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Morningness–eveningness 
assessment from mobile phone 
communication analysis
Chandreyee Roy1*, Daniel Monsivais1, Kunal Bhattacharya1,2, Robin I. M. Dunbar3 & 
Kimmo Kaski1,4

Human behaviour follows a 24-h rhythm and is known to be governed by the individual chronotypes. 
Due to the widespread use of technology in our daily lives, it is possible to record the activities of 
individuals through their different digital traces. In the present study we utilise a large mobile phone 
communication dataset containing time stamps of calls and text messages to study the circadian 
rhythms of anonymous users in a European country. After removing the effect of the synchronization 
of East-West sun progression with the calling activity, we used two closely related approaches to 
heuristically compute the chronotypes of the individuals in the dataset, to identify them as morning 
persons or “larks” and evening persons or “owls”. Using the computed chronotypes we showed 
how the chronotype is largely dependent on age with younger cohorts being more likely to be owls 
than older cohorts. Moreover, our analysis showed how on average females have distinctly different 
chronotypes from males. Younger females are more larkish than males while older females are 
more owlish. Finally, we also studied the period of low calling activity for each of the users which is 
considered as a marker of their sleep period during the night. We found that while “extreme larks” 
tend to sleep more than “extreme owls” on the weekends, we do not observe much variation between 
them on weekdays. In addition, we have observed that women tend to sleep even less than males on 
weekdays while there is not much difference between them on the weekends.

Human beings are known to be diurnal in nature that is characterized by a period of activity during the day and 
a period of inactivity during the night. These rhythmic activities are entrained to the light-dark cycles of the 
solar clock that occur due to the earth’s rotation around the  sun1,2. This rhythmicity is also affected by the social 
constraints of living in a society, for example going to work on time, while being generally aligned according to 
the solar clock. The discovery of artificial light has had a considerable impact on the daily activities of human 
beings, thus eventually affecting their sleeping  patterns3,4. However, the physiological activities and behaviour 
of humans are well known to follow a circadian rhythm that is closely related to their individual chronotypes.

The chronotype varies among different individuals and is dependent on various factors like gender, age, 
and genetics, among  others5–8. Individuals having early chronotypes rise early in the morning and sleep early 
as  well9. They are well known in the literature as “larks”. On the other hand, late chronotypes wake up late as 
well as sleep late and are befittingly known as “owls”. The rest of the population falls within this spectrum from 
larks to owls, identified by their individual  chronotypes10. Identification of chronotypes is an important issue, 
because an individual’s productivity could depend on the synchrony between her inherent chronotype and her 
daily work-life timings. We might expect a lark to be more productive during the morning and an owl to be more 
productive during the evening. Workplaces mostly have schedules that are biased towards early chronotypes 
and not for the late ones. This can cause sleep deprivation and poor eating habits in the latter which can further 
lead to health  complications11–13.

Traditionally, studies concerning identification of chronotypes have been done using the Munich Chrono-
Type Questionnaire (MCTQ)14–16. This questionnaire, the first of its kind, consists of a set of unique questions 
relating to an individual’s sleep-wake cycle along with iconic supporting drawings that help clarify differences 
between the time an individual decides to go to sleep and the actual time of falling asleep. Other questionnaires 
like the Morningness–Eveningness Questionnaire (MEQ)9, that looks into the sleep/wake time preferences of the 
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individuals instead of their actual sleep/wake timings have also been used in this context. These survey studies 
have been used worldwide and in different populations to study the changes in sleep-wake behaviour across age 
groups (adolescents, adults, and others)5,17, as well as in different social and psychological  settings18. Individuals 
are found to be of early chronotypes in adolescent stages of their lives and gradually changing to late chronotypes 
through their teenage years reaching a maximum around 20 years of age. After 20, they have been observed to 
gradually change back to behaving as early  chronotypes5. Additionally, gender differences of  chronotypes19 have 
also been studied using MEQ in which they concluded the existence of different synchronization patterns for 
men and women. While these surveys are excellent tools to understand human behaviour, they are generally 
restricted in terms of sample sizes, memory of the participants, and what is socially and societally expected.

With the advent of the digital age and its rapid development over the years, humans have been increasingly 
becoming dependent on technology for their daily needs. This has led to them leaving traces of their activity 
online in the digital world, which in turn can give us considerable insight into their daily activities. Data from 
mobile phone communication records containing call time stamps and GPS locations along with duration of the 
voice calls and text messages sent by anonymized users portray periods of activity and inactivity by individuals 
and consequently are useful for studying their chronotypes. Additionally, data analysis studies harnessing data 
from the mobile phone call detail records of a very large number of users provide close to accurate description of 
the dynamics involved in human social  behaviour20–25. Access to these kinds of large population datasets enables 
us to study the social networks formed by humans and relationships formed by them in the  networks26–29. It can 
also be used to study migration  patterns30 of the individuals and more recently, it has been used to study the 
behaviour of people during the COVID -19 pandemic as  well31.

