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Abstract: Fault diagnosis methods based on process history data have been studied widely 
in recent years, and several successful industrial applications have been reported. In this 
paper a comparison of four monitoring methods, PCA, PLS, subspace identification and 
self-organising maps, for fault detection of the online analysers in a dearomatisation 
process is presented.  The effectiveness of different statistical process monitoring 
methods in FDI of the online analysers is evaluated on the basis of a large number of 
simulation studies. Finally the results are presented and discussed. 
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1. INTRODUCTION 
 

During the last decades, the ever-increasing 
competition caused by globalisation and the 
continuously tightening environmental restrictions 
are forcing industry to optimise their production 
processes. The operating conditions must be 
controlled precisely in order to ensure the high 
quality of the product. Process monitoring can help 
operators to detect and avoid undesired process 
conditions, thus decreasing the amount of produced 
off-spec products and improving the quality of the 
product. To this end, researchers have applied a 
range of process monitoring and fault detection 
methods in industrial processes. A large number of 
industrial applications with successful results have 
been reported (e.g. Komulainen et al. 2004 and 
Jämsä-Jounela et al. 2003) and reviewed, e.g. by 
Isermann and Ballé (1997) and Patton et al. (2000).  
 
The monitoring methods can be classified into two 
main categories: methods based on first principle 
models, and methods based on models created with 
process history data. The data-based methods often 
utilize the reduction of the dimensionality of the 
original data set. Data compression is achieved by 
removing redundant information included in the 
variables while, at the same time, preserving as much 
as possible of the information in the original dataset. 
The most important statistical monitoring methods 
are based on principal component analysis (PCA) 
and partial least squares regression (PLS). Dynamic 
versions of PCA and PLS have been developed for 

continuous processes by (Ku et al. (1995), Chen et 
al. (1998), as well as recursive variants by Li et al. 
(2000) and Qin (1998). The PCA has been combined 
with wavelet analysis to deal with the autocorrelation 
of the data, and with neural networks to suit non-
linear data sets. Most of the above-mentioned 
methods assume static process behaviour, but real 
industrial processes usually exhibit dynamic 
characteristics. The dynamic properties of processes 
can be modelled with state-space models, the system 
matrices of which can be determined from the 
process history data with subspace model 
identification methods (SMI). During the last decade 
a number of different methods have been proposed; 
canonical variate analysis (Larimore, 1990), N4SID 
(van Overschee. and de Moor, 1994), MOESP 
(Verhaegen 1994) and, more recently, a PCA based 
method by Wang and Qin (2002). Neural network 
architectures can be divided into three categories: 
feedforward, recurrent and self-organizing networks. 
According to Kohonen (1990), neural networks are 
the most applicable to classification and regression 
problems which do not need perfect precision. The 
self-organizing map, introduced by Kohonen, is an 
unsupervised neural network that has been compared 
to non-linear PCA, because it adapts to the structure 
of the data.  
 
Before creating the statistical models for process 
monitoring, the dimensionality of the input variable 
set is usually reduced. The reduction can be done by 
selecting a suitable subset of the measured variables 
or by forming features from the original data. In 
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addition to reducing the dimension of the input, 
features are added that include useful process 
specific knowledge in the monitoring system. They 
can e.g. describe certain physico-chemical 
phenomena of the process, thus containing 
fundamental information about the processes in a 
compact form. Features can be constructed using 
clustering methods e.g. K-means and hierarchical 
clustering (Duda et al. 2001). The idea of 
distributional clustering (Pereira et al. 1993) is 
combined with an SVM-based classifier and applied 
to text categorisation problem in Bekkerman et al. 
2003. Besides clustering, features can be constructed 
using linear transformations of the input variables 
(PCA/SVD, LDA), spectral transforms (Fourier, 
Hadamard), wavelet transforms, convolutions of 
kernels, or by applying simple functions to subsets of 
variables, e.g. products. (Guyon and Elisseeff, 2003). 
Sufficient dimensionality reduction, SDR, introduced 
in Globerson and Tishby (2003), is a new method for 
forming the most informative features by reducing 
the dimensionality of the data while losing as little 
information of the original dataset as possible.  
 
In this paper a fault detection methods for analysers 
of a dearomatisation process is presented. Faults are 
detected using four data-based monitoring methods: 
PCA, PLS, subspace identification (SMI) and self-
organising maps (SOM).  
 
