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Abstract
Machine learning methods usually depend on internal parameters—so called
hyperparameters—that need to be optimized for best performance. Such optimization poses a
burden on machine learning practitioners, requiring expert knowledge, intuition or
computationally demanding brute-force parameter searches. We here assess three different
hyperparameter selection methods: grid search, random search and an efficient automated
optimization technique based on Bayesian optimization (BO). We apply these methods to a
machine learning problem based on kernel ridge regression in computational chemistry. Two
different descriptors are employed to represent the atomic structure of organic molecules, one of
which introduces its own set of hyperparameters to the method. We identify optimal
hyperparameter configurations and infer entire prediction error landscapes in hyperparameter
space that serve as visual guides for the hyperparameter performance. We further demonstrate that
for an increasing number of hyperparameters, BO and random search become significantly more
efficient in computational time than an exhaustive grid search, while delivering an equivalent or
even better accuracy.

1. Introduction

With the advent of data science [1, 2], data-driven research is becoming ever more popular in physics,
chemistry and materials science [3–7]. Concomitantly, the importance of machine learning as a means to
infer knowledge and predictions from the collected data is rising. Especially in molecular and materials
science, machine learning has gained traction in the last years and now frequently complements other
theoretical or experimental methods [6–18].

The effective use of machine learning usually requires expert knowledge of the underlying model and the
problem domain. A particular difficulty that is sometimes overlooked in current machine learning
applications is the optimization of internal model parameters, so called hyperparameters. Non-expert data
scientists often spend a long time exploring countless hyperparameter and model configurations for a given
dataset before settling on the best one. However, the best settings for these hyperparameters change with
dataset and dataset size. The resulting machine learning model is frequently only applicable to one specific
problem setting. New data requires hyperparameter re-optimization. Thus, expert use of machine learning is
often a costly endeavor—both in terms of time and computational budget.

Optimal machine learning is achieved with the set of hyperparameters that optimize some score function
f, such as mean absolute error (MAE), root mean squared error, or coefficient of determination (R2). The
score function reflects the quality of learning given the dataset composition and training set size, and is itself
an unknown function of all n hyperparameters f= f({z}). Hyperparameter tuning comprises a set of
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strategies to navigate the n-dimensional phase space of hyperparameters and pinpoint the parameter
combination that brings about the best performance of the machine learning model.

The most commonly used forms of automated hyperparameter tuning are random search and grid
search. Grid search is an exhaustive brute-force search exploring a pre-defined range and number of model
parameters to find the discrete parameter combination that yields the most optimal machine learning model.
In random search, random hyperparameter values are tried for a pre-defined number of iterations or until a
satisfying solution is found. Compared to grid search, random search explores more diverse hyperparameter
values for a given number of iterations, since values are picked randomly.

An alternative approach to the problem is to view hyperparameter tuning as a classic complex
optimization problem, where the objective score function f({z}) has an unknown functional form, but can
be evaluated at any point. An algorithm designed to address such tasks is Bayesian optimization (BO) [19]. It
is widely applied in the machine learning community to tune hyperparameters of commonly used
algorithms, such as random forest, deep neural network, deep forest or kernel methods [20–24], which are
evaluated on a wide range of standard datasets from the UCI machine learning repository [25]. However, it is
not yet common to apply BO to machine learning problems in the natural sciences, where high-dimensional
hyperparameter spaces are frequently encountered.

In this study, we apply three different methods—grid search, random search and BO—to a
hyperparameter optimization problem in machine learning of computational chemistry and assess which
method is most suitable. Our test case is a kernel ridge regression (KRR) machine learning model that maps
molecular structures to their molecular orbital energies [26]. We represent the molecular structures with two
different descriptors, the Coulomb matrix (CM) [27] and the many-body tensor representation (MBTR)
[28]. The KRR method itself requires the optimization of two hyperparameters and one kernel choice. The
CM is hyperparameter-free, but the MBTR adds up to 14 more hyperparameters to the model. Through
pre-testing, we reduce this number to four hyperparameters that affect the model the most. The largest
hyperparameter space we encounter in this approach is therefore six dimensional. In previous work, we
specified KRR hyperparameters by means of grid search after we had optimized the hyperparameters of the
molecular descriptors manually beforehand [26]. Here, we take the more rigorous approach and combine
the optimization of descriptor and model parameters.

The objective of this manuscript is to compare and assess the effectiveness and accuracy of the three
different methods grid search, random search and BO in optimization problems with up to six dimensions.
This manuscript may provide guidance for fellow machine learning practitioners in computational
chemistry to choose a suitable optimization method for their problem setup. In addition to the optimal set of
hyperparameters, BO delivers score function landscapes generated across the hyperparameter phase space,
providing insight into how the behavior of the machine learning model changes across a range of possible
model configurations. Such observations may help machine learning practitioners to select possible starting
points for similar optimization problems.

The manuscript is organized as follows. Section 2 introduces the basic principle of machine learning with
KRR and illustrates how molecules are represented to the algorithm. The concept of hyperparameter tuning
with grid search and BO is explained. In section 3, these two methods are applied to adjust the
hyperparameters for our KRR model which predicts molecular energies of three molecular datasets. We
visualize and discuss our results. Conclusions and outlook are presented in the last section.

2. Methods

2.1. Machine learning model
We employ KRR to predict molecular orbital energies of the QM9 dataset of 134k small organic molecules
[29] (results for two additional datasets, AA and OE62, can be found in the supplementary material (is
available online at stacks.iop.org/MLST/2/035022/mmedia)).