Since mobile phone communication datasets clearly display the circadian rhythms of human activity by 
looking at the frequency of calls made by an individual during a 24 h  cycle32, one can broadly determine when 
an individual is active or inactive. Studies show that the calling activity of individual users on average follow a 
bimodal distribution where users are active twice during the day with the two peaks in the frequency of calls 
occurring in the morning and in the evening, respectively. Thus, one can identify the chronotype of an individual 
by inspecting these rhythmic cycles of calling activity. For example, studies by Aledavood and co-authors33,34 
used data from smartphones of volunteers to identify larks and owls as well as their social networks. They also 
observed that the personal networks maintained by owls are larger than those maintained by larks.

In our current study, we have used the call detail records of a large population-level dataset to observe the 
morning and evening calling activities of the users living in a European country during the years 2007, 2008 and 
2009. Our aim is to construct a chronotype directly from these activities collected during the entire 24-h cycle 
of all seven days of the week instead of only looking at mid-sleep times only on weekends.

Materials and methods
Individual mobile phone Call Details Records. The dataset used in this study comprises the Call 
Details Records (CDRs) from individuals living in a southern European country, which had mobile phone sub-
scription with a specific service provider that had 20% of the market share in that country. It results from the 
merging of 3 separate subsets (January–December  200732,35, January–December 2008, and January–December 
2009), altogether covering a three year period. The data-sets were anonymized before being handed over by the 
service provider, such that the true identity of the individual is unknown and each individual is described by a 
unique identifier (id-number). The CDRs lists all the outgoing calls made by each individual during a three year 
period, and each entry includes, the id-numbers associated with the caller and the callee, the time and date when 
the communication event happened, as well as the type of communication event (call or text message)36. The 
data-set includes also user-contract data-sets with some demographic information (age, gender, and registered 
postal code) of the individuals who were subscribers of the service provider in at least one of the three periods. 
Over the three year period, different individuals start a new subscription and/or terminate the contract with the 
service provider, but of the order of six hundred thousand individuals remained loyal to the service provider (i.e. 
their contracts started before January 1st 2007 and were still active on December 31st, 2009). From this set of 
loyal subscribers whose demographic information was available (some users have missing entries or they con-
tain typos), we chose 11,178 individuals, who made at least 100 hundred calls/text messages each year and with 
a total number of calls/sms not exceeding 5000 calls (to exclude possible calls centers or subscription sellers ).

Geographical grouping based on individual’s location. Using the information of the postal code 
available in the user-contract files, we split individuals into 5 groups, each one falling inside a longitudinal band 
enclosing their geographical location. However, as a signed non-disclosure agreement (NDA) prohibit us to 
disclose the country where the service provider offered, the actual values delimiting each selected geographical 
longitudinal band are masked. From here on, the longitudinal values will be reported from a reference point 
located near the easternmost part of the country, which will work as the zero reference. Thus, five latitudinal 
bands LI-LV of widths 2.5◦ , 3.05◦ , 2.75◦ , 2.2◦ and 2.8◦ are defined, separated by exclusion bands of width 0.2 
degrees, and with the first band LI (the reference point) the easternmost, and the subsequent bands located to 
the west progressively until the last longitudinal band LV lies in the westernmost part of the region ( 13.3◦-wide). 
Table 1 lists the number of individuals in each longitudinal band, as well, gender and age distribution informa-
tion of the population on each band. The widths of the longitudinal bands are adjusted such that the number of 
people in each band are roughly of the same order.

The reason for this longitudinal splitting is to take into account of the dependence of the human chronotype 
on the East-West progression of the Sun, as has been shown in earlier  studies1,35. In Fig. 1, for each of the five 
longitudinal bands LI-LV , the calling activity of the analyzed individuals during weekday nights (Mondays to 
Thursdays) aggregated over the 3 year period is shown. There, a clear shift between the calling activity distribution 
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of each region can be seen, with the easternmost band LI starting and ending its calling activity around 45 min-
utes earlier than the westernmost band LV.

Results
Mid-sleep time and sleep duration. In order to determine individual’s daily periods of inactivity, we 
analyze separately the number of events (calls/text message) that each individual made on different days of the 
week for over the 3-year period. As we are interested in determining the mid-sleep time, we determine the call-
ing activity taking place on each night of the week, such that we split it in seven 24-h periods each one starting 
at 4:00 pm (e.g. 4:00 pm Monday, and ending at 3:59 pm on the next day which is Tuesday). From here on, we 
refer to these periods as “nights”, with, for example, Saturday night implying the time period between Saturday 
4:00 pm and Sunday 3:59 pm. In addition, the first four nights of the week (Monday to Thursdays) are also 
aggregated into a 24-h long period named “weekday night”, which is a standard way to refer to in chronotype 
studies to workdays.

