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A B S T R A C T   

Ships navigating in ice-infested regions need strengthened hull to resist the loads arising from the interactions 
with ice. Correct estimation of the maximum ice loads a ship may encounter during its lifetime is of vital 
importance for the design of ship structures. Due to the stochastic nature of ice properties and interaction 
processes, probabilistic approaches are useful to make long-term estimations of local ice loads on the hull. The 
Event Maximum Method (EMM) is an existing probabilistic approach for the long-term estimation of ice loads on 
the hull. This paper aims to extend the current EMM, first by introducing a model for the intercept of the linear 
regression line on the abscissa in order to quantify this value. Moreover, ice concentration is considered in the 
extended method as the second ice condition parameter in addition to thickness. The proposed method is applied 
to the full-scale measurement of the ship S.A. Agulhas II using the data obtained from the 2018/19 Antarctic 
voyage. The obtained model is then validated against six-year measurement data from 2013 to 2019, which 
shows reasonable similarity.   

1. Introduction 

Ships sailing in ice-covered water are subject to considerable contact 
with ice. To prevent ship hull from major damage during its lifetime, the 
maximum ice load exerted on the hull needs to be estimated to set up the 
classification rules and to design the local structure. The maximum ice 
load can be estimated by theoretical methods via first-principle ap
proaches, e.g. [1,2], or empirical methods via probabilistic approaches, 
e.g. [3–7]. Due to the complexity of ice failure, and the inherent chal
lenges associated with the development of physics-based ice mechanics 
models over the wide ranges of scales needed to capture representative 
continuum and discrete ice failure processes, theoretical methods have 
to be based on a considerable number of assumptions in terms of ice 
material behaviour. Empirical methods have the advantage that the 
models are based on measurement, where physical processes are re
flected correctly with all natural variations present. The random nature 
of ice properties and ship-ice interaction processes also makes proba
bilistic approaches suitable to capture the stochastic behaviour of local 
ice loads. 

Ideally, one would expect a model to link the prevailing ice condi
tions to the ice load distribution parameters, so that the long-term 
extreme loads can be estimated based on the ice condition a ship may 
encounter during its lifetime. However, such modelling attempts are 

very rare in the literature. Kujala [3] presented the first such model 
linking ice thickness to the Gumbel distribution parameters of 12-hour 
maximum ice loads. Kotilainen et al. [4] later adopted hierarchical 
Bayesian modelling to link ice thickness and ship speed to short-term ice 
load distributions. More recent work was carried out by Shamaei et al. 
[8], in which the Event Maximum Method (EMM) was applied to link ice 
thickness to the distribution parameters of measured ten-minute max
ima. This paper further extends the work of Shamaei et al. [8]. 

EMM was initially proposed by Jordaan et al. [9] for the estimation 
of long-term extreme ice pressure due to ships ramming in ice. This 
method adopts linear regression to the tail of ice pressure measured by 
pressure panels plotted versus the corresponding negative logarithm of 
the probability of exceedance. The regression line is characterized by 
two fitting parameters, including α denoting the reciprocal of the slope 
and x0 the intercept on the abscissa. Differentα and x0 are obtained for 
different areas (denoted by A) under consideration. Jordaan et al. [9] 
then fit the α-area relationship by α = CA−D. To apply the method, x0 is 
assumed to be zero or a chosen value and α is calculated based on the 
design area. The maximum ice pressure corresponding to a given return 
period can then be calculated. This method has been later applied and 
extended for the estimation of long-term ice pressure by Taylor et al. 
[10], Li et al. [11], Brown et al. [12], Ralph [13] and Rahman et al. [14]. 
Shamaei et al. [8] applied the same methodology to the ice force data 
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during continuous navigation measured by strain gauges instrumented 
on frames. The method is slightly modified to use ice thickness instead of 
design area as the explanatory variable to define α-thickness curves. 
Their work shows that EMM can be as well applied to ice force data 
measured on a frame conditionally on visually observed ice thickness. 

While in design practice, x0 has often been assumed to be zero in 
applications of EMM, as pointed out by Taylor et al. [10] and Li et al. 
[11], this may be a conservative assumption when the areas under 
consideration are small. As discussed in ISO-19906 (2019) [15], de
signers may choose alternative values based on analysis of appropriate 
regional local pressure data when available. For the ice load on one ship 
frame with frame spacing around 0.5 m, the contact area is typically 
small (mostly < 1 m2). As will be shown in this paper, the assumption of 
x0 equaling zero is not representative and is not always conservative for 
our dataset. In order to apply EMM for such cases, a model of x0 is 
necessary. Therefore, the first aim of this paper is to develop a method to 
model x0 so that EMM can be used to estimate the long-term ice force on 
one or several ship frames. 

In addition to ice thickness, another factor significantly influencing 
ice load magnitude during ship operation is ice concentration. Ice con
centration is not relevant for ships ramming thick ice since exposure is 
treated by modelling the number of impact events, which is the case of 
Jordaan et al. [9]. However, it is highly relevant when continuous 
operation is involved since it is expected that ships in higher ice con
centrations will have more ice impacts and therefore higher exposure. 
This is particularly important when data are recorded as 10-minute 
maxima rather than being analyzed as a series of impacts with 
different event duration. Shamaei et al. [8] did not account for ice 
concentration in their application of EMM. The second aim of this paper 
is then to extend EMM to include ice concentration as an additional ice 
condition variable. In this way, the estimation of long-term maxima can 
be dependent on both ice thickness and concentration, which leads to 
generalization of the results based on commonly reported sea ice 
conditions. 

The data used in this paper are obtained from the ship S.A. Agulhas II 
during its Antarctic voyages. Unlike the previous applications of EMM 
where pressures are measured, the line loads are measured and used in 
this paper. For this reason, the notation α in previous EMM applications 
is replaced by β to make the distinction. The data are gathered from six 
voyages spanning from 2013/14 to 2018/19. The extensive data across 
multiple years make it possible not only to establish a model based on 
the data, but also to validate the model with longer-term measurements, 
which is rare in the literature. In this paper, the data obtained from the 
2018/19 voyage are used to build a model following the proposed 
method; the six-year data are then used to validate the model. This 
provides new insights into the validity of the proposed method for the 
estimation of long-term extreme loads. 

2. Event maximum method 

Jordaan et al. [9] proposed the Event Maximum Method for the 
estimation of ice pressure based on the measurement through pressure 
panels. A pressure panel consists of a number of subpanels with known 
area, each giving a pressure measurement during a ramming event. For 
each ramming event, the maximum pressures recorded by the individual 
subpanels are extracted and later used for statistical analysis. The value 
of the maximum pressure is denoted here by the sequence (X1,X2,⋯,Xn), 
where n is the total number of ramming events and the subscripts are the 
indices of the ramming events. The sequence of X is then ranked by their 
magnitude, resulting in a new sequence (X(1), X(2), ⋯, X(n)) in descending 

order. The probability of exceedance is then defined based on the 
empirical cumulative distribution using Weibull plotting position: 

pe(X(i)) =
i

n + 1
(1) 

X(i) is then plotted on the exponential probability paper, i.e. plotted 
against the negative natural logarithm of pe, illustrated in Fig. 1. It was 
observed that the tail of the scatter plot is approximately linear, indi
cating that the tail can be fit with an exponential distribution, which has 
its probability of exceedance in the following form: 

− log(pe(x) ) =
x − x0

α (2) 

Through a linear regression to the scatter plot, x0 and α can be ob
tained. Since each maximum pressure X(i) is the maximum of an array of 
pressure values measured by m subpanels, if the focus is on a specific 
subpanel area, the denominator of the right side of Eq. (1) should be 
replaced by mn + 1. This is equivalent to shifting the scatter plot up
wards, which does not change α but results in a different x0 (x0,e in 
Fig. 1). Different α values can be obtained for different areas under 
consideration. Jordaan et al. [9] then fit the α-area relationship by the 
following function 

α = CA−D (3)  

where C and D are parameters to be obtained from the regression. 
To apply the method, the maximum pressure Z of N ramming events 

which hits the pressure panel is of concern, i.e. 