In KRR, a scalar target property, here the energy of the highest occupied molecular orbital (HOMO), is
expressed as a linear combination of kernel functions k(M,M ′)

Epred(M) =
N∑
i=1

wik(M,Mi). (1)

Mi is the descriptor for molecule i and the sum runs over all training molecules. wi are the regression weights
that need to be learned.

In the scope of this work, we employ two kernel functions: the Gaussian kernel and the Laplacian kernel.
The Gaussian kernel is given by

2
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kG(M,M ′) = e−γ||M−M ′||22 , (2)

which is a function of the Euclidean distance between two moleculesM,M ′. The hyperparameter γ is
defined as 1

2σ2 , where σ is the standard deviation of the Gaussian kernel (kernel width) that determines the
resolution in molecular space. The Laplacian kernel is given by

kL(M,M ′) = e−γ||M−M ′||1 , (3)

which is based on the 1-norm as a similarity measure between two molecules. Here, γ is defined as 1
σ , where

σ is the kernel width of the Laplacian kernel3.
The regression parameters wi are obtained from the minimization problem

argmin
w

N∑
i=1

(Epred(Mi)− Erefi )2+αwTKw, (4)

where Erefi are the known reference HOMO energies in the dataset, K is the kernel matrix (Ki,j := k(Mi,Mj))
and w is the regression weight (wi) vector. The hyperparameter α controls the size of a regularization term
and penalizes complex models with large regression weights over simpler models with small regression
weights. Equation (4) has an analytic solution

w= (K+αI)−1Eref (5)

that determines w.
We here explicitly distinguish between the regression weights wi and the hyperparameters of the machine

learning model. The regression weights grow in number with increasing training data size and are
determined during model training through the closed mathematical form in equation (5). Conversely, the
hyperparameters are finite in number and cannot be learned by the model. Thus, their optimal values have to
be determined externally. In KRR, the number of hyperparameters is fixed to two: α and γ. These two
hyperparameters can assume any value within certain sensible ranges. In addition, there are model-specific
choices, which could be interpreted as special hyperparameters that can only assume certain values. For KRR,
this would be the choice of the kernel.

2.2. Molecular representation
One important aspect in machine learning is the representation of the input data to the machine learning
algorithm. Here we employ the CM [27] and the MBTR [28]. We use the DScribe package [31] to generate
both descriptors for the datasets in this work. The entries of the CM are given by

Cij =

{
0.5Z2.4

i if i= j,
ZiZj

∥Ri−Rj∥ if i ̸= j.
(6)

The CM encodes the nuclear charges Zi and corresponding Cartesian coordinates Ri of all atoms i in
moleculeM. The off-diagonal elements represent the Coulomb repulsion between atom pairs and the
diagonal elements have been fitted to the total energy of the corresponding atomic species in the gas phase. To
enforce permutational invariance, the rows and columns of the CM are sorted with respect to their ℓ2-norm.

The MBTR encodes molecular structures by decomposing them into a set of many-body terms (species,
interatomic distances, bond angles, dihedral angles, etc), as outlined for the example of a CO2 molecule in
figure 1. Each many-body level is represented by a set of fixed sized vectors. The symbol k enumerates the
many-body level. We here include terms up to k= 3. One-body terms (k= 1) encode all atom types (species)
present in the molecule. Two-body terms (k= 2) encode pairwise inverse distances between any two atoms
(bonded and non-bonded). Three-body terms (k= 3) add angular distributions for any triple of atoms. A
geometry function gk is used to transform each configuration of k atoms into a single scalar value. These
scalar values are then Gaussian broadened into continuous representationsDk:

Dl
1(x) =

1

σ1
√
2π

e
− (x−g1(Zl))

2

2σ2
1 (7)

3 Equations (2) and (3) correspond to the kernel implementations in the Python package SciKit learn, which we use in this work. These
kernel definitions differ from those used in otherwork [27, 30], which implies that the optimal hyperparameter valueswill also be different.
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Figure 1. Illustration of the MBTR output for a CO2 molecule, showing the distributions MBTRk for k= 1, 2, 3 with different
combinations of chemical elements. The distributions of each k term are arranged into a k+ 1 dimensional tensor.

Dl,m
2 (x) =

1

σ2
√
2π

e
− (x−g2(Rl,Rm))2

2σ2
2 (8)

Dl,m,n
3 (x) =

1

σ3
√
2π

e
− (x−g3(Rl,Rm,Rn))

2

2σ2
3 . (9)

The σk’s are the feature widths for the different k-levels and x runs over a predefined range [xkmin,x
k
max] of

possible values for the geometry functions gk. For k= 1, 2, 3, the geometry functions are given by g1(Zl) = Zl

(atomic number), g2(Rl,Rm) = |Rl −Rm| (distance) or g2(Rl,Rm) =
1

|Rl−Rm| (inverse distance), and

g3(Rl,Rm,Rn) = cos(∠(Rl −Rm,Rn −Rm)) (cosine of angle). For each possible combination of chemical
elements present in the dataset, a weighted sum of distributionsDk is generated. For k= 1, 2, 3, these final
distributions are given by

MBTRZ1
1 (x) =

|Z1|∑
l

wl
1Dl

1(x) (10)