The paper is organised as follows: Chapter 2 is 
dedicated to introducing the dearomatisation process. 
In Chapter 3 the steps involved in setting up the FDI 
systems are presented. Chapter 4 consists of the 
results and discussion. The paper ends with a 
concluding section in Chapter 5. 
 
 
2. DESCRIPTION OF THE DEAROMATISATION 

PROCESS 
 

Dearomatisation processes are widely used in the oil 
refining industry. In these processes, aromatic 
compounds in the feedstock are removed by 
hydrogenation. The process consists of two trickle-
bed reactors with packed beds of catalyst, a 
distillation column, a filling plate stripper, several 
heat exchangers and separation drums, and other unit 
operations. The process diagram of the LARPO 
process is presented in Fig. 1.  
 
The cold, liquid feedstock fed to the unit is heated 
with streams from the two reactors in heat 
exchangers EA1 and EA2, and then fed to reactor 
DC1 together with hydrogen and recycle liquid. 
Exothermic saturation reactions in the first reactor 
remove most of the aromatic compounds when the 
catalyst is new, while most of the reactions occur in 
the second reactor when the catalyst is older and has 
been partly deactivated.  
 

 
 
Fig. 1. The Naantali dearomatization process. 
 
After dearomatisation in reactor DC1, the reaction 
product is cooled in heat exchanger EA1 and then fed 
to gas separation drum FA1. Gaseous and liquid 
reaction products are separated in the drum. Part of 
the liquid is circulated back to reactor DC1. The rest 
of the liquid, together with separated gas and fresh 
hydrogen, are fed to the second reactor DC2, where 
the aromatics level of the product drops to near zero. 
 
After the second reactor, the reaction product is 
cooled in heat exchangers EA2 and EA3 and fed to 
the second gas separation drum FA2. Gas separated 
from the liquid mainly consists of unreacted 
hydrogen, which is recycled back to the first reactor, 
and the rest of the gas is removed. The separated 
liquid is heated with by-product and product streams 
in heat exchangers EA4 and EA5. Part of the liquid is 
further heated in heat exchanger EA6 in order to 
achieve the final temperature before the stream is fed 
to distillation column DA1.  
 
The overhead of the column is cooled in a cooler and 
then fed to separation drum FA3, where the gaseous 
part is removed and the liquid is divided into reflux 
and distillate. The distillate consists of the lightest 
compounds of the reaction product. Heat exchanger 
EA6 produces heat for reboiling the bottom stream. 
From the upper part of the column DA1, a side 
stream is conducted to a stripper, which is heated 
with heat exchanger EA7. A by-product stream is 
drawn off from the bottom of the stripper. The non-
aromatic main product is drawn off as the bottom 
product of the distillation column DA1 and cooled in 
heat exchanger EA5. The quality of the cooled 
product is measured online by flash point and 
distillation curve analysers. Laboratory 
measurements of the product are performed twice a 
day.  
 
The six different types of feedstock used as inputs for 
the process are petroleum oil cuts with clearly 
differing properties. A change of feed type is made, 
on the average, once every 4 days. The 
dearomatisation process has no noticeable effect on 
the heaviest part of the distillation curve of the 
feedstock, but the properties of the lightest cuts are 
strongly affected by the distillation. 
 
 
 



     

2.1 Analysers and analyser faults 
 
According to a study by Kämpjärvi et al. (2006), 
most significant potential for improving the 
operation of the dearomatisation process lies in the 
earlier detection of analyser faults. If the fault could 
be detected earlier, then the corresponding changes 
to the operation could be made sooner and the 
quality of the end product could be kept within the 
production limits, thus improving the plants 
economical performance.  
 
The analyzer faults are usually caused by one of the 
following problems; water contamination of the 
analysed sample, carbonisation of the flask of the 
distillation analyser, or fouling of the gas 
chromatograph. The first fault type causes the 
analyser result to drop abruptly and the others cause 
the output to drift slowly away from the correct 
value. These fault types are simulated in the test data. 
 
 

3. SET UP OF THE FDI SYSTEMS 
 
Industrial applications of process monitoring have 
usually been based on well-known and established 
methods such as PCA, PLS, SOM. The effectiveness 
of these methods for detecting analyser faults is 
researched in this study. The fourth method of the 
study, subspace model identification, is a newer 
method. In this method the measurement data are 
used to determine the matrices of state-space models. 
Here a simplified SMI algorithm proposed by 
Hyötyniemi (2001) is used. In this method, the state 
sequences are first formed using windows of past 
time series. The preliminary system states are then 
determined and the dimension of the states is reduced 
using PCA. Finally, the system matrices are solved in 
the least square sense.  
 