Z = max(X1, X2, ⋯XN) (4) 

Fig. 2 illustrates the relationship between the probability density 
function (PDF) of X and Z. The cumulative distribution function (CDF) of 
Z can be derived based on the CDF of X by 

FZ(z) = FX(z)
N

=

(

1 − exp
(

−
(z − x0)

α

) )N

(5) 

When N is large, Eq. (5) is asymptotic to the Gumbel distribution 

FZ(z) = exp
(

− exp
(

−
z − x0 − x1

α

) )
(6)  

Fig. 1. Illustration of the local pressure methodology for sample event [10].  
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where x1 = αlogN. The characteristic extreme value corresponding to 
the return period of N is then 

zm = x0 + x1 = x0 + αlogN (7) 

In practice, to ensure safety, the value ze corresponding to a proba
bility of exceedance of pe is often of interest. ze can be obtained by 
equaling Eq. (6) to 1 −pe, resulting in the following expression 

ze = x0 + α[ − log( − log(1 − pe) ) + logN] (8) 

Jordaan et al. [9] assumes x0 as zero, so the value of ze in Eqs. (7) and 
(8) is determined by α and N. Taylor et al. [10] highlighted that x0 varies 
as a function of interaction area (see Fig. 3) and discussed the impor
tance of accounting for effects of exposure on x0. The readers are 
referred to Jordaan et al. [9] and Taylor et al. [10] for more details and 
examples of this method. 

Shamaei et al. [8] adopted the same methodology for continuous 
navigation in ice but used a different definition for an event. Table 1 

summarized the differences between Shamaei et al. [8], Taylor et al. 
[10] and Jordaan et al. [9]. In the application of Jordaan et al. [9], an 
event is defined as a ship ram, and a maximum is defined as the maximum 
pressure among the subpanels during a whole ramming process. A 
similar definition was used by Taylor et al. [10], except that individual 
loading events were extracted from datasets for continuous operations in 
sea ice, as well as from discrete ramming events for datasets involving 
multi-year ridge and glacial ice impacts. Such definitions allow the 
analysis of pressure conditionally on a given panel area for ramming 
events. In the work of Shamaei et al. [8], the method is applied to data 
mainly including ship continuous operation. An event is then defined as a 
ten-minute operational period. The selection of ten-minute as the 
duration of each event is due to a practical reason that the visual ob
servations of the ice condition are summarized for each ten minutes. A 
maximum is then defined as the maximum pressure on a frame during a 
ten-minute period, i.e. during an event. In this case, there is no need for 
exposure adjustment (see Fig. 1) because there is no similar distinction 
to that between a panel and subpanels. The focus is on ten-minute 
maxima, so the number of ice load peaks and the magnitude of the in
dividual load peaks within each ten minutes (i.e. an event) are irrelevant. 
Within each ten-minute interval, the maximum ice pressure is linked to 
the maximum ice thickness observed during this period. In other words, 
it is assumed that the maximum ice thickness causes the greatest load. 
Because of this, it is convenient to use ice thickness instead of area as the 
variable influencing x0 and α. Shamaei et al. [8] then followed the 
Jordaan et al. [9] procedure to get several α-thickness curves for the 
frames on the bow, bow shoulder and stern shoulder regions of the S.A. 
Agulhas II. Examples of the curves are given in Fig. 4. 

To apply the results, one need to define the operational time a ship 
navigates in different thickness categories, and divide the operational 
time in minutes by ten minutes to calculate the number of ten-minutes 
sections as the exposure to each thickness category, i.e. the N in Eq. 

Fig. 2. Illustration of the derivation from the PDF of X to Z and then to Q, left: derivation of the PDF of long-term maxima based on the PDF of event maxima within 
the same category, presented in Eqs. (4)–(9); right: derivation of the PDF of long-term maxima across different categories based on the PDF of long-term maxima 
within the same category, presented in Eq. (9)–(12). 

Fig. 3. Plot of x0 data showing results both with and without adjustment for 
exposure effects [10]. 

Table 1 
Comparison of Jordaan et al. [9], Taylor et al. [10] and Shamaei et al. [8]   

Jordaan et al. [9] Taylor et al. [10] Shamaei et al. [8] 

Event Ship ice ramming 
process 

Discrete ship ice 
loading events 
from continuous 
navigation 

Ten-minute 
operational intervals 
in ice during 
continuous 
navigation 

Maximum Maximum 
pressure among 
the subpanels 
during a ram 

Maximum pressure 
among the 
subpanels during 
each event 

Maximum 
(estimated) pressure 
within each ten- 
minute period 

Explanatory 
variable 

A defined area A defined area Maximum ice 
thickness for fixed 
frame width  Fig. 4. Some α-thickness curves obtained by Shamaei et al. [8].  
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(8). Examples will be given later in Section 6. This differs from Jordaan 
et al. [9] where N is the number of ramming times. 

In the dataset of Shamaei et al. [8], the pressure is not directly 
measured; it is estimated from the measured ice force with an assump
tion that the contact height equals 0.3 times ice thickness. We could 
equivalently focus on the line load instead of the pressure so that the 
assumption of contact height is not needed; this approach will be fol
lowed in this paper. 

There is one more difference in the application of the results, 
although not explicitly mentioned by Shamaei et al. [8]. With Jordaan 
et al. [9], α is calculated from an area on the hull, thus is independent of 
ice parameters. However, with Shamaei et al. [8], α values are calcu
lated corresponding to the estimated prevailing ice thicknesses.. 
Therefore, for the same ship frame, there can be different α values 
corresponding to different ice thickness categories. Then based on the 
exposure of a ship in different ice thickness categories, one can estimate 
different extremes corresponding to each ice thickness category via Eq. 
(6). If these extremes are denoted by Zi,where i = 1, 2, ⋯, M and M is the 
index of ice thickness categories of concern, each Zi then has the dis
tribution described by Eq. (6) with the exposure N substituted byNi. The 
interest is the maximum ice load encountered during navigation in all 
ice thickness categories, which is 

Q = max(Z1, Z2, ⋯ZM) (9) 

The relationship between the PDF of Z and Q is presented in Fig. 2. 
Similar to Eq. (5), the cumulative distribution function of Q is 

FQ(q) =
∏M

i=1
FZi (q) =

∏M

i=1
exp

(

− exp
(

−
q − x0,i − x1,i

αi

) )

(10)  

where x1,i = αilogNi. It is not straightforward to find the inverse function 
of Eq. (10) analytically to get solutions similar to Eqs. (7) and (8). But 
this can be easily evaluated numerically. One can find the most probable 
extreme value qm numerically with Eq. (10) by searching for the value of 
q which maximize dFQ(q)

dq , i.e. 

qm = argmax
q

dFQ(q)

dq
(11) 

One can then find the qe corresponding to a probability of exceed
ance pe by numerically solving 

FQ(qe) = 1 − pe (12)  

3. Dataset 

3.1. Description of the dataset 

A brief description of the full-scale measurement which provides the 
dataset used in this paper is given here. The Polar Supply and Research 
Vessel (PSRV) S.A. Agulhas II is instrumented with shear strain gauges 
on a total of nine frames at the starboard of the ship. These includes two 
at the bow, three at the bow shoulder and four at the stern shoulder (see 
Fig. 5). The shear strains are measured and then converted to forces on 
each frame according to Suominen et al. [16]. The forces are recorded at 
a frequency of 200 Hz. The data in focus here is the measurement at the 
bow region. 