MBTRZ1,Z2
2 (x) =

|Z1|∑
l

|Z2|∑
m

wl,m
2 Dl,m

2 (x) (11)

MBTRZ1,Z2,Z3
3 (x) =

|Z1|∑
l

|Z2|∑
m

|Z3|∑
n

wl,m,n
3 Dl,m,n

3 (x), (12)

where the sums for l,m, and n run over all atoms with atomic numbers Z1, Z2 and Z3. wk are weighting
functions that balance the relative importance of different k-terms and/or limit the range of inter-atomic
interactions. For k= 1, usually no weighting is used (wl

1 = 1). For k= 2 and k= 3 the following exponential
decay functions are implemented in DScribe:

wl,m
2 = e−sk|Rl−Rm| (13)

wl,m,n
3 = e−sk(|Rl−Rm|+|Rm−Rn|+|Rl−Rn|). (14)

The parameter sk effectively tunes the cutoff distance. The functions MBTRk(x) are then discretized with nk
many points in the respective intervals [xkmin,x

k
max].
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Table 1. List of hyperparameter types and their total number in KRR, the CM and the MBTR.

Type Number

KRR Feature width (γ) 1
Regularization (α) 1
Kernel type 1

CM None 0
MBTR k-term feature widths (σk) 3

Weighting factors (sk) 3
Discretization ([xkmin,x

k
max], nk) 9

2.3. Number and choice of hyperparameters
In this section we review the hyperparameter types in our CM- or MBTR-based KRR models and motivate
our choice for which hyperparameters to investigate in more detail. Table 1 gives an overview over all
hyperparameters in this work. In total there would be three hyperparameters to optimize for CM-KRR and
17 for MBTR-KRR. Some hyperparameters have little effect on the model performance. Expanding the
search space with parameters that do not affect model performance would only lead to flat landscapes in
hyperparameter space, making it difficult to achieve convergence. Instead, they can be set as defaults for the
optimization of the remaining hyperparameters. We will explain this choice in more detail in the following.

The KRR method has three hyperparameters. γ and α are continuous variables and need to be
optimized. Conversely, the kernel choice can only assume certain finite values (0 and 1 in our case). We
found in previous work [26] that the Laplacian kernel is more accurate for the CM representation and the
Gaussian kernel for the MBTR. We therefore fix this choice also in this work and only optimize the two
parameters γ and α.

The CM has no hyperparameters. Conversely, the MBTR introduces many. This indicates that the MBTR
offers a more complex representation that could lead to faster learning for the same machine learning
algorithm. This is indeed what we observed in our previous work comparing CM-KRR and MBTR-KRR
[26]. However, the learning improvement comes at the price of a large number of hyperparameters, that need
to be optimized to achieve a good model.

As table 1 illustrates, MBTR introduces a total of 15 hyperparameters. We pre-set the grids to a range [0,
1] for k= 2 (inverse distance) and [−1, 1] for k= 3 (cosine angle). These ranges include all possible values
that an inverse number and the cosine function, respectively, can take. We further set the number of
discretization points to n= 200 for both ranges, which is fine enough that adding more points would not
improve model performance, but instead increase computational effort. We also found that the k= 1 term
does not improve the learning for the three datasets under investigation here [26] and therefore we do not
use k= 1 terms of the MBTR. For readers following our approach, we encourage them to carefully consider
equivalent choices in their own work.

In this work, we first investigate the optimization of the two MBTR broadening widths σ2 and σ3, while
the MBTR weighting parameters s2 and s3 are held constant at their default value of 0.5. Then, we also
include the weighting parameters s2 and s3 and optimize all six KRR and MBTR hyperparamers jointly.

2.4. Hyperparameter tuning
Let z be a set of n hyperparameters z= z1,z2, . . . ,zn, the boundaries of which define the hyperparameter
search domain Z , such that z ∈ Z . The score function f(z) ∈ Z is a black-box function defined within the
phase space Z . The aim of hyperparameter optimization for a given machine learning model is to find the set
of hyperparameters ẑ that provides the best model performance ŷ, as measured on a validation set:

ẑ= argmin
z∈Z

f(z), ŷ= f(̂z). (15)

The search for ẑ requires sampling the phase space Z through repeated f(z) evaluations. Unfortunately,
computing the objective function can be expensive. For each set of hyperparameters, it is necessary to train a
model on the training data, make predictions on the validation data, and then calculate the validation metric.
With an increasing number of hyperparameters, large datasets and complex models, this process quickly
becomes intractable to do by hand. Therefore, automated hyperparameter tuning methods are indispensable
tools for model building in machine learning.

In this study, we compare three approaches for hyperparameter tuning: grid search, random search and
BO. While grid search is guaranteed to find the optimal solution ẑ, given a fine enough grid, BO is a
statistical model with a high probability of finding ẑ. Our score function f(z) is the MAE on the prediction of
HOMO energies, with units in eV. For BO, our computational budget allows us to perform 100 iterations in
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Figure 2.Working principles of hyperparameter tuning methods. (a) In grid search, the machine learning practitioner sets up a
grid of hyperparameter values and trains a machine learning model on every combination of hyperparameter values. (b) In
random search, random combinations of hyperparameter values are chosen to train the model. (c) In Bayesian optimization, a
Gaussian process model is built to simulate the MAE landscape. The landscape is refined by sampling the score function across
the hyperparameter space.

the 2D search space, 300 iterations in the 4D search space and 500 iterations in the 6D search space. For
random search, we perform the same number of iterations to compare its performance to BO. For grid
search, we evaluate all points on our pre-defined grid, which results in 121 iterations in 2D and 4356
iterations in 4D. In 6D, grid search is not employed since it would be computationally too expensive to
evaluate all points on the grid.

