev polynomials [63]. Since the Chebyshev polynomi-
als are defined in the interval I = (—1, 1), a general expansion
of f:(—1,1) = R has the form

f@) =ag+2) a,T), )
n=I

where «, = (f|7,) define the coefficients of the expansion
and T7,, are Chebyshev polynomials of order n. After rescaling
the Hamiltonian and corresponding energies into the interval
(—1, 1), the Chebyshev moments u,, are defined as

tn = (BITu(H)lat), 3

where |o) and |B) are states of the system. Expansion of
Eq. (2) to finite order leads to so-called Gibbs oscillations. To
avoid/minimize these oscillations a convolution of f{x) with
a kernel is applied. In this paper, we are using the Jackson
Kernel to reduce oscillations [64].

We now highlight the data used for training the machine-
learning algorithm. We will take of the density of states (DOS)
of a single-particle system with eigenenergies €. The DOS of
a given single-particle Hamiltonian can be written as

p(@) =) 8w —e), )

which can be calculated with the Chebyshev moments

1
Mn = /] p()T(w)dw = Tr[T,(H)], &)

that can be computed with the recursion relations mentioned
above.

We now elaborate on the data that we will use for the many-
body model, for which the machine-learning algorithm trained
on single-particle data will be used. While we could use a
many-body formulation of the electronic density of states, this
choice could be considered trivial to test the generality of
the algorithm, and therefore we will take a quantity that has
no analogy in a single-particle framework. In a many-body
spin system, in order to take the most different case possible
with respect to the single-particle training, we will focus on
many-body magnetization distributions, that lack an analogy
for single particle models and are defined as

1
f(m) = <sz|8(m— ZZS;)lsz), ©6)

where S7 are the local spin operators and |€2) is the many-
body ground state. These magnetization distributions can be
computed within the matrix-product state formalism [4-6],
computing the many-body ground state implementing the
Chebyshev expansion within the tensor-network algorithm
[39,65-70].

B. Time evolution

Another approach to calculate the many-body spectral
function or the density of states of single-particle systems
is time evolution. For the training of the network, we will
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use time evolution of single-particle models under the single-
particle Hamiltonian. Focusing first on the case of a single
particle system, the time evolution described by the Hamilto-
nian H is given by

f (@) = (alexp(—iH1)|a) , (N

where |o) is for example the state representing the lattice
site where an electron is injected. In this case, f(¢) is the
probability to find the electron at that lattice site at time 7.
The (local) DOS p(w) is obtained by Fourier transformation
of the function f (7).

For the many-body case, we will use as input data time-
evolution under the magnetization operator, defined as

ft) = <sz|exp<—§ ZS§>|9>, ®

where the Fourier transformation leads to the magnetization
distribution of the system.

C. Linear predictions

While both time-evolution and Chebyshev expansion can
be arbitrarily accurate, finite truncations either in time or order
of moment leads to a finite spectral resolution. In order to
reduce these costs, prediction methods as linear predictions
have been developed, that formally attempt to extrapolate
the behavior of moments or time evolution. We will demon-
strate that our neural-network method drastically outperforms
these linear-prediction methods, and therefore for the sake
of completeness we briefly introduce them here. One of the
most commonly used methods for time-series predictions are
linear-prediction models, e.g., autoregressive models [71]. In
the autoregression model, the quantity of interest (here the
next time steps of the time evolution or the Chebyshev mo-
ments) is predicted by a linear combination of p previous data
points. The model of order p to predict the value X, at time
step t can be written as

Xi=c+dp X1+ + ¢pXt—p + €, 9)

where c is a (time-independent) constant, €, white noise, and
¢ the p parameters that define the model. The considered
previous time steps, also called the lags, are used to include
autocorrelations among adjacent data points. Equation (9)
allows to forecast an arbitrary number of time steps by using
the predicted value as input for the next forecast. However,
the accuracy (or confidence interval) decreases with every
additional time step. Therefore, we are investigating more
powerful prediction methods, which leads to the next section
about artificial neural networks (ANNS).