Using these definitions, we aggregated the weekly calling activity of each individual over the 3-year period 
on the corresponding period of the week (Weekday, Friday, Saturday and Sunday nights). In Fig. 2, we show the 
aggregated calling activity of one individual for the four night periods studied.

The bimodal distribution shown in Fig. 2 for one individual is present in almost all the individuals’ profiles, 
and the consistent bimodality shown in the average calling activity of the population at 5 different longitudinal 
bands (see Fig. 1) is a reflection of this generality. In Fig. 3 we plot the calling activity patterns of a sample of 
users in one of the 5 latitudinal regions (arranged in an actigram-like representation) to show that the bimodal-
ity of the daily overnight calling activity is consistent. This bimodal pattern will be used to approximate each 
individual’s calling activity by a Gaussian Mixture Model (GMM)37, which has recently been used to describe 
human activity from  CDRs32,38.

A GMM with two modes (Gaussians) used as an approximation of the calling activity is given by:

where tE and σE are the mean and the standard deviation of the Gaussian located in the left (evening) and tM and 
σM the corresponding values for the one located in the right (morning of the following day).

(1)F(t) =
a0

σE
√
2π

e
1

2σ2E

(t−tE)
2

+
a0

σM
√
2π

e
1

2σ2M

(t−tM )2

,

Table 1.  Demographic information of the population.

Feature

Longitudinal band

LI LII LIII LIV LV

Limits [0◦ , −2.3◦] [−2.5◦ , −5.35◦] [−5.55◦ , −8.1◦] [−8.3◦ , −10.3◦] [−10.5◦ , −13.1◦]
Width 2.5◦ 3.05◦ 2.75◦ 2.2◦ 2.8◦

Individuals 2031 2589 2386 2816 1356

Females 1108 1479 1338 1564 795

Males 923 1110 1048 1252 561

Young (18-35) 637 891 854 928 443

Mid-age (35-60) 1017 1272 1177 1425 700

Old (60-78) 377 426 355 463 213

0

10

20

30

40

16 18 20 22 0 2 4 6 8 10 12 14 16
hour

N
um

be
r 

of
 c

al
ls

L_I
L_II
L_III
L_IV
L_V

Figure 1.  Aggregated individual calling activity for weekdays in 5 geographical regions. For each the 5 
longitudinal bands LI–LV , the calling activity of the analyzed individuals for all 24-h over-the-night periods 
during weekdays (Mondays to Thursdays) aggregated over the 3 year period. The activity in the easternmost 
band LI (red line) is noticeably shifted towards early hours compared to the activity in the westernmost band 
LV (magenta line). The bands limits are as follows: LI : [0◦,−2.3◦] , LII : [−2.5◦,−5.35◦] , LIII : [−5.55◦,−8.1◦] , 
LIV : [−8.3◦,−10.3◦] , and , LV : [−10.5◦,−13.1◦].
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Figure 2.  Aggregated calling activity of one individual for 4 different overnight periods. The calling activity as 
a function of the time of the day (red lines), for four different overnight periods: Weekdays (top-left), Fridays 
(top-right), Saturdays (bottom-left) and Sundays (bottom-right). Blue lines are smoothed Gaussian curves. For 
this individual, the minimum of activity typically occurs around 5:00 am.
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Figure 3.  Actigram of individual calling activity during weekdays. An example of an actigram showing the 
calling activity for weekdays’ overnight periods of 1560 individuals chosen from the longitudinal band LIV 
(similar patterns exist for the other bands). Each individual calling activity correspond to a horizontal line in 
the actigram, and each individual activity is scaled into the interval [0, 1] such that the most active periods are 
represented by light regions and periods without activity by dark regions. To show that individuals’ period of 
low activity (chronotypes) are not homogeneous, we ordered the presented individual activity profiles according 
to time shift between each profile and the mean over the population’s activity profiles (i.e. using the time shift 
that maximizes the cross-correlation between the individual profile and the mean). In this representation, 
“larks” or morning people appeared in the bottom section of the actigram, with their activity profile clearly 
shifted towards early hours, whereas “owls” or evening people (top section of the plot) are clearly shift towards 
late hours.
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The means tE , tM and the standard deviations σE , σM given by the approximations can be used to describe 
the relevant quantities of each individual activity pattern, namely the sleeping duration TLCA and the mid-sleep 
time Tmid . Assuming that the period of sleeping is bounded by the period when the calling activity falls to a 
minimum, we can approximate the sleeping duration or the period of low calling activity TLCA of the day of the 
week d by the width of the area between the activity modes, that is,

Similarly, the mid-sleep time Td
mid of the day of the week d is taken as the midpoint between the calling activity 

modes, thus

.