Ice conditions including ice thickness, concentration, floe size and 
ridge information have been recorded by visual observations through all 
the Antarctic voyages (see [1718] for more information). Visual obser
vations are conducted at the bridge of the ship, with a reference mea
surement stick to estimate the ice thickness and visual estimation to 
estimate ice concentration. The visual observation is conducted 
approximately once in a minute and then summarized for each ten- 
minute period. The ice thickness and concentration used in this paper 
are the maximum observed values within each ten minutes. 

The ship has been travelling to Antarctic every austral summer from 
2012/13 to 2018/19. In this paper, the data of 2018/19 voyage is used 
for establishing the model and the data from 2013/14 to 2018/19 are 
used for the validation of the model. The 2012/13 voyage is excluded 
because the visual observations were summarized every 15 min, which 
deviates from other voyages. The 2018/19 voyage dataset is chosen for 

Fig. 5. Instrumentation of S.A. Agulhas II.  
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modelling because (1) the number of ice loads the ship encounters is 
large, and (2) it covers wide ranges of thickness and concentration. In 
addition, ice condition cameras have been installed during this voyage, 
which in future may provide higher-resolution ice condition data 
through machine vision [19], thereby improving model quality. Besides, 
the 2014/15 voyage dataset also meets the above two criteria but with 
no ice condition camera for later calibration. The 2014/15 voyage 
dataset is then selected as an alternative training dataset to investigate 
the yearly variation of the obtained model. Fig. 6 illustrates the route of 
the ship in the 2018/19 voyage. The ship departed from Cape Town, 
South Africa, on 6 December, heading towards Penguin Bukta located on 
the Antarctic ice shelf; then visited Weddell Sea and finally returned to 
Cape Town on 15 March. The route of the ship during other voyages are 
similar to the 2018/19 except for the travel to the Weddell Sea. The 
results obtained in this paper are regarded suitable for the estimation of 
long-term ice loads for ships navigating through similar areas in the 
Antarctic summer season. The readers are referred to Kujala et al. [20] 
for a summary of ice thickness and ice loads encountered in each year, 
and references [2122] for more information about the 2018/19 voyage. 

3.2. Categorization of the dataset 

In the 2018/19 Antarctic voyage, there are in total 1093 events from 
the visual observation record, each containing a ten-minutes period with 
ice presence. Following the methodology of Jordaan et al. [9], regres
sion analysis is to be conducted on the data with the same explanatory 
variables, which are the ice thickness and concentration in this paper. 
These 1093 events then need to be divided based on the maximum 
thicknesses and concentrations into different categories. The total 
number of categories is then the product of the number of thickness 
categories and concentration categories. To ensure enough data falling 
into most categories, the following categorization in Table 2 is adopted 
in this paper. 

Here c denotes concentration and h denotes thickness. In the 
following text, a category is referred to by combining the concentration 
and thickness category names, e.g. C1H1. The two concentration cate
gories divided by 80% roughly correspond to ice fields where ships can 

avoid major collisions with ice via maneuvering and ice fields where 
collisions can hardly be avoided. Since visual observations inevitably 
contains uncertainties, such grouping of data into categories with rela
tively wide intervals reduces the rate of misclassification of the ice force 
data. 

The notation α has commonly been used to represent pressure with 
unit of Pa or MPa. Since this paper employ line load data instead of 
pressure data, another symbol, β, is used to represent the line load with 
unit of kN/m, so as to be distinguished with cases where EMM is applied 
to pressure data. The difference is merely the notation; the theory re
mains the same. 

3.3. Dataset on exponential probability paper 

Before presenting the extended EMM in the next Section, we will first 
investigate whether x0 equaling zero is a valid assumption with the S.A. 
Agulhas II dataset. To demonstrate this, linear regressions are conducted 
separately to the line load data of each category plotted versus the 
corresponding negative logpe. Here the ‘tail’ is set as the upper 20% of 
the data in each category; the dataset of frame #134.5 is used here as an 
example. Fig. 7 shows the regressions and Fig. 8 summarizes the β and 
x0. At the current step, we aim to find the overall trend of β and x0 in 
order to assist reasoning, instead of focusing on the specific values ob
tained from the regressions. 

Some observations regarding x0 from Fig. 8 are:  

• The magnitude of x0 can be up to 40% of the measured maximum 
line loads, e.g. in C1H1, C1H3, C2H5. According to Eqs. (7) and (8), 
the long-term extremes are calculated as the summation of x0 and 
another term. The assumption that x0 is a constant does not reflect 
the data and a value x0 = 0 is not appropriate for this case.  

• The magnitude of x0 seems to be larger with high concentration, 
except for the categories with h > 200 cm. This is reasonable because 
high concentration corresponds to more load peaks within each ten- 
minute, therefore resulting in higher ten-minutes maxima.  

• With thickness increasing, the magnitude of x0 first increases and 
then decreases. 

The above first point indicates clearly that x0 should not be assumed 
to be zero for the line load dataset. The latter two points help to find out 
a proper way to model x0. This will be presented in Section 4. 

4. A proposed method based on EMM 

4.1. Assumptions 

The fundamental assumptions behind the method to be proposed 
include:  

• Assumption 1: The ten-minute load maxima under the same ice 
condition (here thickness and concentration) are independently and 
identically distributed.  

• Assumption 2: The distribution of ten-minute load maxima has 
exponential distribution tail, similarly to Fig. 1. 

Assumption 1 is the fundament of methods and investigations based 
on fixed-interval maxima. The independence can be justified by that 
what a ship meets in a ten-minute period is independent of other pe
riods. The identity, however, does not rigorously hold. Ice load is known 

Fig. 6. Route of the 2018/19 Antarctic voyage.  

Table 2 
Number of events falling into each category.   

H1 (h<=40 cm) H2 (40 cm < h<=80 cm) H3 (80 < h≤120 cm) H4 (120 cm < h<=200 cm) H5 (200 cm < h<=300 cm) 

C1 (c<=80%) 77 122 94 52 13 
C2 (c > 80%) 22 235 240 107 57  
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to be influenced by ship operation such as speed and maneuvering in 
addition to ice condition. Therefore, the correctness of identity is con
ditional on that the maneuvering behavior and speed control of the ship 
does not change for different ten-minute periods with the same ice 
condition. Since the data used here are obtained under normal opera
tion, i.e. the crew maneuver the ship through ice and control the speed 

according to the operational profile of the ship, the identify can be 
assumed to hold in a rough order. 

Assumption 2 arises from the fundament of Event-Maximum Method 
following Jordaan et al. [9]. This assumption comes from visual exam
ination of the load data plotted on exponential probability paper, which 
shows that the upper tail looks linear, thus featuring exponential tail. 
This then involves the definition of ‘tail’ to quantify how much data fall 
into there. It has been shown by Shamaei et al. [8] that for the ten- 
minute-maxima dataset of line loads, it can be reasonably assumed 
that the upper 20% of data represent the ‘tail’. This is reflected in Fig. 9, 
where xt is the load value at the 80% percentile. The probability mass of 
the load distribution is then 0.8 in the region of x < xt, and 0.2 in the 
region of x ≥ xt. This will be followed here. 

