
This is an electronic reprint of the original article.
This reprint may differ from the original in pagination and typographic detail.

Powered by TCPDF (www.tcpdf.org)

This material is protected by copyright and other intellectual property rights, and duplication or sale of all or
part of any of the repository collections is not permitted, except that material may be duplicated by you for
your research use or educational purposes in electronic or print form. You must obtain permission for any
other use. Electronic or print copies may not be offered, whether for sale or otherwise to anyone who is not
an authorised user.

Tekgül, Bulut; Peltonen, Petteri; Kahila, Heikki; Kaario, Ossi; Vuorinen, Ville
DLBFoam

Published in:
Computer Physics Communications

DOI:
10.1016/j.cpc.2021.108073

Published: 01/10/2021

Document Version
Publisher's PDF, also known as Version of record

Published under the following license:
CC BY

Please cite the original version:
Tekgül, B., Peltonen, P., Kahila, H., Kaario, O., & Vuorinen, V. (2021). DLBFoam: An open-source dynamic load
balancing model for fast reacting flow simulations in OpenFOAM. Computer Physics Communications, 267,
Article 108073. https://doi.org/10.1016/j.cpc.2021.108073

https://doi.org/10.1016/j.cpc.2021.108073
https://doi.org/10.1016/j.cpc.2021.108073

Computer Physics Communications 267 (2021) 108073

Contents lists available at ScienceDirect

Computer Physics Communications

www.elsevier.com/locate/cpc

DLBFoam: An open-source dynamic load balancing model for fast
reacting flow simulations in OpenFOAM✩,✩✩

Bulut Tekgül a,∗, Petteri Peltonen a, Heikki Kahila b, Ossi Kaario a, Ville Vuorinen a

a Department of Mechanical Engineering, Aalto University School of Engineering, Otakaari 4, 02150 Espoo, Finland
b Wärtsilä Finland Oy, 65101 Vaasa, Finland

a r t i c l e i n f o a b s t r a c t

Article history:
Received 17 November 2020
Received in revised form 25 May 2021
Accepted 8 June 2021
Available online 18 June 2021

Keywords:
Reacting flow
Combustion
Load balancing
OpenFOAM
Chemical kinetics

Computational load imbalance is a well-known performance issue in multiprocessor reacting flow
simulations utilizing directly integrated chemical kinetics. We introduce an open-source dynamic load
balancing model named DLBFoam to address this issue within OpenFOAM, an open-source C++ library for
Computational Fluid Dynamics (CFD). Due to the commonly applied operator splitting practice in reactive
flow solvers, chemistry can be treated as an independent stiff ordinary differential equation (ODE) system
within each computational cell. As a result of the highly non-linear characteristics of chemical kinetics, a
large variation in the convergence rates of the ODE integrator may occur, leading to a high load imbalance
across multiprocessor configurations. However, the independent nature of chemistry ODE systems leads
to a problem that can be parallelized easily (called an embarrassingly parallel problem in the literature)
during the flow solution. The presented model takes advantage of this feature and balances the chemistry
load across available resources. Additionally, a reference mapping model is utilized to further speed-up
the simulations. When DLBFoam it utilized with both these features enabled, a speed-up by a factor of
10 is reported for reactive flow benchmark cases. To the best of our knowledge, this model is the first
open-source implementation of chemistry load balancing in the literature.

Program summary
Program Title: DLBFoam
CPC Library link to program files: https://doi .org /10 .17632 /bb9zjfzcmm .1
Developer’s repository link: https://github .com /blttkgl /DLBFoam
Licensing provisions: GPLv3
Programming language: C++
Nature of problem: Solution of chemical kinetics in parallel reacting flow solvers raises a computational
imbalance across multiprocessor architectures. DLBFoam balances the load distribution evenly, providing
significant speed-up in reacting CFD applications.
Solution method: The dynamic load balancing is implemented by distributing the point-wise chemistry
problems from most loaded processes to less loaded ones using MPI communication protocol.
Additional comments including restrictions and unusual features: The present model is designed to work
with the standard chemistry model class available in OpenFOAM (versions 7 and 8). For the time being,
the model does not support derived combustion models such as “TDAC” and covers gas-phase reaction
kinetics only. In addition, the boundary surface chemistry problems are neglected by the model.

© 2021 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).

✩ The review of this paper was arranged by Prof. Hazel Andrew.
✩✩ This paper and its associated computer program are available via the Computer
Physics Communications homepage on ScienceDirect (http://www.sciencedirect .
com /science /journal /00104655).
* Corresponding author.

E-mail address: bulut.tekgul@aalto.fi (B. Tekgül).

1. Introduction

The development of efficient Computational Fluid Dynamics
(CFD) simulation tools for reacting flows is a crucial step in the
research and development of less polluting combustion concepts
[1]. As the need for more detailed combustion models has become
prominent, chemical kinetics models have grown in size and com-
plexity, resulting in higher computational cost and often exceeding

https://doi.org/10.1016/j.cpc.2021.108073
0010-4655/© 2021 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

https://doi.org/10.1016/j.cpc.2021.108073
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/cpc
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cpc.2021.108073&domain=pdf
https://doi.org/10.17632/bb9zjfzcmm.1
https://github.com/blttkgl/DLBFoam
http://creativecommons.org/licenses/by/4.0/
http://www.sciencedirect.com/science/journal/00104655
http://www.sciencedirect.com/science/journal/00104655
mailto:bulut.tekgul@aalto.fi
https://doi.org/10.1016/j.cpc.2021.108073
http://creativecommons.org/licenses/by/4.0/

B. Tekgül, P. Peltonen, H. Kahila et al. Computer Physics Communications 267 (2021) 108073

the computational cost of fluid dynamics by a factor of 100 [2].
Even though most CFD software utilize distributed-memory par-
allel architectures to their full extent, incorporating an efficient
solution for reacting flows tends to lead to a high computational
load imbalance during parallel execution [3].

Commonly, engineering CFD codes assume an operator-splitting
strategy in the reacting flow solver implementation, enabling the
decoupling of the chemistry and fluid dynamics in the reacting
flow solution during the calculation of the chemical source terms
in the governing equations [4,5]. Therefore, the changes in ther-
mochemical composition � (temperature, pressure, and species
concentrations) due to chemical reactions per computational ele-
ment (e.g. finite-volume cell) are computed by solving a cell-wise
independent homogeneous reaction system. The reaction system
describes the rate of change of thermochemical composition as a
stiff system of ordinary differential equations (ODEs), i.e. ∂�/∂t =
f (�, t) [4].

