
This is an electronic reprint of the original article.
This reprint may differ from the original in pagination and typographic detail.

Powered by TCPDF (www.tcpdf.org)

This material is protected by copyright and other intellectual property rights, and duplication or sale of all or
part of any of the repository collections is not permitted, except that material may be duplicated by you for
your research use or educational purposes in electronic or print form. You must obtain permission for any
other use. Electronic or print copies may not be offered, whether for sale or otherwise to anyone who is not
an authorised user.

Fei, Shufan; Yan, Zheng; Ding, Wenxiu; Xie, Haomeng
Security Vulnerabilities of SGX and Countermeasures: A Survey

Published in:
ACM Computing Surveys

DOI:
10.1145/3456631

Published: 13/07/2021

Document Version
Publisher's PDF, also known as Version of record

Please cite the original version:
Fei, S., Yan, Z., Ding, W., & Xie, H. (2021). Security Vulnerabilities of SGX and Countermeasures: A Survey.
ACM Computing Surveys, 54(6), Article 126. https://doi.org/10.1145/3456631

https://doi.org/10.1145/3456631
https://doi.org/10.1145/3456631

126

Security Vulnerabilities of SGX and Countermeasures:

A Survey

SHUFAN FEI, The State Key Lab of ISN, School of Cyber Engineering, Xidian University, China

ZHENG YAN, The State Key Lab of ISN, School of Cyber Engineering, Xidian University, China and

Department of Communications and Networking, Aalto University, Finland

WENXIU DING and HAOMENG XIE, The State Key Lab of ISN, School of Cyber Engineering,

Xidian University, China

Trusted Execution Environments (TEEs) have been widely used in many security-critical applications. The

popularity of TEEs derives from its high security and trustworthiness supported by secure hardware. Intel

Software Guard Extensions (SGX) is one of the most representative TEEs that creates an isolated environment

on an untrusted operating system, thus providing run-time protection for the execution of security-critical

code and data. However, Intel SGX is far from the acme of perfection. It has become a target of various

attacks due to its security vulnerabilities. Researchers and practitioners have paid attention to the security

vulnerabilities of SGX and investigated optimization solutions in real applications. Unfortunately, existing

literature lacks a thorough review of security vulnerabilities of SGX and their countermeasures. In this article,

we fill this gap. Specifically, we propose two sets of criteria for estimating security risks of existing attacks

and evaluating defense effects brought by attack countermeasures. Furthermore, we propose a taxonomy of

SGX security vulnerabilities and shed light on corresponding attack vectors. After that, we review published

attacks and existing countermeasures, as well as evaluate them by employing our proposed criteria. At last,

on the strength of our survey, we propose some open challenges and future directions in the research of SGX

security.

CCS Concepts: • Security and privacy→ Trusted computing; Mobile platform security;

Additional Key Words and Phrases: Trusted execution environment, side-channel attacks, security,

trustworthiness

ACM Reference format:

Shufan Fei, Zheng Yan, Wenxiu Ding, and Haomeng Xie. 2021. Security Vulnerabilities of SGX and Counter-

measures: A Survey. ACM Comput. Surv. 54, 6, Article 126 (July 2021), 36 pages.
https://doi.org/10.1145/3456631

This work was supported in part by the National Natural Science Foundation of China under Grant 62072351 and Grant

61802293; in part by the National Postdoctoral Program for Innovative Talents under Grant BX20180238; in part by the

Project funded by China Postdoctoral Science Foundation under Grant 2018M633461; in part by the Academy of Finland

under Grant 308087 and Grant 335262; in part by the Shaanxi Innovation Team Project under Grant 2018TD-007; and in

part by the 111 Project under Grant B16037.

Authors’ addresses: S. F. Fei, W. X. Ding, and H. M. Xie, The State Key Lab of ISN, School of Cyber Engineering,

Xidian University, 266 Xinglong Section of Xifeng Road, Xi’an, Shaanxi 710126, China; emails: shufanfei@gmail.com,

wxding@xidian.edu.cn, 752099702@qq.com; Z. Yan (corresponding author), The State Key Lab of ISN, School of Cyber

Engineering, Xidian University, Xi’an, Shaanxi, China and Department of Communications and Networking, School of Elec-

trical Engineering, Aalto University, Konemiehentie 2, P.O.Box 15400, Espoo 02150, Finland; emails: zyan@xidian.edu.cn,

zheng.yan@aalto.fi.
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and

the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored.

Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires

prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 2021 Association for Computing Machinery.