Morningness–eveningness classification. The means tE and tM , and the standard deviations σE and σM 
calculated using Eq. (1) are not always well defined because of the randomness of individuals’ calling activities. 
Therefore, after filtering out the outliers in the dataset we consider a total of 11,178 individuals for our analysis 
with numbers 2031, 2589, 2386, 2816 and 1356 in longitudinal bands LI , LII , LIII , LIV and LV , respectively. The 
definitions of the weekly overnight periods (Weekday-, Friday-, Saturday-, and Sunday-night) have associated 
same number of mid-sleep times Td

mid , which can be determined for each individual from the calling activity. 
These four mid-sleep times can be used to assess the tendency of an individual to have early (morningness) or 
late (eveningness) schedules.

In general, the mid-sleep times of any individual depends on the day of the week, such that the mid-sleep 
times on weekdays occur usually earlier than on weekends. However, when comparing between individuals, 
one can expect that the set of mid-sleep times from a morning person, occurs in general earlier than those of an 
evening person, thus we can use this expected difference for chronotype classification. The correlations between 
T
Weekday
mid  and TFriday

mid  , TSaturday
mid  and TSunday

mid  are 0.65, 0.54 and 0.67, respectively, which corroborates that in general 
individuals having early schedules on weekdays have also early schedules on weekends.

In spite of the differences found between the different chronotypes that each individual has for different days 
of the week, the individual has a consistent type (morningness or eveningness) relative to other individuals in 
the population. Comparing the chronotypes between individuals, those having earlier schedules on weekdays 
have also earlier schedules on weekends, and similarly for those having later schedules. We use this consistent 
order between daily chronotypes between individuals to assess their morningness–eveningness. The four pos-
sible mid-sleep times (on Weekdays, Fridays, Saturdays and Sundays) are assigned to a 4-dimensional vector

and this vector will be used to assess the chronotype.
Next we apply Principle Component Analysis (PCA) in the space of vectors Tmid of the population to get a 

better representation of the chronotype vectors. The loadings of the Td
mid on the first principal component (PC1) 

has been provided in the SI. We have plotted a summary of the negative of the PC1 (see Supplementary Table S1) 
in a box-plot on the left in Fig. 4a for the populations in the five longitudinal bands to exhibit the East-West 
progression of the mean values. A positive PC1 can be interpreted as an individual having a later mid-sleep time 
and a negative value can be interpreted for her to have an earlier mid-sleep time. These values can thus be used 
to understand the morningness–eveningness of an individual in the population. We observe in Fig. 4a, that the 
mean of the PC1 decreases from LV to LI , which would imply that there are more larks in the Eastern part of 
the country than in the Western part, which, however, could be  misleading35. In order to remove this possible 
artefact, we have computed a multiple linear regression model of Td

mid values with latitude and longitude of the 
users as independent variables. The coefficients of the latitude and longitude computed from the model along 
with their p-values have been summarized in Supplementary Table S2. We observe that the longitude is most 
significant for all Td

mid while there is a very small dependence on latitude. Therefore, we considered the residuals 
computed from the regression model and have again applied a PCA on them. On the right of Fig. 4a, we have 
shown a summary of the new first principal component (PC1reg ) for the vector Tmid in a box-plot which shows 
that the effect of East-West progression has been removed.

We observe that the distribution of PC1reg or the p chronotype has a small skewness of 0.12 and is very 
slightly leptokurtic with a kurtosis value of 3.09, in comparison with the Gaussian distribution having skewness 
0 and kurtosis 3. Since the distribution is positively skewed, we expect there to be slightly more owls than larks 
present in the population. The individuals can be divided into five clusters, inline with the standard classifica-
tion in the literature of the morningness–eveningness into five groups (see for example Adan and  Natale19, with 
slightly different nomenclature namely, definitely morning-type, moderately morning, neither-type, moderately 
evening-type, and definitely evening-type). In Fig. 4b we have divided the users into these clusters using the 
means (m) and standard deviation ( σ ) of the distribution of PC1reg or the p chronotype. Hence, the individuals 
grouped by the partitions: {−∞,m− 2σ ,m− σ ,m+ σ ,m+ 2σ ,+∞} , are accordingly named as extreme larks 
(violet), larks (blue), third birds (green), owls (yellow) and extreme owls (red), and comprise 2.22% , 13.05% , 
69.04% , 12.84% , and 2.85% of the population, respectively.

Furthermore, we have computed a PCA on the Tmid values for the weekdays and weekends separately to 
observe changes in the behavioural traits of larks and owls. The first principal component obtained from PCA on 
mid-sleep times on weekdays ( PC1Weekday

reg  ) accounts for 83.7% of the variance in the data and the one obtained 

(2)Td
LCA = (tM − σM)+ (24− (tE + σE)).

(3)Td
mid = (tM − σM + tE + σE)/2− 12.