Typically, the computational cost of the chemical source term
evaluation dominates the performance metrics and creates an un-
even computational load distribution in parallel applications. The
difficulties occur due to the intrinsic and non-linear nature of
the ODE system. As the computational cost of solving the asso-
ciated stiff ODEs scales quadratically with the number of species
[6], detailed reaction mechanisms easily become impractical. Fur-
thermore, due to the vast scale separation between the fastest and
slowest chemical reaction time scales, the system of ODEs is prac-
tically always numerically stiff, requiring the use of implicit time
integrators with low time step values [7]. The time step value and
hence the total number of floating-point operations during the in-
tegration depends on the initial thermochemical composition [8].
Furthermore, in most CFD codes parallelization is achieved with
geometrical domain decomposition, leading to explicit chemistry
load imbalance due to spatially and temporally varying � values.
A visual illustration of the chemistry load imbalance is presented
in Fig. 1.

Fig. 1. An illustration of the computational imbalance in a reactive CFD simulation.
The cost of the chemistry solution across different processes within a given CFD
time step varies, creating a bottleneck at the process with highest computational
load (marked with red). Data, plotting scripts and figure are available under the CC-
BY license [9]. (For interpretation of the colors in the figure(s), the reader is referred
to the web version of this article.)

Apart from the optimization of the ODE solver algorithms and
implementations [6,10,11], several modeling strategies have been
proposed to reduce the high computational requirements associ-
ated with reacting flows. To name a few successful approaches:
in-situ adaptive tabulation method [12], dynamic and adaptive re-
duction methods for chemical kinetics [13] and dynamic stiffness

removal methods [14] each provide performance gains to a cer-
tain extent. However, these strategies are often formulated in a
processor-based approach, being still prone to yield computational
load imbalance across available resources [15].

In the context of the present study, dynamic load balancing of
chemistry has been previously covered in literature. One method
to mitigate the load imbalance is to use a custom decomposition
with a prior knowledge on the spatial activity of chemical kinetics
[16]. However, in large complex geometries, custom decomposition
becomes impractical [16,17]. In terms of dynamic run-time load-
balancing algorithms, Antonelli et al. [18] developed a Message-
Passing Interface (MPI) based parallel solver which utilizes a cell
distribution based load balancing algorithm. Both Kodavasal et
al. [19] and Shi et al. [20] considered stiffness detection approaches
as balancing criteria for their balancing algorithms. Recently, Muela
et al. [3] presented a dynamic load balancing method which also
utilized a stiff cell detector to choose the optimal ODE integration
method. In practical benchmark cases, the aforementioned meth-
ods reported speed-up factors in the range three to five.

In contrast to previous studies where implementations are ei-
ther not publicly available or based on commercial CFD codes, in
the present study we introduce a robust open-source load balanc-
ing algorithm for parallel reacting flow simulations. To the best of
our knowledge, this model is the first open-source implementa-
tion of chemistry load balancing in literature. In addition to the
load balancing model, a zonal reference mapping model is also in-
troduced to further improve the available balancing performance.
The implementation is carried out in OpenFOAM, an open-source
C++ library targeted for CFD applications [21]. It is worth noting
that an earlier version of this now publicly shared model has al-
ready been utilized in multiple published combustion studies by
the authors [22–24].

The paper is outlined as follows: The implemented dynamic
load balancing algorithm is presented in Section 2. Section 3 pro-
vides benchmarks highlighting the theoretical performance gains
of this model, while Section 4 reports performance metrics in prac-
tical reacting flow configurations. Section 5 concludes the study
with a brief discussion on the results along with the potential for
further improvements.

2. Implementation details

2.1. Reacting flow solver

A schematic of the different stages of the reacting flow solver
used in the paper is presented in Fig. 2. Solution for mass, mo-
mentum, species, and energy conservation laws is achieved in an
iterative manner. The reactingFoam and sprayFoam reactive
solvers of OpenFOAM [21] with compressible PIMPLE algorithm
are used. Within each time step, a Poisson equation for pres-
sure is solved and the velocities obtained from the solution of
the momentum equation are corrected to ensure that the mass is
conserved.

Here we consider the solution of chemistry source terms
(i.e. net production/consumption rates of species concentrations)
as a separate step, as highlighted in Fig. 2. In the present study,
the chemistry source terms are evaluated by direct integration
of chemical kinetics with no additional models. The source term
evaluation is performed in a separate module which is interfaced
at the solver level (chemistry model). The implementation of the
load balancing algorithm is carried out in this module as a sepa-
rate compilation unit. The details of the algorithm are discussed in
the following subsection.

2

B. Tekgül, P. Peltonen, H. Kahila et al. Computer Physics Communications 267 (2021) 108073

Fig. 2. A schematic showing the main steps of the reactive solver within a single
CFD time step. The DLBFoam part is highlighted in the figure.

2.2. Dynamic load balancing

As mentioned before, the reaction source term for an individual
CFD cell can be computed independently from all other cells. How-
ever, due to the non-linear nature of chemistry, the floating point
operations required to evaluate source terms can vary significantly
from cell to cell. In most CFD simulations, the computational ge-
ometry is decomposed using some of the available domain decom-
position algorithms. However, dividing the domain geometrically
into chunks of close to equal cell count may lead to chemical im-
balance due to the different convergence rates of chemistry ODE
problems within processes, as illustrated in Fig. 1. Hence, it is ben-
eficial to send some of the chemical problems from the overloaded
processors (senders) to the less occupied processors (receivers) for
more uniform load balancing. Obviously, once the chemistry calcu-
lation has been completed, the roles interchange once the updated
chemical solutions are sent back to where they physically belong
i.e. as source terms in the species and enthalpy equations.

The dynamic load balancing algorithm implemented in the
present paper consists of four stages: 1) preprocessing stage, 2)
balancing stage 3) solution stage, and 4) update stage. In the pre-
processing stage, the thermochemical variables and other variables
needed for the ODE solution for each cell n are packed into a single
data structure, here denoted as a problem, and an array of these
structures is formed. Fig. 3 describes the variables within a prob-
lem data structure needed to describe a single chemistry ODE
problem. A problem consists of Nsp+6 double precision floating
point variables and one integer variable. Here, Nsp is the num-
ber of species in the utilized chemical kinetics mechanism. The
amount of data to be transferred between a sender-receiver pair
depends on various case setup parameters such as the size of the
utilized chemical mechanism, number of cells per process and the
level of imbalance between a sender-receiver pair.

