
This is an electronic reprint of the original article.
This reprint may differ from the original in pagination and typographic detail.

Powered by TCPDF (www.tcpdf.org)

This material is protected by copyright and other intellectual property rights, and duplication or sale of all or 
part of any of the repository collections is not permitted, except that material may be duplicated by you for 
your research use or educational purposes in electronic or print form. You must obtain permission for any 
other use. Electronic or print copies may not be offered, whether for sale or otherwise to anyone who is not 
an authorised user.

Iivanainen, Joonas; Mäkinen, Antti J.; Zetter, Rasmus; Zevenhoven, Koos C.J.; Ilmoniemi,
Risto J.; Parkkonen, Lauri
A general method for computing thermal magnetic noise arising from thin conducting objects

Published in:
Journal of Applied Physics

DOI:
10.1063/5.0050371

Published: 28/07/2021

Document Version
Publisher's PDF, also known as Version of record

Published under the following license:
CC BY

Please cite the original version:
Iivanainen, J., Mäkinen, A. J., Zetter, R., Zevenhoven, K. C. J., Ilmoniemi, R. J., & Parkkonen, L. (2021). A
general method for computing thermal magnetic noise arising from thin conducting objects. Journal of Applied
Physics, 130(4), Article 043901. https://doi.org/10.1063/5.0050371

https://doi.org/10.1063/5.0050371
https://doi.org/10.1063/5.0050371


J. Appl. Phys. 130, 043901 (2021); https://doi.org/10.1063/5.0050371 130, 043901

© 2021 Author(s).

A general method for computing thermal
magnetic noise arising from thin conducting
objects 
Cite as: J. Appl. Phys. 130, 043901 (2021); https://doi.org/10.1063/5.0050371
Submitted: 15 March 2021 . Accepted: 01 June 2021 . Published Online: 22 July 2021

 Joonas Iivanainen,  Antti J. Mäkinen,  Rasmus Zetter,  Koos C. J. Zevenhoven,  Risto J. Ilmoniemi, and 
Lauri Parkkonen

COLLECTIONS

 This paper was selected as Featured

ARTICLES YOU MAY BE INTERESTED IN

Spatially resolved x-ray detection with photonic crystal scintillators
Journal of Applied Physics 130, 043101 (2021); https://doi.org/10.1063/5.0050380

Ferroelectrics everywhere: Ferroelectricity in magnesium substituted zinc oxide thin films
Journal of Applied Physics 130, 044101 (2021); https://doi.org/10.1063/5.0053755

Residual stress analysis of aluminum nitride piezoelectric micromachined ultrasonic
transducers using Raman spectroscopy
Journal of Applied Physics 130, 044501 (2021); https://doi.org/10.1063/5.0056302

https://images.scitation.org/redirect.spark?MID=176720&plid=1401535&setID=379065&channelID=0&CID=496959&banID=520310235&PID=0&textadID=0&tc=1&type=tclick&mt=1&hc=71bf76294ba1eff3502a31fdb96fd8874112c042&location=
https://doi.org/10.1063/5.0050371
https://aip.scitation.org/topic/collections/featured?SeriesKey=jap
https://doi.org/10.1063/5.0050371
http://orcid.org/0000-0001-6034-4604
https://aip.scitation.org/author/Iivanainen%2C+Joonas
http://orcid.org/0000-0003-3818-8347
https://aip.scitation.org/author/M%C3%A4kinen%2C+Antti+J
http://orcid.org/0000-0002-5331-2521
https://aip.scitation.org/author/Zetter%2C+Rasmus
http://orcid.org/0000-0003-1792-2215
https://aip.scitation.org/author/Zevenhoven%2C+Koos+C+J
http://orcid.org/0000-0002-3340-2618
https://aip.scitation.org/author/Ilmoniemi%2C+Risto+J
http://orcid.org/0000-0002-0130-0801
https://aip.scitation.org/author/Parkkonen%2C+Lauri
https://aip.scitation.org/topic/collections/featured?SeriesKey=jap
https://doi.org/10.1063/5.0050371
https://aip.scitation.org/action/showCitFormats?type=show&doi=10.1063/5.0050371
http://crossmark.crossref.org/dialog/?doi=10.1063%2F5.0050371&domain=aip.scitation.org&date_stamp=2021-07-22
https://aip.scitation.org/doi/10.1063/5.0050380
https://doi.org/10.1063/5.0050380
https://aip.scitation.org/doi/10.1063/5.0053755
https://doi.org/10.1063/5.0053755
https://aip.scitation.org/doi/10.1063/5.0056302
https://aip.scitation.org/doi/10.1063/5.0056302
https://doi.org/10.1063/5.0056302


