
This is an electronic reprint of the original article.
This reprint may differ from the original in pagination and typographic detail.

Powered by TCPDF (www.tcpdf.org)

This material is protected by copyright and other intellectual property rights, and duplication or sale of all or 
part of any of the repository collections is not permitted, except that material may be duplicated by you for 
your research use or educational purposes in electronic or print form. You must obtain permission for any 
other use. Electronic or print copies may not be offered, whether for sale or otherwise to anyone who is not 
an authorised user.

Blanco-Mulero, David; Heinonen, Markus; Kyrki, Ville
Evolving-Graph Gaussian Processes

Published: 01/07/2021

Document Version
Peer-reviewed accepted author manuscript, also known as Final accepted manuscript or Post-print

Please cite the original version:
Blanco-Mulero, D., Heinonen, M., & Kyrki, V. (2021). Evolving-Graph Gaussian Processes. Paper presented at
International Conference on Machine Learning: Time Series Workshop, Virtual, Online.
https://arxiv.org/abs/2106.15127

https://arxiv.org/abs/2106.15127


Evolving-Graph Gaussian Processes

David Blanco-Mulero 1 Markus Heinonen 2 Ville Kyrki 1

Abstract
Graph Gaussian Processes (GGPs) provide a data-
efficient solution on graph structured domains.
Existing approaches have focused on static struc-
tures, whereas many real graph data represent a
dynamic structure, limiting the applications of
GGPs. To overcome this we propose evolving-
Graph Gaussian Processes (e-GGPs). The pro-
posed method is capable of learning the transition
function of graph vertices over time with a neigh-
bourhood kernel to model the connectivity and
interaction changes between vertices. We assess
the performance of our method on time-series re-
gression problems where graphs evolve over time.
We demonstrate the benefits of e-GGPs over static
graph Gaussian Process approaches.

1. Introduction
Dynamic graphs provide rich representations for tempo-
ral structured data to model evolving relationships in the
data. Structured data is often dynamic, such as human inter-
actions (Casteigts et al., 2012), social networks (Trivedi
et al., 2019) or brain interactions (Ofori-Boateng et al.,
2020). These structures have been studied as dynamic
graphs, time-varying structures (Le Bars et al., 2020), and
evolving graphs (Bui-Xuan et al., 2002). However, the pre-
dominant methods for estimating dynamic graph evolution
fail to account for model uncertainty (Sanchez-Gonzalez
et al., 2018; Li et al., 2019; Zhu et al., 2019). This un-
certainty can be crucial in dynamic systems where safety
constraints are required (Hewing et al., 2020).

A natural choice to quantify uncertainty of a model are Gaus-
sian processes (GPs) (Williams & Rasmussen, 2006). Pio-
neering attempts of applying Gaussian processes to model
dynamics estimate autoregressive temporal transition func-
tions with GPs in the Euclidean domain (Wang et al., 2005;

1School of Electrical Engineering, Aalto University, Espoo,
Finland 2Department of Computer Science, Aalto University,
Espoo, Finland. Correspondence to: David Blanco-Mulero
<david.blancomulero@aalto.fi>.

Time Series Workshop at 38 th International Conference on Ma-
chine Learning, 2021. Copyright 2021 by the author(s).

xi

Figure 1: Evolving graph where the neighbourhood of the
vertex vi changes and the transition is modelled by an
evolving-Graph Gaussian Process (e-GGP).

Mattos et al., 2015). More recently, GPs have been applied
to problems on graph-structured domains (graph GPs), such
as signal processing over graphs (Walker & Glocker, 2019;
Venkitaraman et al., 2020; Li et al., 2020) or link prediction
(Opolka & Liò, 2020). Some of these works decompose
the structured domain through graph convolutions (Walker
& Glocker, 2019; Opolka & Liò, 2020) but their output is
limited to the Euclidean domain. Others, provide an output
in the graph-domain (Venkitaraman et al., 2020; Zhi et al.,
2020) but are restricted to a vectorial input. To our knowl-
edge, no Gaussian process models have been proposed to
model temporal evolution of graph structures.

We present an autoregressive GP model that learns the tran-
sition function of vertices f : v 7→ v̇ on the graph domain
G, which we call the evolving-Graph Gaussian Process
(e-GGP), see Figure 1. We define a graph kernel that con-
siders the neighbourhoods and attributes of the graph. We
investigate the capability of our method to learn the graph
evolution in simulated physical dynamical systems, where
a measure of the simulation uncertainty can be required.
Our results showcase the ability of e-GGP to learn accurate
graph dynamics, and extrapolate the dynamics to graphs
with unseen structures at test time.

2. Background
Graph-based Gaussian processes. There is a rich lit-
erature of different configurations of Gaussian processes



Evolving-Graph Gaussian Processes

over graph domains. As previously mentioned, we can
distinguish between two configurations. The first, maps
from a vectorial input to an output in the graph domain
f : RD → G (Venkitaraman et al., 2020; Zhi et al., 2020).
The second, takes an input graph and maps it to the Eu-
clidean domain f : G → R (Ng et al., 2018; Walker &
Glocker, 2019; Opolka & Liò, 2020; Borovitskiy et al.,
2020). For a more thorough overview of graph GP methods
see Supplementary Material Section A.1. These methods
consider a fixed adjacency matrix of the graph input, or use
convolution operations (van der Wilk et al., 2017), which
narrows their input to a static graph structure.