Fig. 3. Data structure of a problem that contains the necessary information to solve
the chemistry ODE system of the cell n. In C++, the problem is implemented as
a struct data type. Nsp denotes the number of species in the utilized chemical
kinetics mechanism.

Algorithm 1 Pseudo-code representation of the load balancing al-
gorithm stage two over Np processes w.r.t. a nth cell CPU times
tncpu at a time t = n + 1.

1: lk ←
Nc∑

n=1
tncpu // load for rank k at given time

2: L ← allGather(lk) // List of loads L = [
l0, l1, ..., lNp−1

]

3: L ←
Np∑

i=0
−1lk/Np // average load over all processes

4: L, R ← sort(L) // Sort L, and get a new rank indexing R

5: i ← 0
6: j ← Np − 1
7: while i �= j do
8: �Lsend ← min(L − Li , L j − L) // Define load to be transferred
9: rr ← Ri // Rank ID receiving data
10: rs ← R j // Rank ID sending data

11: find Ns , s.t. �Lsend ≈
Ns∑

n=1
tncpu // Corresponding Ns problems

12: operations.insert(rs , rr , Ns) // List of balancing operations

13: Li ← Li + �Lsend // Increase by the send value
14: L j ← L j − �Lsend // Decrease by the send value
15: if |Li − L| ≈ 0 then
16: i ← i + 1 // Move to next receiver
17: else
18: j ← j − 1 // Move to next sender
19: end if
20: end while

21: process(operations) // Call MPI functions
22: // based on the operations list.

Next, stage 2 is discussed together with a pseudocode illustra-
tion presented in Algorithm 1. Stage 2 is initiated by defining a
processor-based load value lk for all available Np processes (line
1). Here, we define the load lk as the sum of total CPU time spent
on solving Nc problems on process k. To compute the global bal-
ancing statistics, a sorted global list of loads L = [

l0, l1, ..., lNp−1
]

is formed and broadcasted to all available processes (line 2). Next,
the algorithm aims at setting the global arithmetic mean load (L)
to all processes by finding sender-receiver rank pairs (rs, rr) shar-
ing a load �Lsend (line 8). Then, the CPU time based load value
is converted to Ns chemistry problems to be transferred between
the sender-receiver pair (line 11). It is important to note that the
smallest amount of load that can be sent between processes is
controlled by explicitly removing very small load balancing com-
munications and not executing them. This is done by ensuring that
for a given sender-receiver pair, �Lsend ≥ 0.01 × L is satisfied. Fi-
nally, rs, rr and Ns are inserted into a list denoted as operations
(line 12), which is utilized to execute multiple non-blocking MPI
calls to communicate the problems across processes (line 21). Note
that in the case of a sender with multiple receivers or a receiver
with multiple senders, the communication protocol is organized so
that all the data are sent/received simultaneously.

3

B. Tekgül, P. Peltonen, H. Kahila et al. Computer Physics Communications 267 (2021) 108073

In stage 3, the distributed chemistry problems are solved by
their new processes. We note that the input data (a problem) is
tagged with a cell id and the tag is copied to the output data (a so-
lution) to ensure the correct placement of the reaction rate in the
CFD domain in the original process. In stage 4, the solutions are
communicated back to the original processes based on the same
(rs, rr, Ns) information from stage 2 and the chemical source term
values of the cells are updated. It should be noted that the stage 4
also includes an explicit MPI barrier to ensure that the processes
update the reaction rates only after all the problems are commu-
nicated back to their original processes.

2.3. Reference mapping

In addition to the load balancing, we have implemented a sim-
ple reference mapping feature which allows us to further reduce
the computational cost. The aim is to group cells sharing simi-
lar thermochemical composition (�) values together and solve the
chemistry only once for this group. Such a mapping approach is
intended to be used for regions with low reactivity, e.g. where no
fuel is present. Reference mapping model is very similar to multi-
zone reduction models found in commercial CFD software [25].
However, by design our approach is far more conservative since
it is mostly intended for mapping non-reacting mixtures includ-
ing no fuel to one another. In our implementation, the reference
mapping acts as a filter in stage 1 of the load balancing algorithm,
where the reaction rates of cells satisfying a user-given criteria are
copied from a reference cell solution. At a given time instance, a
reference cell is picked and the chemistry source term of that cell
is solved and copied to other reference cells. The criteria used for
identifying the reference cells is:

Zi < Ztol,

|Ti − Tref | < Ttol,

where Zi and Ti are mixture fraction and temperature of ith cell,
respectively, Tref denotes the temperature of the chosen reference
cell and Ztol and Ttol denote the user-given tolerance values. In the
reacting flow community, the mixture fraction stands for a con-
served scalar describing the mixing state of a fuel and oxidizer
uniquely. Although there are different definitions of Z in the litera-
ture, in this paper the Bilger’s definition [26] is used. The reference
solution is computed from the first reference cell found, and this
solution is then mapped to the subsequent reference cells.

The reference mapping implemented in the present study is ap-
plied to each process separately. Depending on the value set of
Ztol and Ttol , as well as whether the temperature criterion is ap-
plied or not, the mapped solution and the actual solution may be
slightly different from one another. As long as proper tolerances
are used, the introduced error is rather small and does not affect
the global characteristics of the reactive simulation. According to
the authors’ experience, the error is negligible compared to typical
uncertainties found in various combustion models. Details on the
validation of the reference mapping against the standard model
as well as a discussion on the level of error introduced are pre-
sented in Appendix A. We emphasize that the reference mapping
model improves the balancing performance significantly by further
reducing the load of the more idle processes and increasing their
potential to receive more load from the busier processes. However,
due to its process-based formulation it often provides infinitesimal
speedup if it is utilized without the load balancing. It is also worth
noting that reference mapping may introduce some approximation
to the chemistry solution especially at the decision boundary be-
tween the mapped and unmapped regions. Therefore, it should be
utilized with caution like any other zonal reduction model.