Tmid =
{

T
Weekday
mid ,T

Friday
mid ,T

Saturday
mid ,T

Sunday
mid

}

,
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from PCA on mid-sleep times on weekends ( PC1Weekend
reg  ) account for 81.8% of the variance in the data. The dis-

tribution of the PC1s obtained are more leptokurtic and more skewed than the distribution of the p chronotype. 
PC1

Weekday
reg  and PC1Weekend

reg  are observed to have a kurtosis of {3.26, 3.25} and skewness of {0.18, 0.16} , respec-
tively. One can then classify the five different groups of people (extreme larks, larks, third birds, owls, extreme 
owls) using the same method described in previous paragraph. In Fig. 5 we show a Venn diagram that depicts 
the joint distribution of the PC1 distributions considering only the larks and the owls (including the extreme 
larks and extreme owls but excluding the third birds). Here we observe that approximately 7.1% of larks and 7.4% 
of owls of the total population show the same behavioural traits on both weekdays and weekends. Around and 
8% and 7.4% of larks on weekdays and weekends respectively change to third birds. Similarly 7.6% and 8.0% of 
owls convert to third birds on weekdays and weekends, respectively. A very small percentage of the population, 
0.1% of the larks and 0.3% of the owls, on weekdays and weekends change to the opposite behaviour, i.e. larks 
become owls and vice versa.

Model for morningness–eveningness assessment using factor analysis. In general, the individual 
mid-sleep times are different on different days of the week, with the earliest mid-sleep time occurring in week-
days and the latest on Saturdays (around 1 h difference on average). When comparing mid-sleep times between 
individuals we observe the following. The relative order between individuals is, in general, the same regardless 
of the period of the week analysed, such that individuals belonging to the group with earlier chronotypes on 
weekdays (relative to the whole population), also belong to the groups with earlier chronotypes on weekends.

Based on the above observation we have attempted to compute a chronotype score using a factor analysis 
for all the users in the population that can reflect the morningness or eveningness of an individual. The first 
maximum in the activity shown in Fig. 1, considering the night centered approach, represents an average peak in 
the evening activity (EA) of a user on a particular day of the week and the second peak represents the morning 
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Figure 4.  Principal component analysis (PCA) on the four mid-sleep times Td
mid . (a) On the left a summary 

of the first principal component (PC1) obtained from PCA computed on the four sets of Td
mid for all users in 

five different longitudinal bands of the country. On the right, we have shown a summary of the first principal 
component (PC1reg or p chronotype) obtained after applying PCA to the residuals obtained from a regression 
analysis of Td

mid using the latitude and longitude as independent variables. The green, orange, red, blue and 
magenta bars represent the westernmost, western, middle, eastern and the easternmost parts of the country, 
respectively. The black horizontal lines in the middle represent the median of the distribution. The box plot 
includes all the values within the range of the 25th and 75th percentile and the end of the whiskers represent 
the maximum and the minimum scores excluding outliers. (b) The first two principal components (PC1reg and 
PC2reg ) of the PCA on regressed values of the chronotypes in vector Tmid . The distribution of the PC1reg or p 
chronotype is slightly skewed (skewness = 0.12), and leptokurtic (kurtosis = 3.09). Therefore, one can divide 
the individuals into five groups using the mean and standard deviation of the distribution called extreme larks, 
larks, third birds, owls and extreme owls according to their chronotype and are represented in the figure by the 
colours violet, blue, green, yellow and red, from left to right, respectively.
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activity (MA). These pairs of observables for each day have been computed from the data for each individual 
and is denoted by MAd and EAd where d stands for Weekdays, Fridays, Saturdays and Sundays. Generally, the 
MAs of individuals are mostly constrained due to social obligations, like reaching their workplaces on time. In 
the evening, they are more relaxed and can follow their own individual chronotypes. Therefore, we hypothesize 
that the morning and evening behaviour of an individual are different from each other and these can be used to 
assess their chronotype. We have considered an exploratory factor analysis (EFA)39,40 on the sets of observables 
for {MAd} and {EAd} as shown in Fig. 6a to explore underlying latent variables that affect an individual’s morning 

Figure 5.  Venn diagram to show changes in larkish and owlish behaviour. The joint distribution of the larks 
and owls (excluding the third birds) obtained from classification of the chronotypes obtained by computing a 
PCA on Tmid values for weekends and for weekdays separately and presented in the form of a Venn diagram. 
The colours red and pink represent all the larks and all the owls on the weekdays (including extreme larks 
and extreme owls). The blue and yellow represent all owls and all larks on weekends (including extreme larks 
and extreme owls). We observe that 7.1% of the population who are larks remain the same be it weekdays or 
weekends and similarly for 7.4% of the population that are owls. A very few percentage of the population ( 0.1% 
for larks and 0.3% for owls) changes their behaviour drastically to the opposite kind depending on whether it is 
a weekend or weekday. We also observe that 8% for larks and 7.6% for owls on weekdays; and 7.4% for larks and 
8% for owls on weekends convert to third birds in the population.

