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a b s t r a c t 

The first step for any graph signal processing (GSP) procedure is to learn the graph signal representa- 

tion, i.e., to capture the dependence structure of the data into an adjacency matrix. Indeed, the adjacency 

matrix is typically not known a priori and has to be learned. However, it is learned with errors. A little 

attention has been paid to modelling such errors in the adjacency matrix, and studying their effects on 

GSP methods. However, modelling errors in the adjacency matrix will enable both to study the graph er- 

ror effects in GSP and to develop robust GSP algorithms. In this paper, we therefore introduce practically 

justifiable graph error models. We also study, both analytically when possible and numerically, the graph 

error effect on the performance of GSP methods in different types of problems such as filtering of graph 

signals and independent component analysis of graph signals (graph decorrelation). 

© 2021 Published by Elsevier B.V. 

1. Introduction 

In the classical signal processing setup where the digital sig- 

nals are represented in terms of time series or vectors of spatial 

measurements (for example, measurements by sensor arrays), it is 

assumed that each point of a discrete signal depends on the pre- 

ceding or spatially close point of the signal. When the signal is no 

longer adequately represented by a simple time series structure, 

the classical signal processing tools are no longer applicable. Thus, 

graph signal processing (GSP) [1–3] has emerged as a new area of 

signal processing and data analysis where one of the major aims is 

to generalize the standard signal processing methods and concepts 

into the context of more complex signals represented on graphs. 

The graph corresponding to ordered data is then just a simple spe- 

cial case of a digital signal graph. Graph signals and models are 

frequently used when studying sensor networks, brain networks, 

gene regulatory networks, and social networks to name just a few 

[4–7] . 

In GSP, each signal value is indexed by a node in a graph at 

which this signal value is measured, and edges between pairs of 

nodes in a graph indicate dependencies between the correspond- 

ing signal values. Then the underlying graph can be fully specified 

by an adjacency matrix, denoted hereafter as A , whose (i, j) th el- 

ement is nonzero if the i th and the jth nodes are connected, and 

the value [ A ] i, j = a i j describes the strength of the relationship. The 
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adjacency matrix is the basis of GSP on which the graph Fourier 

transform (GFT) and graph filters [1] are built, often via the graph 

Laplacian matrix or other shift operators which are based on the 

adjacency matrix. 1 

The process of obtaining the adjacency matrix may take differ- 

ent forms. There may exist physical or friendship connections be- 

tween the nodes known in advance, which directly yield a graph. 

At the other extreme end, there may be no auxiliary information 

available about the connectedness of the nodes, and the methods 

for finding an adjacency matrix are then entirely based on some 

limited data. Methods for estimating the graph Laplacian matrix 

have been developed in [14–17] . Third, the choice of the adjacency 

matrix may be based on other variables, which are not perfectly 

correlated with the graph signal which we are interested in. In 

both the second and the third cases, the process of adjacency ma- 

trix learning is necessarily stochastic. As a result, there are multi- 

ple sources of errors which lead to imperfect learning of the adja- 

cency matrix. Even in the case when the choice of the adjacency 

matrix seems to be obvious and based on the known physical or 

friendship connections between the nodes, such choice still may 

not be the best one. 

Our focus in this paper is to study consequences of imperfect 

specifications of graph signal adjacency matrix to GSP tasks. The 

source of errors in the adjacency matrix learning may be related 

1 The GSP literature is developing fast and by now covers also sampling the- 

ory for graph signals [8,9] , stationarity theory for graph signals [10] , and percola- 

tion [11] of graph signals. Graph filters have been applied for example in distributed 

average consensus problem [12,13] . 
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to or be completely irrelevant to the sources of errors in the sig- 

nal measurements. However, even when the sources of errors in 

the adjacency matrix learning and signal value measurements are 

the same, the effect of errors in the adjacency matrix on GSP tasks 

are different from those caused by the errors in signal measure- 

ments. Considerations of the graph learning errors can be found 

from Ghosh and Boyd [18] , Sydney et al. [19] , Ceci and Barbarossa 

[20] . For example, in [20] , the eigen-decomposition of the graph 

Laplacian was analyzed when small subsets of edges are added 

or deleted. Based on the analysis, robust methods were built for 

GSP tasks such as signal recovery, label propagation and cluster- 

ing, when the knowledge of edgewise probabilities of errors in the 

graph topology is available. 

There are also some works which study robustness with re- 

spect to graph topology errors in specific tasks. For example, total 

least-squares approach for robust graph signal recovery was pro- 

posed in [21] . Graph neural networks were found to be stable to 

small changes in graph topology in [22] . Node-variant graph fil- 

ters were introduced in [23] , and they were shown by numerical 

experiments to be more robust to errors in graph shift operator 

than node-invariant filters. For distributed average consensus prob- 

lem, [24] proposed a method which optimizes worst case perfor- 

mance when the eigenvalue distribution is considered uncertain. 

In [25] , a new centrality measure was introduced and the robust- 

ness with respect to edge weight perturbation was considered. The 

robustness to some missing edges was also part of the comparison 

of autoregressive moving average graph filters and finite impulse 

response graph filters for time-varying graph signals in [26] . For 

spectral graph filters, [27] defined Caley smoothness filter space 

where the filter perturbation is bounded by a constant times the 

perturbation of the graph. Also [28] derived results on the stabil- 

ity of polynomial spectral graph filters and empirically tested the 

effects of structural changes in the graph. In the presence of erro- 

neous edges, [29] studied differences between small world graph 

and Erdös–Rényi graph, [30] studied clustering of nodes into two 

communities, and [31] studied the distribution of the edge count 

change. Finally, [32] have proposed tensor graph convolutional net- 

work architecture with the intention to be robust to edge pertur- 

bations. Also [33] construct graph convolutional neural networks. 