2.4.1. Grid search
Grid search employs a grid of evenly spaced values for each hyperparameter z to discretize the entire phase
space Z , as illustrated in figure 2(a). The train-predict-evaluate cycle is then run automatically in a loop to
evaluate the MAE for all hyperparameter configurations on the grid, which can be inefficient, if a large
number of hyperparameters needs to be optimized.

Here, we rely on the scikit-learn implementation of KRR, but we eschew its native grid search function
‘sklearn.model_selection.GridSearchCV’ in favor of own algorithm designed specifically for explicit
evaluation of computational cost. A description of the algorithm can be found in the supplementary
material. We perform grid search in 2D and 4D search spaces on the natural logarithmic grid

{ei|i= [−10,−9, ...,0]} (16)

for each hyperparameters α, γ, σ2 and σ3.

2.4.2. Random search
Random search selects random combinations of hyperparameters within a given range to train the machine
learning model (here, the boundaries for the search domain are the boundaries of the interval in
equation (16)). In contrast to grid search, one can explicitly control the number of hyperparameter
combinations that are attempted and set the number of search iterations based on time or resources. Given
the same resources, random search can explore a more diverse search space than grid search, which is
visualized in figures 2(b) and (c). In grid search, nine attempts only explore three distinct values for each
hyperparameter, while in random search, all nine attempts test different hyperparameter values. A
description of the random search algorithm can be found in the supplementary material.

2.4.3. Bayesian optimization
With BO, we build a surrogate model for the MAE across the search domain, then iteratively refine it until
convergence is reached [19, 32, 33]. The boundaries for the BO search domain are the boundaries of the
interval in equation (16). Once the MAE surrogate landscape is known, the surrogate model can be
efficiently minimized to find the optimal choice of hyperparameters at its global minimum location. In this
work, we utilize the BO tool BOSS [34, 35].

The BO routine, illustrated in figure 2(b), features a two-step procedure of Gaussian process regression
(GPR), followed by an acquisition function. In the GPR, the MAE surrogate model is computed as the
posterior mean of a Gaussian process (GP), given MAE data. This step produces an effective landscape of the
MAE in hyperparameter space, which can be viewed and analyzed. While the posterior mean is the
statistically most likely fit to MAE data, the computed posterior variance (uncertainty) indicates which
regions of the hyperparameter space are less well known. Both the mean and variance are then used to
compute the eLCB acqusition function [36]. The global minimum of the acquisition function points to the

6
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Figure 3.MAE landscapes from the 2D optimization problem with the CM as molecular descriptor. (a) Grid search MAE as a
function of hyperparameters α and γ, evaluated on a natural logarithmic grid. (b) BO model prediction µ(z) of the MAE as a
function of log(α) and log(γ). (c) Random search MAE as a function of logarithmic α and γ. Grid search, BO and random search
were applied to a subset of 2k molecules taken from the QM9 dataset. Optimal hyperparameters are shown as red stars.

combination of hyperparameters in phase space to be tested next. Once this point is evaluated, the resulting
MAE is added to the dataset and the cycle repeats. With each additional datapoint, the MAE surrogate model
is improved. The method features variance and lengthscale hyperparameters encoded in the radial basis set
(RBF) kernel of the GP, but these are autonomously refined along with the GPR model.

In this active learning technique, the data is collected at the same time as the model training is
performed. The acquisition strategy combines data exploitation (searching near known minima) and
exploration (searching previously unvisited regions of phase space) to quickly identify important regions of
hyperparameter phase space where MAE is low. This allows us to identify the optimal combination of
hyperparameters with relatively few MAE evaluations.

BO requires only the range of hyperparameters as input to define the phase space domain before it
launches a fully automated n-dimensional search for the best combination of hyperparameters. For the 2D
and 4D search cases, we started BOSS from 10 initial points, while for the 6D case, we launched BOSS
starting from 50 initial points. The quality of the initial model affects the acquisitions, so we need to know
the 6D search space well enough before we start with BO. The algorithms that were used to handle the BO
acquisitions (which serve as the objective function) are described in the supplementary material.

Once the n-dimensional MAE surrogate models are converged, we can evaluate model accuracy
qualitatively and model predictions quantitatively. Model predictions are summarized by the location of the
global minimum in hyperparameter space ẑ, and its value in the surrogate model µ(̂z). Although µ(z) values
should be close to the true f (z) score function values, we additionally evaluate f(̂z) to validate the match
throughout the convergence cycle. This way we can determine that the model does converge, and that it
coverges to the true function f (z).

3. Results

In this section, we examine the performance of grid search, random search and BO in tuning the
hyperparameters of our KRR-based machine learning models. An important objective is to establish, if all
three approaches find similar hyperparameter solutions. BO solutions of ẑ, f(̂z) and µ(̂z) are presented in
table 4 alongside equivalent results from grid search and random search.

In the following we first consider the case of CM and MBTR descriptors, which changes the
dimensionality and complexity of the search. Then, we compare timings of grid search, random search and
BO to estimate which approach is most efficient.