 
3.1 Selection of the input variables for the FDI 
 
The proper selection of process variables is a critical 
factor for a successful FDI system application. In this 
study selecting the outputs is straightforward, as only 
the variables of interest, in this case the 
measurements given by the online analysers, are 
chosen. Input variable selection, which includes the 
following systematic approach, is a more challenging 
task. First, the dimension of the complete set of the 
recorded process measurements is reduced by 
removing the variables that clearly do not affect the 
output. Next, the obtained set of variables is further 
compressed by removing variables, which correlate 
only slightly with the output. In this case study, 
almost the same set of 25 most strongly correlating 
variables were chosen to form the input variable set 
as in (Kinnunen, 2004). As a final step, process 
knowledge is added to the input variable set by 
constructing the calculated variables. The variables 
in this case study were temperature differences over 
reactors 1 and 2, temperature difference over the 
distillation column, and the ratio of bottoms and feed 
rates of the column. The first two features describe  

Table 1. The input and output variables. 
 

Input variables – measurements 
Flow rate of solvent feed to the reactor 1 
Temperature of the feed to the reactor 1 
Temperature of the feed from the reactor 1 
Flow rate of recycled solvent from separation tank 
1 to the reactor 1. 
Flow rate to the reactor 2 
Temperature of the feed to the reactor 2 
Temperature of the feed from the reactor 2 
Flow rate of recycled hydrogen into the reactor 1 
Temperature of the feed to column 1 before heating 
Temperature of the feed to column 1 after heating 
Flow rate of the solvent to the column 1 
Temperature difference over the heat exchanger 
that heats the feed to the column 1  
Pressure at the top of the column 1 
Temperature of the overhead of the column 1 
Flow rate of the vapour distillate of the column 1 
Flow rate of the liquid distillate of the column 1 
Temperature of the liquid distillate of the column 1 
Flow rate of the reflux in the column 1 
Level of the bottom of the column 1 
Three temperatures of the column 1 (on different 
plates) 
Flow rate of reflux from the stripper to the column 
Level of the tank 3 
Temperature of the hot oil to heat up the stripper 
before the heat exchanger 
Temperature of the hot oil to heat up the stripper 
after the heat exchanger 
Flow rate of the bottoms of the stripper 
Input variables – Features  
Difference in temperatures across Reactor 1 
Difference in temperatures across Reactor 2 
Difference in top and bottom temperatures of the 
Distillation column 
Ratio of bottoms and feed of the column 
Output variables – analyser outputs 
Bottoms product boiling point (0 % evaporated) 
Flashpoint temperature of by-product 
Flashpoint temperature of bottoms 
 
the speed of the reaction, and the last two features 
give information about the distillation section of the 
process. The final set of variables used in monitoring 
is listed in Table 1. 
 
 
3.2 Creating the monitoring models 
 
After selecting the input variables, the monitoring 
models were created. The data used in this study 
were created with the PROSimulator software 
developed by Neste Jacobs Oy. A data set consisting 
of 2395 data points, covering a period of almost 40 
hours, was used for modelling. Every hour the values 
of 1-3 variables were manipulated in order to create 
variance in the data. These manipulations initiated 
changes to process measurements similar to changes 
in real process data caused by normal operation 
actions. However, the feed type was not changed 
during the simulation. The variables used to create  



     

Table 2 Variables manipulated during simulation 
 

Composition of the solvent feed 
Flow rate of the solvent feed 
Composition of the hydrogen feed 
Temperature of the hot oil to heat the boiler of the 
column 1 
Flow of reflux from the separation tank 1 to the 
reactor 1 
Temperature of hot oil to heat up the feed to the 
reactor 1 
Fan speed and louvre opening of air cooling of 
solvent before the separation tank 2 
Flow of reflux to column 1 
Temperature of hot oil to heat up the stripper 
Setpoint of pressure controller of the column 1 
Setpoint of temperature controller of the flow from 
the stripper to the column 1 
 
the changes are presented in table 2. The basic level 
control loops of the simulated process were closed, 
but the higher-level quality control was not active. 
 
Principal Component Analysis. Three PCA models, 
one for each analyser, were constructed with the 
direct measurements and the corresponding analyser 
output as input variables. Another three models were 
created that also included the calculated variables. 
The models were constructed of four PCs that 
explained about 97 % of the total variance of the 
data. 
 