D. Artificial neural networks

The field of machine learning, starting from simple linear
regressions up to deep neural networks [45], opens new op-
portunities and insights for the field of physics. In this paper,
we illustrate the predictive power of fully-connected deep
neural networks and compare them with linear-prediction au-
toregression models. Deep neural networks consists of an
input, output, and several hidden layers. The “neurons” of
each layer are fully connected between neighboring layers.

The connections, the so-called weights, determine the out-
come and predictions of the ANN and are the parameters that
have to be tuned during the training process. Using nonlinear
activation functions for the neurons in each layer allows the
neural network to represent a highly nonlinear function. This
function predicts the outcome of the network for an array
of input values. In order to train network, we are using the
supervised learning based on backpropagation. The neural
network is trained with input data, i.e., in our case an input
array consisting of a limited amount of Chebyshev moments
(and time steps of the TE) and the output is an array of
higher-order moments (and more time steps). The update of
the weights happens during the training process via minimiz-
ing the loss function, in this case the mean squared error, and
backpropagation. We use stochastic gradient decent and we
are using the Adam optimizer [72].

II1. SINGLE-PARTICLE SYSTEMS

We now move on to consider the training data of our
algorithm, single-particle data of a Hamiltonian, which in
particular is implemented as a wide family of one-dimensional
tight binding models.

A. Single-particle model

The physical quantity of interest in case of the tight-
binding system is the density of states (DOS), which can either
be computed using the Kernel polynomial method and the
Chebyshev expansion or with the Fourier transformation of
the time evolution. For more complex systems, e.g., many-
body systems, the computation of higher-order moments and
a long time evolution is very demanding. The higher the
order of the moments used to calculate the DOS, the more
details and features are captured and to obtain an accurate
low-frequency DOS one needs a very long time evolution.
A common approach to obtain higher-order moments or a
longer time evolution without an explicit calculation is to use
linear prediction, e.g., an autoregressive model. Given a small
amount of Chebyshev moments (and only the first time steps)
the model can extrapolate the following moments (and time
evolution). In this paper, we present an alternative approach
using an ANN algorithm to predict these quantities. The idea
of the algorithm is to train an ANN to predict higher-order
moments (and longer time evolution) given a limited amount
of input moments (and time-steps), similar to the linear-
prediction models. Our algorithm is capable of combining
both approaches, i.e., forecasting higher-order moments and a
longer time evolution at the same time. We define a parametric
family of spinless one-dimensional Hamiltonians of the form

Hrpg = ZtijC;Cj + Z v,»c:fci —+ H.C., (10)
(i J) i

where 1;; is the hopping amplitude, v; the on-site energy, and
¢’ (c) the electron creation (annihilation) operators.

B. Neural-network versus autoregression

Here we first show how the use of neural-network pre-
diction provides a greatly stable algorithm, overcoming lim-
itations of autoregressive models. For the sake of simplicity,
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FIG. 2. Linear predictions (autoregressive model) of the DOS of
a random-generated tight-binding model with 1% (red) and without
noise (orange) in the Chebyshev moments. The predictions up to 200
moments are shown in (a) and up to 400 in (b), respectively. The real
distributions for 50 and 200 (400) moments are shown in green and
blue.

the neural-network algorithm is trained only with Chebyshev
moments, and the combination with time evolution is ad-
dressed in the next section.