Figure 6.  Factor analysis of the chronotype of an individual using CDRs: (a) An exploratory factor analysis 
(EFA) of the peak locations of the morning activity (MA) and evening activity (EA) on the seven days of the 
week shows the emergence of two underlying latent factors (Morning behaviour and Evening behaviour of an 
individual) that governs the outcome of MA and EA, separately. The correlation between the two latent factor 
is computed to be η = 0.31 . (b) A higher order model (Bifactor model) is used to find an underlying general g 
factor that can be used to understand the chronotype of an individual. F1∗ and F2∗ are the “group” factors that 
affect the MAs and EAs, separately. The loadings of the factors on the observables for both the figures have been 
specified in the two separate tables (Supplementary Table S3 and Supplementary Table S4) in the SI. Any cross-
loadings with values below 0.3 have been ignored.
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and evening activities. The EFA is a technique used to identify conceivable underlying constructs within the 
observables and is distinct from PCA that is usually employed to reduce the dimensions in the data.

We first assess the factorability of the data by carrying out the following tests. The Kaiser–Meyer–Olkin test for 
factor adequacy in the model gives a score of 0.7441. In addition we use the Bartlett’s test for  sphericity42 to check 
any redundancy between the observables that are summarized with fewer number of the latent variables and it 
gives a χ2 = 32344.32 with p < 0.0001 . Both tests indicate a favourable use of an EFA. The EFA was conducted 
using the “psych”  package43 with an oblimin rotation and a maximum likelihood method. A two factor structure 
was supported by a scree plot, the Kaiser criterion, relevant factor loadings, as well as the interpretability of the 
dimensions. The mean communality value was slightly above 0.50 ranging from 0.23 to 0.79. This agrees with 
our aforementioned hypothesis and accordingly we have observed that all the MAs are loaded on one factor 
(Morning behaviour) and all the EAs are loaded on another factor (Evening Behaviour) as depicted in Fig. 6a. The 
correlation between the two factors is η = 0.31 . A mediocre score of 0.59 for the unidimensionality computed on 
this model containing all the MAs and the EAs further supports our claim that there exists more than one latent 
factor. A score close to 1.0 would have indicated a single factor explaining the behaviour during an entire day. 
Therefore, this would imply that the individuals behave rather differently in the morning from that in the even-
ing. The individual factor loadings on the observables are summarised in Supplementary Table S3 in the SI. The 
cross-loadings of the factors have not been shown in this figure since their values are less than 0.3. The model fit 
indices for the EFA, namely, comparative fit index (CFI), Tucker–Lewis Index (TLI), and the root mean square 
error of approximation (RMSEA), have been computed to be 0.91, 0.80, and 0.14, respectively. While the values 
of CFI and TLI indicate a good fit of the data in our model, we get a high value for the  RMSEA44.

Next, we have carried out an exploratory bifactor analysis (EBA)45 on the model to determine scores for a 
single construct like the chronotype of an individual that would reflect the morningness or eveningness of the 
person even when the data is multidimensional. The bifactor models are useful in representing hierarchical latent 
structures in the data as the first-order  factors46. It computes the factor scores for a general factor g, which loads 
directly onto all the observables in the model and also produces group factors that distinguish between the groups 
formed among the observables. We have used “omega” function from the package “psych”, which does a factor 
analysis followed by an oblique rotation and extracts the general factor using Schmid–Leiman  transformation47. 
The tests of reliability in our model ωt and ωh

48 are computed to be 0.84 and 0.39, respectively. Here ωt accounts 
for the total variance in the data due to the general factor g and the group factors together, whereas ωh accounts 
for the proportion of variance in the data due to the general factor only. In Fig. 6b we show that the all the 
observables or items are loaded on the general factor (g), which represents the chronotype of an individual. The 
factors represented by F1∗ and F2∗ are group factors or nuisance dimensions-factors that measure responses of 
the observables that are not considered by the g factor. The loadings of all the factors in this analysis have been 
summarized in Supplementary Table S4 in SI.

The mean factor scores obtained for the morningness behaviour, eveningness behaviour, and the g chrono-
type from the models discussed above are found to behave in a way similar to the principal component in the 
left of Fig. 4a when plotted as a function of the longitudinal bands from West to East. As discussed previously 
in the case of the PCA we have computed a multiple linear regression model of the observables with the latitude 
and longitude of the users as independent variables (details in Supplementary Table S5 of SI) to remove the 
geographical dependence in the data. We have considered the residuals computed from the regression model 
for all the items in our analysis. We have applied an EFA and EBA on the residuals and the corresponding plots 
are shown in Supplementary Fig. S1 in SI.

