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Abstract: The automation of forest field reference data collection has been an intensive research
objective for laser scanning scientists ever since the invention of terrestrial laser scanning more than
two decades ago. In this study, we demonstrated that an under-canopy UAV laser scanning system
utilizing a rotating laser scanner can alone provide accurate estimates of canopy height and stem
volume for the majority of trees in a boreal forest. We mounted a rotating laser scanner based on a
Velodyne VLP-16 sensor onboard a manually piloted UAV. The UAV was commanded with the help
of a live video feed from the onboard camera. Since the system was based on a rotating laser scanner
providing varying view angles, all important elements such as treetops, branches, trunks, and ground
could be recorded with laser hits. In an experiment including two different forest structures, namely
sparse and obstructed canopy, we showed that our system can measure the heights of individual trees
with a bias of −20 cm and a standard error of 40 cm in the sparse forest and with a bias of −65 cm and
a standard error of 1 m in the obstructed forest. The accuracy of the obtained tree height estimates
was equivalent to airborne above-canopy UAV surveys conducted in similar forest conditions or even
at the same sites. The higher underestimation and higher inaccuracy in the obstructed site can be
attributed to three trees with a height exceeding 25 m and the reduced point density of these tree tops
due to occlusion and the limited ranging capacity of the scanner. Additionally, we used our system
to estimate the stem volumes of individual trees with a standard error at the level of 10%. This level
of error is equivalent to the error obtained when merging above-canopy UAV laser scanner data
with terrestrial point cloud data. The results show that we do not necessarily need a combination
of terrestrial point clouds and point clouds collected using above-canopy UAV systems in order to
accurately estimate the heights and the volumes of individual trees in reference data collection.

Keywords: under-canopy; UAV; laser scanning; lidar; tree height; stem curve; stem volume; automa-
tion of field reference; forest plot

1. Introduction

Since the adaptation of airborne laser scanning for operative forest inventories, es-
pecially in the boreal zone, research in remote sensing of forests has moved towards
automating forest field reference data collection at the plot level with the goal of using
this reference data for the calibration of airborne lidar surveys. Conventional plot-level
field inventories are mainly based on calipers, measuring tapes and hypsometers, and the
consistency and accuracy of such measurements has been reported to be variable [1]. For
example, tree heights can be obtained with 2–3% errors using conventional instruments
(clinometer, hypsometer, rangefinder) when well-trained staff are used. The biometric (e.g.,
density of the forest) and topographic factors explain most of the remaining errors [1,2]. In
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Luoma et al. [1], the largest difference within repeated conventional measurements of the
same tree was less than 1.5 m for 73.3% of the trees.

The need for forest information varies. However, increasingly, there are multiple
uses that require the optimization of forest resources. In field reference data collection, a
selective sampling of trees is needed, and the most important forest parameters to measure
include, e.g., tree position, diameter at breast height (DBH), tree height, stem form, and
other physical traits. When it comes to the amount of wood, the stem volume for each
species is the most important parameter to be measured. The most accurate way to estimate
the stem volume is based on an accurate definition of stem curve/form as a function of the
height from ground.

Airborne laser scanning (ALS) has been known to provide the height of trees with a
good accuracy for more than 20 years [3]. In many studies and reviews, the quality of the
field reference data used to judge ALS-based tree heights has been questioned [3–5]. Since
the advent of unmanned aerial vehicle (UAV)-based laser scanning systems, with most
enabling a high point density (Jaakkola et al. [6]), tree height estimates with a high accuracy
have been reported. In Jaakkola et al. [6], tree heights were obtained with 40 cm accuracy
using mini-UAV laser scanning. A similar system was developed by Wallace et al. [7], and
they showed that the standard error of tree height was reduced to 0.15 m when the higher
density data were used.

Lovell et al. [8] pioneered the research on terrestrial laser scanning (TLS) for forest
inventory. With TLS, the capacity to provide tree heights has been significantly limited.
In a review of TLS technology by Liang et al. [9], tree height estimation accuracies were
broadly reported during 2004–2014. Using the single scan approach and 16 plots of varying
density, a root-mean-square error (RMSE) of 4.9 m was reported for tree height estimation
in Olofsson et al. [10]. Recently, Wang et al. [11] concluded that TLS has a limited capacity
to measure tree height for trees taller than 15 m in dense stands, mainly due to the occlusion
of the upper crowns. According to them, the TLS point clouds completely captured most
of the suppressed trees, for which the TLS-measured tree heights were highly accurate.
Furthermore, they reported that the root-mean-square deviation between TLS-measured
tree heights and field-measured tree heights was 1.4 m for trees with a height of 15–20 m
and 2.4 m for trees with a height exceeding 20 m. Multi-scan approaches increase the
height estimation accuracy. As a summary, the density of the forest canopy and the number
of scans determine the obtained accuracy for tree height when using a TLS system for
the measurement.