4.2. Re-formulation of EMM 

The original EMM adopts probability paper (Fig. 1) for the estima
tion of distribution parameters. Here the method is re-formulated to also 
enable maximum likelihood estimation and uncertainty analysis. EMM 
essentially seeks the exponential distribution whose tail can properly 
describe the tail of the load distribution, see Fig. 9. This exponential 
distribution is characterized by x0 and β, expressed by 

Fig. 7. Linear regression to the tail of the data in each category.  

Fig. 8. Fitted β and.x0  

Fig. 9. Illustration of exponential fitting to the tail with probability den
sity function. 
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f (x) =
1
β

exp
(

−
x − x0

β

)

(13) 

Given that a load value × is located in the tail (i.e. x ≥ xt), its 
probability density function can be derived by 

ftail(x) = f (x|x ≥ xt) =
f (x)

1 − F(xt)
=

1
β exp

(

− x−x0
β

)

exp
(

− xt−x0
β

) =
1
β

exp
(

−
x − xt

β

)

(14)  

which is simply another exponential distribution with the same β but 
bounded at xt (see Fig. 9). Since xt is the 80% percentile of f(x), x0 and xt 
are linked by 

x0 = xt − β( − log(1 − 0.8) ) = xt + βlog(0.2) (15) 

The aim is to find the relationship between distribution parameters 
(x0 and β) and ice condition variables (here thickness h and concentra
tion c), expressed as 

β = fβ(h, c) (16)  

x0 = fx0 (h, c) (17) 

With Eq. (15), we have 

xt = fxt (h, c) = fx0 (h, c) − βlog(0.2) (18) 

There are two equivalent options to model x0 and β. The first is to 
model x0 directly by finding fx0 (h,c), while the second is to model xt by 
finding fxt (h, c), thus indirectly solving x0 via Eq. (18). It is useful to take 
a step back to think about what x0 represents. The value of x0 is the 
intercept of the regression line on the abscissa, and since it represents a 
parameter for a fit to the tail of the distribution for modelling extreme 
ice loads of interest for design, it does not model the data corresponding 
to low ice loads and should not be misinterpreted as having a physical 
meaning. It would be beneficial to start with a parameter with clear 
physical meaning, so that it is possible to establish a function which 
reflects our physical understanding rather than establishing that purely 
mathematically. On the contrary, xt is the load value at the 80% quan
tile, thus has clear physical meaning. Moreover, xt appears naturally in 
the PDF of the tail data as shown in Eq. (14), which provides conve
nience for parameter estimation. Based on above argument, the 
approach proposed here opts for indirect modelling of x0 through 
fxt (h, c). 

4.3. Function forms of fβ(h, c) and fxt (h, c)

From Fig. 8, it can be observed that β generally increases when ice 
thickness grows, but the dependency on ice concentration seems to be 

rather weak. It seems reasonable to assume β to be only dependent on 
thickness thus independent of ice concentration. Many publications 
have favored power relationship between pressure and area, e.g. [23]. A 
similar idea is followed here by assuming the following β-thickness 
relationship 

β = fβ(h) = θ1hθ2 (19) 

Here θ1 and θ2 are the unknown parameters to be estimated from the 
dataset. 

The next is to determine a proper function form of xt so that x0 is 
modelled with Eq. (15). Since xt has the same unit (kN/m) as β, both 
representing line loads, it is consistent to use the same form of depen
dence on ice thickness, i.e. xt = ChD. From the dataset, one can easily 
extract xt, i.e. the load value at the 80% quantile, which is summarized 
in Fig. 10. 

This shows that xt mostly increases when ice gets thicker and con
centration gets higher. In other words, the line loads at the 80% 
percentile grows as the ice condition gets severe, which is physically 
reasonable. The categories with thickness over 200 cm show some dif
ference with slightly smaller xt values than the categories with thickness 
between 120 cm and 200 cm, but the decrease is much smaller 
comparing to x0 in Fig. 8 and is possibly due to the variation of data as a 
result of small sample size. Based on above reasoning, the following 
function form is adopted for fxt (h, c)

xt = fxt (h, c) = θ3chθ4c+θ5 (20)  

so that the coefficient and exponent are modelled as linear functions of 
concentration. According to Eq. (15), x0 is then expressed explicitly as 

x0 = θ3chθ4c+θ5 + θ1hθ2 log0.2 (21) 

Here θ3, θ4 and θ5 are the unknown parameters to be estimated from 
the dataset. The condition of zero concentration leads to zero ice loads, 
which is physically correct. The appearance of c in the exponent takes 
possible coupling of h and c into account. The task is then to estimate the 
vector θ = [θ1, θ2, θ3, θ4, θ5]. 

4.4. Parameter estimation based on maximum likelihood 

In the categorized datasets, denote each line load by xij, where i is the 
index of category while j the index of the line load within category i. 
Denote the corresponding ice condition as (hi,ci). For a given set of θ, xt 
and β can be calculated via Eqs. (19) and (20) for each category, denoted 
by xt,i and βi. The number of loads in a category is denoted by ni, and the 
number of loads with larger values than xt,i denoted by ki. The notations 
are summarized in Table 3. The estimation of θ will be carried out in two 
steps. In the first step, parameters related to xt (i.e. θ3, θ4 and θ5) will be 
estimated. Then in the second step, parameters related to β (i.e. θ1 and 
θ2) conditional on xt will be estimated. 

4.4.1. Estimation of θ3, θ4 and θ5 
Parameters θ3, θ4 and θ5 determine the location of xt , which divides 

the load distribution into two parts. There is 80% probability that a load 
falls below this value and 20% above. The probability that ki out of ni 

Fig. 10. Extracted xt from the categorized dataset.  

Table 3 
Notations used for parameter estimation.  

Notation Meaning 

i Index of a category 
j Index of data within each category 
xij  Line load data in category i 
hi, ci  Thickness and concentration in category i 
xt,i , βi  xtand β in category i  
ni  Number of loads in category i 
ki  Number of loads at the tail (i.e. xij > xt,i) in category i   
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loads fall at the tail region can then be calculated with binomial distri
bution 

Pi = Binomial(ki, ni, 0.2) =

(
ni

ki

)

0.2ki 0.8ni−ki (22) 

ki is a function of xt,i, thereby a function of [θ3,θ4,θ5]. The likelihood 
of [θ3, θ4, θ5] to result in the whole dataset is then 

Lθ3 ,θ4 ,θ5 =
∏10

i=1

(
ni

ki

)

0.2ki 0.8ni−ki (23)  

where 10 is the number of categories. Taking the logarithm gives 

logLθ3 ,θ4 ,θ5 =
∑10

i=1
log

(
ni

ki

)

+ kilog0.2 + (ni − ki)log0.8 (24) 

The MLE solution of [θ3, θ4, θ5] is found by numerically searching the 
[θ3, θ4, θ5] which leads to maximum logLθ3 ,θ4 ,θ5 . Since binomial distribu
tion is a discrete distribution, the solutions of [θ3, θ4, θ5] are intervals 
rather than single values. The [θ3, θ4, θ5] combination which yields the 
maximum likelihood of Lθ1 ,θ2 |θ3 ,θ4 ,θ5 in the following step is finally chosen 
as optimal. 

4.4.2. Estimation of θ1 and θ2 conditional on θ3, θ4 and θ5 
For a given set of [θ3, θ4, θ5], xt can be calculated for each category. 