3. Unit benchmarks

In this section, the performance of the load balancer model is
demonstrated by using a simple test environment created in Open-
FOAM. Inspired by the performance analysis presented by Muela et
al. [3], we present a similar analysis to show the efficiency as well
as the scaling performance of our load balancer model for: i) dif-
ferent number of processes and ii) different number of cells per
process.

To carry out the performance analysis, we have developed a
benchmarking suite in OpenFOAM, where a given set of chem-
istry problems are solved in parallel by the ODE solver and the
total execution times are measured. Two different pseudo-problems
are predefined: a heavy problem, which is a stiff ODE problem and
takes longer to compute, and a light problem, which is a less stiff
problem with a shorter solution time. Here, a benchmark environ-
ment is created by defining the number of chemistry problems
(Nc), available resources (Np processes), and a predefined θ value,
describing the ratio of heavy problems to the number of problems
in each process.

Throughout the benchmark analysis, the ratio of all heavy prob-
lems to the total number of problems across all processes is fixed
as 0.2. Different configurations are then created to distribute the
total heavy load either evenly (balanced load configuration) or un-
evenly (unbalanced load configuration). The following benchmark
configurations are investigated:

• C1: “very unbalanced”, θ = 1 for 20% of Np

• C2: “slightly unbalanced”, θ = 0.8 for 25% of Np

• C3: “slightly balanced”, θ = 0.4 for 50% of Np

• C4: “very balanced”, θ = 0.2 for 100% of Np .

The benchmark statistics are obtained by running 10 separate
samples for each configuration to minimize the variance due to
any hardware or parallel communication issues. Each case is run
first with the unbalanced (standard) model, then with the balanced
model, and the speed-up ratio χsu for each condition is calculated
as:

χsu = τunb

τbal
, (1)

where τunb and τbal are the mean execution times over all samples
of unbalanced and balanced cases, respectively. In addition, using
the ratio of a heavy problem to a light problem (ξ), the maximum
theoretical speed-up that can be attainable for cases C1-C4 are cal-
culated as:
θ × ξ + (1− θ)

θ×ξ+(1/x−1)
1/x

, (2)

where x is the percentage of processes which θ condition applies
for each condition (for instance, it is 20% (0.2) for C1).

All simulations in this paper are carried out by the Mahti su-
percomputer, provided by the CSC - Finnish IT Center for Science.
Mahti contains 1404 nodes with two 64 core AMD EPYC (Rome)
processors, each node running at 2.6 GHz, as well as high-speed
200 Gpbs infiniband HDR interconnection network between the
nodes, all running on a RHEL 7.8 Linux operating system [27].

Fig. 4 shows the benchmark results for configurations C1-C4
with varying Np and Nc values. Fig. 4a highlights the steady per-
formance over a large range of process counts with a fixed Nc =
200. It can be seen that the balancing algorithm scales up to Np

= 1280 with no apparent performance issue. In addition, the χsu

value increases with increasing imbalance (C4 → C1), since the
potential balancing gain to be obtained is higher for cases with
higher imbalance.

4

B. Tekgül, P. Peltonen, H. Kahila et al. Computer Physics Communications 267 (2021) 108073

Fig. 4. Speed-up ratio of a) different process counts Np with number of problems Nc = 200 b) different Nc with Np = 80, from imbalanced (C1) to balanced (C4) configura-
tions. The dashed lines show the maximum theoretical speed-up that can be obtained for each configuration. Data, plotting scripts and figure are available under the CC-BY
license [9].

Fig. 4b shows the influence of problem count Nc to balancing
performance for a fixed Np = 80. It can be clearly seen from the
high imbalance condition (C1) that the χsu first increases with in-
creasing Nc from 40 up to 1000, then it stays in the same level
for higher Nc values. The reason is two-fold: i) for lower Nc val-
ues the global mean load value (L) that the balancer tries to reach
is smaller, therefore the cost of communication is comparable to
the cost of gain obtained from the balancing, and ii) for lower Nc

values the number of problems describing the extra load is very
sensitive, e.g. the balancer may overshoot/undershoot the target
load condition with a greater margin by sending one cell more/less
with lower Nc values. Once the Nc value is large enough so that
the communication overhead is insignificant and the number of
problems that are being transferred between processes are large
enough to create the balancing statistics accurately, the χsu is sta-
bilized.

One common characteristic observed with both configurations
presented in Fig. 4 is the change in balancing performance with
respect to the level of imbalance in the benchmark. While the
increase in χsu with increased imbalance is already discussed,
it is also important to note that χsu ≈ 1 for the very balanced
case (C4). The χsu values close to 1 indicate that the operations
that create the load balancing statistics and determine the inter-
processor communications are not resulting in significant overhead
compared to ODE solution. Since the case is already perfectly bal-
anced, the balancer does not communicate any data between the
processes. A more detailed analysis on the computational overhead
associated with the dynamic load balancing algorithm is presented
in Appendix B.

In summary, this benchmarking analysis shows that the bal-
ancing algorithm described in Section 2.2 shows very good per-
formance and scalability for a range of process counts and the
number of chemistry problems per process. The selected values
for these two parameters are typical for reacting CFD simulations,
ranging from small simulations that can be run on personal com-
puters to very large simulations that require high-performance
computing clusters.

4. Results

Following the performance benchmark of the load balancing
model in the previous section, here we demonstrate the model
performance in actual reactive CFD simulations. First, a 2D reac-
tive shear layer case with a uniform mesh is simulated to show
the effects of load balancing, reference mapping model, number of

processes, and decomposition methods. Furthermore, a 3D reactive
spray LES simulation is performed to indicate a potential speed-up
that can be obtained in large-scale reactive simulations. We do not
present physics-based case validation, but aim to show the perfor-
mance gain available with a load balancing algorithm.

4.1. Reactive shear layer

A schematic describing the 2D reactive shear layer configura-
tion is presented in Fig. 5. A square domain (8 mm × 8 mm) with
cyclic boundary conditions is discretized by a structured mesh
with 400 ×400 resolution. A hyperbolic tangent function is utilized
to generate a smooth shear layer of L/10 width in the domain. The
momentum shear layer is characterized by a relative velocity dif-
ference of �Ux = 40 m/s. The shear layer instability is initiated by
introducing a sinusoidal perturbation to the vertical velocity com-
ponent U y .