0360-0300/2021/07-ART126 $15.00

https://doi.org/10.1145/3456631

ACM Computing Surveys, Vol. 54, No. 6, Article 126. Publication date: July 2021.

https://doi.org/10.1145/3456631
mailto:permissions@acm.org
https://doi.org/10.1145/3456631

126:2 S. Fei et al.

1 INTRODUCTION

Economic and social progress has spawned many new demands and stimulated the rapid de-
velopment of new techniques in cyberspace [80]. Interactions between modern communication
systems are becoming more and more intricate [41]. In some high-concurrency environments,
multiple processes with different trust and security levels run in parallel and share both hardware
and software resources [7]. Not only virtual memory management but also physical memory con-
trol is completed by an untrusted operating system, not to mention other system services such as
process management and I/O. Security-critical complex applications run on an ever-expanding un-
trusted computing base, including firmware, operating system (OS), hypervisor, and user software.
However, traditional security techniques, such as fully homomorphic encryption [25, 29, 96] and
firewall techniques [20, 88] cannot completely meet the increasing harsh security requirements
of many modern complex systems [103]. Strengthening the security and trustworthiness of the
complex system is of great significance and with a very active research community.
Trusted computing [64, 89, 102] is one of interesting attempts to enhance the security of mod-

ern computer systems by reducing dependence on hardware and software trusted computing base.
It aims at performing secure computation on a remote device maintained by an untrusted party.
In a remote trusted computing platform, a software provider is responsible for authoring an ap-
plication software in both computation dispatchers and secure containers; the hardware provider
builds a trusted hardware infrastructure for the application software and the secure containers. The
premise of remote trusted computing is that both software and hardware providers are trusted by
a data owner. Building such a trust relationship between the two parts might not be so easy. In
early years, Trusted Platform Module (TPM) [32, 70] was initially regarded to be a good choice to
achieve remote trusted computing. The TPM is a separate hardware module that allows to provide
services such as secure booting, managing cryptographic keys, sealing data, and remote attestation.
However, the TPM is static and cannot provide run-time protection. To make up this deficiency,
another well-known approach is proposed, which allows arbitrary code to be run in an isolated
environment to provide integrity and confidentiality guarantee. This isolated environment is re-
ferred to as Trusted Execution Environment (TEE). The definition of TEE has been given by the
Global Platform [75], which is widely accepted as an industry standard. Up to now, the TEE has
been widely regarded as a trusted processing environment that runs on a separate kernel, provid-
ing integrity and confidentiality protection on executed codes, stored data, and runtime states (e.g.,
CPU registers, memory, and sensitive I/O).
So far, many manufacturers have launched their commodity TEEs, including ARM TrustZone

[43, 71], Intel Software Guard eXtensions (SGX) [14], Intel Management Engine (ME) [79], AMD
Memory Encryption Techniques [51], AMD Platform Secure Processor [57], and x86 System Man-
agement Mode [45]. Intel SGX is one of the main prevailing and representative TEEs. It is designed
to enhance the security of the Intel CPU in commodity desktops and server platforms. Memory
isolation, data sealing, and software attestation are three main security-enhancing features of In-
tel SGX. The memory isolation mechanism protects the enclave memory from being accessed or
modified illegally at runtime. Data sealing can protect enclave data across executions. The sealing
mechanism makes it possible to encrypt enclave data for persistent storage. With a software at-
testation mechanism, certified cryptographic keys are used to issue attestation statements on the
software configuration of enclaves, and these statements can be verified remotely. On top of these
security-enhancing mechanisms mentioned above, the SGX is used to elegantly seal sensitive data
(e.g., private keys) and security-critical operations (e.g., encryption and signing) into an isolated
environment so that the adversary cannot access sensitive information directly.
In recent years, the SGX has been widely used to greatly enhance the security of many com-

plex systems [6, 11, 13, 18, 22–24, 40, 52, 62, 66, 67, 76, 81, 92, 93]. However, the SGX indeed has

ACM Computing Surveys, Vol. 54, No. 6, Article 126. Publication date: July 2021.