Age and gender dependence of the chronotype. The factor scores obtained from our models can be 
interpreted as an indicator of a user’s chronotype. Individuals having negative scores are considered to be lark-
ish or morning-type and those having positive scores to be owlish or evening-type. The higher the value of the 
scores, the more extreme larkish or extreme owlish behaviour of an individual is expected to be. Fig. 7 shows 
the average factor scores of (a) Morning Behaviour—MB, (b) Evening Behaviour—EB and (c) the g chronotype 
as a function of the users’ age and gender. The factor scores for g chronotype in Fig. 7c for both the genders are 
found to be decreasing with age indicating that younger individuals (from 18 to 35 years old) are more owlish in 
nature. Furthermore, it is also observed that males in the younger age cohorts tend to have higher factor scores 
than women indicating that they are more owlish than females. However, after 35 there is a crossover and the 
females are observed to be more owlish in nature than males. For the mid age cohorts (between 35 to 60 years 
old), we observe a peak in the factor scores. Finally, older age cohorts (above 60 years) are found to behave like 
larks with women still having later chronotypes than men. The age and gender dependence of the p chronotype 
computed using PCA discussed previously is also shown in Fig. 7d. The variation of p chronotype is observed to 
be qualitatively similar to the one observed with g chronotype. We have also observed a high correlation between 
the two chronotypes and it is found to be 0.76.

Dependence of the period of low calling activity on the chronotype. The period of low calling 
activity TLCA , which can be interpreted as a representation of an individual’s sleep duration during the night 
time, has been calculated using Eq. (2). Furthermore, we have calculated the average sleep duration on weekend 
( TLCA −Weekend ) and weekdays ( TLCA −Weekday ) separately and Fig. 8a shows their variation as a function 
of the g chronotype. We find that the users sleep more on the weekends than on weekdays and this result is con-
sistent with the previous  findings49. Moreover, larks are observed to sleep more than owls on weekends. This is 
because both larks and owls tend to align themselves according to their own chronotype as there are no social 
constraints governing their schedules. Since the larks tend to follow the solar clock they tend to sleep more than 
owls. On weekdays, extreme owls have the same sleep duration as the larks which implies that they are not able 
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Figure 7.  The mean of the factor scores and first principal component computed from PCA for different 
age and gender cohorts: The variation of the average factor scores of the (a) morning behaviour, (b) evening 
behaviour and (c) the general g chronotype along with (d) the first principal component (PC1reg ) from the PCA 
renamed as p chronotype is plotted as a function of age and gender. Each point is calculated separately with the 
shaded regions in all the three plots representing the bootstrap 95% confidence intervals. The curve in red is for 
females and blue for males.

Figure 8.  Period of low calling activity of users of different chronotypes: (a) The period of low calling activity Td
LCA 

is the width of the region between the activity modes, calculated according to Eq. (2) for different days (d) of the 
week. The average of Td

LCA on weekends TLCA−Weekend and weekdays TLCA−Weekday is plotted as a function 
of the general (g) chronotype in orange and magenta, respectively. (b) TLCA–Weekend and (c) TLCA−Weekday 
are plotted as a function of the chronotype for both genders. For each chronotype, TLCA−Weekend and 
TLCA−Weekday has been calculated separately with the shaded regions in all three plots representing the bootstrap 
95% confidence intervals. The red plot is for females and blue for males in both (b) and (c).
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to keep up with the social constraints like work schedules and end up oversleeping. Figure 8b shows the sleep 
duration on weekends as function of the chronotype and the gender. We do not observe any significant differ-
ences between the two genders on the weekends. However, in Fig. 8c we find that owlish males sleep more on 
weekdays than owlish females. The average age of the females in this regime falls in the age cohort of 40 to 60 
year old. This could be a reason for the less sleep duration as they are more active than males around this age due 
to reasons already discussed in the previous section.

Discussion
In this study, we have utilized mobile phone communication data of a population in a European country to study 
chronotypes of the service users. We have shown that the chronotype of an individual can be broadly identified 
through two related yet distinct statistical approaches. In our first approach, we have used PCA to heuristically 
calculate a composite score for the different chronotypes using the mid-sleep times on weekdays along with the 
weekends as well. The first principal component from this analysis is composed of all the mid-sleep times with 
all positive loadings. We observed a slightly leptokurtic distribution with a small skewness for the computed 
values. Using the mean and the standard deviation of the distribution, we divided the users into the following 
five different clusters—third birds, the users in the centre ( 69.0% ), larks ( 13.1% ), owls ( 12.8% ), extreme larks 
( 2.2% ), and extreme owls ( 2.9% ). Moreover, if one were to do the PCA for weekdays and weekends separately, 
the joint distribution obtained from the two first principal components indicate changes in the behavioural 
traits of the individuals. While some of the larks and owls behave the same on weekends and weekdays, some 
have also been observed to change to the third birds category. We also observed very small percentages of larks 
to convert to owls and vice versa.

Using a second approach, i.e. an EFA, which assumed chronotype to be a latent trait, we also found that the 
morning activities and evening activities of the users are governed by two separate factors, namely the morning 
behaviour and the evening behaviour. The morning behaviour of the users is usually more constrained due to the 
society following a strict schedule for offices, schools, etc. and most chronotypes try to align themselves accord-
ingly. However, this is not the case in their evening behaviour since the individuals are more flexible with their 
evening schedules. Therefore, we see a more pronounced change in the morning behaviour than in the evenings 
as depicted in Fig. 7a,b. Furthermore, it is seen that older cohorts usually do not follow a strict schedule since 
they are mostly retired from work and consequently tend to follow their inherent chronotypes. In contrast, the 
younger cohorts need to follow a stricter social timetable and thus exhibit a vastly different behaviour than the 
older cohorts.