The starting point for studying GSP performance under the con- 

dition of imperfect knowledge of graph signal adjacency matrix is 

the modelling of graph errors. As the errors in the signal modelling 

in the classical signal processing may lead to significant perfor- 

mance degradation (see for example [34] ), the errors in the ad- 

jacency matrix may have a significant effect on the GSP perfor- 

mance. Then the development of robust GSP methods, just as the 

development of robust signal processing methods [34] , is of a great 

importance. The aim of this paper is to develop justifiable and 

generic enough models for adjacency matrix mismatches. It also 

studies the effects of the mismatched adjacency matrix on the per- 

formance of some more traditional GSP applications such as filter- 

ing of graph signals as well as independent component analysis 

(ICA) of graph signals, which is also referred to as graph decorre- 

lation (GraDe) in the context of separating signals based on graph 

structure only. 

The paper is organized as follows. Section II recalls basic defi- 

nitions of graphs and introduces and motivates the use of Erdös–

Rényi graph as the basic GSP error/distortion model of the adja- 

gency matrix. Then the different types of graph error models are 

introduced in Section III. In Section IV, the effect of adjacency ma- 

trix mismatch for several GSP applications is studied using simu- 

lations and real data examples. Section V concludes the paper. All 

proofs of theorems and propositions can be found from the sup- 

plementary material. 

Notations: We use boldface capital letters for matrices, bold- 

face lowercase letters for vectors, and capital calligraphic letters for 

sets. The exceptions are 1 N which is the N-dimensional vector full 

of ones, the M × N matrix full of ones 1 M×N = 1 M 

1 � N , and 1 A is a 

matrix of the same size as A , such that [ 1 A ] i, j = 1 , if a i, j � = 0 and 

[ 1 A ] i, j = 0 , if a i, j = 0 . The matrix I N×N is the N × N identity ma- 

trix. The notations (·) � , �, ‖ · ‖ , tr {·} , P (·) , E {·} , and var (·) stand 

for the transpose, Hadamard product, Euclidian norm of a vector, 

trace of a matrix, probability, mathematical expectation, and vari- 

ance, respectively. The notation for diagonal elements of a matrix 

A is diag (A ) , and the notation N(0 , σ 2 ) stands for Gaussian zero- 

mean distribution with variance σ 2 . 

2. Basic construction and motivation 

2.1. Basic building blocks 

Let us first go through the basics of graphs, and define the 

graph models which will be used in the paper. 

Let G = (N , E ) be a directed graph that represents the basis of 

a graph signal, where N is the set of N nodes and E is the set 

of edges. The adjacency matrix of the graph G, denoted as A , is 

a matrix that satisfies the conditions a i,i = 0 for i = 1 , . . . , N and 

a i, j � = 0 if and only if (i, j) ∈ E , i.e., there is an edge from node j to 

node i . 

For developing our graph error models, we will use the Erdös–

Rényi model according to which a random graph is constructed 

by connecting nodes randomly with a constant probability [35] . 

The corresponding graph is denoted as G = (N , ε) and its adja- 

cency matrix �ε is a random N × N matrix such that P ([ �ε ] i, j = 

1) = ε and P ([ �ε ] i, j = 0) = 1 − ε for all i � = j, and [ �ε ] i,i = 0 for 

i = 1 , . . . , N, where each element of the matrix is generated inde- 

pendently from the other elements. 

Another graph model which will be used in this paper is the 

stochastic block model (SBM) [36] , where each node belongs to 

one of r communities and connections within a community are 

more common than connections between nodes in different com- 

munities. Let N 1 , . . . , N r denote the sizes of the communities and 

let us assume that the nodes are ordered so that the i th node be- 

longs to the jth community if and only if 
∑ j−1 

l=1 
N l < i ≤ ∑ j 

l=1 
N l . 

The probability of the edge existence from a node of the jth com- 

munity to a node of the i th community is denoted as p i, j . A special 

case of the stochastic block model when p i,i = p j, j = p for all i and 

j, and p i, j = p k,l = q for any i � = j and k � = l, is called planted parti- 

tion model (PPM). 

Because of the errors in the adjacency matrix learning, the es- 

timated adjacency matrix deviates from the true one. The graph 

error models to be defined in Section 3 , all share the same addi- 

tive structure, i.e., have the form 

W = A + E , (1) 

where W presents the estimated adjacency matrix, A is the correct 

adjacency matrix, and E is an unknown error matrix which can be 

viewed as an analog of the additive error/distortion/noise compo- 

nent (that applies not to the signal points, but to the signal struc- 

ture) in the traditional signal processing and time series analysis. 

Notice that E needs to be a function of A because it depends on 

A whether distorting an edge means adding or deleting it. More- 

over, the Erdös–Rényi graph is the basic GSP error/distortion/noise 

model analogous to the basic Gaussian noise model in the tradi- 

tional signal processing as will be shown in the next subsection. 

The correct adjacency matrix for a given graph signal and a GSP 

method can be defined as the one which yields the best results. In 

the case when the data generating process is known, the optimal 

adjacency matrix in that sense can often be found. On the other 

hand, when the optimal adjacency matrix is not known, we might 

still want to use the graph error models to see how much the re- 

sults vary when the adjacency matrix is perturbed. Then the role 

2 
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of correct adjacency matrix A can be assigned to an estimated ad- 

jacency matrix as well. 