As a starting point, we first consider the density of states
(DOS) of these family of single particle models. For the neural
network, the training is performed with single-particle models
with translational symmetry and three orbitals per unit cell.
We compute the DOS with the Chebyshev algorithm, and we
compare with extrapolations performed with the autoregres-
sive model. Figure 2 shows the DOS for a random-generated
tight-binding systems. The higher-order moments are pre-
dicted with an autoregressive model, including a time window
of 10 data points, given 50 moments as input and predictions
up to the order of 200 and 400. This model achieves accurate

@ | ——]
=== ANN: p =200, noise = 5%
== ANN: p =200, noise = 1%
— real: p=200
4r — real: p=50 1
wn 3r
Q
A
2 L
I b
0
Q)
(b) 7 T T T T T T T
=== ANN: p =400, noise = 5%
or ~- ANN: p =400, noise = 1% | |
— real: p=400
5t — real: u=50 4
w4 1
Q
& sl _

-0.5 0 0.5 1 1.5

FIG. 3. DOS for a random-generated tight-binding system out of
the test set, calculated with 50 (green) and 200/400 (blue) Chebyshev
moments. Predictions of the ANN with 1% (orange) and 5% (red) of
noise for 200 and 400 moments are shown in (a) and (b).

results only in the case without noise up to 200 moments as
shown in Fig. 2(a). For higher-order predictions [Fig. 2(b)]
and noise values of about 1% the error of the autoregression
model drastically increases and fails to predict the DOS (and,
therefore, Chebyshev moments) with high accuracy—specific
features and peaks of the original DOS are not captured. This
shows the high sensitivity of linear predictions to noise, and
even in the noiseless severely limits the predictions (a maxi-
mum of a factor 4 in the noiseless limit). We now move on to
show how neural networks overcome these limitations.

Deep neural networks are in general, more robust when
facing noise and can even benefit from it in order to make
predictions more stable and reduce the probability of overfit-
ting. Figure 3 shows the predicted DOS of the trained network,
showing a great agreement with the true distribution asso-
ciated to the true moments. The architecture of the ANN is
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described in the Appendix. The model is trained with 10 000
random generated tight-binding systems with different values
for hopping amplitudes and on-site energies, given the first 50
moments as input vector and the next 350 moments as output
during the training process. To show the robustness against
noise, we induced 1% and 5% of noise in the Chebyshev
moments. The results of Fig. 3 are that the predictions of the
ANN algorithm are very accurate up to 200 moments [(a) and
(b)] regardless of the induced noise. Even for predictions up
to order 400 (factor 8) the ANN is able to predict the real
DOS accurately, capturing all main features. In this case, some
oscillations start appearing in comparison to the predictions
up to 200 moments. Nonetheless, the enhancement of the
input DOS (blue) and increased resolution is significant in
all cases. This shows that deep neural networks have a great
advantage over the linear predictions (see Fig. 2).

C. Chebyshev and time-evolution neural-network architecture

After showing the numerical robustness of the neural
network, we now move on to consider a more advanced
neural-network architecture in which both Chebyshev mo-
ments and time evolution are included. The combination of
these complementary methods allows to further test the reli-
ability of the machine-learning algorithm, as the output and
input contains both frequency and time information. Overall,
we find outstanding agreement for extrapolations of a factor
8 in the Chebyshev moments, and with a strong reliance to
numerical noise of up to 10%.

We first comment on the training set. The training mod-
els consist of randomly generated 5000 systems, consisting
of two sites per unit cell with different hopping amplitudes.
The architecture of this model is described in the Appendix
and similar to the one for the many-body predictions. The
predictions of the trained model are shown in Figs. 4(a), 4(c),
and 4(e) and compared with linear predictions of the same
system, Figs. 4(b), 4(d), and 4(f). Another difference to the
previous model is that we are now predicting the Chebyshev
moments [Fig. 4(a)] and time evolution [Fig. 4(c)] at the
same time, i.e., including both in the same input array for
the ANN. We use the first 25 moments and 50 time steps as
input and calculate up to 200 moments and 200 time steps.
The predictions shown in Figs. 4(a) and 4(c) are very accurate,
especially for the moments and the resulting DOS prediction
[Fig. 4(e)] is almost indistinguishable from the original one.
In the predictions of the moments, we induced noise of 3% in
order to show the robustness of the ANN and also decrease
the risk of overfitting. The averaged root mean squared error
(RMSE) of the test set (500 random generated systems) for the
predictions of the moments is 0.008 and for the time evolution
0.005. The enhancement of the resolution in comparison to the
input DOS (blue) is significant and shows a pronounced peak.
The combination of the moments with the time evolution is
one of the main advantages over the linear-prediction models.
Figs. 4(b) and 4(d) show the predictions of the autoregression
model (without noise) for the Chebyshev moments and time
evolution. The predictions of the moments are accurate up to
order 170 and the time evolution without nose up to 115 time
steps. The induced noise in the TE leads to instabilities of the
linear model and drastically decreases the accuracy. The same