Gaussian processes for time-series. The Gaussian pro-
cess dynamical model (GPDM) models autoregressive
Markov transitions of discrete-time random states with a
Gaussian process (Wang et al., 2005). In latent modelling a
Gaussian process interpolates the object trajectories in latent
space (Damianou et al., 2011). More generally these models
fall under recurrent Gaussian processes (Mattos et al., 2015).
The GPAR extends multi-output Gaussian processes to time-
series (Requeima et al., 2019). These models are limited
to vector-valued inputs, and do not support non-Euclidean
inputs.

The most relevant prior work to our aims is the deep Graph
Gaussian process (DGPG) (Li et al., 2020), where the graph
structure is auto-regressed before applying a conventional
classification or regression step. However, their approach is
limited to a fixed graph structure.

3. Evolving Graphs using Gaussian Processes
We consider a temporally evolving, or dynamic, undirected
graph Gt = 〈Vt, Et〉, where Vt is the set of vertices and
Et ⊂ Vt × Vt is the set of edges at discrete timepoints
t ∈ N of the graph time-series G = {G0, . . . , GN}. For
notation simplicity we consider the number of vertices in
each graph to be the same |Vt| = M .

The vertices vt ∈ V reside in a D-dimensional space. For
our objective of learning physics simulations, a vertex at
time t is represented as vt := (xt,∆xt−1, φ(vt)) over the
Cartesian coordinates x, and static attributes φ(v), which
describe node properties or types. We assume that edges
are a function of vertices and that the vertices-to-edges
function g : 2V → E is defined by a distance function
d(vi,vj). We adopt the L2-norm distance between the
vertices Cartesian coordinates. Therefore, an edge exists if
the distance between two nodes is lower than a connectivity
threshold Rnn, see Supplementary Material Section B.

We assume the graph dynamics are governed by

Gt+1 = T (Gt) (1)

driven by the graph transition function T : G→ G, where

the graph transition is defined by a transition function of
node attributes Vt+1 = T (Vt) and the edges are given by the
nodes-to-edge function. Our goal is to learn the evolution
function T . Hence, we opt to model and learn the node
evolution in the discrete timestep ∆t by:

vt+1 = vt + f(N0,1(vt))︸ ︷︷ ︸
∆vt

, (2)

with a velocity function f : s(G)→ RF mapping a sub-tree
s(G) into coordinate velocities RF . The sub-tree N0,1(vt)
consists of a node vt, orN0(vt), and its neighboursN1(vt).
To simplify the notation in the following, we will use f(vt)
to denote the mapping. This formulation allows us to handle
node insertion and deletion.

3.1. Prior and likelihood

We model the velocity transitions with a vector-valued Gaus-
sian process (GP) prior (Williams & Rasmussen, 2006; Al-
varez et al., 2012)

f(v) ∼ GP(m(v),K(N0,1(v), N0,1(v′))), (3)

which implies that the transition is a stochastic process,
whose mean and covariance are parameterised by the mean
function m(·) and the kernel similarity K(·, ·) as

E[f(v)] = m(v), (4)

cov[f(v), f(v′)] = K(N0,1(v), N0,1(v′)). (5)

For tractability, we assume different velocity predictions are
independent, however sharing the same kernel, which sim-
plifies the kernel into a scalar function. Furthermore, for any
subset of nodes v1, . . . ,vM the corresponding transitions
are jointly Gaussian

p(∆v1, . . . ,∆vM ) = N (∆~v| ~m,K), (6)

where ∆~v ∈ RMF and ~m ∈ RMF stack all vertices and
means to column vectors, and K ∈ RMF×MF is the block
kernel matrix consisting of M ×M blocks K(vi,vj) of
size F × F . The key property of Gaussian processes is that
similar nodes have similar transitions, as specified by the
similarity function K.

We assume a dataset

D =
{

(vt,i,∆vt,i)
}N,M

t=1,i=1
(7)

of observed graph states Gt that are described in terms of
the M vertices at N timepoints. Our observation model
induces a likelihood

p(D|f) =

N∏
t=1

N (vt,i|f ,Σ) , (8)

where f is the estimated node evolution following equa-
tion (2), and Σ ∈ RF×F represents the numerical variance
required for numerical stability.



Evolving-Graph Gaussian Processes

3.2. Posterior

The predictive posterior distribution of our Gaussian pro-
cess model is conveniently tractable under the Gaussian
likelihood model (8) as (Williams & Rasmussen, 2006)

p(f∗|D) = N (f∗|µ∗,Σ∗), (9)

µ∗ = K∗(K + Σ)−1∆~v, (10)

Σ∗ = K∗∗ −K∗(K + Σ)−1KT
∗ , (11)

where K ∈ RNMF×NMF , K∗ ∈ RN∗MF×NMF and
K∗∗ ∈ RN∗MF×N∗MF for a test set consisting of N∗
graphs with M nodes. The posterior effectively interpo-
lates the velocity predictions from the observed velocities
of the training graphs.