A general method for computing thermal
magnetic noise arising from thin conducting
objects

Cite as: J. Appl. Phys. 130, 043901 (2021); doi: 10.1063/5.0050371

View Online Export Citation CrossMark
Submitted: 15 March 2021 · Accepted: 1 June 2021 ·
Published Online: 22 July 2021

Joonas Iivanainen,a) Antti J. Mäkinen, Rasmus Zetter, Koos C. J. Zevenhoven, Risto J. Ilmoniemi,
and Lauri Parkkonen

AFFILIATIONS

Department of Neuroscience and Biomedical Engineering, Aalto University School of Science, FI-00076 Aalto, Finland

a)Author to whom correspondence should be addressed: jaiivanainen@gmail.com.

Present address: Sandia National Laboratories, PO Box 5800, Albuquerque, NM 87185-1082, USA.

ABSTRACT

Thermal motion of charge carriers in a conducting object causes magnetic field noise that may interfere with sensitive measurements near
the object. In this paper, we describe a method to compute the spectral properties of the thermal magnetic noise from arbitrarily shaped
thin conducting objects. The method is based on modeling divergence-free currents on a conducting surface using a stream function and
calculating the magnetically independent noise-current modes. By doing this, we obtain the power spectral density of the thermal magnetic
noise as well as its spatial correlations and frequency dependence. We also describe a numerical implementation of the method and verify it
against analytic formulas. We provide the implementation as a part of the free and open-source software package bfieldtools.

© 2021 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(http://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0050371

I. INTRODUCTION

Thermal agitation of charge carriers in a conductor causes a
fluctuating voltage and current referred to as Johnson–Nyquist
noise.1,2 The thermal current fluctuations in the conductor generate a
magnetic field that interferes with nearby magnetically sensitive
equipment and measurements. Thermal magnetic noise can, e.g.,
limit the performance of sensitive magnetometers operating in con-
ducting shields3–5 and impose constraints on fundamental physics
experiments.6,7 Moreover, it can cause decoherence in trapped atoms8

and in high-resolution transmission electron microscopy.9 It is there-
fore important to estimate the magnetic noise contribution from
nearby conductors when designing sensitive experiments and devices.

Thermal magnetic noise from conductors can generally be cal-
culated either using direct approaches where the field noise is com-
puted from the estimated noise currents and their statistics3,4,6,10 or
with reciprocal approaches where the noise is obtained by comput-
ing the power loss incurred in the material by a known driving
magnetic field.5,11 In simple geometries, analytical expressions for
the magnetic noise can be obtained using either of these two
approaches.3–6,10 In more complicated geometries, noise has to be

estimated numerically. Numerical methods using the reciprocal
approach have been employed to compute the frequency-
dependent magnetic noise9,12,13 while a method based on the direct
approach has been suggested for computing the low-frequency
noise arising from thin conductors.14 More recently, a method to
model frequency-dependent magnetic noise from flat conductive
shields in the inductance-dominated regime has been suggested.15

Here, we outline a direct approach to compute the frequency-
dependent magnetic noise (in the quasi-static regime) emanating
from a conducting object which can be considered a surface with
an arbitrary curvature and small but possibly non-constant thick-
ness. We examine the internal coupling phenomena associated
with the surface currents in order to determine the independent
modes of the Johnson current.16 We use a stream-function formal-
ism similar to a previous analytical calculation on an infinite con-
ducting plane10 and to a semi-analytical computation on a layered
grid of conducting square patches.17 The cross-spectral density of
the magnetic noise can be computed based on the current fluctua-
tions of the individual modes described by a set of Langevin equa-
tions; the fluctuation amplitudes are given by the equipartition
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theorem.10,18 Examination of the individual modes gives an intui-
tive picture of the field noise phenomena.

We present a numerical implementation of this approach,
which uses a discretization of the stream function on a triangle
mesh representing the conducting surface. The implementation is
applicable to any configuration of conducting surfaces, including
curved ones. We demonstrate the estimation of magnetic noise in
example geometries and—where possible—compare the results
with analytical formulas for verification. The implementation is
freely available as a part of the open-source Python software
package bfieldtools (https://bfieldtools.github.io).19,20

II. THEORY

We consider magnetic noise in the frequency range where the
macroscopic Johnson noise current is divergence-free. In other
words, the macroscopic charge density does not fluctuate, but the
current fluctuations are due to the microscopic thermal motion of
charge.10 This allows us to use a stream-function expression for the
surface current.