3.1. KRR-CM hyperparameter tuning
The CMmaterials descriptor has no parameters and the KRR kernel choice is clear. The MAE is thus a
two-dimensional function of KRR hyperparameters α and γ. Figure 3 shows the two-dimensional landscapes
of MAE of our CM-KRR model for the QM9 dataset and a training set size of 2k. Panel (a) depicts the grid
search results, panel (b) the BO results and panel (c) the random search results. The hyperparameters are
plotted on natural logarithmic axes for clarity. All BO searches in this and subsequent sections are converged
with respect to the number of acquisitions. The detailed convergence analysis will be presented in section 3.4.

It is clear that BO, grid search and random search produce qualitatively similar MAE landscapes. The grid
search landscape is naturally ‘pixelated’, because it only has a 10× 10 resolution in figure 3. Conversely, BO is
not constrained to a grid and the GP in BO interpolates the MAE between the BO acquisitions.
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Figure 4.MAE landscapes from the 4D hyperparameter optimization problem with the MBTR descriptor. Panels (a), (b) and (c)
show 2D slices through the natural logarithmic (α, γ) plane, while panels (d), (e) and (f) show 2D slices through the natural
logarithmic (σ2, σ3) plane. The grid search MAE is shown in panels (a) and (d), the random search MAE is shown in panels (b)
and (e) and the BO MAE surrogate model µ(x) is presented in panels (c) and (f). Grid search, BO and random search were
applied to a subset of 2k molecules taken from the QM9 dataset. Optimal hyperparameters are shown as red stars.

Visualizing the MAE landscape tells us that the optimal parameter region has a complex and at first sight
non-intuitive shape. The lowest MAE values in both methods lie on the diagonal of the hyperparameter
landscape and along a horizontal line at the bottom of the landscape (for which γ is ~ 10−3). Thus, the
optimal parameter space has two parts: a co-dependent part, in which the choice of α and γ is equally
important for the KRR accuracy and a quasi one-dimensional part, in which only the choice of γ matters and
α can assume any value. We will return to the analysis of this hyperparameter behavior in section 4.

Grid search, BO and random search locate almost identical MAE minima: 0.277 eV for grid search, 0.275
for random search and 0.269 eV for BO (with training set size 2k), found in the same hyperparameter region
of low log(α) values and high log(γ) values. Table 4 summarizes the optimal hyperparameter search for QM9
for increasing training set sizes. More results for the hyperparameter optimization of two other datasets, AA
and OE62, can be found in the supplementary material.

3.2. KRR-MBTR 4D hyperparameter tuning
We now consider the results of the 4D optimization problem, where the MBTR is used as molecular
descriptor. BO builds a four-dimensional surrogate model MAE(α, γ,σ2, σ3), which we compare to the
results obtained by grid search and random search. All 4D landscapes can be analyzed by considering
two-dimensional cross-sections.

Figures 4(a)–(c) illustrate the (log(α), log(γ)) cross-section of the four dimensional MAE landscapes
produced by grid search, BO and random search. For grid search and BO, these 2D cross-sections were
extracted at the global minimum ẑ with optimal σ2, σ3 values. For random search, panel (c) does not show
an actual cross-section, but all points of the 4D search projected onto the 2D slice.

The optimal values lie on a diagonal and on a horizontal line at the bottom of the map, similar to the
MAE landscapes of the 2D optimization problem (with CM descriptor). A notable difference to the
previously discussed 2D case are the lower overall prediction errors. This is in line with our previous finding
[26] that the MBTR encodes the atomic structure of a molecule better than the CM.

In figures 4(d)–(f), the 4D MAE landscapes are cut through the (log(σ2), log(σ3)) plane, while α and γ
are held constant at their optimal values in case of grid search and BO. The optimal MAEs are found only
within a small region. In contrast to the KRR hyperparameters, the MAE is barely sensitive to σ2 and σ3,
varying only by two decimals throughout the map (about 10% of the value). All combinations of σ2 and σ3

are reasonably good choices for learning in this case. For random search shown in panel (f), all points of the
4D search are projected onto the 2D slice, which explains the uniform distribution of MAE points.

BO, grid search and random search locate similar minima: 0.190 eV for grid search, 0.197 eV for random
search and 0.190 eV for BO (for training set size of 2k), found in roughly the same hyperparameter regions.

8



Mach. Learn.: Sci. Technol. 2 (2021) 035022 A Stuke et al

Figure 5.MAE landscapes from the 6D hyperparameter optimization problem performed with BO, using the MBTR descriptor.
Panel (a) shows 2D slices through the natural logarithmic (α, γ) plane, panel (b) through the natural logarithmic (σ2, σ3) plane
and panel (c) through the natural logarithmic (s2, s3) plane. BO was applied to a subset of 1k molecules from the QM9 dataset.
Optimal hyperparameters are shown as red stars. Panels (d), (e) and (f) show schematic depictions of the observed optimal
hyperparameter regions for the three different hyperparameter spaces, i.e. (α, γ)-plane in (d), (σ2,σ3)-plane in (e) and
(s2, s3)-plane in (f).

Figure 6. BO and random search convergence as a function of iterations, performed on QM9 for two different training set sizes of
2k and 8k. Panel (a) shows 2D search convergence curves (CM used as descriptor), panel (b) shows 4D search convergence curves
(MBTR used as descriptor) and panel (c) shows 6D search convergence curves (MBTR used as descriptor). The convergence
criterium∆f(x̂) describes the difference between the currently lowest f(x̂) and the lowest f(x̂) after the maximum number of
iterations.