Without loss of generality and for the convenience of expression, xij is 
sorted in descending order so that xi1,xi2,⋯,xikare the data located at the 
tail. The likelihood of the tail data located at the measured values is then 

Lθ1 ,θ2 |θ3 ,θ4 ,θ5 =
∏10

i=1

∏ki

j=1

1
β

exp
(

−
1
β

ʀ
xij − xt,i

)
)

=
∏10

i=1

∏ki

j=1

1
β

exp
(

−
1
β

ʀ
xij − xt,i

)
)

(25) 

Taking the logarithm and replacing β by Eq. (19) yield 

log
ʀ
Lθ1 ,θ2 |θ3 ,θ4 ,θ5

)
= − Nlogθ1 − θ2

∑10

i=1
kiloghi − θ−1

1

∑10

i=1

∑ki

j=1
h−θ2

i
ʀ
xij − xt,i

)

(26) 

The optimal θ1 and θ2 resulting in the maximum likelihood can be 
found by taking the derivation of log

ʀ
Lθ1 ,θ2 |θ3 ,θ4 ,θ5

)
with regards to θ1 and 

θ2 and equals them to zero, which gives 

θ1 =

∑10
i=1

∑ki
j=1h−θ2

i
ʀ
xij − xt,i

)

N
(27)  

−
∑10

i=1
kiloghi − θ−1

1

∑10

i=1

∑ki

j=1
h−θ2

i
ʀ
xij − xt,i

)
loghi = 0 (28) 

Solving these non-linear equations gives the solution to the optimal 
θ1 and θ2 conditional on optimized [θ3, θ4, θ5]. The MLE solution of θ is 
now obtained through these two steps. 

4.5. Parameter estimation based on probability paper 

Estimation based on maximum likelihood utilized the inherent 
probabilistic nature of the data. A less rigorous, but easier to understand 
and solve, approach is to estimate parameters based on probability 
paper, which was adopted by Jordaan et al. [9]. Unlike maximum 
likelihood estimation where whether a data point locates at the tail is 
probabilistic, with probability paper the upper 20% of data within each 
category are assumed to be in the tail with certainty. In addition to the 

notations defined in Table 3, we further define y as the negative loga
rithm of the probability of exceedance (i.e. −logPe), see Fig. 1, so that 
the estimated line load x̂ can be expressed as: 

x̂ = βy + x0 = fβ(h, c)y + fx0 (h, c) (29) 

With Eqs. (19) and (20), this can be re-written as 

x̂ = θ1hθ2 y’ + θ3chθ4c+θ5 (30)  

where y’ has been used to replace y + log0.2. 
After identifying the data at the tail region of each category, the tail 

data of all the categories are merged into a whole dataset. The dataset 
includes a set of (Y, X, h, c) vectors where Y equals −logpe which relates 
to the return period and X is a measured line load value. If each data 
point is labelled as (ys,xs,hs,cs), the sum-of-square error of the regression 
can be expressed as 

E =
∑N

s=1

1
2
(xs − x̂s)

2 (31)  

where N is the size of the merged tail dataset; ̂xs relates to ys, hs, cs via Eq. 
(30). To minimize E, the derivates of E with respect to θ in the first model 
or w in the second model should equal zero. In the first model with 
expert knowledge, this yields 

dE
dθk

=
∑N

s=1
(xs − x̂s)y’dβs

dθt
= 0, where t = 1, 2 (32)  

dE
dθk

=
∑N

s=1
(xs − x̂s)y’dxt,s

dθt
= 0, where t = 3, 4, 5 (33) 

This consists of a system of five non-linear equations with five un
known variables. The parameters θ1 to θ5 can then be obtained by 
solving this system of non-linear equations. 

4.6. Uncertainty quantification 

Both the above approaches based on maximum likelihood and 
probability paper give point estimation of the parameters. To assess the 
uncertainty associated with the estimated θ parameters, Bayesian 
approach is adopted. According to Bayes’s theorem, 

f (X|θ)p(θ) = f (θ|X)f (X) (34)  

where f(X|θ) is the likelihood, f(θ) the prior distribution and f(θ|X) is 
the posterior distribution. With no prior knowledge on θ, f(θ) is set as 
constant, which yields 

f (θ|X)∝f (X|θ) (35) 

By normalization, this results in 

f (θ|X) =
f (X|θ)

∫
f (X|θ)dθ

(36) 

Specifically, following Eq. (23) and Eq. (25), 

f (θ3, θ4, θ5|X) =
f (X|θ3, θ4, θ5)

∫
f (X|θ3, θ4, θ5)d[θ3, θ4, θ5]

=
Lθ3 ,θ4 ,θ5∫

Lθ3 ,θ4 ,θ5 d[θ3, θ4, θ5]
(37)  

f (θ1, θ2|X,θ3, θ4, θ5) =
f (X|θ1, θ2, θ3, θ4, θ5)

∫
f (X|θ1, θ2, θ3, θ4, θ5)d[θ1, θ2]

=
Lθ1 ,θ2 |θ3 ,θ4 ,θ5∫

Lθ1 ,θ2 |θ3 ,θ4 ,θ5 d[θ1, θ2]
(38) 

It is difficult to derive closed-form solutions for Eqs. (37) and (38), 
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but f(θ3, θ4, θ5|X) and f(θ1, θ2|X,θ3, θ4, θ5) can be computed numerically 
with discretized θ values. The uncertainty in the estimated θ is then 
quantified. 

To assess the influence of uncertainty in parameter estimation on the 
estimation of long-term ice loads, we will evaluate the predictive dis
tribution given as per 

f (xextreme|X) = f (θ3, θ4, θ5|X)f (θ1, θ2|X,θ3, θ4, θ5)f (xextreme|X,θ3, θ4, θ5, θ1, θ2)

(39) 

using Monte Carlo simulation following the below procedure:  

1. Randomly generate θ3, θ4, θ5 according to f(θ3, θ4, θ5|X).  
2. Randomly generate θ1, θ2 according to f(θ1, θ2|X,θ3, θ4, θ5).  
3. Calculate βi and xt,i based on generated θ and given h and c, thereby 

giving x0,i.  
4. Randomly generate a long-term extreme value xextreme based on the 

distribution given in Eq. (10), with calculated βi and x0,i. 
5. Repeat the above step for 104 times and get the predictive distribu

tion of long-term extremes which considers the uncertainty in 
parameter estimation. 

5. Results and validation 

5.1. Results of parameter estimation 

The parameter estimation procedures based on maximum likelihood 
and probability paper as described in Section 4 are applied to the ice 
loads measured on the two bow frames, namely frame #134 and frame 
#134.5. Three cases are investigated: (i) frame #134.5; (ii) frame #134; 
and (iii) combined frame #134 and #134.5. The first two correspond to 
single frames with frame spacing 0.4 m and the last concerns two frames 
with a span of 0.8 m. Fig. 11 presents the results of regressions by both 
methods described in Section 4.2, plotted with the dataset. The regres
sion lines from both estimation methods generally reflect the magni
tudes and trends of the dataset, with most of the data spread close to the 
lines. Some regression lines, e.g. C2H1, give systematically larger load 
values than the data. This is because of the deviation in the estimated xt 
values, which shift the regression lines along positive or negative x- 

direction. Since each data point is assigned with equal weight during the 
estimation, the regression lines are obviously better fitted to the cate
gories with more data, e.g. C2H2, compared to categories with few data, 
e.g. C2H1. The overall good fitting indicates the proposed β and x0 
modelling methodology with both estimation methods can well capture 
the feature of the training dataset. 