3.3. Kernel between attributed sub-trees

We now define a kernel that can measure the similarity be-
tween vertices and their transitions. We propose to use a
kernel on the graph that measures the similarity between at-
tributed sub-trees s(G),K : s(G)×s(G)→ R. For simplic-
ity, we refer to the kernel as K(vi,vj). The kernel requires
the attributed vertices to be in the same space. Therefore,
we define a vertex mapping function ϕv which maps the
attributed vertex to an Euclidean-space ϕv : RD 7→ RE . In
our case, ϕv discards the static attributes of the vertices.

The kernel input sub-trees are rooted at the vertices vi and
vj with 1-hop neighbourhood. We measure the similarity
between the attributed roots using the root kernel kr : RE ×
RE → R. In order to share information with the root and
compare the structures, we compute a kernel between all
the attributed leaves in the neighbourhood N1

i = N1(vi).
The similarity between the leaves is measured by the leaf
kernel kl : RE × RE → R. Both the root and the leaf
kernel operations are performed in the mapped space RE .
We express the neighbourhood kernel knn(vi,vj) as

knn(vi,vj) =
1

L

∑
xi∈N1

i

∑
xj∈N1

j

kl(ϕv(xi), ϕv(xj)), (12)

where L is a normalisation constant that denotes the product
between the number of leaves in N1

i and N1
j . Then, the

kernel between two attributed vertices is defined by

K(vi,vj) = kr(ϕv(vi), ϕv(vj)) + knn(vi,vj). (13)

We restrict the kernel to the 1-hop neighbourhood for scala-
bility and plan to investigate the effect of the neighbourhood
in future work.

(a) (b)

Figure 2: Physics simulations: (a) graph interaction envi-
ronment in MuJoCo simulation and 2-D approximation, (b)
evolving isolated sub-graphs environment, showing graphs
connectivity for different timepoints t.

4. Experimental results
4.1. Experiments description

We evaluate the performance of e-GGPs to learn the node
transition function ∆vt = f(vt) in two physics simulations
where graphs evolve over time: 1) graph interaction (GI)
environment, and 2) evolving isolated sub-graphs (EIs) en-
vironment. The GI environment simulates a rope on free
fall that gets in contact with a static ball using MuJoCo
(Todorov et al., 2012). The EIs environment simulates a set
of 2D fluid particles using Taichi (Hu et al., 2018). Both
simulations are represented in 2-D, where the joints of the
rope, the static ball and the particles define the set of nodes
pt = vt ∈ V , see Figure 2. Thus, the experiments consist
of multiple sub-graphs where connectivity varies over time.

The purpose our experiments is twofold: (i) investigate the
capability of the methods to address the varying connectivity
and (ii) validate that e-GGP can learn the evolution of the
graph by capturing the interaction changes between vertices.

4.2. Baselines and training details

We consider three Gaussian process methods as baselines:
GP regression (GPR) using exact inference, GPAR and
DGPG. The first two baselines are GP functions that model
transition functions in the Euclidean domain. We use base-
lines in the Euclidean domain to demonstrate the potential
of graph-structured information compared to approaches
restricted to a vector-valued input. For these we take the
vertices attributes vector V as input. Then, we learn a map-
ping f : RD → RF . The mapping of DGPG is defined as
f : G→ RF . Since DGPG does not handle node insertions
we assume the adjacency matrix to be equal to the initial
state graph adjacency for any given timepoint At = A0.



Evolving-Graph Gaussian Processes

Table 1: Average results of GPR, GPAR, DGPG and e-GGP on test sets (lower is better) for different training data sizes N .

Graph interaction Evolving isolated sub-graphs

N Metric GPR GPAR DGPG e-GGP GPR GPAR DGPG e-GGP

10
RMSE 0.121 0.143 0.413 0.049 0.294 0.283 0.337 0.182
MAPE 0.418 0.537 2.456 0.249 0.873 0.726 2.696 0.777
NLL 67.63 -9.16 9.51 10.44 43.37 -47.942 22.24 -58.042

15
RMSE 0.149 0.209 0.275 0.031 0.276 0.277 0.325 0.183
MAPE 0.410 0.397 1.873 0.230 0.671 0.671 3.135 0.853
NLL 102.49 -7.67 2.20 -17.56 103.82 -46.764 20.12 -78.58

20
RMSE 0.162 0.250 0.222 0.036 0.257 0.253 0.300 0.160
MAPE 0.426 0.466 1.455 0.148 0.612 0.594 2.998 0.766
NLL 126.97 -6.84 -2.18 -29.69 4.17E6 -48.52 9.731 8.77E5

The kernel hyper-parameters are trained using automatic
relevance determination (ARD) and optimised by minimis-
ing the negative marginal log-likelihood (MLL) (Williams
& Rasmussen, 2006). For all the methods we used as opti-
mizer Adam (Kingma & Ba, 2015). We use a Radial Basis
Function kernel for the root and leaf kernels kr and kl in
e-GGP and GPR. In DGGP we use the Matérn32 kernel and
Z = 5 inducing points. For more details about the training
see Supplementary Material Section B.