2.2. Motivation for Erdös-Rényi graph error models 

In the context of our paper, an important characteristic of the 

Erdös-Rényi graph is that it does not allow for formation of com- 

munities [37] , and if applied on the top of another graph, it will 

not change the essential structure of that graph. Instead, it just dis- 

turbs the spectrum of the original graph as will be shown later in 

this section. 

The simplicity and the above-mentioned properties are the 

main reasons for the use of Erdös-Rényi model as the main block 

for modelling the mismatches in the graphical structures of graph 

signals. However, we will further justify it by bringing an analogy 

to the basic nature of the Gaussian additive noise for modelling 

errors related to imperfect fit between signal models and actual 

measured signal values. 

Similar to the fact that the key for modelling additive noise is 

the noise probability density function, the key for modelling graph 

errors will be the graph function or graphon . The term graphon 

was introduced in [38] , in the context of graph sequence theory, 

and it refers to measurable and symmetric functions mapping from 

[0 , 1] 2 to [0,1]. Graphons have been used, for example, as graph 

limit objects [38,39] , and as building blocks in the kernel graph 

model [40] . Moreover, they have been used for spectral analysis of 

the adjacency matrix [37] . See the Supplementary material for a 

brief introduction to graphons. 

In traditional signal processing, the main reason for the use of 

Gaussian random variables as error terms between the analytic sig- 

nal model and actual measurements is the central limit theorem 

(CLT). This theorem states that the distribution of a sum of inde- 

pendent and identically distributed random variables tends to the 

Gaussian distribution as the number of summands grows. With re- 

spect to modelling errors in graphs, the Erdös-Rényi graph plays 

a special role due to its simplicity. However, the importance of 

the Erdös-Rényi graph also follows from the fact that similar to 

the Gaussian distribution for modelling measurement errors, the 

Erdös-Rényi graphon leads to a theorem that plays a similar role 

to that of CLT in the case of modelling the graph structure errors. 

Let W ε denote the set of all graphons W , which is a weighted 

graph with uncountable set of nodes, satisfying ∫ 1 

0 

∫ 1 

0 

W (x, y ) d xd y = ε, 

where W (x, y ) is the edge weight between nodes x and y in the 

graphon W (see the Supplementary material for an introduction to 

graphons), and 0 < ε < 1 . Then the following theorem is in order. 

Theorem 1. Let W 1 , . . . , W M 

be random samples from W ε and 

c 1 , . . . , c M 

be random samples from a distribution with support on 

[0,1] and expected value c. Assume that W 1 , . . . , W M 

, c 1 , . . . , c M 

are 

mutually independent. Then for all 0 ≤ x, y ≤ 1 , we almost surely 

have 

W̄ (x, y ) = 

1 

M 

M ∑ 

i =1 

c i W i (x, y ) → cε as M → ∞ . 

The proof of the theorem is given at the supplementary mate- 

rial. 

Theorem 1 states that the average of many independent 

graphons converges to a constant, i.e., to the Erdös-Rényi graphon. 

Thus, the theorem further motivates the use of Erdös-Rényi graphs 

as the main building block in developing graph error models 

for GSP, when the summands are considered as noise factors 

which impede the estimation of the graph structure. In this sense, 

Theorem 1 is an analog of the CLT. 

3. GSP graph error models 

3.1. A basic model for unweighted graphs 

We start by considering unweighted graphs, for which the adja- 

cency matrix becomes A = 1 A . First, making a somewhat idealistic 

assumption that the outcome of the graph signal adjacency ma- 

trix learning is accurate enough, that is, assuming that incorrect 

graph edge learning is equally probable for any edge in the graph, 

the learning errors can be simply modelled by the Erdös-Rényi 2 

graph. Then the actually available learned adjacency matrix of a 

graph signal can be modelled in terms of the following inaccurate 

version of A : 

W = A + �ε � (1 N×N − 2 A ) . (M1) 

According to (M1) , the true adjacency matrix of a graph signal 

is distorted because of the imperfect learning, and this distortion 

follows the Erdös-Rényi model, where the level of distortion de- 

pends on a single parameter, which is the probability ε. As a result 

of the distortion captured by model (M1) , an edge can be added 

with probability ε, when there is no edge in the true graph, or an 

edge of the true graph can be removed with the same probability, 

if there exists an edge in the true graph. It corresponds to flipping 

the value from 0 to 1 or from 1 to 0 in the adjacency matrix 1 A 
in the positions corresponding to value 1 in the Erdös-Rényi ad- 

jacency matrix �ε . This basic model is introduced due to its sim- 

plicity of having only a single parameter, ε. However, it may not 

be sufficiently flexible to describe signal graph errors that appear 

as outcome in any practical graph learning process. For example, it 

will change the number of edges significantly if ε is large and the 

number of edges is small. 

Model (M1) can be easily modified/revised for applying to undi- 

rected graphs by defining lower triangular matrices �l 
ε analo- 

gously to �ε , and then replacing �ε by �l 
ε + (�l 

ε ) 
� . It is also 

worth noting that all the following graph error models will be 

given for directed graphs and the same technique as above can be 

used to derive the corresponding model for undirected graphs. 