A. Stream function and surface current

We first briefly introduce the stream-function expression of
surface currents and describe how it relates to physical quantities
such as power dissipation and inductive energy. Specifically, we
assume a thin surface S with conductivity σ(~r) and thickness d(~r).
A divergence-free surface-current density ~K on S can be expressed
with a stream function Ψ(~r, t)19,21,22 as

~K(~r, t) ¼ ∇kΨ(~r, t)�~n(~r), (1)

where ~n(~r) is the unit surface normal and ∇k is the tangential gra-
dient on the surface. We further express the stream function as a
linear combination Ψ(~r, t) ¼Pi si(t)ψ i(~r), resulting in

~K(~r, t) ¼
X
i

si(t)∇kψ i(~r)�~n(~r) ¼
X
i

si(t)~ki(~r), (2)

where ~ki(~r) ; ∇kψ i(~r)�~n(~r) are unit-strength spatial patterns of
surface-current density and si(t) are their time-dependent ampli-
tudes. The magnetic field ~B can be computed from these patterns
using the Biot–Savart law,

~B(~r, t) ¼ μ0
4π

ð
S

~K(~r 0, t)� ~r �~r 0
j~r �~r 0j3 dS0

¼
X
i

si(t)
μ0
4π

ð
S

~ki(~r
0)� ~r �~r 0
j~r �~r 0j3 dS

0 ¼
X
i

si(t)~bi(~r), (3)

where μ0 is the vacuum permeability and~bi(~r) is the magnetic field
from the pattern~ki with a unit amplitude.

The instantaneous power dissipation between patterns ~ki and
~kj is

19,22

Pij(t) ¼ si(t)sj(t)
ð
S

1
σ(~r) d(~r)

~ki(~r) �~kj(~r) dS ¼ si(t)sj(t)Rij, (4)

where Rij is the mutual resistance between the patterns. Similarly,
the instantaneous inductive energy between the patterns is given by
their mutual inductance Mij,

19,22

Eij(t) ¼ 1
2
si(t)sj(t)

μ0
4π

ð
S

ð
S

~ki(~r) �~kj(~r 0)
j~r �~r 0j dS dS0

¼ 1
2
si(t)sj(t)Mij: (5)

The amplitudes of the patterns evolve according to a coupled
equation system22 (see also the Appendix),

M
d
dt

s(t)þ Rs(t)� e(t) ¼ 0, (6)

where s is a vector containing the pattern amplitudes s[i](t) ¼ si(t),
M and R are the mutual inductance and resistance matrices with
elements M[i, j] ¼ Mij and R[i, j] ¼ Rij defined above, and e(t)
gives the electromotive force (emf) that is coupled to the patterns.
Equation system (6) is analogous to that of coupled RL circuits,
where s contains the circuit currents. However, quantities such as
M and R depend on the normalization of the circuit basis functions
~ki, whereas energy quantities such as power dissipation and induc-
tive energy are free of this ambiguity.22

B. Magnetic Johnson–Nyquist noise

Next, we investigate how to model the magnetic Johnson–
Nyquist noise using the stream-function approach. The thermal
current fluctuations are driven by the Johnson emf, which is pro-
portional to a zero-mean Gaussian white-noise process.18 In this
case, Eq. (6) represents coupled Langevin equations.

To determine the statistics of the current fluctuations, we
apply the equipartition theorem to the system.10,18 According to
this theorem, in a thermal bath with temperature T , each indepen-
dent degree of freedom of the system has an average energy of
kBT=2, where kB is the Boltzmann constant. The independent
degrees of freedom of the system are given by the eigenvectors of
M as they diagonalize the energy matrix obtained by Eq. (5).