The fuel, n-dodecane (n-C12H26), is placed in the middle while
air (0.77 N2 + 0.23 O2) is set elsewhere. The fuel and air temper-
atures are set to T f uel = 400 K and Tamb = 900 K, respectively.
Constant pressure of p = 60 bar is initialized in the domain. The
chemical kinetics is modeled by the skeletal mechanism developed
by Yao et al. [28], including 54 species and 269 reactions. The rel-
ative and absolute tolerances of the ODE solver tolerances are set
to 1e−5 and 1e−8, respectively. The reference cell would be chosen
at an arbitrary point outside the shear layer with Ztol = 1e−4 and
Ttol = 1 K. All cases are simulated over 1,000 CFD time steps with
a maximum Courant number of 0.5.

The reactivity (and the computational load) of the case is higher
within the shear layer between fuel and oxidizer across X di-
rection. Therefore, this case can be decomposed using different
approaches to have high or low load imbalance. Different decom-
position approaches tested here are illustrated in Fig. 6. While a
simple decomposition in X direction (left) would ensure minimal
imbalance since the decomposition is orthogonal to the shear layer,
the same decomposition in Y direction (middle) would result in
higher imbalance since now only the processes assigned to/around
the shear layer will have high load, creating a bottleneck. Finally,
the Scotch decomposition (right) is also investigated since in many
CFD applications automated and optimized decomposition meth-
ods are used to ensure uniform cell counts and minimize the
process boundaries. In addition, since the majority of the cells in
the configuration are initially pure oxidizer (and identical), the ref-
erence mapping method can be used to significantly reduce the
computational load in the processes assigned to the oxidizer part,

5

B. Tekgül, P. Peltonen, H. Kahila et al. Computer Physics Communications 267 (2021) 108073

Fig. 5. a) Schematic of the test case and b) an instantaneous representation of the temperature field during the simulation.

Fig. 6. Decomposition of the test case to 32 processes using 1) Simple decomposition in X direction (left), 2) Simple decomposition in Y direction (middle) and 3) Scotch
decomposition (right). While Simple-X attempts to reduce load imbalance, Simple-Y promotes it. Scotch decomposition by design attempts to minimize the number of process
boundaries. Data, plotting scripts and figure are available under the CC-BY license [9].

Table 1
The difference decomposition methods, number of processors, and balancing models
investigated in reactive shear layer simulations.

Decomposition Simple-X, Simple-Y, Scotch
Number of processors 32, 64, 128, 256
Model Standard, Load Balanced, Load Balanced +

Reference Mapping

increasing the balancing performance. Therefore, the reactive shear
layer is a good test case to investigate: i) the effect of load imbal-
ance on χsu and ii) the additional performance that can be gained
from using the reference mapping method together with the load
balancer. The details of the parameters investigated in this case
(decomposition, number of processors and balancing model) are
given in Table 1.

The results obtained from the 3 different decomposition meth-
ods for Np = 32 are presented in Fig. 7. It can be seen that the total
execution times are significantly reduced when the load balancing
is utilized. While the domain decomposition plays an important
role on the performance of the standard case with no balancing,
for load balanced models the execution time is not dependent on
the decomposition strategy. For instance, while the Simple-Y de-
composition has the highest execution time when using the stan-
dard model due to load imbalance caused by the decomposition,
the execution times of load balanced models are similar to other
decomposition methods. Finally, it is important to mention that
while the load balancer alone already provides a substantial per-
formance increase, utilizing the reference mapping model further
increases the performance of the balancer by reducing the mean

Fig. 7. A bar chart showing the execution times for Simple-X, Simple-Y and Scotch
decomposition methods for Np = 32. Increase in speed-up with increased imbalance
can be observed particularly from Simple-Y decomposition. Data, plotting scripts
and figure are available under the CC-BY license [9].

load of the simulation and creating further imbalance to increase
the balancing performance.

To further demonstrate the effect of load balancer on reactive
simulations, the load, i.e. CPU time for solving the chemistry (τ k

cpu)

6

B. Tekgül, P. Peltonen, H. Kahila et al. Computer Physics Communications 267 (2021) 108073

Fig. 8. Chemistry solution CPU time for each process and the corresponding arith-
metic mean in each configuration for the reactive shear layer problem. It is noted
that the deviation from the mean value is higher for the standard model, which
causes computational performance issues. Data, plotting scripts and figure are avail-
able under the CC-BY license [9].

on each process along with its arithmetic mean across processes
is presented in Fig. 8 for the case with Np = 32 and Scotch de-
composition. It is important to note that the profiles given here
only show the time spent on solving the chemistry and do not
include the time spent on balancing, which is not significant com-
pared to τ k

cpu as shown in Section 3. It can be seen that for the
non-balanced case (bottom), the deviation of τ k

cpu with respect to
its mean value is very high. In this scenario, the most computa-
tionally loaded process becomes the bottleneck, while the other
processes are waiting for that process to finish the chemistry com-
putation. For load balanced cases (middle and bottom), there is a
very small deviation in τ k

cpu between processes with respect to the
arithmetic mean, which eliminates the bottleneck caused by the
unbalanced chemistry load and reduces the simulation time.

Finally, the χsu for all cases described in Table 1 with respect
to the standard model are reported in Fig. 9. For the load balanced
model, the χsu is small for Simple-X decomposition due to already
balanced load distribution. However, for the other 2 decomposition
methods a χsu around 2 to 5 can be observed. When the reference
mapping is also utilized, we observe that χsu increases even fur-

Fig. 9. Speedup factor for all the cases described in Table 1. We note that the highest
speedup is achieved with Simple-Y decomposition with reference mapping utilized,
due to imbalance created by decomposition and balancing gain obtained by refer-
ence mapping, respectively. Data, plotting scripts and figure are available under the
CC-BY license [9].

ther. While for Scotch decomposition χsu ≈ 4 to 6 is achieved, for
Simple-Y decomposition we can observe χsu ≈ 8 to 12.