3.2. Different probabilities of missed and mislearned edges 

Basic model (M1) can be easily extended to the case where the 

probability of removing an edge as a result of distortion from a 

graph which correctly captures a graph signal, denoted as ε1 , is not 

the same as the probability of adding an edge, which does not ex- 

ist in the true graph, denoted as ε2 . The corresponding inaccurately 

learned adjacency matrix of a graph signal can then be modelled 

as 

W = A − �ε1 
� A + �ε2 

� (1 N×N − A ) . (M2) 

The second term on the right-hand side in (M2) corresponds to 

edge removal and the third term corresponds to edge addition. 

This is a straightforward extension of basic model (M1) , which 

is, however, very useful for modelling the typical situation in the 

graph structure learning when particular algorithms are more or 

less likely to miss an actually existing edge rather than to mis- 

learn an actully non-existing edge [14] . Model (M2) can be inter- 

preted as an application of two Erdös–Rényi graphs on the top of 

the true graph, where one Erdös–Rényi graph G = (N , ε2 ) can only 

add edges which do not exist in the true graph, while the other 

Erdös-Rényi graph G = (N , ε1 ) can only erroneously remove actu- 

ally existing edges. It is easy to see that model (M2) is equivalent 

to model (M1) when ε1 = ε2 = ε. 

2 Even though the results in [35] are for undirected graphs only and often Erdös- 

Rényi model is considered to imply undirected graph, we will use the term Erdös- 

Rényi for both undirected and directed graphs. 

3 
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To analyze the perturbation that the above models produce, 

let us start with a trivial observation that if A is given by an 

Erdös-Rényi graph with probability parameter α, then W from 

model (M2) is also an Erdös-Rényi graph, and the parameter takes 

value α(1 − ε1 ) + (1 − α) ε2 . 

Moreover, if A is given by the SBM, after applying graph error 

model (M2) , the SBM and the communities in the SBM remain the 

same as is shown in the following proposition. 

Proposition 1. Assume that A follows the SBM with probability p A 
i, j 

for edges from a node in the jth community to a node in the i th com- 

munity. Then W from graph error model (M2) follows SBM with the 

same communities as in A and the probabilities are given by 

p W 

i, j = p A i, j (1 − ε1 ) + (1 − p A i, j ) ε2 = (1 − ε1 − ε2 ) p 
A 
i, j + ε2 . 

The spectrum of the adjacency matrix can be found in closed 

form for simple models such as the undirected (for the error model 

of undirected graphs, see the end of the next subsection) PPM 

with equal community sizes [41] . Thus, we also have the following 

proposition for the spectrum perturbation due to the graph error 

given by (M2) . 

Proposition 2. Assume that A follows the PPM with M equally large 

communities, and let p be the probability for edges within commu- 

nities and q be the probability for edges between communities. If 

W follows graph error model (M2) , the expected difference between 

the largest eigenvalues of the true adjacency matrix A and the mis- 

matched one W is given by 

E { λ1 (A ) − λ1 (W ) } = N 

(ε1 + ε2 )(p + (M − 1) q ) − Mε2 

M 

. 

Moreover, the expected difference between the second to Mth largest 

eigenvalues for A and W , are mutually equal and given by 

E { λk (A ) − λk (W ) } = N 

(ε1 + ε2 )(p − q ) 

M 

, k = 2 , . . . , M. 

The relative change of the largest eigenvalue is thus ε1 + (1 −
M/ (p + (M − 1) q )) ε2 and the relative change of next M − 1 largest 

eigenvalues is ε1 + ε2 . 

3.3. Generalized graph error model 

It is assumed in models (M1) and (M2) that mislearning the 

edge status is equally probable (although the probabilities of 

adding non-existing edge and removing existing edge may be dif- 

ferent) for all pairs of nodes. For some adjacency matrix estima- 

tion methods, this assumption might not hold strictly even if the 

pairwise connections were equally strong. To allow the differences 

in learning accuracy, caused by the structure of the graph or the 

connectivity strength differences, we formulate the following gen- 

eralized graph error model. 

Consider an unweighted adjacency matrix A . Define D = 

{ D 1 , . . . , D K } , where D 1 , . . . , D K are N × N matrices satisfying 

[ D k ] i j ∈ { 0 , 1 } for all k = 1 , . . . , K and i, j = 1 , . . . , N, and 

∑ K 
k =1 D k = 

1 N×N − I N×N . Each matrix D k presents the pairs of nodes, indicated 

by ones, for which the probabilities of mislearning the existence 

of the edges are equal. The probabilities of removing edges in 

the subsets are given in ε1 = { ε11 , . . . , εK1 } , and the probabilities 

of adding edges are given in ε2 = { ε12 , . . . , εK2 } . The graph error 

model specified by D, ε1 , and ε2 can then be written as 

W = A −
K ∑ 

k =1 

�εk 1 
� D k � A + 

K ∑ 

k =1 

�εk 2 
� D k � (1 N×N − A ) . (M3) 

This construction allows to build very flexible and accurate 

graph error models, which can adjust to basically any type of graph 

topology learning errors. However, flexible model requires large K, 

i.e., a lot of parameters. Therefore, it is of interest in practice to 

only approximate the graph error by using a reasonable value of K. 

Also observe that the error model (M2) is a special case of graph 

error model (M3) obtained by letting K = 1 and D 1 = 1 N×N − I N×N . 

To obtain further insights of the generalized graph error 

model (M3) , we take as an example the SBM. Let C k,m 

denote an 

N × N matrix such that [ C k,m 

] i, j = 1 if i � = j, 
∑ k −1 

l=1 
N l < i ≤ ∑ k 

l=1 N l 

and 

∑ m −1 
l=1 

N l < j ≤ ∑ m 

l=1 N l , and [ C k,m 

] i, j = 0 , otherwise. Then we 

can set, for example, K = r 2 , D 1 = C 1 , 1 , D 2 = C 1 , 2 , · · · , D r 2 = C r,r , 

and we obtain a model where the probability of mislearning an 

edge depends on which communities the start and the end nodes 

belong to. For such model, the following result about the structure 

of the true adjacency matrix A and that of the mismatched one W 

as modelled by (M3) is of interest. 