We thus look for independent patterns ~κi(~r) with a diagonal
M as linear combinations of~kj(~r). We further require that the pat-
terns ~κi(~r) diagonalize R so that also the Langevin equations (6)
decouple. As the inductance and resistance matrices are symmetric
positive-definite for an ordinary conductor,22 these independent
patterns can be found, for example, by solving a generalized eigen-
value equation,21,23 i.e., finding an invertible matrix V such that

RV ¼ MVΛ, VTRV ¼ diag(ri, . . . , rN ),
VTMV ¼ diag(li, . . . , lN ),

�
(7)

where Λ ¼ diag(λ1,:::,λN ) is a diagonal matrix with λi ¼ ri=li. The
independent patterns are given by the columns of the invertible but
generally non-unitary matrix V as ~κi(~r) ¼

P
j V ji

~kj(~r).
We can transform Eq. (6) to this new basis,

d
dt

VTMVV�1s(t)þ VTRVV�1s(t)� VTe(t) ¼ 0: (8)
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By defining ~s(t) ¼ V�1s(t) and ~e(t) ¼ VTe(t), we obtain a set of
decoupled Langevin equations

d
dt
~si(t)þ λi~si(t)� ~ei(t)=li ¼ 0: (9)

Effectively, we now have a number of independent RL circuits with
time constants τ i ¼ li=ri ¼ 1=λi driven by emfs ~ei(t).

The Johnson emf has a white (frequency-independent) power
spectral density (PSD) S~ei that can be used to solve the PSD of ~si
from the decoupled Langevin equation,18

S~si (ω) ¼
S~ei
r2i

1

1þ (ω=λi)
2 , (10)

where ω is the angular frequency. The average energy (5) of the ith
independent degree of freedom is

hEi(t)i ¼ 1
2
lih~si(t)2i ¼ 1

2
li
1
2π

ð1
0
S~si (ω) dω

¼ 1
2
li
S~ei
4r2i

λi ¼ S~ei
8ri

, (11)

where the brackets h�i denote the ensemble average. On the other
hand, according to the equipartition theorem, the average energy is
hEii ¼ 1

2 kBT , which can be used together with Eq. (11) to solve the
Nyquist formula for the PSD of the Johnson emf,

S~ei (ω) ¼ 4kBTri, (12)

where ri is associated with the average power dissipation
hPi(t)i ¼ rih~si(t)2i.

To compute the cross-spectral density (CSD) of the magnetic
noise due to the Johnson current, we note that the Fourier trans-
form of the field from the independent patterns is obtained as

F{~B(~r)}(ω) ¼ F
X
i

si(t)~bi(~r)

( )

¼ F
X
i

~si(t)~βi(~r)

( )
¼
X
i

F{~si}(ω)~βi(~r),

(13)

where ~βi(~r) denotes the magnetic field from ~κi. The CSD between
magnetic field components at~r and~r 0 along unit vectors ~n and ~n 0

is given by

~n � F{~B(~r)}*F{~B(~r 0)} �~n 0
D E

¼ ~n �
X
i

F{~si}
*~βi(~r)

 ! X
k

F{~sk}~βk(~r
0)

 !
�~n 0

* +

¼~n �
X
i

X
k

~βi(~r) F{~si}
*F{~sk}

� �
~βk(~r

0)

 !
�~n 0

¼~n � CSD ! ~B(~r,~r
0, ω) �~n 0, (14)

where we defined CSD
 !

~B ¼
P

i

P
k
~βi(~r)hF{~si}*F{~sk}i~βk(~r 0) as the

CSD tensor of the magnetic field.
The CSD tensor can be simplified by noting that the ampli-

tudes ~si are independent: their temporal cross-correlation isÐ
~si(t)~sk(t þ t0) dt ¼ 0 for i = k. For i ¼ k, the auto-correlation

with exponential decay is given as the Fourier transform of the
PSD of Eq. (10). The CSD of ~si and ~sk is thereby hF{~si}*F{~sk}i
¼ S~si (ω)δik and the CSD tensor of the magnetic noise is

CSD
 !

~B(~r,~r
0, ω) ¼

X
i

~βi(~r)S~si (ω)~βi(~r
0): (15)

The above analysis was made for a single conducting surface.
The analysis applies similarly for a system comprising multiple sep-
arate conductors. In this case, the mutual inductance matrix M is
formed by computing the inductances between all the patterns in
the conductors. The resistance matrix R can be formed as a block
matrix comprising the resistance matrices of the individual conduc-
tors with the mutual conductivities between patterns in the differ-
ent conductors being zero. Also, skin effects may potentially be
modeled by dividing the conductor into a stack of multiple induc-
tively coupled layers, each of which with a thickness smaller than
the skin depth.24