Table 4 summarizes the obtained functions of β and x0 by both 
estimation methods for the three cases. The parameters estimated with 
different methods differ, but the difference is relatively small. With both 
methods, the estimated parameters for frame #134 and #134.5 are 
similar, which is expected since frame #134 and #134.5 are adjacent 
frames. The β functions are plotted in Fig. 12 for visualization using 
Frame #134.5 as an example. For an easy comparison to the α-thickness 
curves in the literature, the β curves are converted to α (i.e. pressure) 
with an assumption that the contact height equals 0.3 times ice thickness 
following Shamaei et al. [8]. The individual fitting results from Fig. 8 are 
also shown as scatter for comparison. Similarly, the x0 functions by both 
models are plotted in Fig. 13. The obtained functions correctly reflect 
our physical understanding that β increases when ice condition gets 
heavier and α decreases as a function of thickness. 

5.2. Validation with six-year data 

5.2.1. Qualitative comparison with six-year data 
Two different approaches are adopted here to validate the obtained 

models with six years of data. In the first approach, the six-year data are 
categorized in the same way as was done to the 2018/19 data. The line 
load data falling into each category are then ranked and plotted versus 
the corresponding negative logpe. After that the β and x0 values are 
calculated by the resulting functions in Table 4 obtained from the 2018/ 
19 data. The line of each category characterized by β and x0 is then 
plotted and compared with the ranked measurement. The results are 
shown in Fig. 14. The aim of this comparison is to conduct a qualitative 
visual examination of how well the models obtained from the 2018/19 
voyage can describe the data obtained from the six-year voyages. The 
plots visually demonstrate that the linear regression lines obtained from 
fitting to one-year measurement can be well generalized to multiple year 
measurements. This gives evidence to the proposed Method as the tool 

Fig. 11. Regression to the dataset, (a) frame #134.5; (b) frame #134; (c) combination of frame #134.5 and #134.  
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for the estimation of long-term extreme loads. The lines agree better 
with the measurement in the categories where more 2018/19 data have 
been used to train the model, e.g. C2H2, but not so well with those where 
fewer data have been used to train the model, e.g. C2H1. It should be 
noted that the line load values given by the regression lines are the 
characteristic extremes (i.e. zm in Fig. 2), which is the most likely value 
corresponding to certain return period (i.e. 1

pe
), instead of a definite 

value. The results inherently contain probabilistic meaning according to 
Eq. (6). 

It can be noticed that in category C2H1 and C2H2, the maxima ob
tained from the measurement (marked in circles in Fig. 14) are signifi
cantly higher than the estimated characteristic extremes. These values 
are also significantly larger than the second largest values in the 

Fig. 11. (continued). 

Table 4 
Summary of the obtained β, xt and x0 functions.   

Frame number β  xt  x0  

MLE #134.5 343h0.442  10.5ch−0.0047c+0.59  x0.8 + βlog0.2  

#134 282h0.443  9.48ch−0.0049c+0.62  

#134.5 & #134 228h0.48  7.60ch−0.0014c+0.52  

Prob.paper #134.5 407h0.344  9.86ch−0.0136c+1.47  

#134 323h0.346  8.91ch−0.0109c+1.21  

#134.5 & #134 267h0.354  6.77ch−0.0127c+1.43   
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corresponding categories. There can be at least two possible reasons for 
this. The first is that some low-probability events happened, which yield 
rather large loads. The second is that these are outliers arising from 
misclassification. Since thickness and concentration are observed values 
in our dataset, there are inevitably certain misclassified data after 

categorization. It is then possible that these largely deviated values 
should actually fall into categories with higher thickness, but the actual 
maximum thickness is not successfully observed during these events. It 
is worth mentioning that the method is in fact not sensitive to such few 
misclassifications. This is because as will be demonstrated in Section 

Fig. 12. Examples of obtained β functions (left) and converted α functions (right) assuming 0.3h as contact height, estimated with probability paper (PP) and 
maximum likelihood estimation (MLE), the scatters showing the values obtained from Fig. 8. 

Fig. 13. Examples of obtained x0 functions (left) and converted pressure values (right) assuming 0.3h as contact height, showing estimation with probability paper 
(upper) and maximum likelihood (bottom), the scatters showing the values obtained from Fig. 8. 
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5.2.2, all the categories are considered simultaneously when making 
estimations. A small number of misclassifications only result in minor 
changes in the number of events in the categories, which leads to little 
effect on the estimations. 

5.2.2. Quantitative comparison between estimations and measurements 
The second validation approach is quantitative. The resulting models 

are applied to make estimations on the maximum ice loads encountered 
during each of the six-year voyages, as well as all the entire six-year 
voyages. The estimations include the characteristic extreme values as 
well as the 95% quantiles. The estimations are then compared with the 
measurements to check for agreement. We will take frame #134.5 of the 
2014/15 voyage data as an example, with the resulting functions esti
mated by probability paper to demonstrate. In this voyage, there are in 
total 1087 ten-minute events, which are spread in the categories as 
shown in Table 5. One can as well adopt a different categorization 
strategy; the principle remains the same. The next step is to calculate the 
mean ice thickness and concentration within each category. Here these 
are calculated from the visual observation information. One can also 
take the medians of the thickness and concentration intervals in case of 
no exact measurement. Based on thickness and concentration, β and x0 
can be calculated according to the results in Table 4. Now FQ(q) in Eq. 
(10) can be evaluated in terms of any given q value. The characteristic 
extreme load qm can be found numerically according to Eq. (11). In 
addition to this most likely extreme value, we also estimate the quantiles 
in order to account for the randomness. Here we evaluate the 95% in
terval by finding the 2.5% and 97.5% quantiles, denoted by q2.5 and 
q97.5. These are calculated numerically by setting FQ(q) to 2.5% and 
97.5%. The estimated characteristic maximum line load encountered in 
the 2014/15 voyage is 3143kN/m, with 95% probability to be located 
within [2526, 4993]kN/m. The measured maximum load during this 
voyage is 3536kN/m, which falls into the interval and is close to the 
characteristic maximum value. The estimation with functions obtained 
through maximum likelihood gives 2906kN/m as the characteristic 
maximum and [2357, 4598]kN/m as the 95% confidence interval, 
which is similar to the results obtained via probability paper. 

The same procedure is applied to other frame cases and other voy
ages, with resulting functions by both probability paper and maximum 
likelihood. The results are summarized in Fig. 15, where the error bar 
shows the 95% intervals and scatters show the characteristic extreme 
values and the measured maxima. In most cases, the measurement lo
cates within the 95% interval, mostly not far from the characteristic 
extremes. There are only two cases with probability paper estimation 
and one cases with maximum likelihood estimation where the load is 
outside the 95% interval. This indicates that the models obtained from 
the 2018/19 voyage give generally reasonable estimations of the max
ima encountered in other voyages. Overall, the estimations of maxima 
by both estimation methods are rather similar. 

5.3. Uncertainty assessment 

Here we use the results obtained from frame #134.5 as the example 
to examine the influence of uncertainty in model parameters on the 
estimation performance. Following Section 4.6, the joint probability of 
θ3,θ4,θ5, i.e. f(θ3, θ4, θ5|X), and conditional probability f(θ1, θ2|X,θ3, θ4,

θ5) can be numerically evaluated. Fig. 16 plots the marginal probability 
of θ3, θ4, θ5 and that of θ1, θ2 at optimal θ3, θ4, θ5, to illustrate the un
certainty in model parameters. 