Despite the need for accurate tree height estimates, the accuracy of tree height estima-
tion has only been discussed in a few previous studies utilizing a mobile laser scanning
(MLS) system. In Liang et al. [12], a phase-based mobile laser scanner operated from an
all-terrain vehicle and from a backpack was used to measure tree heights. RMSEs of 3.7 m,
5.3 m and 5.3 m were reported for tree height in easy, medium and difficult forests. Such
categories were based on the amount of occlusion at the ground level, the spatial stem
density, and the distribution of the diameter at breast height [12]. Cabo et al. [13] and
Gianneti et al. [14] reported that the tree height estimation of trees taller than 15 m is
considerably hindered by the limited range measurement capacity of the hand-held laser
scanner. In our previous studies [15–17], we observed that MLS (backpack/hand-held laser
scanner with SLAM (Simultaneous Localization and Mapping)) can provide tree heights
with an accuracy of 1 m. Recently, Ko et al. [18] showed that backpack laser scanning
can provide the individual tree heights with an error less than 2 m using the Velodyne
VLP-16 sensor.

Even though stem volume is one of the most important tree attributes to be derived
in a forest inventory, only a few published mobile laser scanning studies have reported
accurate stem volume estimates until recently [12,19,20]. These studies have reported
relative RMSEs ranging from 20% to 50% in easy, medium and difficult boreal forests,
which are not yet sufficient for operational field reference data collection. Operational work
requires a relative RMSE of approximately 10% based on Finnish forest conditions and
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current practices [21]. In our recent paper using under-canopy UAV laser scanning [16],
we were able to obtain high-quality stem volume estimates (error 10.1%) by combining
stem curves estimated from the under-canopy UAV data with tree heights estimated from
above-canopy UAV data.

An under-canopy flying UAV for forest measurements was first proposed by Van-
dapel et al. [22]. Vian and Przylbylko [23] visioned a remote sensing sensor system to
generate measurement information using under-canopy flights. Chisholm et al. [24] pro-
totyped a UAV-mounted lidar flying along the forest road and they showed that the
UAV-mounted lidar system was capable of measuring diameters of trees along this road.
The first forest informatics study using under-canopy UAV laser scanning was conducted
by Hyyppä et al. [16]. In the paper, we were able to compute stem volume estimates
for the detected trees with a relative RMSE of 10% in both sparse and obstructed forest
sites by combining stem curves extracted from the under-canopy UAV laser scanner data
with tree heights obtained from separate high-density above-canopy UAV laser scanning
data. Wang et al. (2021) tested the single-flight integration of above- and under-canopy
UAV laser scanning for forest investigation in order to obtain accurate canopy height
estimates [25]. Recent developments in under-canopy navigation include Higuti et al. [26],
Schultz et al. [27], Cui et al. [28], and Lin and Stol [29]. The development of a miniaturized
robotic mobile mapping system for under-canopy phenotyping was recently presented by
Manish et al. [30]. Under-canopy UAV imaging and photogrammetry has been reported
by, e.g., Krisanski et al. [31], in which the point cloud-based tree diameter measurements
resulted in an RMSE of 1.1 cm and 2.1 cm compared with manual reference diameters for
two test sites.

In this study, we show that an under-canopy UAV laser scanning system using a
rotating laser scanner can provide both the canopy height and the stem volume for mature
trees in boreal forest conditions with an accuracy sufficient for operational field reference
data collection (i.e., 10% error). Additionally, we discuss whether single-sensor under-
canopy UAV laser scanning will remove the need to combine above-canopy UAV-derived
point clouds with TLS point clouds.

2. Materials and Methods
2.1. Study Area and Reference Data

A boreal forest in Evo, Finland (61.19◦ N, 25.11◦ E) was used as the study area. The
measurements were conducted on a cloudy and calm day on 27 November 2020 on two test
sites of size 32 m × 32 m, representing sparse and obstructed forests. The classification
of forest type was based on the stem density, amount of occlusion of the tree stems and
the amount of understory vegetation. The sparse site consisted mainly of pines that had
a visible and straight stem. The obstructed site represented a mixed stand consisting of
pines, spruces and birches, and the stem density varied inside the plot but was at the same
level as in the sparse site (slightly over 400 trees per hectare). In the obstructed site, small
spruces occluded the visibility of near-by tree stems, and the stems of such spruces were
hardly visible in the field and from the point clouds. Descriptive statistics of the test sites
are provided in Table 1 and photos of test sites are shown in Figure 1.