Next, we briefly describe how to compute the CSD between
field measurements by an array of sensors. We approximate the
measurement of the ith sensor yi(t) as a weighted sum of the mag-
netic field over the spatial extent of the sensor,

yi(t) ¼
ð
~wi(~r) �~B(~r, t) dV �

XNi

l¼1
~wi(~rl) �~B(~rl , t), (16)

where ~rl are the Ni integration points of the sensor i and ~wi(~rl) are
their vector weights. The CSD between measurements yi and yk is then

CSDyi ,yk (ω) ¼ F{yi}
*F{yk}

� �
¼
XNi

l¼1

XNk

h¼1
~wi(~rl)

* � CSD ! ~B(~rl ,~rh, ω) �~wk(~rh): (17)

III. IMPLEMENTATION

Here, we briefly outline the numerical implementation of the
magnetic noise computation. The implementation is a part of the
bfieldtools Python software package20 and uses its stream-function
discretization as well as numerical integrals and functions to
compute the resistance and inductance matrices. The theoretical
and computational aspects of the software are presented in detail
elsewhere.19

In bfieldtools, the conducting surface is represented by a
triangle mesh and the stream-function basis in the expansion
Ψ(~r) ¼Pi sihi(~r) consists of piecewise linear functions (“hat func-
tions”) hi(~r). The hat function attains a value of one at the vertex i,
zero at other vertices, and is linearly interpolated on the triangle
faces. Each of these basis functions represents an elementary
current pattern, which circulates around the corresponding vertex i.
The magnetic field is obtained from the stream function si with a
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linear map [see Eq. (3)]. For example, the z-component of the field
at N evaluation points is

bz ¼ Cs, (18)

where C is the N �M matrix that maps the M vertex-circulating
currents (s[i] ¼ si) to field component amplitudes at the evaluation
points.

The resistance matrix R [with surface conductivity σ(~r)d(~r) dis-
cretized and assumed constant across each triangle] and inductance
matrix M of the elementary current patterns can be computed using
the software. In the case of an open mesh, the boundary conditions
of the stream function are set as described in our earlier

publication.19 Multiple separate conductors can be handled by com-
puting the mutual inductances between all the elementary patterns
and by forming a block diagonal resistance matrix comprising the
resistance matrices of the individual conductors.

We decouple the elementary circuits by solving the generalized
eigenvalue Eq. (7) for eigenvalues Λ and eigenvectors V using
SciPy.25 We then evaluate the CSD matrix Σb of the magnetic field
component at ω using Eq. (18) as

Σb ¼ bzb
T
z

� � ¼ CV ~s~sT
� �

VTCT ¼ CVΣ~sV
TCT, (19)

where s ¼ V~s and Σ~s is a diagonal matrix with elements Σ~s[i, i]
¼ S~si (ω) [see Eq. (10)].

FIG. 1. Comparison of the numerical solution of magnetic thermal noise emanating from a conducting disk with radius R ¼ 1:0 m (centered on the xy plane) to an analyt-
ical formula. (a) Three meshes with different numbers of triangles (N) representing the disk, and exemplary contours of the numerically solved noise-current patterns. Blue
and red contours depict current flow in opposite directions. (b) The time constants τ of the modes computed with the different meshes. [(c) and (d)] Comparison between
the numerical and analytical solutions of the low-frequency magnetic noise (Bz) on the z axis. (c) Comparison between the numerical solution obtained using the densest
mesh and the analytical formula. (d) The relative errors of the numerical solutions to the analytical formula. (e) Relative error as a function of the number of current modes
for the densest mesh.
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We model the measurement yi in Eq. (16) as yi ¼ wT
i bi, where

wT
i is a row vector comprising the sensor weights and bi ¼ Cis is a

column vector of the magnetic noise along the directions of the
vector weights at the integration points. The elements of the mea-
surement CSD matrix can then be computed as follows:

Σy[i, k] ¼ wT
i bib

T
k

� �
wk ¼ wT

i CiVΣ~sV
TCT

kwk: (20)

In practice, we compute the cross-spectral densities using mul-
tidimensional NumPy-arrays26 and by summing over the relevant
dimensions of the arrays. This way, we can, e.g., compute the cross-
spectral density of the magnetic field in 300 observation points at
100 frequencies and store the result in an array with dimensions of
300� 300� 3� 3� 100.