Security Vulnerabilities of SGX and Countermeasures: A Survey 126:3

some serious security flaws and there are a lot of security threats remaining to be discovered and
resolved [14]. There is no doubt that these security vulnerabilities would impair the confidence on
SGX-enabled systems, hindering SGX’s widespread applications in many fields. Based on our ex-
ploration of relevant papers, although a lot of work on the attacks against the SGX have been done,
the research on SGX security still lags behind its application research. Two reasons could account
for this phenomenon. On one hand, the demand for economic interests and the lack of related
legislation induce manufacturers to overlook many security vulnerabilities. On the other, many
key technical difficulties raise the bar for detecting and fixing those security vulnerabilities. The
former reason is beyond the scope of this article and we only concentrate on the latter one. This
article focuses on identifying security vulnerabilities and corresponding attack vectors as much
as possible and analyzing key technical countermeasures for thwarting existing attacks vectors
against SGX. An attack vector refers to a method that can be used by an adversary to invade a
computer system or a network server, thereby obtaining sensitive information or causing other
malicious outcomes.
From this perspective, we explored related papers on the security of SGX and found that there

exist two surveys [72, 105] focusing exclusively on the security of SGX and another survey [106]
covering SGX security and its applications. References [72], [105], and [106] listed some published
attacks and existing countermeasures. However, none of them provides a complete taxonomy of
SGX’s security vulnerabilities nor offers an in-depth analysis of corresponding attack vectors.
Moreover, criteria for evaluating SGX attacks and corresponding countermeasures are missed
in [72], [105], and [106]. Therefore, the existing literature still lacks a comprehensive survey to
summarize security vulnerabilities and countermeasures of SGX. To be specific, we pinpoint the
scarcity of multidimensional surveys that attempt to (1) identify SGX’s critical security features,
(2) identify and classify possible vulnerabilities permitting attacks against SGX-enabled systems,
(3) analyze the attack vectors that can be leveraged by an adversary to exploit those vulnerabili-
ties, (4) make out the risks brought by the existing attacks on security objectives, and (5) explore
defense effects brought by corresponding countermeasures.
This article is the first multi-dimensional survey on SGX’s security vulnerabilities and coun-

termeasures. In this article, we first provide a comprehensive overview of Intel SGX, introducing
basic concepts, train of thought of its design, overall infrastructure, and critical features, respec-
tively. Then, we propose two sets of criteria for estimating the security risks brought by potential
attacks and for evaluating the defense effects of attack countermeasures. Subsequently, we propose
a taxonomy of SGX’s security vulnerabilities and provide a deep-insight analysis of correspond-
ing attack vectors. After that, we review published attacks as well as existing countermeasures and
evaluate existing works by employing our proposed criteria. Last, we point out some open issues
and future research directions. Specifically, we list the contributions of this article as follows:

• Wepropose two sets of criteria for estimating the security risks brought by published attacks,
and evaluating the defense effects offered by corresponding countermeasures.
• We propose a taxonomy of the security vulnerabilities of SGX, and analyzing their corre-
sponding attack vectors thoroughly.
• We review existing attacks and countermeasures and evaluate them by using our proposed
evaluation criteria as measures.
• We highlight some open issues and propose future research directions based on systematic
reviews.

The road-map of this article is as follows: In the next section, we make an overview of Intel
SGX and analyze its critical security features. In Section 3, we propose two sets of criteria for
estimating security risks brought by attacks and for evaluating defense effects of corresponding

ACM Computing Surveys, Vol. 54, No. 6, Article 126. Publication date: July 2021.

126:4 S. Fei et al.

countermeasures. In Section 4, we propose a taxonomy of SGX security vulnerabilities for the
purpose of analyzing potential attack vectors that could be leveraged to attack SGX. Subsequently,
in Section 5, we provide a thorough review of existing attacks and countermeasures by evaluating
them with our proposed evaluation criteria. In Section 6, we highlight open issues and propose
future research directions. Finally, we conclude this article in the last section.

2 OVERVIEW OF INTEL SGX

To lay the groundwork for analyzing SGX security in the following sections, we overview Intel
SGX in this section. We first introduce the security objectives of SGX and illustrate the execution
process of SGX applications. Then, we introduce the cornerstones that underpin the security ob-
jectives. Concretely, we take a lightning tour on the data structures of SGX, the life cycle of an
enclave, enclave entry/exiting, and the main security features of SGX. We hope that the concepts
and mechanisms discussed below can help readers to establish a rough understanding of Intel SGX.
For more details, refer to [2], [14–16], [36], [42], [68], and [85].

2.1 Security Objectives of SGX

Intel SGX is a set of instructions and memory access changes added to the Intel architecture [68].
This technology allows a user application to instantiate an isolated area in the address space of a
user application. This area is referred to as an enclave, which provides integrity and confidentiality
protection against outside malicious attackers, even against some privileged OS software. The
security objectives of SGX can be summarized as follows:

• SGX should ensure that any integrity violation of the code/data of an enclave instance can
be detected, thus any access to modified code/data can be prevented.
• SGX should protect the confidentiality of security-critical code/data of an enclave instance.
• SGX should support multiple enclave instances to coexist at the same time, and provide an
isolation guarantee between different enclave instances.