3.3. KRR-MBTR 6D hyperparameter tuning
Now, in addition to α, γ, σ2, σ3 we include the two MBTR weighting factors s2 and s3 in our optimization
problem, resulting in the simultaneous optimization of six hyperparameters. In this case, it is not feasible to
perform grid search, and we employ only BO and random search. Figure 5 shows MAE landscapes produced
with BO for a training set size of 1k, cut through three different planes. The slices through the natural
logarithmic (α, γ) and (σ2, σ3) planes in panels (a) and (b) are similar to our earlier findings from our 2D
and 4D searches. In (c), a 2D slice through the natural logarithmic (s2, s3) plane is shown. Similar to the
(σ2, σ3)-plane, optimal MAE values are found within a small region. The MAE is barely sensitive to s2 and s3,
i.e. all combinations of s2 and s3 are reasonably good choices for our KRR machine learning model. Thus, α
and γ have the largest influence on the MAE accuracy, while the MBTR hyperparameters σ2, σ3, s2 and s3 are
important for fine-tuning and can improve the MAE by an additional 30%.

BO and random search locate similar minima: 0.200 eV for BO and 0.206 eV for random search (for
training set size of 1k).

3.4. Computational efficiency
Figure 6 illustrates the convergence of BO and random search as a function of computational sampling
(iterations), using the CM and the MBTR as molecular descriptor for two different training set sizes of 2k
and 8k. For BO, we consider the global minimum location ẑ in the landscape as the surrogate model
improves, compute its true MAE value f(̂z) and track the lowest value observed. In the limit of the
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Table 2. Number of iterations after which BO and random search (RS) converge for training set sizes of 1k, 2k, 4k and 8k and on average
(mean of all training set sizes).

Dim Method 1k 2k 4k 8k Average

2D RS 17 42 91 3 38
BO 97 62 38 93 72

4D RS 3 275 2 95 94
BO 212 96 182 125 154

6D RS 478 268 339 275 340
BO 459 38 496 458 363

pre-defined maximum number of iterations (100 for 2D, 300 for 4D and 500 for 6D) the model no longer
changes, so we adopt the final MAEs f(̂z) as zero reference. In the final step, we subtract the reference from
the sequence of lowest MAE values observed to obtain the bare convergence∆f(̂z) of the MAE with BO
iteration steps. For random search, we track the lowest observed MAE value and subtract the final lowest
MAE from the sequence of lowest observed MAEs values.

Figure 6 shows convergence curves for the three different search cases in 2D, 4D and 6D and for two
different training set sizes 2k and 8k (Convergence curves for training set sizes 1k and 4k can be found in the
supplementary material). In addition, table 2 displays the number of iterations after which BO and random
search converge for all training set sizes.

We can see that∆f(̂z) drops quickly with increasing iterations. Since the best MAE resolution we
achieved with grid search was 0.02 eV, we define the convergence criteria as∆f(̂z))≤ 10−2. With increasing
dimensionality, more iterations are needed both for BO and random search to reach convergence. As
expected, the two methods converge fastest in the 2D search case, i.e. with less iterations than in the 4D and
6D search cases. Regarding the different training set sizes, there is no recognizable dependence of the
convergence on the training set size. The number of iterations widely vary for different training set sizes and
seems to fall within statistical variations.

We now compare the two methods BO and random search. We find that in the 2D case (KRR-CM in
figure 6(a)), the BO solution is converged on average after 72 iterations (mean value of all four training set
sizes), while random search finds the optimal solution on average faster, after 38 iterations. Some variation in
convergence behavior is expected, and averages from repeated runs for each training set size would provide
better averaged results in future work. In the 4D hyperparameter search (KRR-MBTR in figure 6(b)), BO
reaches convergence on average after 154 iterations, while random search reaches convergence after 94
iterations. In the 6D search case (KRR-MBTR in figure 6(c)), the difference between BO and random search
becomes smaller. Both methods reach convergence more or less simultaneously, after 363 and 340 iterations
on average.

3.5. Computational time
Formally, the computational time of a KRR run for a fixed training set size can be estimated as follows:

ttotal = ndesc · t̃desc+ nKRR · t̃KRR+ tprocess.

t̃desc is the average time to build the molecular descriptor for all molecules and ndesc is the number of times
the descriptor has to be generated. t̃KRR is the average time to perform the five-fold cross-validated KRR step
to determine the regression coefficients w and nKRR the number of times this has to be done. Finally, t̃process is
extra time used by the BO method to refine the surrogate model and to determine the location for the next
data point acquisition.

The time to build the molecular descriptor, t̃desc, scales linearly with training set size, since one descriptor
per molecule has to be generated. Conversely, t̃KRR scales cubically with training set size, since the
determination of the regression weights w in equation (5) requires the inversion of the kernel matrix. The
dimension of the kernel matrix grows linearly with training set size and its inversion will therefore scale
cubically. t̃process only depends on the dimensionality of the search, but not on the training set size.
Illustrations of these time scalings taken from BO and grid search runs can be found in the supplementary
material in figure S4.