(a) (b)
i
0.5 i 0.5
£ g <
-0.5 | -0.5
-1 -1
0 50 100 150 200 0 50 100 150 200
n
-~ AG, noise = 1%

- AG

== ANN: p=200
30 — real:p=25
—  real: p=200

== AG: p =200, noise = 1%
-= AG: n=200

30 — real: p=25

— real: p=200

I

w2 20 wn
o Q20
a @)
10 10
0 0
-15 -1 =05 0 05 1 15 -1 -05 0 05 1
o 0}

FIG. 4. (Random-generated) tight-binding model similar to the
expected many-body systems. The system is chosen out of the test-
set of the ANN. The predictions (red) for the Chebyshev moments
of the ANN with 3% noise and AG model without noise are shown
in (a) and (b). The corresponding time-evolution predictions are
shown in (c) and (d) including noise in the AG prediction (green).
The corresponding DOS are shown in (e) and (f), comparing the
input distribution (green) with the real (blue) and predicted one (red)
including 200 instead of 25 moments.

applies for noise in the Chebyshev moments which leads to
a decreased accuracy in the prediction of the DOS, shown in
Fig. 4(f).

With the previous neural-network architecture, we now
move on to extrapolate the many-body distributions of a quan-
tum many-body system.

IV. MANY-BODY SYSTEMS

We now move on to consider how our trained neural net-
work performs when presented with new data, now originating
from a many-body Hamiltonian. In particular, in order to
demonstrate the generality of the training, we will focus on
the many-body magnetization distribution of a spin-chain, a
quantity that has no analogy with the single-particle density of
states used in the training of the machine-learning algorithm.
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A. Many-body model

Here we will consider a many-body spin Hamiltonian, in
the form of a S = 1/2 one-dimensional many-body system
defined by the Hamiltonian

H=J) SiSia+SS + 55, D
n

First, it is worth to note that S = 1/2 one dimensional
models can be generically mapped to interacting spinless
fermionic models by means of a Jordan-Wigner transforma-
tion [73]. In this context, spin-excitations in the many-body
spin chain (Q[S;8(w — H + Ep)S, |Q2) are mapped to quasi-
particle spectral functions in the interacting fermionic model
(Q|c28(w — H + Ey)c,|R2). In this regard, deploying the
trained hybrid neural-network algorithm to compute spin-
excitations of the interacting Heisenberg model would be a
relatively trivial test of our algorithm. In order to target a
more nontrivial problem, here we will focus on the many-
body magnetization distribution, which cannot be mapped to
a single-particle property, and therefore represents a more
advanced test of the algorithm.

The physical quantity of interest is for the many-body
systems the magnetization distribution, defined as

f(m) = (Q8(m — M,)|Q), 12)

with M, = 1% >, S, with L the number of sites and |Q2) the
many-body ground state of the Hamiltonian H of Eq. (11).
This magnetization distribution reflects the spectral compo-
sition of the ground state in terms of eigenstates of M., in
particular reflecting the many-body entanglement of the sys-
tem [74-76]. As noted above, this quantity does not map to
a meaningful object in the single-particle limit, and there-
fore represents a nontrivial test for the hybrid neural-network
algorithm. The previous quantity is computed both via the
Chebyshev expansion and time-evolution methods, and used
as input for the neural network. As a reference, we will also
compare linear predictions with the results of the ANN algo-
rithm for a many-body system.