IV. VALIDATION AND EXAMPLES

We first analyzed special cases that allowed comparing our
numerical computation of the magnetic noise with the results from
analytical formulas at the low-frequency limit. Specifically, we
investigated the following:

• Bz noise along the z axis due to a uniform conducting disk cen-
tered on the xy plane;

• B noise at the center of a spherical conducting surface as a func-
tion of the sphere radius; and

• B noise at the center of a cylindrical conducting surface along
the long axis of the cylinder.

The analytical formulas for these three cases are available in
the literature.5 Besides the validation cases, we present also example
computations. Unless stated otherwise, we used d ¼ 1 mm and
σ ¼ 3:8� 107 Ω�1m�1, corresponding to aluminum at room tem-
perature T ¼ 293 K.

FIG. 2. Numerical computation of low-frequency magnetic noise inside spherical
and cylindrical conducting surfaces (represented as triangle meshes) and com-
parison to results from analytical formulas. Top: Magnetic noise at the center of
a sphere with different sphere radii R. Bottom: Noise in the field component
along the long axis (z) of the cylinder. The analytical formula only applies at the
center of the cylinder (z ¼ 0 m).

FIG. 3. Spectral density of the thermal magnetic noise Bz on the z axis due to a circular conducting disk with radius R ¼ 1:0 m centered on the xy plane. Left: Spectral
density as a function of frequency and distance. The curves with different colors represent the noise with different relative distances from the mesh as indicated in the
figure. Right: The frequency at which the noise power has decreased by 3 dB from its zero-frequency value. The solid line gives the �3-dB frequencies for an infinite
plane, calculated using an analytical formula.
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A. Validation cases

Figure 1 presents the computation of the low-frequency Bz

noise along the z axis due to a disk with a radius R ¼ 1:0 m cen-
tered on xy plane. The disk was modeled with three different
meshes with 630, 1844, and 5418 triangles. Figure 1(a) shows
examples of the stream-function contours of the numerically com-
puted patterns of the noise current while Fig. 1(b) shows their time
constants. To model the higher order modes more accurately,
denser mesh is needed. At a distance of z ¼ 0:05R, the relative
error of the numerical solution of Bz noise to the analytical
formula is 2.7% when the densest mesh is used; with a larger dis-
tance, the relative error is smaller. Compared to the densest mesh,

the sparse meshes produce higher relative error regardless of the
distance.

Figure 2 shows the numerical results for the low-frequency
magnetic noise at the center of a closed sphere (2562 vertices; 5120
triangles) and along the axis of a closed cylinder (3842 vertices;
7680 triangles). The computation and analytical formulas agree
with relative errors of 0.06% and 0.03%, respectively.

B. Examples

We examined the magnetic noise and its frequency depen-
dence using a simple conductor. We computed the Bz noise on the
z axis as well as the magnetic noise CSD along the x axis due to a

FIG. 4. Magnetic noise cross-spectral density (CSD) along the x axis (z ¼ 0:1R) due to a conducting disk with radius R ¼ 1:0 m centered on the xy plane. (a)
Low-frequency noise power spectral density along the x axis. (b) Low-frequency noise CSD to x ¼ 0 m. (c) Noise cross-spectral density of Bz to x ¼ 0 m at different fre-
quencies. The inset shows the amplitude-normalized cross-spectral density. (d) Noise CSD between different components of the magnetic field.
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circular conducting disk centered on the xy plane [R ¼ 1 m; mesh
with 5418 triangles, Fig. 1(a)]. In these examples, we omit skin
effects.

The spectral density of Bz noise due to the disk is shown in
Fig. 3. The same figure also shows the estimated frequency at
which the PSD is reduced by three decibels from the zero-
frequency value. This �3-dB frequency (4μ0σ dz)�1 for an infinite
planar conductor3 is also shown. At small relative distances to the
disk (z , 0:1R), the numerical �3-dB frequencies scale as those
for an infinite plane. At distances comparable to the radius z � R,
the –3-dB frequency is constant, suggesting contribution of a single
mode with the largest time constant.

Figure 4 shows examples of cross-spectral density of magnetic
noise due to the disk calculated on the x axis. Close to the center of
the disk, the PSDs of magnetic field components are nearly
uniform with values of about 445.1, 445.3, and 932.2 fT2/Hz [for
B2
x , B

2
y , and B2

z , respectively; Fig. 4(a)]. The ratio B2
x=B

2
z is approxi-

mately 0.48 near the center; for an infinite conductor, it has been
shown to be 1=2.4 The cross-spectral density of Bz to the center of
the disk (x ¼ 0 m) decreases as a function of x as shown in
Fig. 4(c). Moreover, at higher frequencies, the CSD falls off more
rapidly with distance. For the disk, only Bx and Bz of the Cartesian
magnetic field components are markedly correlated along the
x axis [Fig. 4(d)], with the highest correlation being near the rim of
the disk.