4.3. Results

We investigate the error of the node evolution predictions. In
order to evaluate the methods ability to capture the evolving
graph information we limit the amount of data provided in
training. We select the most informative training points as
described in Supplementary Material Section B. To evaluate
the prediction performance and confidence we measure the
root mean squared error (RMSE), mean absolute percentage
error (MAPE) and negative log-likelihood (NLL). The test
datasets on the GI environment include an offset between
the rope and the static ball from the training data to evaluate
the generalisation capabilities of the methods. We provide
additional results in Supplementary Material Section C.

The results for the GI environment on Table 1 show that
e-GGP outperforms the baselines when data is scarce. The
different orders of magnitude in the RMSE provide evidence
that the method we propose benefits of the evolving graph-
structured information captured by the kernel. These results
also provide evidence that e-GGP can generalise better to
unseen data under limited training samples. Furthermore,
e-GGP presents low RMSE for the EIs environment, which
shows that the model can generalise to unseen sub-graph
structures, i.e. sub-graphs that have not been seen during
training. When increasing the sample size to N = 20 the
confidence drops while keeping low RMSE and MAPE. This

suggests that the model is not able to provide a confident
estimate under sparse data, which will be investigated in the
future. The DGPG method is limited to a fixed graph size
and cannot handle node insertions, which is shown by the
higher error results.

In summary, the results provide evidence that: (i) e-GGP can
predict the node evolution under varying connectivity, and
(ii) learning the interactions between the evolving vertices is
beneficial as e-GGP outperforms the baselines in the limited
data setting.

5. Conclusion
In this paper we proposed evolving-Graph Gaussian Pro-
cesses (e-GGPs), an autoregressive graph-GP model that
learns the evolving structure of dynamic graphs via the node
transitions. Our model is able to learn the node transitions as
well as the interactions of the structure via an attributed sub-
tree kernel that incorporates information from each node’s
neighbourhood. The experimental results demonstrate that
our model is able to capture evolving graph connectivity,
overcoming this limitation of current methods. We provide
evidence of the importance of capturing the dynamic con-
nectivity and investigated the performance of our method
in scarce data. Our experiments showed that e-GGP outper-
forms other approaches by making use of the rich informa-
tion in the evolving graph-domain.

Our model opens GPs to dynamic graphs which is of great
interest in real graph problems. However, our model suf-
fers from poor scalability, which we plan to investigate via
variational inference. We also plan to study the application
of e-GGP to real problems that require both data-efficiency
and uncertainty, such as dynamic systems with safety con-
straints, where other approaches such as neural networks
are limited.



Evolving-Graph Gaussian Processes

Acknowledgements
This work was supported by the Academy of Finland, deci-
sion 317020.

References
Alvarez, M. A., Rosasco, L., and Lawrence, N. D. Kernels

for vector-valued functions: a review, 2012.

Borovitskiy, V., Azangulov, I., Terenin, A., Mostowsky, P.,
Deisenroth, M. P., and Durrande, N. Matern Gaussian
Processes on Graphs. arXiv:2010.15538 [cs, stat], Octo-
ber 2020. arXiv: 2010.15538.

Bui-Xuan, B.-M., Ferreira, A., and Jarry, A. Computing
shortest, fastest, and foremost journeys in dynamic net-
works. Technical Report RR-4589, INRIA, October 2002.

Casteigts, A., Flocchini, P., Quattrociocchi, W., and Santoro,
N. Time-varying graphs and dynamic networks. Inter-
national Journal of Parallel, Emergent and Distributed
Systems, 27(5):387–408, 2012.

Damianou, A., Titsias, M., and Lawrence, N. Variational
gaussian process dynamical systems. In Shawe-Taylor,
J., Zemel, R., Bartlett, P., Pereira, F., and Weinberger,
K. Q. (eds.), Advances in Neural Information Processing
Systems, volume 24. Curran Associates, Inc., 2011.

Gardner, J., Pleiss, G., Weinberger, K. Q., Bindel, D., and
Wilson, A. G. Gpytorch: Blackbox matrix-matrix gaus-
sian process inference with gpu acceleration. In Ben-
gio, S., Wallach, H., Larochelle, H., Grauman, K., Cesa-
Bianchi, N., and Garnett, R. (eds.), Advances in Neural
Information Processing Systems, volume 31, pp. 7576–
7586. Curran Associates, Inc., 2018.

Hewing, L., Kabzan, J., and Zeilinger, M. N. Cautious
model predictive control using gaussian process regres-
sion. IEEE Transactions on Control Systems Technology,
28(6):2736–2743, 2020.

Hu, Y., Fang, Y., Ge, Z., Qu, Z., Zhu, Y., Pradhana, A., and
Jiang, C. A moving least squares material point method
with displacement discontinuity and two-way rigid body
coupling. ACM Transactions on Graphics (TOG), 37(4):
150, 2018.