B. Autoregressive model

We first address the performance of autoregressive models
for extrapolating the many-body magnetization distribution.
The results of the autoregressive model are shown in Fig. 5
and lead to similar conclusions as in the single-particle case,
where we studied the DOS in Fig. 2. The predictions of the
Chebyshev moments with 1% noise are shown in Fig. 5(a).
The induced noise in the moments of 1% or even less
leads to instabilities in the model and decreases the accuracy
enormously. This can also be seen in the corresponding mag-
netization and the loss in accuracy in Fig. 5(b).

C. Hybrid neural-network many-body algorithm

After showing the sensitivity of autoregression to noise, we
now move on to use our trained hybrid neural-network archi-
tecture in the many-body distribution problem. The robustness
to noise is one of the main advantages and motivations to
develop an ANN algorithm to predict higher-order moments
(and TE) and enable the calculation of the magnetization

@) [ |
0.5F
= 0
—0.5 i n “ H
_l L -
0 25 50 75 100 125
n
(b) .
AG: p=175, noise = 1%
2r —- AG: p =175, noise = 0% ]
— real: p=175
— real: p=25

L5 7

f(m)

FIG. 5. Linear predictions (red) of the autoregressive model of
the Heisenberg S1/2 chain (30 sites) for the Chebyshev moments
with 1% noise (a). The input for the model are the first 25 moments
and the first 50 time steps for the time evolution. The resulting
magnetization distribution without (red) and with 1% (orange) noise
is shown in (b).

distribution of complex systems with higher resolution. The
training data remains the same as for the single-particle
system—random-generated tight-binding systems with a sim-
ilar DOS as the magnetization distribution of the many-body
systems. The ANN is, therefore, trained with purely single-
particle physics and predictions are made for many-body
systems without prior knowledge.

The predictions of our ANN algorithm for the one-
dimensional Heisenberg S = 1/2 model are shown in Fig. 6.
The algorithm predicts Chebyshev moments and the time evo-
lution simultaneously given an input array of 25 moments and
50 time steps. The predictions of the moments above order
170 become less accurate, achieving an accurate prediction of
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FIG. 6. Predictions of the ANN for the (1d) Heisenberg S1/2
model. The Chebyshev moments and time evolution are predicted
simultaneously with an input array consisting of the first 25 moments
and 50 time steps. The predictions (red) of the trained ANN of the
moments for system size L = 10 and L = 30 are shown in (a) and
(b). The corresponding magnetization distribution in (c) and (d).
The magnetization distribution is calculated with the input moments
(blue) in comparison with the real (green) and predicted (red) distri-
bution for 175 moments.

factor 7. The magnetization distributions for the Heisenberg
S = 1/2 chains is shown in Fig. 6(b). Shown is the input
distribution using only 25 moments and the real distribution
for 175 and the predictions of the ANN algorithm. The predic-
tions show high accuracy and match the expected distributions
well for both system sizes. They also show an enormous
enhancement to the almost flat input distribution which does
not show the pronounced peak. Therefore, the fluctuations in
the moments in Fig. 6(b) do not have a significant impact on
the distribution. From this follows, that the ANN algorithm
is capable of enhancing the many-body distribution signifi-
cantly. The resolution of the predictions is however limited
up to a certain order of Chebyshev moments. In comparison
with the AG magnetization distributions [Fig. 5(b)] the ANN
algorithm is able to match the real distribution with higher
accuracy.