We then investigated magnetic noise due to a planar conduc-
tor with a star shape (1442 vertices, 2702 triangles). Figure 5
illustrates the noise-current patterns on the conductor and the
magnetic noise spectral density at different perpendicular distances
from the conductor. At small relative distances, the magnetic noise

spectral density has a spatial structure that resembles the shape of
the conductor. At larger distances, the magnetic noise loses
structural detail, reflecting the different falloff distances of the field
noise components that correspond to the noise-current modes
with different levels of spatial detail. Close to the center of the
conductor, the low-frequency values for Bx , By , and Bz noise are
18.15, 18.15, and 28.93 fT/

ffiffiffiffiffiffi
Hz
p

, respectively. At higher frequency,
the Bz amplitude is smaller but the star shape is a bit more
pronounced.

Last, as a practical example, we computed the low-frequency
magnetic-noise CSD seen by a helmet-shaped array of 102
magnetometers measuring the field component normal to the
helmet surface as in a commercial magnetoencephalography
(MEG) system (MEGIN Oy, Helsinki, Finland). We modeled the
individual magnetometers using 16 field integration points as in
the MNE-Python software.27 We investigated two geometries
depicted in Fig. 6. In the first geometry, the magnetometer array
was near an aluminum plate; similar modeling for a finite-size
sensor has also been done by Nenonen et al.4 In the second geome-
try, the magnetometer array was inside a closed cylindrical alumi-
num shield. This geometry may be relevant for optically pumped
magnetometer arrays in MEG, which can operate inside “person-
sized” magnetically shielded cylinders.28,29 However, we note that
our method cannot currently model the magnetic noise from a
system which consists of layers of both high-permeability and con-
ductive materials. In both cases, the surface was room-temperature
aluminum with a 5-mm thickness.

The estimated low-frequency noise CSD in the array is pre-
sented in Fig. 6. In the case of the aluminum plate, the magnetom-
eters closest to the plate pickup the most noise. Magnetometer

FIG. 5. Magnetic thermal noise due to a star-shaped planar conductor. (a) The triangle mesh representing the conductor and the numerically computed thermal current
patterns on the conductor. The time constant of the patterns decreases from left to right and from top to bottom. Blue and red contours depict current flow in opposite
directions. (b) Low-frequency noise spectral density at different vertical distances to the conductor. The plot limits are the same as the size of the conductor shown left. (c)
Bz magnetic noise spectral density at 3 kHz.
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orientation also affects the noise level: the magnetometers on the
sides of the helmet pickup more noise than those in the middle as
the magnetic field component normal to the plate has the highest
noise power. In the case of the cylindrical shield, the magnetome-
ters near the vertex of the helmet pickup the most noise due to
their proximity to the lid of the cylinder.

V. DISCUSSION

Overall, Fig. 1 gives a qualitative description of how the accu-
racy of the presented method depends on the mesh resolution and
distance to the mesh. Generally, as the distance to the mesh
decreases, a denser mesh is needed to get an accurate estimate of
the magnetic noise. On the other hand, a denser mesh allows us to
model higher order noise modes more accurately. As the order of
the noise mode increases, the mode splits into smaller and smaller
current loops with alternating directions of current flow. With the
increasing mode order, the magnetic field generated by the mode
decays more rapidly as a function of distance. Closer to the surface,
the relative contributions of the higher order modes are larger, and
a denser mesh is needed to better model both the modes and the
magnetic noise.

The presented method can be extended to a wider range of
systems; for instance, one could study a system of multiple separate
but coupled conductors. Related to this, an interesting further
direction is to model a single conductor as a set of thin inductively

coupled conducting layers.24 This could include models that
account for the so-called skin effect that occurs at higher frequen-
cies. In our preliminary computations regarding such a multilayer
model of a disk, we obtained evidence of a frequency scaling of
f �3=4 for the magnetic noise in the skin-effect regime.5 However,
more work is needed to determine the accuracy of this approach in
modeling the skin effect. This includes studying the inter-layer cou-
pling model at different frequencies and geometries, taking into
account the errors in the numerical integrals when using an
increasingly dense packing of layers. Last, as another interesting
development, we note that the model does not require the conduc-
tivity of the object to be constant, paving the way for calculation of
noise from objects with non-uniform conductivity.