Table 1. Descriptive statistics of trees on the test sites at the individual tree level. Here, ‘no trees’ stands for the number of
trees within each test site, stem density corresponds to the number of trees per one hectare, DBH is an abbreviation of the
diameter at breast height and volume means the volume of the tree stem neglecting the volume of branches. Furthermore,
‘std’ means the standard deviation.

Test Site No Trees
Stem Density

(Stems/ha)
DBH (cm) Height (m) Volume (m3)

Mean Std Min Max Mean Std Min Max Mean Std Min Max

Sparse 42 410 25.9 5.2 10.9 33.2 21.4 2.8 12 24.5 0.58 0.23 0.076 0.99

Obstructed 43 420 27.1 10.1 5.3 57.5 22.2 6.0 7.4 27.6 0.73 0.56 0.008 3.27
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Figure 1. Test sites used for the study: sparse site on the left, obstructed site on the right.

The field reference data were collected with multi-scan TLS in 2014 (sparse site on
27 June, obstructed site on 8 July) and stem curves were obtained from the data with the
following process: point clusters corresponding to individual trees were detected by eye
from the point cloud, and semi-manual circle fitting was performed at various heights
to obtain a reference stem curve. The accuracy of the reference stem curves was at the
level of 0.5 cm. Stem curves were updated by manual diameter measurements taken at
various heights from each tree on 13 June 2019. Reference tree heights used in the study
were obtained for each tree with hypsometer measurements conducted in September 2019.
Trees with a diameter at breast height (DBH) exceeding 5 cm were included in the set of
reference trees. Using the stem curve information and the tree heights, we were able to
calculate reference stem volumes with the help of parabolic and square root functions fitted
to the reference stem curves using the method described in our previous paper [16].

2.2. Under-Canopy UAV Laser Scanner System

The under-canopy flights were performed with a Tarot T960 hexacopter, which was
equipped with a DJI digital FPV (first person view) system, Pixhawk 2.1 autopilot, and
ArduCopter 3.6.9 firmware. The payload capacity of the UAV is 4 kg and the flight time is
15 min. The flights were piloted manually using live video feed from the DJI FPV system.
The GeoSLAM Zeb-Horizon laser scanner was mounted to the bottom of the UAV using
GeoSLAM Zeb-Horizon UAV mount, as shown in Figure 2. On 27 November 2020, one
flight at each site was flown manually without GNSS assistance at a flying height of 2–3 m
above ground, with some higher spots when the canopy had a gap. The flying speed was
mostly very slow, i.e., 1–2 m/s. The flight time for the sparse plot was 8.5 min and 6.5 min
for the obstructed site. The flight trajectories for both of the test sites are shown in Figure 3.
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The GeoSLAM Zeb-Horizon scanner is officially a hand-held laser scanning system
which has a rotating arm. We chose to mount the Zeb-Horizon scanner onto the UAV since
we wanted to have a rotating laser scanner that provides adequate coverage of the canopy.
In a previous study, we applied a Kaarta Stencil-1 laser scanner (Kaarta, Pittsburgh, PA,
USA) mounted on a UAV acquiring laser scanning data under the forest canopy. Such a
system based on the Velodyne VLP-16 sensor (Velodyne Lidar, San Jose, CA, USA) had a
horizontal field of view of 360◦ and 16 laser profiles corresponding to a vertical field of
view of ±15◦, which enabled us to extract the stem curves for pine trees approximately
up to the height of 8 m while flying at a height of 2–3 m. Due to the rotating scanner, the
laser scanner provided a point cloud extending from the ground to the treetops. The Zeb-
Horizon scanner also comprised the Velodyne VLP-16 sensor operating at a wavelength of
905 nm. The horizontal and vertical beam divergences of the scanner are 3 and 1.5 mrads.
At the 10 m range, the laser spot sizes are then 40.1 mm and 24.5 mm, respectively.

The raw data collected with the Zeb-Horizon scanner were pre-processed using
GeoSLAM Hub (version 6.0.0.) software and the default processing parameters (conver-
gence threshold: 0, window size: 0, voxel density: 1, rigidity: 0, maximum range: 100 m,
closed Loop) and afterwards exported into las-format for further processing.

2.3. Processing of Under-Canopy UAV Laser Scanner Data

Point cloud post-processing of the las-files included the following steps in Matlab
(MathWorks, Matlab version 2019a): (1) digital terrain model (DTM) generation, (2) seg-
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mentation, (3) stem detection and stem curve estimation, and (4) tree height and stem
volume estimation.