4.2. Three dimensional reacting diesel spray

To further demonstrate the performance of the implemented
model, a larger and more challenging case is simulated in this
subsection. A 3D reactive spray LES with liquid fuel injection, fea-
turing the Engine Combustion Network Spray A condition [29] is
utilized. The details of this simulation configuration can be found
in our earlier work [22,24]. A summary of the case setup is given
in Table 2. A cylindrical constant volume domain with dimensions
108x108 mm and a 1 mm base mesh along with a uniform mesh
refinement region of 125 μm enclosing the spray is used. A total of
≈4.5 M cells are decomposed into 256 processes with Scotch de-
composition, resulting with ≈17,000 cells per process. A constant
CFD time step of 2e−7 s is utilized. The same chemical mechanism
used in the reactive shear layer case was also used here. The refer-
ence cell would be chosen as a non-reactive ambient cell with Ztol
= 1e−4 and Ttol = 1 K. Due to the poor performance of the stan-
dard model and our computational limitations, all simulations are
started from a time instance prior to ignition, and simulated for
500 timesteps instead of the full simulation. A schematic demon-
strating a portion of the computational domain is presented in
Fig. 10.

Table 2
Spray case setup details. See [29] for further de-
tails.

ECN Spray A

Injected fuel n-C12H26

Nominal nozzle diameter, D 90 μm
Injection pressure 150 MPa
Temperature 900 K
O2 molar fraction 0.15

Fig. 11 shows the total execution times for the 3 investigated
cases: standard, load balancing and load balancing with reference
mapping. The computational cost of different solver operations is

7

B. Tekgül, P. Peltonen, H. Kahila et al. Computer Physics Communications 267 (2021) 108073

Fig. 10. Schematic of the test case and the computational grid used in spray simulations based on our earlier work [22–24] (left) and an instantaneous representation of the
temperature field during the simulation (right). In left figure, the mixture fraction (Z) field is used for visualization, which gives information about the fuel mass fraction and
spray vapor.

Fig. 11. Speedup for different models. A speed-up by a factor of 2.57 and 9.87 ob-
tained with load balancing and load balancing + reference mapping, respectively.
Data, plotting scripts and figure are available under the CC-BY license [9].

also timed and presented in the figure. It can be observed that
the computational cost of flow equations (momentum, pressure,
energy, and lagrangian) takes up a very small fraction of the to-
tal execution time. In contrast, the chemistry and species transport
equations take up about 90 to 98 % of the total execution time.
A speedup χsu = 2.57 is obtained compared to the standard model
when load balancing is utilized. When the reference mapping is
also utilized, the χsu increases to 9.87. The gain obtained by us-
ing the reference mapping model is higher in this case compared
to the reactive shear layer case presented in Section 4.1 due to
the transient nature of the spray injection. The chemistry is solved
within the spray region which takes up a small percentage of the
total cells at the early stages of the simulation. Utilizing the refer-
ence mapping provides further speedup due to the large number
of idle processes outside of the spray region.

5. Conclusions and future work

A dynamic load balancing and a reference mapping model
named DLBFoam to speed up the parallel reactive CFD simula-
tions in OpenFOAM is presented and investigated. Dynamic load

balancing utilizes MPI routines to send chemistry problems from
processes with higher computational load to ones with less load,
to avoid computational bottlenecks in parallel simulations. In ad-
dition, the reference mapping acts as a filter, where the chemical
source terms of the cells satisfying a given criteria are copied from
a reference solution, instead of direct integration.

A thorough performance analysis of the model has been pre-
sented, showing the balancing efficiency to scale up to a high
number of processes and number of problems per process. Fur-
thermore, the model has been utilized on two reactive cases: a 2D
reactive shear layer and a 3D diesel spray combustion case. Signif-
icant speed-up up to a factor of 10 to 12 has been achieved and
demonstrated when load balancing and reference mapping models
are used together. It is worth noting that the reported speed-up
results are for the particular cases investigated, as well as the
ODE solver tolerances chosen and the chemical mechanism used.
Changing ODE convergence tolerances and using larger/smaller
chemical mechanisms may result in less or more favorable results
in terms of load balancing performance.

In addition to the improvements we have introduced in this
study, there are still certain aspects that can be modified to further
increase the performance of the load balancing model and extend
its compatibility. Two potential improvements are following:

• Improving performance and accuracy of the ODE solvers: Our ex-
perience on state-of-the-art ODE solution algorithms including
analytical Jacobian [6] and problem-type tailored linear algebra
[11,22] is noted to significantly decrease ODE integrator iter-
ations, enhance its robustness and even further increase the
load-balancing efficiency.

• Extension to in-situ tabulation and reduction models: Presently,
the implementation is not compatible with in-situ adaptive
reduction and tabulation model TDAC available in OpenFOAM.
Extending the load balancer to these models will both increase
the load balancing performance and mitigate the performance
issues still present in TDAC due to its processor-based formu-
lation.

Including these features to our open-source library will be investi-
gated in the near future.

8

B. Tekgül, P. Peltonen, H. Kahila et al. Computer Physics Communications 267 (2021) 108073

CRediT authorship contribution statement

Bulut Tekgül: Conceptualization, Methodology, Software, For-
mal analysis, Writing – original draft, Visualization. Petteri Pel-
tonen: Conceptualization, Methodology, Software, Formal analysis,
Writing – original draft, Visualization. Heikki Kahila: Conceptu-
alization, Methodology, Software, Writing – original draft. Ossi
Kaario: Supervision, Writing – review & editing. Ville Vuorinen:
Supervision, Funding acquisition, Writing – review & editing.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.

Acknowledgements

The present study has been financially supported by the
Academy of Finland (grant number 318024). The computational
resources for this study were provided by CSC - Finnish IT Center
for Science. The first author has been financially supported by the
Merenkulun Säätiö.

Appendix A. Reference mapping model validation

The purpose of this appendix is to quantify the error introduced
by the reference mapping model. The error introduced by using
the reference mapping model is illustrated in Fig. A.1. The figure
shows the mean absolute percentage error of the volume integral
of the heat release rate over all time instances relative to the re-
sults obtained with the standard chemistry model in OpenFOAM.
The results are obtained from the reactive shear layer case in Sec-
tion 4.1 with different process counts. Ztol = 1e−2, 1e−4, 1e−6 and
Ttol = 1 K values are used as model tolerance. When the load bal-
ancing algorithm is used without mapping, identical results to the
standard model are obtained for all process counts as expected.
When the reference mapping is used, initially a large deviation
around 10% is observed for Ztol = 1e−2. With tighter tolerances,
we observe this error to drop below 2% and converge between
Ztol = 1e−4 to 1e−6. This observation is consistent with our ear-
lier studies, in which a Ztol = 1e−4 value is successfully used to

Fig. A.1. The absolute percentage error of volume integrated heat release rate av-
eraged over all time steps for different process counts. Data, plotting scripts and
figure are available under the CC-BY license [9].