2.2 Execution Process of SGX

Figure 1 shows the execution process of SGX [2]. A host process can be executed in two regions:
one is a normal region, and the other is in a security-critical region. The application’s host pro-
cess initiates an enclave and loads security-critical codes and data into the enclave. Normal code
could be executed in the untrusted region. When it comes to security-critical code, the enclave
function will be called. Only the code in the enclave can access the sensitive content stored in
Processor Reserved Memory (PRM), and all external accesses will be denied. After the enclave
function returns the operation result to the host process, the enclave contents still stay in the pro-
tected memory space. To sum up, the execution of the enclave code is a part of the host process.
The security-critical region in the enclave maintains its private data and code. The enclave entry
point is predefined in a compilation phase, and the enclave can access its application’s memory,
but external access to the enclave memory is prohibited.

2.3 SGX Memory Organization

Processor Reserved Memory (PRM). In SGX processes, the security-critical code and data are
stored in an isolated memory space with the name of Processor Reserved Memory. The PRM is
a subset of the Dynamic Random Access Memory (DRAM), whose range is determined by the
BIOS at boot time. DRAM is an internal memory that directly exchanges data with the CPU. The
PRM range consists of two parts: Enclave Page Cache and an integrity tree. The EPC will be

ACM Computing Surveys, Vol. 54, No. 6, Article 126. Publication date: July 2021.

Security Vulnerabilities of SGX and Countermeasures: A Survey 126:5

Fig. 1. Execution Process of SGX.

Fig. 2. SGX Memory Organization.

explained below, and the integrity tree is responsible for maintaining the Message Authentication
Code (MAC) tags of the EPC data.

Enclave Page Cache (EPC). Data/code of enclave instances and the related data structure are
stored in a memory space called EPC, which is a subset of the PRM. As is mentioned above, SGX
design allows having multiple enclave instances simultaneously. To achieve this objective, the
EPC is split into pages with 4KB. These equal size pages can be assigned to different enclave
instances. The system software that is responsible for managing EPC could be an OS kernel or a
hypervisor, which uses SGX instructions to allocate EPC pages to enclave instances. SGX design
utilizes Memory Encryption Engine (MEE) [36] to protect EPC memory. The MEE is an extension
of the IntegratedMemory Controller (IMC). All read and write requests to EPC pages are routed by
the IMC to theMEE. All non-enclave accesses are prohibited by theMEE, even including privileged
access such as kernel access, hypervisor access, and System Management Mode (SMM) access.

Enclave Page Cache Map (EPCM). The system software responsible for allocating EPC pages
is not fully trusted. To check the correctness of the allocation decisions for EPC pages, the SGX
records the EPC page allocation information in a memory space called Enclave Page Cache Map
(EPCM). The EPCM is an array, and each EPC page corresponds to an entry in this array.

2.4 Enclave Data Structures

SGX Enclave Control Structure (SECS). Intel SGX stores each enclave’s metadata in an area called
SGX Enclave Control Structure, and each SECS is stored in a dedicated EPC page. These dedicated
pages are not mapped to the enclave’s address space, but only used by the SGX implementations
of CPUs. The virtual address of an enclave’s SECS could be used to identify the enclave when
invoking SGX instructions.

Thread Control Structure (TCS). Intel SGX uses a Thread Control Structure to provide concur-
rency support. Each TCS is stored on a particular EPC page. Such an EPC page holding a TCS
cannot be directly accessed by any enclave code but can be accessed exclusively by enclave
debugging instructions. A TCS will be busy if it is used by a logical processor to execute the

ACM Computing Surveys, Vol. 54, No. 6, Article 126. Publication date: July 2021.

126:6 S. Fei et al.

Table 1. Description of SGX-Related Instructions in This Article

Instruction Description

ECREATE Declare base and range, start build

EADD Add 4k page

EEXTEND Measure 256 bytes

EINT Declare enclave built

EREMOVE Remove page

EENTER Enter enclave

ERESUME Resume enclave

EEXIT Leave enclave

AEX Asynchronous enclave exit

enclave code. At this point, the TCS cannot be used by any other logical processors to execute the
target enclave code.

State Save Area (SSA). When a hardware exception occurs, the SGX-enabled processor needs to
perform a privilege switch and invoke a hardware exception handler execution, before which the
SGX-enabled processor has to store the enclave’s execution context in a secure area, called State

Save Area. The SSA cannot be accessed by any untrusted system software.