Kingma, D. P. and Ba, J. Adam: A method for stochastic
optimization. In Bengio, Y. and LeCun, Y. (eds.), Pro-
ceedings of the 3rd International Conference on Learning
Representations (ICLR 2015), San Diego, CA, USA, May
7-9, 2015, Conference Track Proceedings, 2015.

Le Bars, B., Humbert, P., Kalogeratos, A., and Vayatis,
N. Learning the piece-wise constant graph structure of
a varying ising model. In International Conference on
Machine Learning, pp. 675–684. PMLR, 2020.

Li, N., Li, W., Sun, J., Gao, Y., Jiang, Y., and Xia, S.-T.
Stochastic deep gaussian processes over graphs. Ad-
vances in Neural Information Processing Systems, 33,
2020.

Li, Y., Wu, J., Tedrake, R., Tenenbaum, J. B., and Torralba,
A. Learning particle dynamics for manipulating rigid bod-
ies, deformable objects, and fluids. In 7th International
Conference on Learning Representations, ICLR 2019,
New Orleans, LA, USA, May 6-9, 2019. OpenReview.net,
2019.

Mattos, C. L. C., Dai, Z., Damianou, A., Forth, J., Barreto,
G. A., and Lawrence, N. D. Recurrent gaussian processes.
arXiv preprint arXiv:1511.06644, 2015.

Ng, Y. C., Colombo, N., and Silva, R. Bayesian semi-
supervised learning with graph gaussian processes. In
Bengio, S., Wallach, H., Larochelle, H., Grauman, K.,
Cesa-Bianchi, N., and Garnett, R. (eds.), Advances in
Neural Information Processing Systems, volume 31, pp.
1683–1694. Curran Associates, Inc., 2018.

Ofori-Boateng, D., R.Gel, Y., and Cribben, I. Nonparametric
anomaly detection on time series of graphs. 2020. doi:
10.1101/2019.12.15.876730.

Opolka, F. L. and Liò, P. Graph Convolutional Gaussian
Processes For Link Prediction. In Workshop on Graph
Representation Learning and Beyond (GRL+), 2020.

Requeima, J., Tebbutt, W., Bruinsma, W., and Turner, R. E.
The gaussian process autoregressive regression model
(gpar). In AISTATS, pp. 1860–1869, 2019.

Sanchez-Gonzalez, A., Heess, N., Springenberg, J. T.,
Merel, J., Riedmiller, M., Hadsell, R., and Battaglia,
P. Graph networks as learnable physics engines for in-
ference and control. In Dy, J. and Krause, A. (eds.),
Proceedings of the 35th International Conference on Ma-
chine Learning, volume 80 of Proceedings of Machine
Learning Research, pp. 4470–4479, Stockholmsmässan,
Stockholm Sweden, 10–15 Jul 2018. PMLR.

Todorov, E., Erez, T., and Tassa, Y. Mujoco: A physics
engine for model-based control. In 2012 IEEE/RSJ Inter-
national Conference on Intelligent Robots and Systems,
pp. 5026–5033, 2012. doi: 10.1109/IROS.2012.6386109.

Trivedi, R., Farajtabar, M., Biswal, P., and Zha, H. Dyrep:
Learning representations over dynamic graphs. In Inter-
national Conference on Learning Representations, 2019.

van der Wilk, M., Rasmussen, C. E., and Hensman, J. Con-
volutional gaussian processes. In Guyon, I., Luxburg,
U. V., Bengio, S., Wallach, H., Fergus, R., Vishwanathan,
S., and Garnett, R. (eds.), Advances in Neural Information
Processing Systems, volume 30, pp. 2849–2858. Curran
Associates, Inc., 2017.



Evolving-Graph Gaussian Processes

Venkitaraman, A., Chatterjee, S., and Handel, P. Gaussian
processes over graphs. In ICASSP 2020 - 2020 IEEE
International Conference on Acoustics, Speech and Sig-
nal Processing (ICASSP), pp. 5640–5644, 2020. doi:
10.1109/ICASSP40776.2020.9053859.

Walker, I. and Glocker, B. Graph convolutional Gaussian
processes. In Chaudhuri, K. and Salakhutdinov, R. (eds.),
Proceedings of the 36th International Conference on Ma-
chine Learning, volume 97 of Proceedings of Machine
Learning Research, pp. 6495–6504. PMLR, 09–15 Jun
2019.

Wang, J. M., Fleet, D. J., and Hertzmann, A. Gaussian
process dynamical models. In NIPS, volume 18, pp. 3.
Citeseer, 2005.

Williams, C. K. and Rasmussen, C. E. Gaussian processes
for machine learning, volume 2. MIT press Cambridge,
MA, 2006.

Zhi, Y.-C., Ng, Y. C., and Dong, X. Gaussian Processes on
Graphs via Spectral Kernel Learning. arXiv:2006.07361
[cs, eess, stat], October 2020. arXiv: 2006.07361.