We now use our trained neural-network algorithm to study
the magnetization distribution of a generalized many-body
model, namely the XXZ S = 1/2 model defined as

HU) =7 [SiS5, + 88 |+ Sise,.  (13)

For J, = 1, the previous model corresponds to the Heisenberg
model studied previously. The magnetization distribution in
the z direction depends on the specific value of J;. In the
following we show how the neural network successfully pre-
dicts the evolution of the magnetization distribution in this

(a) (b)

FIG. 7. Magnetization distribution of the quantum many-body
model of Eq. (13). Panels [(a),(b)] show the low-quality distribu-
tion, [(c),(d)] the predicted distribution by the NN, and [(e),(f)] the
true distribution. Panels [(a),(c),(e)] show the original distribution
f(m), and [(b),(d),(f)] background-subtracted distribution g(m). It
is observed that the predicted distribution [(c),(d)] and the real one
[(e),(f)] show a substantial agreement.

generalized model. To highlight the differences for the dif-
ferent values of J,, we will now plot the difference of the
distribution with respect to the ground state for J,/J = 0.5,
and normalized to the maximum value for the distribution,
namely f(m,J;) = (2;,|6(m —MZ)|QJZ>, where [€2;) is the
many-body ground state of H (J;). Furthermore, to highlight
that the neural network captures even the fine changes in the
distribution, we define a background subtracted distribution of
the form g(m, J;) = f(m, J;) — f(m,J, = 0.5J), that allows
to observe the subtle changes in the distribution with respect
to the one for J, = 0.5J. We show in Fig. 7 the distributions
f(m) [Figs. 7(a), 7(c), and 7(e)] and g(m) [Figs. 7(b), 7(d), and
7(f)]. In particular, Figs. 7(a) and 7(b) show the low-quality
distributions, that represent the input of the trained algorithm.
The predicted distribution by our neural network is shown
in Figs. 7(c) and 7(d), which shows a great agreement with
the true high quality real distributions shown in Figs. 7(e)
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and 7(f). The previous results further demonstrate that our
trained algorithm successfully predicts distributions of the
generalized model of Eq. (13), even capturing fine details of
the distribution.

V. SUMMARY

We have shown that neural networks, in combination with
standard methods for computing spectral properties, provide
a powerful framework to predict dynamics with increased
accuracy. In particular, taking as examples time-evolution and
Chebyshev methods, we have shown that reliable extrapola-
tions can be performed. This was demonstrated first for a
single-particle problem, where our architecture greatly im-
proved the spectral resolution of the density of states. We then
showed that the hybrid neural-network architecture trained
with single-particle data could be deployed to enhance the
many-body magnetization distribution of a purely many-body
problem, a problem drastically different from the training set
of the algorithm. Importantly, we have shown that our method
is highly resilient to noise and provides dramatically more
stable predictions than conventional linear regression meth-
ods. These results can be further generalized to other methods
of computing spectral properties, including correction vector
methods and imaginary time evolution. Importantly, while our
results have been implemented with a tensor-network formal-
ism, an analogous procedure can be carried out with generic
quantum many-body methods. Our results demonstrate that
neural network enhanced many-body methods provide a nu-
merically robust formalism to compute many-body spectral
properties.
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APPENDIX: DEEP NEURAL NETWORK
ARCHITECTURES

The ANN architecture of the single-particle systems with
only Chebyshev moments (see Fig. 3) is defined as follows:
an input layer of dimension 50, three hidden layers of dimen-
sions 256, 512, and 512 with 15% of dropout [77], and an
output layer of dimension 350. As activation function we are
using the nonlinear ReLu function. The test and training data
consists of 10 000 random generated tight-binding models
(90/10 split) defined with a 3-site unit cell, with different on-
site energies and hopping amplitudes. We choose the Adam
optimizer and optimized the mean squared error. The training
process includes 300 epochs with a batch size of 16.

The ANN architecture of the combined Chebyshev and
time-evolution input consists of an input layer of dimension
75, three hidden layers of size 512, 1024, and 512 with 20%
dropout to avoid overfitting, and an output layer of dimension
525. As activation function we are using the nonlinear ReLu
function. The training data consists of 5000 random generated
tight-binding systems; in this case the unit cell consists of
two sites with different hopping amplitudes and zero on-site
energies. The training process is done with a batch size of 50
for 512 epochs and a train-test-split of 90/10. In addition, we
included 5% of noise in the Chebyshev moments and 1% in
the time evolution.
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