Traditionally, the chronotypes have been calculated using the mid-sleep time of the individuals on weekends 
only since they are assumed to follow their inherent chronotypes freely during these days of the  week50. However, 
through our study we have shown that the g chronotype computed using an EBA is also an appropriate method 
to study the morningness and eveningness of an individual. It is a higher order version of the EFA that is able 
to compute a general factor g that is directly related to all the observables in the data. Hence, this general fac-
tor renamed as g chronotype from EBA is able to capture all the effects of the activities of an individual on all 
days of the week. Although we do not have a separate method through which we could validate our measured 
chronotype but the fact that similar observables converge to the same factor (MAs loading in a single factor) and 
dissimilar observables (MAs and EAs) loading on different factors supports our measurement of the chronotype 
to a reasonable extent.

We found that the younger cohorts tend to have later chronotypes, which gradually change to earlier chrono-
type with increasing age, similar to the results of the earlier survey  study50. However, the variation in the chrono-
type reduces considerably for age groups above 40. In addition, we have observed a small peak for mid-age 
cohorts that could be a direct influence of the lifestyle led by most of the individuals in this age group. Most of 
them have to connect with both their children (young age cohorts) and parents (old age cohorts) who usually 
live in separate accommodations. Thus, the peak can be assumed to be a manifestation of their calling activity 
needed to maintain their social interactions with both the age groups. The individuals in the older age cohorts 
(60 years and above) are most likely not adhering to regular work schedules and so, they tend to follow their 
inherent chronotype, which is more aligned with their biological and the solar clock. This could be a reason for 
them to follow a more larkish behaviour. These changes can also be attributed to other factors like hormonal 
changes during an individual’s life span that affects their sleeping  patterns5. Additionally, women above the age of 
40 are found to show more owlish chronotype when compared to men. This trait may be a direct cause of societal 
responsibilities, like child care, that are usually assumed to be taken predominantly by  women51.

Furthermore, we have observed similar behaviour for both the g chronotype and the p chronotype computed 
from EBA and PCA, respectively, as depicted in Fig. 7d. Also, a separate chronotype(m) computed from an EFA 
on mid-sleep times for all days is found to show the same variation as the g chronotype (see Supplementary 
Fig. S2 in SI). Using the g chronotype we are able to demonstrate that the chronotypes identified by directly 
taking into account and combining several observables of human activity, instead of a derived quantity like the 
mid-sleep time, can also be used to distinguish between the morningness and the eveningness of individuals. 
Moreover, our results agree with the previous findings using traditional methods like the MCTQ and MEQ 
 questionnaires1,5,52–55. Using a period of the users’ low calling activity as markers of their sleep  duration35 we find 
that on average all chronotypes sleep more on weekends than on  weekdays49 and in both cases larks are gener-
ally found to sleep more than owls. On weekends, larks go to sleep earlier than owls and so they have a longer 
sleeping period. The shorter sleeping periods observed for owls may be a cause for sleep deprivation occurring 
among them, which can further lead to health  issues11–13. However, on the weekdays we observe that extreme 
owls have sleep duration similar to extreme larks suggesting that on weekdays the former may have difficulties 
in observing work schedules.
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Finally, we conclude that our results obtained by combining data from mobile phone communication of 
individuals during a 24 h day-night cycle, one can form a detailed understanding of their chronotypes. These 
kinds of studies using mobile phone service subscribers’ CDRs, demographic, and location information pro-
vide a novel and time-wise longitudinal perspective to the circadian rhythms of individuals. Our data-driven 
approach adds and complements the questionnaire based studies and findings in them, as it avoids possible 
shortcomings in terms of sample size and dependence on the memory of the participants. Such data could also 
be used to characterize different other aspects of the sleep-wake behaviour of individuals such as the degree of 
awareness of their morning or evening  nature56–58. This could require the inclusion of more items pertaining to 
the shape of the distributions of calling activity. In the recent past, the rapid adoption of newer modes of digital 
communication and different smart devices like fitness trackers that can keep track of an individual’s sleep rou-
tines, body temperatures and various other activities throughout the day, have largely supplemented the usage 
of mobile phones. Therefore, we believe that the approach of combining digital data from multiple channels of 
communication to assess the chronotype of an individual as a reflective or a latent trait using unsupervised or 
supervised models would be extremely worthwhile and timely in fields such as mobile health and  medicine59,60.

Data availibility
The datasets generated during and/or analysed during the current study are not publicly available due to a signed 
NDA but are available from the corresponding author on reasonable request.
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