Zhu, C., Storandt, S., Lam, K.-Y., Han, S., and Bi, J. Im-
proved dynamic graph learning through fault-tolerant
sparsification. In Chaudhuri, K. and Salakhutdinov, R.
(eds.), Proceedings of the 36th International Conference
on Machine Learning, volume 97 of Proceedings of Ma-
chine Learning Research, pp. 7624–7633. PMLR, 09–15
Jun 2019.



Supplementary Material: Evolving Graph Gaussian Processes

A. Analysis of e-GGP
A.1. Overview of graph Gaussian processes

There is a rich literature of different configurations of Gaussian processes over graph domains. Graph-output Gaussian
processes consider functions f : RD → G, where the |V| outputs have dependencies according to an underlying output
graph (Venkitaraman et al., 2020; Zhi et al., 2020). In semi-supervised Gaussian processes a graph relationship between
inputs is assumed to propagate label information within the graph from labelled to unlabelled inputs (Ng et al., 2018).
Borovitskiy et al. (2020) adapts Matérn Gaussian processes for graph node labelling. The graph convolutional Gaussian
processes consider functions f : G→ R, where the label of an entire input graph G is predicted (Walker & Glocker, 2019;
Opolka & Liò, 2020) with convolution operations (van der Wilk et al., 2017).

Our method learns the transition function of vertices f : v 7→ v̇ and infers the new edges using a nodes-to-edge function
g : 2V → E , learning the graph transition. We provide an overview of the different graph-GP methods as well as their
mapping function to highlight the scope of our work on Table A.1.

Table A.1: Overview of different graph-GP methods, their mapping functions f and whether an static graph is assumed or
not. We denote each model by the name addressed in the paper or by the formulation they propose.

Input domain Output domain

Model RD V G RD Y G Time-series Reference

GPDM X - - X - - X Wang et al. (2005)
GGP - X - - X - - Ng et al. (2018)
GCGP - - X - X - - Walker & Glocker (2019); Opolka & Liò (2020)
DGPG - - X X - - - Li et al. (2020)
Matérn Graph GP - - X X - - - Borovitskiy et al. (2020)
GPG X - - - - X - Venkitaraman et al. (2020)
Graph-output GP X - - - - X - Zhi et al. (2020)

Ours - - X - - X X

B. Supplementary training details
B.1. Experiments data sets

The number of nodes in each of the graph data sets is provided in Table B.1. The connectivity hyper-parameter Rnn and the
maximum number of neighbours Knn are selected based on the environment definition.

Table B.1: Description of train and test data for the experiments described in Section 4. N denotes the horizon, |V| = M
the number of nodes in the graph and D the attributes of the nodes.

N Rnn Knn MTRAIN DTRAIN MTEST DTEST

GRAPH INTERACTION 500 0.043 2 31 7 31 7
ISOLATED EVOLVING SUB-GRAPHS 200 0.08 20 44 8 44, 55, 66 8



Evolving-Graph Gaussian Processes

Graph interaction connectivity. We define two objects: an elastic rope and a static ball. The distance between the nodes
of each object was set to d(vi,vj) = 0.03. However, because of the elasticity of the material in MuJoCo (Todorov et al.,
2012), we found out experimentally that using a connectivity lower than Rnn = 0.043 would lead to disconnected nodes
in the graph that are physically connected in the simulation. Considering that each of the objects is internally connected,
we use that information to build the graph connectivity. Therefore, we considered the maximum number of neighbours
affecting a node to be Knn = 2, as the internal connectivity was already taken into account.

The attributes of the nodes are set to vt = {xt, yt, zt,∆xt−1,∆yt−1,∆zt−1, φ(vt)}, where φ(vt) = 0 if the node belonged
to the ball and φ(vt) = 1 if it was part of the rope.

Isolated evolving sub-graphs connectivity. We randomise for each test the initial conditions of the particles (Hu et al.,
2018). For each of the tests, we initialise a random number of blocks of particles, where the initial position and velocity are
also randomised. This lead to a different evolution of the connectivity, as shown in Figure B.1.

The resolution used in our Taich-MPM environment was set to 16. We found out experimentally that particles that are
separated by a distance of Rnn = 0.08 or lower had an effect on each other so as to be considered neighbours. We decided
to use Knn = 20 to provide the maximum information from the nearby particles.

In this environment, the nodes are defined as vt = {xt, yt,∆xt−1,∆yt−1, d(xt, xmax), d(yt, ymax), d(xt, xmin), d(yt, ymin)},
where xmax, xmin, ymax, ymin refer to the boundaries of the water container.

Timestep 0
Timestep 20
Timestep 40

(a)

Timestep 0
Timestep 20
Timestep 40

(b)

Timestep 0
Timestep 20
Timestep 40

(c)

Timestep 0
Timestep 20
Timestep 40

(d)

Figure B.1: Visualisation of the evolving isolated sub-graphs initial configuration, evolution and connectivity for (a) training
data N = 44, (b) test data N = 44, (c) test data N = 55, (d) test data N = 66.