The DTM was calculated using a voxel-based algorithm. Within each xy-pixel, the
ground elevation was obtained by computing the average z coordinate of the lowest height
interval containing at least 1% of the total number of the points. The final DTM was
obtained by applying Gaussian smoothing for the preliminary DTM. The canopy height
model was obtained by subtracting ground elevation from the highest laser hits within
each xy-pixel.

In order to speed up the stem detection in step 3, the point cloud data were then
segmented by applying the watershed algorithm for the canopy height model. Each of
the resulting watershed segments included up to a few trees. Note that the segmentation
process resembled that used to detect individual trees in the processing of above-canopy
UAV point clouds. Importantly, we did not use the segmentation step to detect individual
trees but to divide the point cloud into many smaller regions, which reduced the total time
taken by the clustering algorithm used for the stem detection in step 3. Our implementation
of the clustering algorithm used in step 3 had an approximate time complexity of O

(
n1.6),

and therefore, it was significantly faster to process the point cloud in many small parts
than as a single large point cloud.

In the stem detection algorithm of step 3, we aimed to find tree trunk hits from
the point cloud data that were analyzed segment-wise, as explained above. Despite the
integrated SLAM (Simultaneous Localization and Mapping) in the GeoSLAM system, the
positioning error of the scanner was approximately at the 10 cm level. Thus, we applied
an arc-based stem detection algorithm detailed in [15,16] to obtain accurate estimates of
the stem curves. To this end, we first grouped the points in the point cloud based on
their time stamp and z-coordinate by using a time interval of 1 s and a height interval of
0.4 m, respectively. Then, we applied the arc extraction algorithm described in [16] for
each of the point groups. The arc extraction algorithm consisted of four steps that were
(1) density-based clustering (DBSCAN) [32], (2) robust circle fitting using random sample
consensus (RANSAC) [33], (3) removal of remaining noise points using an arc division
algorithm [16], and (4) a quality check for each of the arcs using pre-determined quality
criteria that included, e.g., the largest acceptable standard deviation of the radial residuals,
and a minimum acceptable central angle. Having extracted arcs for all the time and height
intervals, we clustered the extracted arc centers using the DBSCAN algorithm in the XY
plane in order to group the arcs into trees. After that, we estimated the growth direction
of the trees using principal component analysis (PCA). Final stem curves were obtained
using a smoothing cubic spline.

The tree heights were obtained from the same point cloud data by exploiting the
locations of the detected stems. To determine the height of a tree, we first found all the
points that were located within 1 m from the 3D stem line obtained from PCA. Subsequently,
we divided the found points into groups based on their z-coordinate and the tree height was
estimated by comparing the number of points within each interval against a point number
threshold, similarly to our previous work [16]. Finally, stem volumes were estimated
with the help of the extracted stem curve and the tree height by using the fitting method
described in [15].

The selection of the parameter values was based on heuristics and logic. We did not
optimize the used parameters. The same parameter settings have been used successfully in
totally different forests (different tree species, different density of stems) in other parts of
Finland [34].

2.4. Error Analysis

To evaluate the success rate of stem detection, we calculated the completeness and the
correctness of the detected trees. The completeness is defined as the number of reference
trees found divided by the total number of reference trees, whereas the correctness is
defined as the number of reference trees found divided by the total number of trees found.
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The bias describes the systematic errors in the estimation and root-mean-square
error (RMSE), i.e., standard error, includes both bias and random errors, and they were
obtained as

bias =
∑n

i=1 xi − xi,ref

N
(1)

RMSE = (
∑n

i=1 (xi − xi,ref)
2

N
)1/2 (2)

where N is the number of found trees, xi refers to the obtained estimates and xi,ref denotes
the corresponding reference values. The relative bias (%) and RMSE (%) were calculated
against the sample mean of the variable in question.

3. Results and Discussion
3.1. Completeness and Correctness of Stem Detection

We concentrated on detecting trees with a visible stem since the volume of such trees
can be estimated accurately. Therefore, the parameters of our algorithm were far from
optimal for detecting small, occluded spruces present on the test sites. The completeness
and correctness of stem detection are reported in Table 2.

Table 2. Completeness and correctness of stem detection. The number of detected trees is reported in
the parentheses.

Completeness (%) Correctness (%)

All Pine Spruce Birch
Sparse 90.5 (38/42) 97.4 (38/39) 0 (0/3) - 100 (38/38)

Obstructed 79.1 (34/43) 96.7 (29/30) 12.5 (1/8) 80.0 (4/5) 100 (34/34)

In the sparse site, our stem detection algorithm found 38 out of the 39 pines, but it
missed all of the three small spruces. The stems of the spruces were occluded by their
branches, and we refer the reader to Figure 14 of our previous work [16] for a photograph
illustrating the occlusion problem. The algorithm missed one tree near the southwest
corner (marked with black circle in Figure 3) of the sparse plot due to a low point density
caused by being distant (roughly 15 m) from the flight trajectory (see Figure 3). There were
no falsely detected stems and, thus, the correctness of stem detection was 100%.