Partial Least Squares. As with the PCA, two models 
were constructed for each of the three analysers, one 
using the direct measurements as inputs and the other 
also using the calculated variables. The output was 
the corresponding analyser result. The latent 
variables of the PLS were calculated with the 
NIPALS algorithm (Wold, 1975). The PLS models 
were created with the five latent variables that 
captured about 95 % of the variance of the input and 
82 % of the output. 
 
Subspace Modelling Identification. In creating the 
state-space models, the maximum dimension of the 
system matrices was set to five, and in the PCA data 
reduction phase three PCs were used. As before, two 
models were created for each analyser, one with the 
calculated variables and one without. 
 
Self-organising Maps. In this study, two separate 
types of SOM were created. Both sets consisted of 
six models; one without and the other one with the 
calculated variables for each analyser. The first set 
was trained with the original autoscaled data 
including the analyser output. The second set of 
SOMs was trained with analyser results and PCA 
transformed data. After autoscaling, PCA was 
performed and four PCs explaining about 97 % of 
the variation were selected and the data were then 
projected into the PC space and used to train the 
second set of SOMs. During the testing, the analyser 
output was not used in determining the best matching 
unit (BMU). The BMU's value for the analyser 
output was compared to the current analyser output 

and, if the difference was larger than the alarm limit, 
an alarm was given. 
 
 

4. TESTING, RESULTS AND DISCUSSION 
 
After the training, the fault-detecting abilities of the 
FDI systems were evaluated using the simulated 
testing data set consisting of 1440 data points 
representing a period of 24 hours. Four faults to be 
detected were created on the analyser outputs: a large 
abrupt error (-50 % drop in temperature), a smaller 
abrupt error (-20 % drop in temperature), rapidly 
progressing drift (-10°C per hour) and slowly 
progressing drift (-5°C per hour). The abrupt faults 
correspond to the water contamination of the 
analysed sample fault in the real process and the 
drifting faults correspond to the carbonisation of the 
flask of the distillation analyser, or fouling of the gas 
chromatograph. 
 
First, the PCA-based FDI system was tested. The 
Hotelling T2 index was calculated and used to detect 
the faults. When the index alarm limit was set to 14, 
the PCA-based monitoring method was able to detect 
the abrupt faults correctly without delay. The first 
drifting type faults in initial boiling point and 
flashpoint temperature of the bottom product were 
detected after delays of 74 minutes. The system was, 
however, unable to detect the fault in the flashpoint 
temperature of the by-product. Also, the models were 
not able to detect any of the slowly progressing 
analyser faults. In addition, the models gave false 
alarms after the first and before the fourth fault. 
Figure 3A shows the faults in the testing data and the 
alarms given by the six PCA models. The x-axis 
represents time and the y-axis the monitoring results; 
values close to zero mean a normal process situation, 
and values near to one represent given alarms. 
 
The PLS models were tested after the PCA models. 
The residuals between the model outputs and 
analyser results were calculated and, when they 
exceeded the limit value of 1.4, an alarm was 
triggered. The PLS-based fault detection system 
performed well and it was able to detect the abrupt 
faults with no delay, and incipient faults with delays 
of between 9 and 23 minutes. The first drifting fault 
was detected when the analyser error was 2-3°C and 
the second one before it was 2°C. The PLS-based 
monitoring system gave no false alarms. Figure 3B 
shows the alarms given by the method against the 
actual fault.  
 
Next the SMI method was tested. The residuals 
between the models' and the analyser outputs were 
calculated, and an alarm was given by the system 
when the index exceeded the alarm limit. The best 
results of the subspace identification-based fault 
detection system were achieved with an alarm limit 
of 2.8. The system was able to detect the abrupt 
faults immediately they emerged, and incipient faults 
with delays of between 8 and 35 minutes when the 
deviation from the nominal was 1.5-3°C. The SMI 
model for bottom product's initial boiling point gave 



     

few false alarms before fourth fault. Figure 3C shows 
the alarms given by the method against the actual 
fault.  
 