B.2. Kernel selection

The attributes of the nodes live in the coordinate space. Therefore, we decided to use the Radial Basis Function (RBF)
stationary kernel as the roof and leaf kernels for e-GGP as well as for the baseline of GPR. We note to the reader that
different combinations of kernels are possible when using e-GGP. As an example, one could choose to use an RBF root
kernel and a Matérn 52 leaf kernel. The decision of the kernel to use for the root nodes and the neighbourhood should be
based on the expert knowledge.

For the graph interaction environment, even though the environment is approximated in 2-D, the nodes are attributed with
3-dimensional coordinates and velocities. The models are not affected by the third dimension as the kernel hyper-parameters
will reject the non-informative dimensions as training is done using automatic relevance determination (ARD) (Williams &
Rasmussen, 2006).

B.3. Implementation details

e-GGP implementation. We provide an open-source implementation of e-GGP1. Our implementation is based on
GPyTorch (Gardner et al., 2018). The implementation of the root and leaf kernels was done so that the stationary kernels
distance was scaled by a length-scale parameter θd per dimension d ∈ D, and a noise parameter σ2.

1https://github.com/dblanm/evolving-ggp



Evolving-Graph Gaussian Processes

Graph definition. The graph is built as follows. We take the attributed nodes at a timepoint Vt and build a k-d tree. We
define the neighbourhood in the tree by the nearest K neighbours Knn, with distance lower than the threshold Rnn, to the
queried node. The Knn parameter can also be seen as the maximum degree of each node. The neighbours denoted by the
parameters Knn and Rnn define the edges of the graph Et, thereby forming the graph Gt = 〈Vt, Et〉 at the given timepoint t.

Training points selection. We select points from the training data set based on the rate of change of the target. Therefore,
if the target is the velocity ∆xt, we select the points with highest acceleration ∆2xt. In order to avoid points that are close
in the temporal dimension, we restrict the time between samples to be at least ∆t = 20 timepoints far from each other. In
case that there are no more data points fitting the temporal constraint, the time difference is constantly reduced until the
requested number of training points is satisfied.

We show the coordinate space for each environment in Figure B.2. The blue markers show the full set of training points
whereas the red markers show the limited selected training points, in this case N = 20. The Figure B.2 also shows a target
for each of the environments. Note that each node covers a different part of the state-space.

(a) (b) (c) (d)

Figure B.2: Coordinate state space in (a) GI environment and (b) IEs environment showing full data set (blue) and selected
N = 20 training points (red). Selected training targets (c) ∆yt and (d) ∆xt in each environment respectively.

Hardware used for training All the experiments were performed in CPU. For training e-GGP we used a shared server
with a CPU Xeon E5-2680 v2. All the other models were trained in a personal laptop.

Training time We provide information about the approximate training time of e-GGP in Table B.2 for different number
of training points. We trained e-GGP using Adam with a learning rate of lr = 0.1 for 150 iterations. We note that the
computational complexity highly depends on the number of nodes in the graph M and the maximum connectivity for a node.
We would like to highlight that our implementation of the kernel used in e-GGP is not ideal and the time taken shown in
Table B.2 can be highly reduced.

Table B.2: Training time of e-GGP for the experiments using a CPU Xeon E5-2680 v2.

N M W D t

GRAPH INTERACTION
5 31 4 7 14MIN

10 31 4 7 1H 20MIN
15 31 4 7 2H 55MIN
20 31 4 7 4H 24MIN

ISOLATED EVOLVING SUB-GRAPHS

5 44 20 8 33MIN
10 44 20 8 2H 16MIN
15 44 20 8 5H 42MIN
20 44 20 8 14H 7MIN



Evolving-Graph Gaussian Processes

C. Supplementary results
In Section 4, we provided the results for the Graph Interaction environment. In the Isolated Evolving Sub-graphs environment,
because of the limitation of DGPG to predict test inputs with a different graph structure, we only provided results for a
single test set. Below, we extend those results and detail the results for each test set in the experiments. We also provide an
ablation study in the GI environment.

C.1. e-GGP ablation study

C.2. Graph connectivity ablation study

We evaluated two variants of our method. The first one assumes that the graph connectivity is fixed (F. e-GGP), using the
same adjacency matrix during inference and predictions A = A0. The second one, has knowledge of the evolving graph
structure (E. e-GGP) and uses a different adjacency At as the graph evolves over time.

We first compare the results for each of the unseen test sets for ∆xt and ∆yt in Table C.1 and Table C.2 respectively. We
can see that the F. e-GGP variant performs slightly better for the offsets close to the training data. However, the evolving
version (E. e-GGP) clearly outperforms the fixed variant shown in Table C.2. This supports our hypothesis and highlights
the relevance of accounting for the graph evolution.

Table C.1: Results of fixed (F. e-GGP) and evolving (E. e-GGP) variants in GI environment for ∆xt with N = 15.