Proposition 3. Assume that the true adjacency matrix A follows the 

SBM with r communities, the mismatched adjacency matrix W follows 

model (M3) , and D 1 , . . . , D K are chosen according to the SBM struc- 

ture of A . Then W retains SBM with the same communities. 

It is also interesting to note that a natural graph error 

model related to the previously used PPM can be derived us- 

ing model (M3) by letting K = 2 , D 1 = 

∑ r 
k =1 C k,k , and D 2 = 1 N×N −

I N×N −
∑ r 

k =1 C k,k . 

3.4. Models for weighted graphs 

The above defined models can be extended to signals on 

weighted graphs. Then, in addition to adding and removing edges, 

we have to consider changes in the edge weights and also figure 

out how to generate the weights for added edges in a mismatched 

adjacency matrix. 

Let us start with extending graph error model (M2) (extension 

of graph error model (M1) is similar). Let A denote the set of 

nonzero elements of the true graph adjacency matrix A . The inac- 

curately learned weighted adjacency matrix can be then modelled 

as 

W = A + (1 N×N − �ε1 
) � 1 A � �c − �ε1 

� A 

+ �ε2 
� B � (1 N×N − 1 A ) . (M2w) 

Like in graph error model (M2) , ε1 is the probability to erro- 

neously removing edges while ε2 is the probability of erroneously 

adding edges. The second term in (M2w) perturbs the weights of 

the remaining edges using an N × N matrix �c whose elements are 

drawn from a zero mean Gaussian distribution with variance c · σ 2 , 

where σ 2 is the sample variance of A and c is the variance mul- 

tiplier parameter. The third term in (M2w) models the erroneous 

removal of edges and the fourth term in (M2w) models the erro- 

neous addition of edges with weights given by the matrix B which 

is an N × N matrix whose elements are derived by the same rules 

which were used for edge weights of A if applicable, or alterna- 

tively the elements can be drawn from A with replacement. Typ- 

ically for practical GSP tasks, only positive edge weights are con- 

sidered, and then, if the above described process produces negative 

elements in W , they should be put to zero. 

Similarly, the weighted generalized graph error model can be 

written as a weighted extension of graph error model (M3) , that 

is, 

W = A + 

K ∑ 

k =1 

(
(1 N×N − �εk 1 

) � D k � 1 A � �ck 

−�εk 1 
� D k � A + �εk 2 

� B k � D k � (1 N×N − 1 A ) 
)
, (M3w) 

where εk 1 , εk 2 and D k , k = 1 , . . . , K are defined in the same way as 

in Section 3.3 , and B k and �ck , k = 1 , . . . , K are analogous to B and 

�c above. 
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4. Numerical studies 

4.1. Graph error effect on GMA graph filter 

As in any other GSP task, the adjacency matrix has a key role 

in graph filtering. In fact, any linear and shift-invariant filter (com- 

mutes with other shift-invariant filters) can be written as a poly- 

nomial of the form [1] 

F GMA (W ) = h 0 I N×N + h 1 W + · · · + h K W 

K , 

where K is smaller than or equal to the degree of the minimal 

polynomial of W , and GMA stands for graph moving average. 

The coefficients h 0 , . . . , h K can be found by using least squares 

for solving the system of equations 

h 0 + h 1 λ1 + · · · + h K λ
K 
1 = α1 

. . . 

h 0 + h 1 λN + · · · + h K λ
K 
N = αN 

where λ1 , . . . , λN are eigenvalues of W ordered in increasing 

order of their distance to the maximum magnitude, i.e., d n = 

| max {| λ1 | , . . . , | λN |} − λn | . Then λ1 , . . . , λN can be interpreted as 

graph frequencies from lowest to highest [42] , and α1 , . . . , αN are 

the corresponding frequency responses. 

In this example, we study the filter sensitivity to the choice of 

the adjacency matrix, when the high-pass filter is defined by the 

following frequency responses 

αn = 

{
1 , if d n > median { d 1 , . . . , d N } 
0 , otherwise 

and it is applied to detecting malfunctioning sensors as in [42] . The 

data are the daily temperatures in the year 2016 from 150 Finnish 

weather stations [43] . Stations that had at most one missing ob- 

servation were selected, and since those missing observations were 

from the same day in November, after dropping that day out, we 

have a clean data of 365 days (leap year). The technique to de- 

tect the outlying measurements, presented in [42] , is to high-pass 

filter the data and threshold the Fourier transform coefficients of 

the output by the maximum absolute value of the GFT coefficients 

from the three previous days. If any of the coefficients exceed the 

threshold value, it is diagnosed that at least one of the sensors is 

not working properly. 

In this example, there is no obvious choice of a benchmark ad- 

jacency matrix, 3 but we choose a weighted 6-nearest neighbors 

graph like in [42] with edge weights 

a kl = 

e −(d kl / 20) 2 √ ∑ 

j∈N k e 
−(d k j / 20) 2 

∑ 

j∈N l e 
−(d l j / 20) 2 

, (2) 

where d kl is the distance between the locations of the k th and lth 

sensors in kilometers. A better graph might be obtained by us- 

ing more information such as altitude and distance from the sea. 