Uncertainties in model parameters leads to uncertainties in β and x0 
given certain combination of thickness and concentration. Using the six- 
year loads on frame #134.5 as an example. The resulting joint proba
bilities of β and x0 of categories C1H1 and C2H1 are shown as examples 
by histograms in Fig. 17. This is obtained by randomly generating θ3, θ4,

θ5 according to f(θ3, θ4, θ5|X) and θ1, θ2 according to 
f(θ1, θ2|X,θ3, θ4, θ5), then calculating β and x0 with the θ parameters. As 
shown in the figure, β and x0 are naturally correlated. 

Uncertainties in β and x0 eventually leads to uncertainties in the 
estimation of extreme ice loads. This will be demonstrated via two as
pects. First, uncertainty in the characteristic extreme loads of the six- 
year voyages is investigated because this is a value which may be used 
in design. The characteristic extreme load is a definite function of β and 
x0 as given in Eq. (7), therefore its uncertainty depends on the joint 

Fig. 14. Qualitative validation of the obtained β and x0 functions against six-year measurement, (a) frame #134.5; (b) frame #134; (c) combination of frame #134.5 
and #134. 

F. Li et al.                                                                                                                                                                                                                                        



Structural Safety 93 (2021) 102130

13

Fig. 14. (continued). 

Table 5 
Example of maximum load estimation with 2014/15 voyage data.  

Category No. of events h(m)  c(%)  β(kN/m)  x0 (kN/m)  qm (kN/m)  [q2.5, q97.5] (kN/m)  Measured max. (kN/m) 

C1H1 73  0.17 20 237 −339 3143 [2526,4993] 3536 
C2H1 19  0.15 91 230 274 
C1H2 99  0.59 49 342 −312 
C2H2 97  0.65 90 343 287 
C1H3 73  0.97 43 403 −245 
C2H3 177  0.98 93 404 275 
C1H4 19  1.49 53 471 −101 
C2H4 175  1.55 94 464 247 
C1H5 25  2.5 54 558 164 
C2H5 60  2.5 94 558 209  
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probability distribution of β and x0. This is shown in Fig. 18 by randomly 
generating 104 β and x0 and calculating the characteristic extreme 
accordingly. The standard deviation of the randomly generated char
acteristic extremes is 311kN/m, which is about 8% of the characteristic 
extreme load value calculated with MLE solutions. 

Second, the predictive distribution given in Eq. (39) is evaluated 
using Monte Carlo simulation following the procedure described in 
Section 4.6. The predictive distribution of the maximum load during the 
six-year voyages, which takes model parameter uncertainty into ac
count, is plotted in Fig. 19, together with the estimated extreme distri
bution using maximum likelihood solution. Despite of the uncertainty in 
model parameters, the predictive distribution is rather similar to the 
distribution obtained with maximum likelihood solution. The [q2.5, q97.5]

interval after accounting for uncertainty is [3270, 5935]kN/m, which is 
only slightly wider than that obtained with MLE solution ([3342, 5731] 

kN/m). This is to some extent understandable because the standard 
deviation of the extreme distribution with exponential distribution as 
parent distribution is positively correlated with β, therefore the varia
tion in β does not necessarily widen the [q2.5, q97.5] interval. The un
certainty in model parameters then leads to little difference between the 
predictive extreme distribution and the extreme distribution using point 
estimation results. This implies that for practical use, we could simply 
apply the point estimation solutions either via probability paper or 
maximum likelihood without accounting for uncertainty in model 
parameters. 

5.4. Model trained with data from a different year 

In order to understand how the obtained model and its extreme load 
estimation are affected by the yearly variation of the training dataset, 

Fig. 15. Estimated and measured maximum loads on frame #134.5, #134 and their combination, of the individual voyages as well as all voyages, estimated with (a) 
probability paper and (b) maximum likelihood. 
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the same procedure as previously presented is adopted on the 2014/15 
dataset. Frame #134.5 is used as an example, with parameters estimated 
by MLE. Table 6 summarized the obtained functions, with those ob
tained from the 2018/19 dataset listed as well for comparison. The 
resulting functions differs apparently on the estimated parameters, but 
the difference is not dramatic. The models are then applied for the 

estimation of yearly and six-year maxima following the same procedure 
as previously presented. The results are shown in Fig. 20. The estima
tions using the 2014/15 dataset as training dataset gives approximately 
20% larger load values than those estimated based on the 2018/19 
dataset. The estimation performance is not as good as the model on 
2018/19 dataset, but still most of the yearly maxima are estimated 

Fig. 16. Uncertainty in the estimated model parameters, presented via marginal probability distributions.  

Fig. 17. Examples of uncertainty in β and.x0  
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reasonably. 
Fig. 20 also shows that the 2014/15 yearly maximum load deviates 

most from the estimations based on 2018/19 model, implying that the 
2014/15 dataset may have the largest difference comparing to the 
2018/19 dataset. This indicates that the variation in estimations 
showing in Fig. 20 may approximately represent an upper limit among 
other datasets. 

6. Demonstration of the extended EMM as a design tool 

The ultimate aim of the proposed model is to assist ship design for the 
estimation of design load. Here a demonstration of the procedure to 
define the life-time extreme load is given. This is similar to the pro
cedure in Section 5.2.2 but with different context. Suppose the design of 
an imaginary ship which will operate in the similar area as S.A. Agulhas 

II, where navigation in ice is needed. Annually, the ship operates in 
different ice conditions with different distance, which is summarized in 
Table 7. The life of the ship will be 25 years so the life-time exposure can 
be calculated based on the operation distance and speed profile, listed in 
Table 7. 

The aim is to estimate the lifetime maximum line load at the bow 
area where the frame angle is similar to the #134.5 frame of S.A. 
Agulhas II. Similarly to Section 5.2.2, theβ and x0 of each category can 
be calculated with the results in Table 4, here the resulting functions 
obtained through probability paper is used as an example. The results 
are listed in Table 8. The CDF of the life-time extreme line load, q, can 
then be calculated by Eq. (10). The PDF of q can be obtained by taking 
the derivative of the CDF, plotted in Fig. 21. One can find the charac
teristic extreme value qm by finding the mode of the PDF, which is 
4104kN/m in this case. One can also find the extreme load corre
sponding to a certain level of probability of exceedance, e.g. 10-2, which 
gives 6184kN/m as qe. This means that there is 1% possibility that the 
ship will encounter loads higher than 6184kN/m during its lifetime. 

The obtained results can then serve reliability-based structural 
design, for which the safety factor can be calculated based on the 
probability of extreme loads and structural resilience. The results also 
serve the concept of goal-based design [24], which determines a ship’s 
design load based on its operational area and exposure to ice conditions 
with different severity. 

7. Discussion 

7.1. Validity of the extended EMM 

The results presented in Section 5 indicates that the proposed 
method is valid. This has been revealed by examining in-sample per
formance and by comparing to out-of-sample long-term measurements. 

Fig. 18. Histogram of random samples showing the uncertainty in character
istic extreme load; red solid line showing the location of characteristic extreme 
load using maximum likelihood estimation. (For interpretation of the references 
to colour in this figure legend, the reader is referred to the web version of 
this article.) 

Fig. 19. Left: histogram of the six-year maxima samples randomly generated according to the predictive distribution given by Eq. (39), solid lines showing the 
location at 2.5% and 97.5% percentile; Right: the cumulative distribution function of the six-year maxima obtained with MLE, and the empirical cumulative dis
tribution function of the random samples shown in the left figure. 

Table 6 
Summary of the obtained β, xt and x0 functions.   