RMSE MAPE NLL
OFFSET F. E-GGP E. E-GGP F. E-GGP E. E-GGP F. E-GGP E. E-GGP

×10−2 ×10−2 ×1012 ×1012

-0.1 0.810 0.879 4.14 4.52 -57.8 -54.0
-0.05 0.890 0.956 4.28 4.80 -56.7 -52.7

0 0.980 1.04 3.89 3.92 -54.8 -50.4
0.05 1.10 1.14 4.57 4.17 -52.5 -48.3
0.1 1.40 1.41 10.8 9.80 -47.1 -41.4
0.2 1.56 1.56 16.1 15.4 -44.7 -38.3
0.3 1.87 1.87 29.5 29.4 -43.2 -37.5

Table C.2: Results of fixed (F. e-GGP) and evolving (E. e-GGP) variants in GI environment for ∆yt with N = 15.

RMSE MAPE NLL
OFFSET F. E-GGP E. E-GGP F. E-GGP E. E-GGP F. E-GGP E. E-GGP

×10−2 ×10−2 ×10−1 ×10−1

-0.1 2.52 2.30 3.98 3.79 -13.91 -18.14
-0.05 2.42 2.36 3.98 3.79 -17.98 -16.00

0 2.17 2.31 3.32 2.86 -31.15 -20.89
0.05 2.25 2.45 1.74 1.73 -33.17 -23.30
0.1 3.61 3.31 1.04 1.04 -18.80 -17.10
0.2 4.63 3.98 5.01 4.69 -11.09 -12.10
0.3 6.84 5.46 0.861 0.732 0.20 -3.97



Evolving-Graph Gaussian Processes

C.3. Results on scarce data for the graph interaction environment

In this section, we provide additional results for the GI environment. We show in Figure C.1 the RMSE results for different
offsets of the rope. The rope offset used for training was Z = 0. We can see that e-GGP outperforms the other methods for
both N = 10 and N = 20 training points.

−0.1 0.0 0.1 0.2 0.3
OFFSET

0.0

0.2

0.4

0.6

0.8
R
M
S
E

DGPG

GPR

GPAR

e-GGP (Ours)

(a)

−0.1 0.0 0.1 0.2 0.3
OFFSET

0.0

0.1

0.2

0.3

0.4

0.5

0.6

R
M
S
E

DGPG

GPR

GPAR

e-GGP (Ours)

(b)

Figure C.1: Comparison of one-step ahead prediction of RMSE results for GPR, GPAR, DGPG and e-GGP in the graph
interaction experiment for (a) 10 training points and (b) 20 training points.

C.4. Results on scarce data for the isolated evolving sub-graphs environment

We provide the comparison of e-GGP and the baselines GPR, GPAR for the node velocity prediction for each target ∆xt
and ∆yt in Table C.3 and Table C.4 respectively. We discussed in Section 4.3 the averaged results of e-GGP. In here, we can
see that for both targets e-GGP has consistent low RMSE, MAPE and NLL. These results show that our model is capable of
learning the transitions more accurately, regardless of the target.

Table C.3: Results for GPR, GPAR and e-GGP in evolving isolated sub-graphs test datasets for the target ∆xt.

RMSE MAPE NLL
N M GPR GPAR E-GGP GPR GPAR E-GGP GPR GPAR E-GGP

5 55 0.162 0.194 0.107 1.27 2.06 1.09 -40.173 242.025 3.542
66 0.306 0.307 0.148 3.03 4.95 2.23 -22.676 435.562 89.792

10 55 0.148 0.172 0.110 0.97 1.32 0.88 -43.425 83.373 3.574
66 0.397 0.277 0.154 2.33 3.31 2.37 -18.255 370.486 193.102

15 55 0.133 0.126 0.096 0.86 0.86 0.79 -49.657 146.950 -90.342
66 0.325 0.295 0.152 2.41 2.56 2.16 -30.424 490.559 -74.796

20 55 0.117 0.111 0.086 0.78 0.65 0.70 -49.822 5.2×106 -96.042
66 0.334 0.309 0.194 2.04 1.76 2.10 -30.945 1.07×107 1.98×106



Evolving-Graph Gaussian Processes

Table C.4: Results for GPR, GPAR and e-GGP in evolving isolated sub-graphs test datasets for the target ∆yt.

RMSE MAPE NLL
N M GPR GPAR E-GGP GPR GPAR E-GGP GPR GPAR E-GGP

5 55 0.403 0.396 0.264 2.52 3.25 3.39 -21.474 92.63 -0.256
66 0.643 0.751 0.567 4.48 3.70 6.07 5.156 167.1 200.3

10 55 0.414 0.429 0.318 1.38 1.16 1.07 -47.420 -114.1 -110.4
66 0.647 0.654 0.713 3.54 8.73 1.39 -13.558 -55.81 -26.29

15 55 0.435 0.391 0.418 1.07 0.93 1.48 -42.35 -111.38 -50.755
66 0.645 0.632 0.596 4.87 1.45 1.83 -9.78 -44.65 95.468

20 55 0.383 0.407 0.253 1.00 0.78 1.09 2.39 ×105 -50.321 1.17 ×106

66 0.596 0.668 0.435 3.04 0.96 2.19 3.65 ×105 -19.752 2.47 ×106