Hence, the graph errors could arise from disregarding useful infor- 

mation. Since we only have distances to generate the benchmark 

graph, it is not optimal and the graph errors have to be created 

randomly without any realistic mechanism. We use the general 

graph error model because it is not sensible to connect two sta- 

tions that are far away from each other. We set the threshold to 

250 km above which a pair of stations is treated as no longer con- 

nected. Otherwise, the probabilities of removing and creating con- 

nections have constant values ε1 and ε2 between the pairs. Hence, 

3 In other examples, there always exist an obvious choice for benchmark adja- 

cency matrix. 

Fig. 1. The average share of correctly detected outlying sensor values when only 

one of the parameters, ε1 , ε2 , or c varies while the remaining parameters are set 

to zero. The varying parameter can take 4 different values indicated in the x -axis; 

ε1 = 0 , 0 . 01 , 0 . 02 , 0 . 03 , ε2 = 0 , 0 . 1 , 0 . 2 , 0 . 3 and c = 0 , 0 . 005 , 0 . 01 , 0 . 015 . 

in graph error model (M3w) , which is then applicable here, we 

have the matrices 

[ D 1 ] kl = 

{
1 , if d kl ≤ 250 

0 , otherwise 
, [ D 2 ] kl = 

{
1 , if d kl > 250 

0 , otherwise 

and probabilities ε11 = ε1 , ε12 = ε2 , ε21 = ε22 = 0 . 

By perturbing the edge weights, we deviate slightly from graph 

error model (M3w) , so that the variance of the Gaussian compo- 

nent related to incoming edges of a given node is the variance 

multiplier c times the variance of the incoming edge weights of 

that node in the 6-nearest neighbors graph, not the variance of the 

edge weights of the whole 6-nearest neighbors graph. We do not 

allow negative weights, but use zero weights instead. 

In the experiment, we change one sensor value at a time to 

+20 Celsius degrees and perform the test described above us- 

ing adjacency matrices given by all combinations of edge re- 

moving probabilities ε1 = 0 , 0 . 01 , 0 . 02 , 0 . 03 , edge adding prob- 

abilities ε2 = 0 , 0 . 1 , 0 . 2 , 0 . 3 , and variance parameter values c = 

0 , 0 . 005 , 0 . 01 , 0 . 015 . 

Finding the malfunctioning sensors can be seen as a binary 

classification task. Theoretically, all classifiers (the same method 

with different graphs) have equal proportion of false positives of 

about 25% , because the maximum GFT coefficient today is larger 

than the maximum of the GFT coefficients from the three previ- 

ous days one out of four times when there are no outliers. Hence, 

we can focus on the accuracy in finding the true positives. The 

benchmark adjacency matrix given by ε1 = ε2 = c = 0 found the 

malfunctioning sensors with 84% accuracy. For the other combina- 

tions, 200 realizations of the adjacency matrix are generated. 

In Fig. 1 , we give the averages for different values of parameters 

of interest when other parameters are zeros. There are no visible 

patterns of interactions between the parameters, i.e., the shapes of 

the curves look identical at all levels of the other two parameters. 

The results show that adding edges to the graph has no effect, but 

removing edges weakens the performance. Also, the perturbation 

of the weights has negative impact, though the reduction is signifi- 

cant only for values from 0 to 0.005, and for c = 0 . 005 , 0 . 01 , 0 . 015 , 

the numbers are approximately the same. This suggests that the 

number of edges in the 6-nearest neighbors graph might be too 

small for these purposes, but that the edge weights are good as 

they are, because small changes in them worsen the performance. 

The reason why addition of edges has smaller effect can be partly 

explained by the fact that they have smaller edge weight than the 

edges in the original nearest neighbors graph. 

5 
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Fig. 2. Averages of σe over 20 0 0 repetitions for GARMA filter orders K = 1 , 3 , 5 , 7 

and probabilities ε1 in graph error model (M2) , when probability of adding an edge 

ε2 = 0 . 

4.2. Graph error effect on graph autoregressive moving average filter 

Next we study the graph error effect on graph autoregressive 

moving average (GARMA) filter [44] . Specifically, we investigate the 

relation of the used filter order with respect to the errors in the 

estimated adjacency matrix W . 

First order GARMA filter has coefficients φ, ψ and c, and it uses 

a graph Laplacian matrix L . Here we use the translated normal- 

ized Laplacian L = −T −1 / 2 WT −1 / 2 , where T is a diagonal matrix of 

node degrees and W is a symmetric adjacency matrix. Note that 

the eigenvalues of L are in the interval [ −1 , 1] , but as in the GMA 

filter case, they can be very different for the cases of the true A 

and the estimated adjacency matrix W . 

The output of GARMA(1) filter is given by z = y + cx , where 

x is the input and y is the state after convergence of recursion 

y t+1 = φLy t + ψx . GARMA filter of order K can be constructed from 

K parallel GARMA(1) filters, whose coefficients are designed based 

on the eigenvalues of L . Again, the errors in the adjacency matrix 

W have a significant effect on the filter directly via L , but also via 

distorting the spectrum of L . 

We follow the simulation setup in [26] . Undirected and un- 

weighted graphs are created by generating N = 100 random points 

on the area [0 , 1] × [0 , 1] using the uniform distribution, and con- 

necting two points if the distance between them is less than 

0 . 15 
√ 

2 . 