The total computing time as a function of training set size is presented in figure 7. In the 2D case the grid
search outperforms BO and random search, while in the 4D case, BO and random search are significantly
faster than grid search. To determine which approach is fastest, it comes down to how often the descriptor
has to be built, ndesc, and how often cross-validated KRR has to be performed, nKRR. Table 3 records these
values for grid search, BO and random search. In grid search, ndesc and nKRR are fixed numbers (see
algorithms in supplementary material). They depend only on the size of the hyperparameter grid. In
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Figure 7. Total times for hyperparameter optimization by BO, grid search (GS) and random search (RS) as a function of training
set size. In (a) the CM and in (b) the MBTR is used as molecular descriptor. Timings are shown for optimization on the QM9
dataset. Note that for GS, only training set sizes up to 4k were considered.

Table 3. Number of times the molecular descriptor is built (ndesc) and cross-validated KRR is performed (nKRR), using grid search (GS),
random search (RS) and Bayesian optimization (BO). For the 6D search, only RS and BO are employed.

2D (CM) 4D (MBTR) 6D (MBTR)

GS RS/BO GS RS/BO GS RS/BO

ndesc 1 100 36 300 — 500
nKRR 121 100 4356 300 — 500

KRR-CM, the CM needs to be computed only once at the beginning of the routine. Cross-validated KRR is
performed 121 times, for each combination of α and γ. In a 4D KRR-MBTR grid search, the MBTR needs to
be computed for each combination of σ2 and σ3, i.e. 36 times. Cross-validated KRR is performed for each
possible combination of α, γ, σ2 and σ3, i.e. 4356 times.

In BO and random search, the molecular descriptor must be built and cross-validated KRR must be
performed for every single iteration (see algorithms in the supplementary material). This means that ndesc
and nKRR solely depend on the number of iterations required to meet the convergence criterium. Since t̃KRR
scales cubically, the critical number is nKRR. As table 3 illustrates, nKRR are roughly the same for grid search,
BO and random search in the 2D search case. Already for the 4D search, BO and random search require
significantly fewer KRR evaluations than grid search and are thus computationally much more efficient. In
the 6D search case, grid search is impossible to carry out.

4. Discussion

4.1. Interpretation of hyperparameter landscapes
We now discuss the distinctively different optimal regions of hyperparameter classes. The bottom row in
figure 5 schematically depicts the shapes of these optimal hyperparameter regions for the KRR parameters
(α-γ) plane in panel (d) and the MBTR feature widths (σ2-σ3) plane in panels (e) and (f).

To understand the triangular shape in panel (d), we have to recall the two kernels in equations (2) and (3)
and the KRR regularization equation (4). Large γ values (close to the origin of figure 5(d)) correspond to
small kernel widths. This implies that the kernel picks up contributions only from those molecular pairs that
are close to each other in molecular space. The KRR weights ωi for these pairs will then have to have a certain
size to contribute to the kernel expansion in equation (1). However, the regularization term in equation (4)
that keeps these weights in check is small regardless of the weights or the value of the pre-factor α, because
for large γ the entries of the kernel matrix K go to zero. The independence of α explains the horizontal
region at the bottom of panel (d).

When the value of γ reduces (i.e. we go up the y-axis in panel (a)), the kernel width increases. The
broader the kernels are, the more they pick up contributions from molecules that are far apart from each
other in molecular space. Eventually, in the limit of vanishing γ, all molecular pairs contribute. Since the
kernels in equations (2) and (3) are not normalized, they will approach a value of 1 for vanishing γ. The
regularization term in equation (4) will thus grow when γ decreases and the regularization parameter α will
have to reduce concommittantly to compensate. This explains the diagonal in figure 5(d).

11



Mach. Learn.: Sci. Technol. 2 (2021) 035022 A Stuke et al

Table 4.MAEs [eV] for the optimal set of hyperparameter found by BO, random search (RS) and grid search (GS) for the QM9 dataset.
For BO, f(̂z) is the best ever observed true function value, evaluated at the predicted optimal point ẑ. For RS and GS, the depicted value
corresponds to the best model performance f(̂z).

Desc Hyperparam Dim Train size BO f(̂z) RS f(̂z) GS f(̂z)

CM 1k 0.300 0.309 0.304
2k 0.269 0.275 0.277
4k 0.237 0.240 0.244

α, γ 2

8k 0.212 0.213 0.215
MBTR 1k 0.207 0.217 0.214

2k 0.190 0.197 0.190
4k 0.159 0.164 0.166

α, γ, σ2, σ3 4

8k 0.142 0.155 —
MBTR 1k 0.200 0.206 —

2k 0.190 0.198 —
4k 0.176 0.181 —

α, γ, σ2, σ3, s2, s3 6

8k 0.169 0.142 —

For the MBTR hyperparameters, the situation is qualitatively different. σ2 and σ3 are also associated with
feature widths, as they control the broadening of features in the structural representation of molecular bond
distances and angles. For large broadenings (i.e. large σ2 and σ3), peaks associated with individual features in
the MBTR might merge and the MBTR looses resolution. For very small broadenings (i.e. very small σ2 and
σ3) features are represented by very narrow peaks, which may not be captured by the MBTR grids. The
MBTR again loses resolution. The hyperparameter sweet spot therefore lies in a roughly circular region of
moderate σ2 and σ3 values. For our molecules and our datasets, the optimal σ2 and σ3 values are between
10−1 and 10−2, so closer to the bottom left corner of the hyperparameter landscape.

The parameters s2 and s3 control the exponential decay of the k= 2 and k= 3-terms of the MBTR. For
large s2 and s3 values, the k-terms become small and for small s2 and s3 values, the k-terms are large. Similar
to the previously discussed case with σ2 and σ3, the sweet spot lies in a circular region of not too high and
not too low s2 and s3 values.