In the obstructed site, our algorithm found 29 out of the 30 pine stems, one out of the
eight small spruces, and four out of the five birches. The correctness of stem detection was
again 100%.

Let us then compare our stem detection results against those reported in previous
studies using under-canopy UAVs for forest field reference measurements [16,25]. The
studies in [16] were conducted on the same test sites as the current study. Here, we found
one tree less in the sparse site, and two trees less in the obstructed site than in [16]. The
slightly lower completeness in the current study as compared with the results of [16] is
most likely due to a lower point density. In [16], the VLP-16 scanner attached to the UAV
was a Kaarta Stencil SLAM-system mounted on an aluminum platform together with the
operating computer. As the scanner was looking only in the horizontal direction, it did not
see the treetops, whereas in this study, the return hits were more equally distributed and
also covered the treetops. Both the previous and the current study were based on the same
sensor, i.e., VLP-16. In [34], the completeness of automated tree detection in a very sparse
site (1/3 of the stem density of the current study) was 96%.

3.2. Tree Height Estimation

For the sparse site, we obtained a bias of −20 cm (−0.91%) and a standard error
of 40 cm (1.86%), and for the obstructed site, we obtained a bias of −65 cm (−2.91%)
and a standard error of 1 m (4.4%). In general, such accuracies are comparable to the
best previous studies. Hyyppä et al. [35] reported a standard error of 1.5–2.5% for tree
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height determination using hand-held laser scanning (1.5–2%) and high-density above-
canopy UAV laser scanning (2–2.5%) in sparse forest sites. The bias is also comparable
to the results obtained with a hand-held laser scanner in [35]. The results are also better
than those obtained with the current implementation of the backpack laser scanner (data
collected in April 2016 with an AKHKA-R3 laser scanning unit developed in FGI, equipped
with a Riegl VUX-1HA 2D laser scanner, a LITEF UIMU-LCI inertial measurement unit,
and a positioning system consisting of a NovAtel Flexpak6 GNSS receiver and GGG-703
antenna) [35]. When comparing the results of the obstructed site to previous studies, the
standard error obtained in this paper was lower than in any of the previous studies from
the same site [24]. Previous standard errors obtained in the same site [35] have ranged from
5–6% (for backpack and hand-held laser scanning) up to 6–8% (for high-density above-
canopy UAV laser scanning data). In Wang et al. [25], the standard error of tree heights
estimated from UAV data was 6.1% for trees with a DBH exceeding 15 cm, which is similar
to the results reported in [35]. Our results imply that under-canopy UAV laser scanning
may provide tree height estimates with a slightly better accuracy than conventional high-
density above-canopy UAV laser scanning measurements. It should be noted that previous
results [35] have been obtained with above-canopy UAV data that employs point densities
from 320 to 4800 pts/m2. The results for tree height determination can be seen in Figure 4.
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When looking at the scatter plot of tree heights presented in Figure 4 (right), there are
three trees, the heights of which are strongly underestimated. Figure 5 illustrates a point
cloud for each of these trees. The height underestimation by more than 2.5 m was caused
by the low number of tree top hits in the point cloud. The low number of tree top hits
can be attributed to the limited ranging capacity of the scanner and the occlusion arising
from the lower layers of the canopy. Furthermore, the selected point number threshold
for the tree height estimation algorithm seems to have been too high for the low point
density of the upper canopy layers. As explained previously, we did not optimize over
the threshold values, and a better selection of the parameter values may have resulted
in a smaller error of the estimated tree heights. Similarly to our previous work [16], the
threshold number of hits indicating treetops was chosen to be higher for mature trees than
for smaller trees. Since the point cloud of Figure 5 shows that the tree height measurement
capacity of VLP-16 is limited for tall trees, this logic should be modified for the system
under study.
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scanning system.