Let L = V�V 

� be the eigendecomposition of the translated nor- 

malized graph Laplacian, and let λn and v n denote the n th di- 

agonal element of � and the n th column vector of V , i.e., the 

n th eigenvalue and eigenvector, respectively. The eigenvalues are 

in the interval [ −1 , 1] . Then the graph signal is given by x = x̄ + n , 

where x̄ is a low frequency signal satisfying x̄ � v n = 1 , if λn < 0 , 

and x̄ � v n = 0 , otherwise, and n is Gaussian noise with zero mean 

and covariance matrix 0 . 1 I N×N . 

Frequency responses of GARMA graph filters of orders K = 

1 , 3 , 5 , 7 are designed to match the frequency content of the sig- 

nal x̄ . Outputs of the filters, denoted by z (e ) , are compared to 

the output of the ideal filter, denoted by z (d) . The performance 

is then measured using the square root of the mean square error 

σe = [ tr (ee � ) /N] 1 / 2 , where e = z (e ) − z (d) . 

The values in Figs. 2 and 3 are averages over 20 0 0 runs for each 

pair (ε1 , ε2 ) in graph error model (M2) that is applicable here. The 

results show that higher order GARMA filters are more accurate 

when the correct adjacency matrix is used. On the other hand, the 

lower order filters are more robust to graph errors, and thus all 

filters perform almost equally when the error probabilities grow. 

Fig. 3. Averages of σe over 20 0 0 repetitions for GARMA filter orders K = 1 , 3 , 5 , 7 

and probabilities ε2 in graph error model (M2) , when probability of removing an 

edge ε1 = 0 . 

4.3. Graph error effect on ICA of graph signals 

In this example, we use both numerical study and theoretical 

results to investigate the effect of non-optimal signal graph knowl- 

edge to the performance of GraDe [7,45] for graph signal separa- 

tion. 

Let X ∈ R 

P×N denote centered P -dimensional graph signal gen- 

erated as a mixture of independent components according to the 

model [45] 

X = �Z 

where � ∈ R 

P×P is a full rank mixing matrix, Z ∈ R 

P×N is the ma- 

trix of P mutually independent graph signals with zero means and 

unit variances. The goal of ICA is to estimate the unmixing matrix 

� = �−1 using only the signal matrix X . 

Let X w 

= ̂

 S −1 / 2 
0 

X be the whitened signals, where ˆ S 0 is the sam- 

ple covariance matrix of X . In GraDe, the unmixing matrix es- 

timate is obtained by diagonalizing/jointly diagonalizing one or 

more graph autocorrelation matrices defined by 

ˆ S k (W ) = 

1 

N − k 
(X w 

W 

k X 

� 
w 

) , k = 1 , . . . , K, 

i.e., by finding the orthogonal U which maximizes the objective 

function 

K ∑ 

k =1 

‖ diag (U ̂

 S k (W ) U 

� ) ‖ 

2 . 

The unmixing matrix estimate is then given as ˆ � = U ̂

 S −1 / 2 
0 

. A 

fast algorithm for the joint diagonalization is available in [46] and 

it is applicable for the case when the shift matrix W is cho- 

sen to be symmetric, or the graph-autocorrelation matrices are 

symmetrized. The unmixing matrix estimate for an inaccurately 

learned adjacency matrix W is denoted as ˆ �(W ) . Notice that GraDe 

reduces to the well-known second-order blind identification (SOBI) 

estimator [47] , when W is the cyclic graph. 

We will use the following (see [48] for details) asymptotic re- 

sult, derived in the context of the SOBI estimator, for an unmixing 

matrix estimate ˆ � obtained using joint diagonalization of matrices 
ˆ S 1 , . . . , ̂  S K . When � = I P×P , for i � = j, we have 

√ 

N ( ̂  γii − 1) = −1 

2 

√ 

N ([ ̂ S 0 ] ii − 1) + o p (1) 

and 

√ 

N ˆ γi j = 

∑ 

k (λki − λk j )( 
√ 

N [ ̂ S k ] i j − λki 

√ 

N [ ̂ S 0 ] i j ) ∑ 

k (λki − λk j ) 2 
+ o p (1) , (3) 

6 
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Table 1 

R (A , W ) for A with α = 0 . 05 and W given by ε1 = 

0 , 0 . 1 , . . . , 0 . 5 and ε2 = 0 , 0 . 01 , . . . , 0 . 05 . 

ε1 \ ε2 0 0.01 0.02 0.03 0.04 0.05 

0 1.00 0.81 0.68 0.58 0.51 0.45 

0.1 0.88 0.71 0.58 0.49 0.43 0.38 

0.2 0.77 0.60 0.49 0.41 0.35 0.30 

0.3 0.66 0.50 0.40 0.33 0.28 0.24 

0.4 0.56 0.41 0.31 0.26 0.21 0.18 

0.5 0.46 0.31 0.24 0.19 0.15 0.13 

where λki � E { [ S k ] ii } , and o p (1) stands for negligible terms. The di- 

agonal elements of ˆ � do not depend asymptotically on 

ˆ S 1 , . . . , ̂  S K , 

and thus, in the case of graph signals ICA, do not depend on W . 

Therefore, the sum of variances of the off-diagonal elements 

SOV ( ̂  �(W )) = N 

∑ 

j � = i 
var ( ̂  �(W ) i j ) (4) 

can be used when comparing the separation efficiencies induced 

by different choices of W . We will use the ratio, R (W 1 , W 2 ) = 

SOV ( ̂  �(W 1 )) / SOV ( ̂  �(W 2 )) , where W 1 is the adjacency matrix 

which is used for generating the source components and W 2 is a 

perturbed version of the adjacency matrix. 