Fig. A.2. Volume integrated heat release rate for Np = 64, using load balanced +
reference mapped (with Ztol = 1e−4), load balanced and standard models. Data,
plotting scripts and figure are available under the CC-BY license [9].

model various spray combustion phenomenon [22–24]. The devia-
tion from the standard model depends on the process count due
to the process-local nature of the reference mapping. A video ani-
mation demonstrating how the reference mapping operates during
the simulation is provided in the supplementary materials of the
paper.

The evolution of the volume integrated heat release rate is
given in Fig. A.2. As seen, the reference mapping shows a very
good match with the non-mapped models for the presented sim-
ulation data. It is important to note that the error due to the
reference mapping may accumulate over time depending on the
model tolerance values used. Although the performance gain when
using the reference mapping is significant compared to the in-
troduced error, for applications that require very high accuracy, a
careful model tolerance analysis is recommended.

Appendix B. Computational overhead

This appendix quantifies the computational overhead intro-
duced by the load balancing algorithm. As described in Sec-
tion 2.2, the dynamic load balancing algorithm consists of 4 differ-
ent stages: 1) preprocessing stage, 2) balancing stage, 3) solution
stage, and 4) update stage. Among those, stages 1,2 and 4 can be
considered in computational overhead context. Although we have
noted the overhead to be insignificant compared to the solution
time, here we quantify the overhead for the three dimensional re-
acting diesel spray benchmark case we utilized at the end of the
paper.

Fig. B.1 shows the CPU time spent on solving the chemistry
and the percentage of computational overhead with respect to the
chemistry CPU time for 100 CFD iterations. Following the case
setup described in Section 4.2, the domain is decomposed into
256 processors. It should be noted that the idling time associated
with the explicit barrier at the end of the stage 4 is not counted
towards computational overhead. It can be seen that the compu-
tational overhead associated with load balancing is less than 1%
of the total chemistry solution CPU time. While the overhead may
increase by increasing the cells per process or the size of the uti-
lized chemical mechanism, we note that it is insignificant for cases
and mechanisms of relevant size to reactive CFD applications. We
note that Fig. B.1 shows outlier processors, i.e., processors with
slightly higher load than the mean value after balancing. Based
on our experience, this behavior is due to 1) transient nature of
the process-based load value due to local chemistry stiffness, and
2) possible hardware and parallel communication issues that are
briefly mentioned in Section 3. These aspects exist in any reactive

9

B. Tekgül, P. Peltonen, H. Kahila et al. Computer Physics Communications 267 (2021) 108073

Fig. B.1. Chemistry solution CPU time and corresponding computational overhead
percentage related to dynamic load balancing for each process. The solid colored
lines represent the CPU time of each processor, while the black dashed line repre-
sents their arithmetic mean. The computational overhead accounts for less than 1%
of the chemistry solution time. Data, plotting scripts and figure are available under
the CC-BY license [9].

CFD simulation running on any hardware architecture, and are not
caused by the balancing algorithm.

Appendix C. Supplementary material

All the analysis in this paper is performed using the DLB-
Foam. DLBFoam is open-source and publicly available at https://
github .com /blttkgl /DLBFoam. The repository contains instructions
for compilation and tutorials. The simulation data, plotting scripts,
and the figures featured in this paper are available as supplemen-
tary material under the CC-BY license [9].

References

[1] T. Poinsot, D. Veynante, Theoretical and Numerical Combustion, Edwards, 2001.
[2] N. Peters, Turbulent Combustion, No. 11, Cambridge University Press, Cam-

bridge, 2000.

[3] J. Muela, R. Borrell, J. Ventosa-Molina, L. Jofre, O. Lehmkuhl, C.D. Pérez-Segarra,
Comput. Fluids 190 (2019) 308–321, https://doi .org /10 .1016 /j .compfluid .2019 .
06 .018.

[4] C.K. Law, Combustion Physics (Google eBook), Cambridge University Press,
Cambridge, 2006.

[5] R.L. Speth, W.H. Green, S. MacNamara, G. Strang, SIAM J. Numer. Anal. 51 (6)
(2013) 3084–3105, https://doi .org /10 .1137 /120878641.

[6] K.E. Niemeyer, N.J. Curtis, C.J. Sung, Comput. Phys. Commun. 215 (2017)
188–203, https://doi .org /10 .1016 /j .cpc .2017.02 .004.

[7] E. Hairer, G. Wanner, Solving Ordinary Differential Equations. II, Springer-
Verlag, 1996.

[8] C.P. Stone, A.T. Alferman, K.E. Niemeyer, Comput. Phys. Commun. 226 (2018)
18–29, https://doi .org /10 .1016 /j .cpc .2018 .01.015.

[9] B. Tekgül, P. Peltonen, H. Kahila, O. Kaario, V. Vuorinen, Supplementary material
for “DLBFoam: an open-source dynamic load balancing model for fast reacting
flow simulations in OpenFOAM”, https://doi .org /10 .6084 /m9 .figshare .14143931,
Mar 2021.

[10] N. Curtis, Accelerating Reactive-Flow Simulations via Vectorized Chemical Ki-
netic Evaluation, Doctoral Dissertations, Jan 2019.

[11] A. Imren, D.C. Haworth, Combust. Flame 174 (2016) 1–15, https://doi .org /10 .
1016 /j .combustflame .2016 .09 .018.

[12] S. Pope, Combust. Theory Model. 1 (1) (1997) 41–63, https://doi .org /10 .1080 /
713665229.

[13] Z. Ren, Y. Liu, T. Lu, L. Lu, O.O. Oluwole, G.M. Goldin, Combust. Flame 161 (1)
(2014) 127–137, https://doi .org /10 .1016 /J .COMBUSTFLAME .2013 .08 .018.

[14] T. Lu, C.K. Law, C.S. Yoo, J.H. Chen, Combust. Flame 156 (8) (2009) 1542–1551,
https://doi .org /10 .1016 /j .combustflame .2009 .02 .013.

[15] F. Contino, H. Jeanmart, T. Lucchini, G. D’Errico, Proc. Combust. Inst. 33 (2)
(2011) 3057–3064, https://doi .org /10 .1016 /j .proci .2010 .08 .002.