The above discussion demonstrates that visualizing the hyperparameter landscapes greatly facilitates our
understanding of the hyperparameter behavior in KRR and in machine learning in general. The BO methods
provides an efficient way of generating easily readable landscapes that enable a deeper analysis of machine
learning models.

4.2. The effect of dataset diversity onmodel hyperparameters
We performed hyperparameter tuning on three molecular datasets of different chemical diversity. The results
are presented in section 3 of the supplementary material. In addition to the QM9 dataset of 134k small
organic molecules [29], we consider the more diverse AA dataset of 44k conformers of proteinogenic amino
acids [37], and the OE62 dataset of 62k organic molecules [38], which exhibits the greatest chemical
diversity. We found that the MAE landscapes of our KRR models in hyperparameter space are qualitatively
the same for all three datasets. While the overall MAE landscapes may vary in small details with the dataset,
the location of optimal hyperparameters lies within the same region for all three datasets. This is true for
both the KRR hyperparameters α and γ as well as for the MBTR hyperparameters σ2 and σ3. Thus, the
choice of optimal hyperparameters is not overly sensitive to the particular dataset and on dataset diversity.
The same set of hyperparameter values may be chosen for KRR machine learning on all three datasets.

While the choice of optimal hyperparameters is independent of the dataset, the MAE value varies
considerably across the three datasets. The QM9 dataset of small organic molecules is easiest to learn among
all three datasets, since the MAE values are lowest. This is the case for both the 2D search and the 4D search.
We observe higher MAEs for the AA and the OE62 datasets, which are more difficult to learn due to the
higher chemical complexity of the molecules. These findings are in accordance with previous work [26, 39],
which reveal that the predictive power of KRR inherently depends on the diversity of the underlying dataset.

4.3. Comparison of grid search, random search and BOmethods
In our comparison between grid search, random search and BO for the optimization of hyperparameters in
machine learning with KRR, we find that for the 2D and 4D search case, all three methods find MAE values
f(ẑ) roughly within the same range. The MAE values found by BO are slightly lower MAE than those found
by the other two methods, as shown in table 4. For the 6D search case, grid search was not used, as it becomes
computationally too expensive.
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In terms of computational efficiency, grid search and random search slightly outperform BO in the 2D
search case, while in the 4D search case, random search and BO are considerably faster than grid search. For
search cases with dimensionality greater than 2, it is therefore not feasible to use grid search. Grid search has
appeal due to its algorithmic simplicity, its availability in many machine learning libraries and its ability to
find the global minimum. Given a fine enough grid, grid search is guaranteed to find the optimal solution of
hyperparameters. However, the number of possible parameter combinations to be explored grows
exponentially with the number of hyperparameters. Due to this averse scaling behavior, grid search becomes
prohibitive, if more than two hyperparameters need to be optimized simultaneously.

Our 4D search example shows that either BO or random search should be employed in higher
dimensions. The difference in performance between random search and BO is slim: random search is slightly
cheaper than BO in terms of computational time due to the processing time in BO that it takes to refine the
BO surrogate model and to determine the next data point acquisition. Moreover, in 2D and 4D search spaces,
random search reaches optimal solutions on average faster (i.e. in fewer iterations) than BO. Random search
might therefore be more appealing and more intuitive to use than BO, since no further understanding and
interpretation of the BO mechanism is necessary and the random search routine is easy to implement.

However, in our higher-dimensional 6D search example, random search and BO require on average the
same amount of iterations to reach convergence. While random search can find reasonably good solutions, it
is not guaranteed that it always finds the optimal solution. In our 2D and 4D search examples, BO slightly
outperforms random search in terms of accuracy by finding slightly better solutions than random search. BO
is guaranteed to find the optimal solution because the GP model interpolates between the sampled points.
Moreover, BO not only delivers the optimal solution of hyperparameters and MAE, but also an uncertainty
estimate in form of the variance ν(x) and, more importantly, entire landscapes in hyperparameter space. The
variance can be used to evaluate the confidence of BO that the true optimal solution was found, while the
hyperparameter landscapes constitute informative tools to further analyze and understand the underlying
machine learning model, as demonstrated in the first part of our discussion. Random search, on the
contrary, only provides MAE values for points in phase space that were used for model evaluation, but we
obtain no understanding about the regions that lie in between the sampled points.

5. Conclusion

In this work, we have used and assessed three different methods—grid search, random search and the BO
tool BOSS—to optimize hyperparameters in a KRR machine-learning model that predicts molecular orbital
energies. We use two different molecular descriptors, the CM and the MBTR. While the CM has no
hyperparameters, the MBTR molecular descriptor introduces two extra hyperparameters to the optimization
problem. We therefore performed hyperparameter optimizations in spaces of up to six dimensions.

Grid search is practical to use only for lower dimensional search spaces, 2D in our case. For higher
dimensional optimization problems, BO or random search should be used. In our study, random search
finds optimal solutions on average faster, requires less computational resources and can find reasonably good
optimal solutions. BO, however, slightly outperforms random search in terms of accuracy. Moreover, BO
provides landscapes in hyperparameter phase space that disclose general design principles for KRR machine
learning models. Our study thereby advances our understanding of how the predictive power of KRR
depends on the model hyperparameters and creates an easy to use protocol for future machine learning
studies in the field of chemical physics.
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