We consider ICA model where the independent components are 

GMA signals of order 1, denoted GMA(1), i.e., z = y + θAy , where 

θ denotes the MA coefficient (which is different for each inde- 

pendent component) and A is symmetric and unweighted adja- 

cency matrix. We evaluate the performance of the GraDe esti- 

mate with K = 1 , so only one autocorrelation matrix is diagonal- 

ized. The matrix W is a mismatched version A obtained according 

to graph error model (M2) for undirected graphs. In this model, 

the asymptotic variances of ˆ �(W ) , which are needed for comput- 

ing SOV ( ̂  �(W )) , can be calculated using (3) . Expressions for these 

asymptotic variances can be derived in the same way as the corre- 

sponding formulas for the variances in the time series context in 

[48] . 4 

The performance in the numerical simulations is measured us- 

ing the minimum distance (MD) index [49] 

D ( ̂  �) � 

1 √ 

P − 1 

inf 
C ∈C 

‖ C ̂

 �� − I P×P ‖ 

where C � { C : each row and column of C has exactly one 

non-zero element } . The MD index takes values between zero 

and one, and it is invariant with respect to the mixing matrix. 

Also, there is a connection between the minimum distance index 

and the sum of variances of the off-diagonal elements when 

� = I P×P , given as 

N(P − 1) E { D ( ̂  �) 2 } → SOV ( ̂  �) , as N → ∞ (5) 

where SOV is defined in (4) . 

For two sets of estimates, W 1 and W 2 , we define 

ˆ R (W 1 , W 2 ) = ave { D ( ̂  �(W 1 )) 
2 } / ave { D ( ̂  �(W 2 )) 

2 } , 
where the averages are found over 10 0 0 Monte Carlo trials. 

Eq. (5) implies that ˆ R (W 1 , W 2 ) ≈ R (W 1 , W 2 ) for large N. 

Erdös–Rényi matrices A = �α with different values of α are 

used as the adjacency matrices of GMA signals. The estimate ˆ �(A ) 

(with true A ) is a natural benchmark to which we compare the 

estimates obtained using W . 

In Tables 1 and 2 , the values of R (A , W ) and 

ˆ R (A , W ) are shown, 

respectively, when A is 10 0 0 × 10 0 0 matrix with α = 0 . 05 and 

4 The extension of asymptotic variance expression in [48] from the time series 

context to the context of graph signals is straightforward, but the formula appears 

to be too long to be presented here because of the space limitation. 

Table 2 
ˆ R (A , W ) from 10 0 0 repetitions for α = 0 . 05 and ε1 = 

0 , 0 . 1 , . . . , 0 . 5 and ε2 = 0 , 0 . 01 , . . . , 0 . 05 . 

ε1 \ ε2 0 0.01 0.02 0.03 0.04 0.05 

0 1.00 0.81 0.67 0.56 0.48 0.44 

0.1 0.88 0.65 0.56 0.47 0.43 0.35 

0.2 0.76 0.59 0.46 0.40 0.34 0.29 

0.3 0.62 0.46 0.37 0.32 0.27 0.25 

0.4 0.52 0.37 0.29 0.25 0.21 0.20 

0.5 0.43 0.31 0.25 0.20 0.17 0.16 

Fig. 4. Ratio of the theoretical variances as a function of α for four choices of 

(ε1 , ε2 ) . 

there are P = 4 independent components genered as GMA(1) sig- 

nals with MA coefficients given by θ = 0 , 0 . 2 , 0 . 4 , and 0.6. For 

Table 2 , we generated 10 0 0 datasets for each pair (ε1 , ε2 ) and al- 

ways generate a new W . In Table 1 , the sum of variances is an 

average for ten W ’s, even though SOV ( ̂  �(W )) is quite stable for 

fixed ε1 and ε2 . As can be noted, the simulation results match the 

theoretical values quite well. When looking at the results with re- 

spect to error probabilities ε1 and ε2 , it seems that GraDe is more 

sensitive to adding irrelevant edges than missing the real edges. 

For four selected pairs (ε1 , ε2 ) , Fig. 4 plots R (A , W ) as a func- 

tion of parameter α that was used in creating the adjagency matrix 

A . The curves display the averages of ten values given by different 

W ’s. As expected, the efficiency loss caused by inaccuracy in the 

adjacency matrix is the larger, the more sparse the graph is. 

5. Conclusions and discussion 

In this paper, the effect of graph adjacency matrix mismatch 

has been analyzed and graph error models for different types of 

graphs, e.g., directed/undirected and weighted/unweighted graphs, 

have been developed. The complexity of the error models varies 

from simple Erdös-Rényi type model to one which captures non- 

constant edge mislearning probabilities. The latter is of interest 

because it has been reported in GSP literature that deleting one 

edge can have immensely larger effect than deleting another edge. 

Better understanding and formalization of what kind of edges are 

important or why connecting some pairs of nodes is more harm- 

ful than others is therefore crucial. The graph error models have 

been applied for studying graph error effects in graph signal filter- 

ing and graph signal ICA applications, where both theoretical ar- 

guments and numerical studies for real and synthetic data have 

been used. The results for different application examples differed 

in whether missing or extra links were more detrimental, and in 

the GARMA filter example, it was observed that the higher-order 

filters were more sensitive to graph errors. These findings suggest 
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that the graph error effects need to be studied case by case, and 

that competing GSP methods may differ in terms of their robust- 

ness to graph errors. Therefore, studying the robustness properties 

of the GSP methods as well as developing robust GSP methods is 

of high importance for GSP in general. 
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