[16] H. Turkeri, X. Zhao, S.B. Pope, M. Muradoglu, Combust. Flame 199 (2019)
24–45, https://doi .org /10 .1016 /j .combustflame .2018 .10 .018.

[17] A. Cuoci, A. Frassoldati, T. Faravelli, E. Ranzi, Energy Fuels 27 (12) (2013)
7730–7753, https://doi .org /10 .1021 /ef4016334.

[18] L. Antonelli, P. D’Ambra, in: Proceedings - 19th International Euromicro Confer-
ence on Parallel, Distributed, and Network-Based Processing, PDP 2011, 2011,
pp. 133–140.

[19] J. Kodavasal, K. Harms, P. Srivastava, S. Som, S. Quan, K. Richards, M. Gar-
cía, J. Energy Resour. Technol. 138 (5) (2016) 052203, https://doi .org /10 .1115 /
1.4032623.

[20] Y. Shi, W.H. Green, H.W. Wong, O.O. Oluwole, Combust. Flame 159 (7) (2012)
2388–2397, https://doi .org /10 .1016 /j .combustflame .2012 .02 .016.

[21] H.G. Weller, G. Tabor, H. Jasak, C. Fureby, Comput. Phys. 12 (6) (1998) 620,
https://doi .org /10 .1063 /1.168744.

[22] H. Kahila, A. Wehrfritz, O. Kaario, V. Vuorinen, Combust. Flame 199 (2019)
131–151, https://doi .org /10 .1016 /j .combustflame .2018 .10 .014.

[23] H. Kahila, O. Kaario, Z. Ahmad, M. Ghaderi Masouleh, B. Tekgül, M. Larmi,
V. Vuorinen, Combust. Flame 206 (2019) 506–521, https://doi .org /10 .1016 /J .
COMBUSTFLAME .2019 .05 .025.

[24] B. Tekgul, H. Kahila, O. Kaario, V. Vuorinen, Combust. Flame 215 (2020) 51–65,
https://doi .org /10 .1016 /j .combustflame .2020 .01.017.

[25] M. Raju, M. Wang, M. Dai, W. Piggott, D. Flowers, in: SAE 2012 World Congress
& Exhibition, SAE International, 2012.

[26] R. Bilger, S. Stårner, R. Kee, Combust. Flame 80 (2) (1990) 135–149, https://
doi .org /10 .1016 /0010 -2180(90)90122 -8.

[27] Mahti supercomputer technical specifications https://research .csc .fi /techspecs.
(Accessed 10 September 2020).

[28] T. Yao, Y. Pei, B.J. Zhong, S. Som, T. Lu, K.H. Luo, Fuel 191 (2017) 339–349,
https://doi .org /10 .1016 /j .fuel .2016 .11.083.

[29] Engine combustion network, combustion research facility, Sandia National Lab-
oratories, Livermore, CA, https://ecn .sandia .gov.

10

https://github.com/blttkgl/DLBFoam
https://github.com/blttkgl/DLBFoam
http://refhub.elsevier.com/S0010-4655(21)00185-5/bibC5E349E74629E37C240F4F120A804A74s1
http://refhub.elsevier.com/S0010-4655(21)00185-5/bib6FFE6101D8E982E52B66144B1A8B155Es1
http://refhub.elsevier.com/S0010-4655(21)00185-5/bib6FFE6101D8E982E52B66144B1A8B155Es1
https://doi.org/10.1016/j.compfluid.2019.06.018
https://doi.org/10.1016/j.compfluid.2019.06.018
http://refhub.elsevier.com/S0010-4655(21)00185-5/bib4DCAD6730372F9140B39B90D08E594A1s1
http://refhub.elsevier.com/S0010-4655(21)00185-5/bib4DCAD6730372F9140B39B90D08E594A1s1
https://doi.org/10.1137/120878641
https://doi.org/10.1016/j.cpc.2017.02.004
http://refhub.elsevier.com/S0010-4655(21)00185-5/bibE83B5EB319A44B1949A1052487797F07s1
http://refhub.elsevier.com/S0010-4655(21)00185-5/bibE83B5EB319A44B1949A1052487797F07s1
https://doi.org/10.1016/j.cpc.2018.01.015
https://doi.org/10.6084/m9.figshare.14143931
http://refhub.elsevier.com/S0010-4655(21)00185-5/bibADB2F73E581ABE1E9B4233B7095E4765s1
http://refhub.elsevier.com/S0010-4655(21)00185-5/bibADB2F73E581ABE1E9B4233B7095E4765s1
https://doi.org/10.1016/j.combustflame.2016.09.018
https://doi.org/10.1016/j.combustflame.2016.09.018
https://doi.org/10.1080/713665229
https://doi.org/10.1080/713665229
https://doi.org/10.1016/J.COMBUSTFLAME.2013.08.018
https://doi.org/10.1016/j.combustflame.2009.02.013
https://doi.org/10.1016/j.proci.2010.08.002
https://doi.org/10.1016/j.combustflame.2018.10.018
https://doi.org/10.1021/ef4016334
http://refhub.elsevier.com/S0010-4655(21)00185-5/bibBDE03771A84A200876B4BD6C85CC10D9s1
http://refhub.elsevier.com/S0010-4655(21)00185-5/bibBDE03771A84A200876B4BD6C85CC10D9s1
http://refhub.elsevier.com/S0010-4655(21)00185-5/bibBDE03771A84A200876B4BD6C85CC10D9s1
https://doi.org/10.1115/1.4032623
https://doi.org/10.1115/1.4032623
https://doi.org/10.1016/j.combustflame.2012.02.016
https://doi.org/10.1063/1.168744
https://doi.org/10.1016/j.combustflame.2018.10.014
https://doi.org/10.1016/J.COMBUSTFLAME.2019.05.025
https://doi.org/10.1016/J.COMBUSTFLAME.2019.05.025
https://doi.org/10.1016/j.combustflame.2020.01.017
http://refhub.elsevier.com/S0010-4655(21)00185-5/bib24C58215A36762B8C6C1A36C8BFA66E4s1
http://refhub.elsevier.com/S0010-4655(21)00185-5/bib24C58215A36762B8C6C1A36C8BFA66E4s1
https://doi.org/10.1016/0010-2180(90)90122-8
https://doi.org/10.1016/0010-2180(90)90122-8
https://research.csc.fi/techspecs
https://doi.org/10.1016/j.fuel.2016.11.083
https://ecn.sandia.gov