3.3. Derivation of Stem Volumes

For the sparse site, we obtained a bias of −3.1% and a standard error of 12.5% for
the stem volume, whereas for the obstructed site, we obtained a bias of −2.2% and a
standard error of 8.6%. Hyyppä et al. [35] reported corresponding accuracies that had
been obtained using systems based on backpack laser scanning, hand-held laser scanning
and a combination of under-canopy UAV laser scanning and above-canopy UAV laser
scanning in the same test sites. The obtained accuracies in this study are also better than
those obtained using conventional field measurements (RMSE 12% for the sparse site and
23% for the obstructed site) and those obtained using above-canopy UAV laser scanning
(18–20% for the sparse site and about 50% for the obstructed site) in [35]. The scatter plots
of estimated volume versus reference volume are shown in Figure 6.
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3.4. Further Discussion

In this section, we discuss whether a combination of above-canopy UAV and terrestrial
(e.g., TLS) point cloud data is really needed in the light of our results. It is obvious that the
above-canopy UAV systems provide a detailed description of the upper parts of the forest
canopy, including information of tree heights [36], crown areas, and crown volume. The
above-canopy UAV systems provide high-density point clouds of high positional accuracy
since GNSS-positioning provides high absolute accuracy (2–5 cm) above the canopy. On the
other hand, terrestrial point clouds, which have a high local accuracy, a high density, and a
low point–cloud-to-point–cloud variation, are another optimal element for characterizing
lower parts of the forest canopies. Together, such point clouds can provide an optimal
characterization of a canopy and tree attributes can be extracted from such point cloud
data with a high accuracy. The added value of such data includes millimeter level accuracy
of the terrestrial point cloud, decimeter level accuracy of the canopy height components,
and the possibility for more accurate change detection. On the other hand, such data are
also expensive and laborious to collect. Laborious steps include the collection of the TLS
scans, matching of the TLS scans to each other and to the above-canopy point cloud. In
reality, a single forest plot requires multiple TLS scans, and therefore, only a few TLS plots
can be collected in a single workday by one measurement group. The collection of the UAV
data does not necessarily require a significant amount of time, but it multiplies the costs of
the needed sensor hardware and it also increases the collected data amount.

In order to provide both the terrestrial and canopy top point clouds using a single
sensor solution, two promising technological solutions seem to exist. The first one is
a rotating laser scanner, demonstrated in this paper, with a high-quality SLAM system
complemented with state-of-the-art point cloud extraction methods. The second one, not
yet demonstrated, uses a laser scanner with large field of view capable of seeing both the
treetops and the ground. For example, an Ouster OSO scanner with a field of view of
90 degrees could be used for this purpose. Similarly to the first system, the second scanner
should also be integrated with a SLAM system. When using either of these solutions,
the resulting point cloud is of lower accuracy as compared with a combination of TLS
and above-canopy UAV point clouds due to the need to use multi-beam laser scanners
that typically have 2–3 cm ranging errors. As a result, tree trunk data can be obtained
at cm-level, and treetops can be obtained with an accuracy ranging from the decimeter
level to 1 m, since range accuracy, point density, the occlusion of the treetops and SLAM
accuracy deteriorate the quality. From such data, it is presumably more difficult to extract
quality-related features from tree stems, branches and foliage. The added value is increased
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efficiency and a more straightforward use of the technology. It is expected that the collection
speed of field reference data with such a system is at least 10 times higher in terms of
the number of trees collected in a single day as compared with data collection methods
needed for the combination of TLS and above-canopy UAV point clouds. Additionally, a
single-sensor system and data processing flow are needed.

This study was arranged on the same sites as the previous studies [16,35] so that
we could compare the developed approach against various other approaches for field
reference acquisition, including various mobile laser scanning techniques, under-canopy
UAV laser scanning combined with above-canopy UAV laser scanning, various above-
canopy UAV laser scanning techniques, and conventional field reference data collection.
Weather, wind or seasonal effects did not affect the results since the sites were largely
based on coniferous species, we did not use lidar intensity, the weather was calm during
data acquisition, and the processing method was robust. Our study is the first to show
that an under-canopy UAV system equipped with a rotating scanner provides tree height
information with an equal or slightly better accuracy than above-canopy UAV systems
providing high-density (320–4800 pts/m2) point clouds. Our under-canopy UAV system
equipped with a rotating scanner also provides stem volume estimates with an accuracy
equivalent to the previous best mobile laser scanning techniques even if the previous best
techniques are complemented with additional above-canopy UAV laser scanning data.
We assume that under-canopy UAV laser scanning is more ready and more feasible to
be applied on economically exploited, more sparse boreal forest canopies, whereas the
previously proposed approach based on a combination of UAV and TLS is more feasible
for ecological studies of forests and for use in complex deciduous and temperate forests.
Operating the under-canopy UAV system in more complex and dense forest structures
provides an additional challenge since under-canopy navigation technology is needed in
fully automated operations and it is challenging to fly even manually within such forests.
Future research is needed to implement autonomous operation inside canopies through
collision avoidance and navigation inside the forest canopies.