β  xt  

2014/15 423h0.291  12.8ch−0.0018c+0.32  

2018/19 343h0.442  10.5ch−0.0047c+0.59   

F. Li et al.                                                                                                                                                                                                                                        



Structural Safety 93 (2021) 102130

17

Both shows that the line load distribution at the tails can be reasonably 
captured by the trained models. The validation also indicates that the 
model obtained from 2018/19 voyage gives reasonable estimation on 
the maximum line loads encountered during other years. Compared to 
the original EMM which was proposed for pressure measurement by 
loading panels, the extended EMM is more suitable for the line load 
measurement converted from strain gauges combining with visually 
observed ice condition. The thickness and concentration of ice can be 

taken into accounted with the extended EMM, which improves the 
generalization capability of the results. 

We have demonstrated two estimation methods, one with maximum 
likelihood and the other with probability paper. The resulting model 
parameters differ slightly as the results of different estimation methods, 
but the estimations on extreme values are similar. One can adopt either 
resulting model for the estimation of extreme loads. The uncertainty 
analysis shows that the uncertainty in characteristic extreme value due 
to uncertainty in model parameters is relatively low. The predictive 
extreme distribution is rather similar to the extreme distribution based 
on point estimation using maximum likelihood, which indicates that for 
practical reason, point-estimation results can be used to define extreme 
loads. 

7.2. Hidden factors 

Although this paper has successfully taken concentration into ac
count as the second ice condition variable, there are apparently other 
factors influencing the ice load distributions, e.g. floe size. One may 
expect a model relating β and x0 to more influencing variables. Since the 
concept has been based on categorization of data, including more vari
ables leads to higher dimensions and thus the number of categories 

Fig. 20. Comparison of estimations of yearly and six-year maxima using model obtained based on different training dataset.  

Table 7 
Exposure calculation of the imaginary ship travelling in different ice condition 
categories.   

Annual 
operation 
distance 

Speed 
profile 

Operation 
time 

Annual 
Exposure 

Lifetime 
exposure 
(Ni) 

C1H1 50 km 5 m/s 167 min 16.7 418 
C2H1 100 km 4 m/s 417 min 41.7 1043 
C1H2 150 km 4 m/s 625 min 62.5 1563 
C2H2 200 km 2 m/s 1667 min 166.7 4168 
C1H3 150 km 3 m/s 833 min 83.3 2083 
C2H3 150 km 1.5 m/s 1667 min 166.7 4168 
C1H4 100 km 2 m/s 833 min 83.3 2083 
C2H4 50 km 1 m/s 833 min 83.3 2083 
C1H5 0 km – 0 0 0 
C2H6 0 km – 0 0 0  

Table 8 
Estimation of the life-time extreme line load.   

h(m)  c(%)  β(kN/ 
m)  

x0 

(kN/ 
m)  

Ni (Life- 
time 
exposure) 

qm 

(kN/ 
m)  

qewith pe =

10−2 (kN/ 
m)  

C1H1  0.2 40 164 106 418 4104 6184 
C2H1  0.2 90 164 376 1043 
C1H2  0.6 40 285 63 1563 
C2H2  0.6 90 285 361 4168 
C1H3  1.0 40 367 20 2083 
C2H3  1.0 90 367 327 4168 
C1H4  1.6 40 465 −40 2083 
C2H4  1.6 90 465 273 2083 
C1H5  2.5 40 581 −121 0 
C2H5  2.5 90 581 194 0  

Fig. 21. PDF of the estimated life-time extreme line load.  
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significantly increases. This significantly increases the demand of data, 
but is worthwhile to investigate if the size of data is large enough. 

Another hidden factor influencing the load magnitude is crew 
operation. One may drive the ship aggressively without voluntary speed 
reduction and collision avoidance, or cautiously by reducing speed and 
avoiding major collisions with ice floe. This apparently has an effect on 
the resulting load magnitude. The choice of ship crew is naturally 
affected by the ice condition which they observe. We could write the 
following relationships conceptually:  

This paper has implicitly assumed that the underlying distribution of 
P(crewoperation|icecondition) is unchanged among all the events, so that 
the distribution of ice load can be modeled only with ice conditions. In 
other words, the way ship crew operates the ship in response to the ice 
condition remains constant. The mode of crew operation naturally 
varies for different ships and crew. It is beneficial to quantify this 
through e.g. navigational data so that its influence on ice load can be 
taken into account. 

7.3. Pathway towards a more generalized model 

The results of this paper are obtained based on the measurement 
onboard S.A. Agulhas II. The validation with six-year data has demon
strated that the method is valid for the estimation of long-term extreme 
loads on the same frame of the same ship. Nonetheless, it does not tell 
whether such results can still give correct estimations for another ship 
with different hull form, e.g. different frame angles. The demonstration 
presented in Section 6 is based on the assumption that the imaginary 
ship has similar hull form as S.A. Agulhas II, so that the β and x0 
formulae can be applied without modification. However, if the frame 
angle differs considerably, it is then questionable whether the results 
remain valid. This is a typical difficulty with applying probabilistic 
models obtained from the measurement of one ship to different ships. 

Another limitation still associated with the extended EMM is related 
to the definition of exposure. The results in this paper is based on ten- 
minutes maxima due to practical reasons. To apply the results, the 
exposure then needs to be defined based on the operation time in each 
ice condition category. For a fixed distance, the operation time is 
apparently linked to operation speed. Therefore, the results are based on 
the operation speed profile of S.A. Agulhas II. For a ship with different 
operation speed profile, the exposure then differs even if the ship goes on 
the same route as S.A. Agulhas II. 

It is worthwhile to consider solutions which helps to generalize the 
probabilistic model obtained through the analysis of one ship to other 
ships. This is in principle possible. To account for the frame angles, 
corrections can be made on the calculated β and x0 using physical 
knowledge on ship-ice interaction, similar to the attempt by Kujala [3]. 
To account for different operational profile, the ten-minute-maxima- 
based results derived in this paper can be converted to distance-based 
results using the operation profile of S.A. Agulhas II, which is then in
dependent of operation profile thus suitable to be used for any other 
ships. These will improve the capability to generalize the results to other 
ships. This paper focused on the statistical modelling of ice loads on the 
measurement ship, while the solution of generalization is left to future 
work. 

7.4. Other limitations and future work 

The work in this paper is based on visually observed ice conditions, 

which contains relatively large uncertainty [25]. This leads to uncer
tainty in the obtained model and also leads to yearly variation if the 
model is established on a different training dataset as shown in Section 
5.4. If the same method can be applied to data with more accurately 
measured ice conditions, the resulting model can be more reliable. With 
S.A. Agulhas II measurement, accurate ice condition monitoring has 
been made possible since 2018/19, when camera systems were instru
mented on the ship to enable machine vision for concentration moni
toring. In future when several years’ measurement with accurate ice 

condition monitoring are obtained, it is worthwhile to carry out similar 
work to establish a new model and validate with long-term measure
ment. Another possible work to carry out is to include floe size as 
another ice condition variable, by which the ice condition character
ization can be similar to the egg code of WMO [26]. The same principles 
can be followed as this paper, but one needs to carefully select the proper 
function form to model β and x0 to include floe size as another variable. 
Once ice condition can be adequately characterized in the model, it 
becomes beneficial to consider the effect of ship speed and maneuvering 
(e.g. change of rudder angle) to the ice load magnitude. 

8. Summary 

This paper presents a probabilistic method for the analysis and long- 
term estimation of line loads on ship hull. The extension contains the 
modelling of x0 and the inclusion of ice concentration as an additional 
ice condition parameter. Two different estimation methods were 
employed to establish the distribution parameter functions. Comparison 
of the results with the six-year measurement indicates that the proposed 
method provides good general agreement with data and is suitable for 
long-term estimation of ice loads. 
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