Finally, the FDI systems based on the SOM models 
were tested. Both the SOM trained with normal 
measurements and the one trained with PCs were 
able to detect the abrupt faults immediately. In 
detecting the drifting type faults PCA pre-treated 
SOM was superior to the normal SOM. PCA-SOMs 
average detection delay of the slowly developing 
fault was 22 minutes compared to the normal SOMs 
average delay of 45 minutes. The difference in 
performance derives from the fact that residuals 
produced by the PCA-SOMs were much smoother 
than those of normal SOMs allowing the use of 
lower alarm limit of 4.5 instead of 5. Using the lower 
alarm limit with the normal SOMs would have 
produced a number of false alarms. The alarms given 

 

 
 
Fig. 3. States of the analysers and monitoring results 

of the PCA (A), PLS (B), SMI (C), Normal 
SOM (D) and PCA-SOM (E) models. 

by the SOMs are shown in Figures 3D and 3E. 
 
 
4.1 Analysis of the results and discussion 
 
As the results in previous sections showed, the first 
two abrupt faults proved to be easy to detect. All the 
tested methods except PCA were able to give an 
alarm without delays, as shown in Table 2. The alarm 
signals were fired as soon as the faults occurred and 
lasted as long as the faults persisted. The subtle 
differences in the performance of the methods 
became visible only in detecting the slowly 
developing faults: On the average the fastest method 
to detect faults was PLS followed by slightly slower 
SMI. The PCA pre-treated SOM performed better 
than the normal SOM and was actually the fastest 
method to detect the slowly developing fault in by-
product flashpoint temperature. The performance of 
the PCA was worst of the tested methods; its 
detection delays were longest and it was unable to 
detect some drifting faults at all. 
 
The PCAs poor performance could be explained by 
the fact that the detected faults affected only one 
variable of the input variable set. Had the higher-
level quality control been in use, the faults would 
have propagated into other variables and it would 
have been easier to detect. PLS on the contrary 
models both the input and output and performed well 
as the faults affected the whole set of output i.e. the 
analyser output. SMI was clearly the fastest method 
to detect the faults in the by-product flashpoint 
temperature. The better performance in detecting 
faults in the stripper with its additional delays and 
process dynamics is probably explained with SMI 
models' capability to include dynamic information. 
The SOMs were used here as nonlinear regression 
tools and the FDI results were good. The PCA 
treatment of the data done prior to the training of the 
maps proved to be beneficial as the PCA-SOMs 
detected the faults faster than normal SOMs. The 
training of the maps was also less time consuming as 
only five variables were used.  
 
Using the process phenomena describing calculated 
variables together with the direct process 
measurement data in monitoring improved the results 
in some cases, but mostly it had only little effect, and 
on few occasions it actually made the delays longer. 
 
The detection delays of all the methods and faults are 
presented in Table 3.  
 
 

5. CONCLUSION 
 
In this paper PCA, PLS, SOM and SMI methods for 
detecting analyser faults are tested and evaluated. 
The study showed that the PLS is the best of the 
tested fault detection methods in this case. Deviations 
of about 2-3°C between the analyser measurements 
and the nominal values were detected. This can be 
considered as a good result, as the nominal analyser 
measurements were not ideal, but included noise 



     

Table 3. Detection delays 
 

Dir Feat Dir Feat Dir Feat Dir Feat

Flashpoint temperature, bottoms product

PCA 0 0 23 23 74 74 - -

PLS 0 0 0 0 9 9 22 22

SMI 0 0 0 0 11 11 27 27

SOM norm 0 0 0 0 20 20 43 43

SOM PCA 0 0 0 0 20 20 27 31

Flashpoint temperature, by-product

PCA 100 101 24 24 - - - -

PLS 0 0 0 0 15 14 22 23

SMI 0 0 0 0 14 14 35 31

SOM norm 0 0 0 0 26 18 48 51

SOM PCA 0 0 0 0 38 31 11 20

Initial boiling point temperature, bottoms product

PCA 0 0 0 0 74 74 - -

PLS 0 0 0 0 9 9 21 21

SMI 0 0 0 0 9 8 15 13

SOM norm 0 0 0 0 21 22 44 43

SOM PCA 0 0 0 0 20 21 22 22

Fault 1 Fault 2 Fault 3 Fault 4

 
 

with amplitude of 1°C. SMI and SOM also proved to 
be very useful tools in FDI. The performance of the 
PCA was poor; either the faults were recognised only 
after their presence was obvious and/or a large 
number of false alarms were generated. It is worth 
noting, that the data used in the study was simulated, 
and even though care was taken to make the data 
resemble actual process data, the results presented 
here are probably better than would have been if real 
process data had been used. 
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