An alternative technological solution for the future is an above-canopy flying UAV
that can measure the arcs of a tree stem from the above, as first proposed in [37] and
recently also partly tested in [38,39]. This requires a small laser beam, a low enough point
spacing distance (a high pulse repetition rate) and a low mirror scan speed. Such a system
may be feasible for dense, spruce-dominated forests, where a UAV cannot be flown under
the forest canopy due to the large number of obstacles. Such a single-sensor system may
also provide adequately accurate estimates for tree height and stem volume.

4. Conclusions

The automation of forest field reference has been an intensive research objective for
laser scanning scientists for two decades. The first study [16] on using an under-canopy
UAV laser scanning system for collecting forest informatics resulted in stem volume
estimates with a relative RMSE (root-mean-square error) of 10% at an individual tree level.
However, this previous study relied on tree heights estimated from another point cloud
collected with an above-canopy flying UAV. In this study, we showed that an under-canopy
UAV employing a rotating laser scanner can be utilized to accurately estimate the stem
curves, tree heights and stem volumes of individual trees. We compared the tree heights
obtained with the rotating laser scanner system against tree heights measured manually
in the field, whereas we compared the estimated stem volumes against highly accurate
field reference data acquired semi-manually with multi-scan TLS. We showed that the
under-canopy UAV system equipped with the rotating scanner provides estimates of tree
height (RMSE of 0.45 m on the sparse test site and RMSE of 1.2 m on the obstructed test site)
and stem volume (RMSE of 12.5% on the sparse site and RMSE of 8.6% on the obstructed
site) with an accuracy equaling the previous best mobile laser scanning techniques, even
if the previous best techniques were complemented with additional above-canopy laser
scanning data. Furthermore, the system tested in this study enabled us to obtain tree height
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estimates with an equal or slightly better accuracy than has been previously obtained
from high-density (320–4800 pts/m2) point clouds collected with above-canopy UAV laser
scanning measurements on the same test sites [35].
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17. Balenović, I.; Liang, X.; Jurjević, L.; Hyyppä, J.; Seletković, A.; Kukko, A. Hand-Held Personal Laser Scanning–Current Status and
Perspectives for Forest Inventory Application. Croat. J. For. Eng. 2020, 42, 165–183. [CrossRef]

18. Ko, C.; Lee, S.; Yim, J.; Kim, D.; Kang, J. Comparison of Forest Inventory Methods at Plot-Level between a Backpack Personal
Laser Scanning (BPLS) and Conventional Equipment in Jeju Island, South Korea. Forests 2021, 12, 308. [CrossRef]

19. Liang, X.; Kukko, A.; Hyyppä, J.; Lehtomäki, M.; Pyörälä, J.; Yu, X.; Kaartinen, H.; Jaakkola, A.; Wang, Y. In-situ measurements
from mobile platforms: An emerging approach to address the old challenges associated with forest inventories. ISPRS J. Photogr.
Remote Sens. 2018, 143, 97–107. [CrossRef]

20. Bienert, A.; Georgi, L.; Kunz, M.; Maas, H.G.; von Oheimb, G. Comparison and combination of mobile and terrestrial laser
scanning for natural forest inventories. Forests 2018, 9, 395. [CrossRef]

21. Laasasenaho, J. Taper Curve and Volume Functions for Pine, Spruce and Birch; Metsäntutkimuslaitos: Helsinki, Finland, 1982.
22. Vandapel, N.; Kuffner, J.; Amidi, O. Planning 3-D path networks in unstructured environments. In Proceedings of the 2005 IEEE

International Conference on Robotics and Automation, Barcelona, Spain, 18–22 April 2005; pp. 4624–4629.
23. Vian, J.L.; Przybylko, J. Tree Metrology System. U.S. Patent US 9,198.363 B2, 1 December 2015.
24. Chisholm, R.A.; Cui, J.; Lum, S.K.; Chen, B.M. UAV lidar for below-canopy forest surveys. J. Unmanned Veh. Syst. 2013, 1, 61–68.

[CrossRef]
25. Wang, Y.; Kukko, A.; Hyyppä, E.; Hakala, T.; Pyörälä, J.; Lehtomäki, M.; El Issaoui, A.; Yu, X.; Kaartinen, H.; Liang, X.; et al.

Seamless integration of above-and under-canopy unmanned aerial vehicle laser scanning for forest investigation. For. Ecosyst.
2021, 8, 1–15. [CrossRef]

26. Higuti, V.A.; Velasquez, A.E.; Magalhaes, D.V.; Becker, M.; Chowdhary, G. Under canopy light detection and ranging-based
autonomous navigation. J. Field Robot. 2019, 36, 547–567. [CrossRef]

27. Schultz, A.; Gilabert, R.; Bharadwaj, A.; de Haag, M.U.; Zhu, Z. A navigation and mapping method for UAS during under-the-
canopy forest operations. In Proceedings of the IEEE/ION PLANS 2016, Savannah, GA, USA, 11–14 April 2016; pp. 739–746.