VI. CONCLUSION

We presented a method to compute the cross-spectral density
of magnetic thermal noise due to a set of arbitrarily shaped con-
ductors that can be considered surfaces, i.e., thin compared to the
distances to the noise evaluation points. The numerical approach
allows visualization of the noise-current patterns, providing an
intuitive view on the underlying physics. We validated the numeri-
cal implementation by comparing the results to analytical formulas
and found agreement within �1%. The accuracy increased with the
number of triangles in the discretized surface. We have made the

FIG. 6. Thermal magnetic-noise CSD at low frequencies as seen by a helmet-shaped array of 102 magnetometers. (a) The helmet near an aluminum plate. (b) The
helmet inside a closed cylindrical aluminum shield. The noise spectral density is plotted as a topographic 2D projection of the sensor-array geometry (generated using the
MNE-Python software27). The aluminum is at room temperature and has a thickness of 5 mm in both cases.
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implementation openly available as a part of the open-source
Python software package bfieldtools.
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APPENDIX: MATRIX EQUATION

Here, we briefly present the derivation of the matrix equation (6)
using the stream-function representation of the surface-current
density [see Eq. (2)]. We start from Ohm’s law and divide the elec-
tric field ~E into two components as

~K(~r, t) ¼ σ(~r) d(~r)~E(~r, t) ¼ σ(~r) d(~r) ~Es(~r, t)þ~Ep(~r, t)
� �

¼ σ(~r) d(~r) � @~A(~r, t)
@t

� ∇V þ~Ep(~r, t)

 !
,

(A1)

where ~Ep is the primary field due to thermal motion of charge car-
riers and ~Es is the macroscopic secondary field given as a sum of
divergence- and curl-free components with corresponding vector
and scalar potentials, �@~A=@t and �∇V , respectively. The
divergence-free component is due to the time-evolving current
density ~K while the curl-free component is caused by charge redis-
tribution enforcing the field tangential to the surface.

By reordering the terms and expressing the vector potential
using the current density, Eq. (A1) reads

@

@t
μ0
4π

ð
S

~K(~r 0, t)
j~r �~r 0j dS

0 þ ∇V þ
~K(~r, t)
σ(~r) d(~r)

�~Ep(~r, t) ¼ 0: (A2)

We consider a frequency range where the macroscopic charge
density does not fluctuate (∇ � ~K ¼ 0); the current density can be
expressed with the stream function,

@

@t

X
k

sk(t)
μ0
4π

ð
S

~kk(~r 0)
j~r�~r 0j dS

0 þ∇Vþ
X
k

sk(t)
~kk(~r)

σ(~r)d(~r)
�~Ep(~r)¼ 0:

(A3)

By taking a dot product with~kl(~r) and integrating over the surface,
we have

@

@t

X
k

sk(t)
μ0
4π

ð
S

ð
S

~kl(~r) �~kk(~r 0)
j~r �~r 0j dS dS0 þ

ð
S

~kl(~r) � ∇V dS

þ
X
k

sk(t)
ð
S

~kl(~r) �~kk(~r)
σ(~r) d(~r)

dS�
ð
S

~kl(~r) �~Ep(~r, t) dS ¼ 0:

(A4)

Denoting the tangential nabla operator as ∇k, we can write ~kl(~r) �
∇V¼ (∇kψ l� n̂) �∇kV¼�(∇kV� n̂) �∇kψ l¼�∇k� [(∇kV� n̂)ψ l].
By applying the divergence theorem, the surface integral of the
expression can be turned into a line integral over a closed path on
the surface boundary, which is zero as ψ l is constant on the
boundary.22

The resistance and inductance matrix elements can be identi-
fied from Eq. (A4) to arrive at the equation system,

X
k

Mlk
@

@t
sk(t)þ

X
k

Rlksk(t)� el(t) ¼ 0, (A5)

where el(t) ¼
Ð
S
~kl(~r) �~Ep(~r, t) dS is the source emf coupled to the

lth pattern.

DATA AVAILABILITY

The scripts and geometry files that were used to produce the
presented results are available in the bfieldtools GitHub repository
at https://github.com/bfieldtools/ (Ref 30).
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