28. Cui, J.Q.; Lai, S.; Dong, X.; Chen, B.M. Autonomous navigation of UAV in foliage environment. J. Intell. Robot. Syst. 2016, 84,
259–276. [CrossRef]

29. Lin, T.J.; Stol, K.A. Towards Automated Under-Canopy Exploration of Plantation Forests. In Proceedings of the 2019 International
Conference on Unmanned Aircraft Systems (ICUAS), Atlanta, GA, USA, 11–14 June 2019; pp. 1201–1208.

30. Manish, R.; Lin, Y.C.; Ravi, R.; Hasheminasab, S.M.; Zhou, T.; Habib, A. Development of a Miniaturized Mobile Mapping System
for In-Row, Under-Canopy Phenotyping. Remote Sens. 2021, 13, 276. [CrossRef]

31. Krisanski, S.; Taskhiri, M.S.; Turner, P. Enhancing methods for under-canopy unmanned aircraft system based photogrammetry
in complex forests for tree diameter measurement. Remote Sens. 2020, 12, 1652. [CrossRef]

32. Ester, M.; Kriegel, H.P.; Sander, J.; Xu, X. A Density-Based Algorithm for Discovering Clusters in Large Spatial Databases with
Noise. In Proceedings of the Second International Conference on Knowledge Discovery and Data Mining (KDD-96), Portland,
OR, USA, 2–4 August 1996; Volume 96, pp. 226–231.

33. Fischler, M.A.; Bolles, R.C. Random sample consensus: A paradigm for model fitting with applications to image analysis and
automated cartography. Commun. ACM 1981, 24, 381–395. [CrossRef]

34. Hyyppä, E.; Muhojoki, J.; Yu, X.; Kukko, A.; Kaartinen, H.; Hyyppä, J. Rapid Coarse Registration Method Using Translation- and
Rotation-Invariant Local Descriptors Towards Fully Automated Forest Inventory, Manuscript. ISPRS J. Photogramm. Remote Sens.
Open 2021, under review.

35. Hyyppä, E.; Yu, X.; Kaartinen, H.; Hakala, T.; Kukko, A.; Vastaranta, M.; Hyyppä, J. Comparison of Backpack, Handheld,
Under-Canopy UAV, and Above-Canopy UAV Laser Scanning for Field Reference Data Collection in Boreal Forests. Remote Sens.
2020, 12, 3327. [CrossRef]

36. Wang, Y.; Lehtomäki, M.; Liang, X.; Pyörälä, J.; Kukko, A.; Jaakkola, A.; Liu, J.; Feng, Z.; Chen, R.; Hyyppä, J. Is field-measured
tree height as reliable as believed–A comparison study of tree height estimates from field measurement, airborne laser scanning
and terrestrial laser scanning in a boreal forest. ISPRS J. Photogramm. Remote Sens. 2019, 147, 132–145. [CrossRef]

37. Jaakkola, A.; Hyyppä, J.; Yu, X.; Kukko, A.; Kaartinen, H.; Liang, X.; Hyyppä, H.; Wang, Y. Autonomous collection of forest field
reference—The outlook and a first step with UAV laser scanning. Remote Sens. 2017, 9, 785. [CrossRef]

38. Neuville, R.; Bates, J.S.; Jonard, F. Estimating forest structure from UAV-mounted LiDAR point cloud using machine learning.
Remote Sens. 2021, 13, 352. [CrossRef]

39. Puliti, S.; Breidenbach, J.; Astrup, R. Estimation of forest growing stock volume with UAV laser scanning data: Can it be done
without field data? Remote Sens. 2020, 12, 1245. [CrossRef]

http://doi.org/10.1016/j.isprsjprs.2020.03.021
http://doi.org/10.5552/crojfe.2021.858
http://doi.org/10.3390/f12030308
http://doi.org/10.1016/j.isprsjprs.2018.04.019
http://doi.org/10.3390/f9070395
http://doi.org/10.1139/juvs-2013-0017
http://doi.org/10.1186/s40663-021-00290-3
http://doi.org/10.1002/rob.21852
http://doi.org/10.1007/s10846-015-0292-1
http://doi.org/10.3390/rs13020276
http://doi.org/10.3390/rs12101652
http://doi.org/10.1145/358669.358692
http://doi.org/10.3390/rs12203327
http://doi.org/10.1016/j.isprsjprs.2018.11.008
http://doi.org/10.3390/rs9080785
http://doi.org/10.3390/rs13030352
http://doi.org/10.3390/rs12081245