2.5 Life Cycle of An Enclave

The life cycle of an enclave is closely related to enclave resource management, especially the al-
location of EPC pages. The life cycle of an enclave consists of four parts: creation phase, loading
phase, initialization phase, and teardown phase. In Table 1, we list all SGX-related instructions
mentioned in our survey.

Creation Phase. When the system software issues an ECREATE instruction, a particular SECS
for a new enclave will be loaded into a free EPC page, which means the enclave is created.

Loading Phase. After a new enclave is just created, the enclave is still uninitialized. The system
software could use an EADD instruction to perform a loading operation. In this phase, the initial
data and code are loaded into the newly created enclave. Meanwhile, an EEXTEND instruction is
used by the system software to update the measurement of the newly created enclave.

Initialization Phase. After the loading phase, the system software needs to use a launch enclave
to get an EINIT Token Structure. After that, the system software can use an EINT instruction to
initialize the newly created enclave. Once initialized, the INIT attribute of the initialized enclave
will be set as true. Later, the ring 3 applications can run the code loaded in the enclave. Besides, the
EADD instruction cannot be invoked anymore. Therefore, all loading operations are ended before
the execution of the EINIT instruction.

Teardown Phase. After the initialized enclave has completed the execution of the specified code,
the EREMOVE instruction will be invoked to reallocate the EPC pages used by the enclave. An
enclave is torn down when the particular EPC page that holds its SECS is freed.

2.6 Enclave Entry/Exit

The EENTER instruction can be used by the enclave’s host process to execute the enclave
code, which means that the control flow is transferred from the enclave’s host process to a

ACM Computing Surveys, Vol. 54, No. 6, Article 126. Publication date: July 2021.

Security Vulnerabilities of SGX and Countermeasures: A Survey 126:7

pre-determined entry point in the enclave. If the TCS is confirmed to be free, the application con-
text will be saved in an SSA and the logical processor will be put in an enclavemode, performing its
tasks. After the enclave execution is ended, the processor will use an EEXIT instruction to transfer
the control from the enclave to the host process, which means the processor comes back to the
normal mode. If a hardware exception occurs during the execution of the enclave code, the SGX-
enabled processor will perform an Asynchronous Enclave Exit (AEX) to switch the process from
the enclave mode to a normal mode before the system software’s exception handler is revoked. The
AEX will store the execution context of the enclave code and set up a processor register to return
the system software’s exception handler to an asynchronous exit handler. The asynchronous exit
handler will resume the interrupted enclave execution with an EREUME instruction.

2.7 Security Features of SGX

The security features of SGX include physical memory isolation, enclave measurement, software
attestation, and data sealing.

Physical Memory Isolation. As mentioned above, to protect the secure memory, the SGX uses
the PRM to store enclave data and related data structure. The PRM provides memory isolation
protection at a hardware level so that any access to the isolated area needs to be checked by the
processor and any invalid access will be refused. The checking process can be summarized as
follows.

• Whether an access operation is from a processor running in the enclave mode.
• Whether a target physical address is in the EPC.
• Whether a target EPC page belongs to the enclave (i.e., only the enclave code can access the
enclave’s data).

Enclave Measurement. To establish identities for software attestation and data sealing, the SGX
provides two registers for each enclave: MRENCLAVE and MRSIGNER. The MRENCLAVE repre-
sents enclave identity, which is a hash of the inputs to ECREATE, EADD, and EEXTEND instruc-
tions. The EINIT instruction is used to complete the enclave initialization and finalize the hash
representing the MRECNCLAVE, which helps to check the enclave’s integrity. The MRSIGNER
represents the sealing identity of an enclave, which contains the hash of the sealing authority’s
public key. The sealing authority can be regarded as an enclave builder.When the sealing authority
builds multiple enclaves, these enclaves share the same MRSIGNER.

Software Attestation. To checkwhether certain enclave code has been properly instantiated, Intel
SGX provides two types of attestation mechanisms: local attestation and remote attestation. The
local attestation is used to create an authenticated assertion between two enclaves running on the
same platform. As displayed in Figure 3, the specific steps can be summarized as follows:

• A Prover Enclave (PE) can obtain the measurement of a Verifier Enclave (VE) from an estab-
lished communication channel.
• The PE invokes the EREOPRT instruction to generate a REPORT structure and transmits it
to the VE.
• The VE invokes the EGETKEY instruction to retrieve the Report Key from the received RE-
PORT structure. Subsequently, the VE uses the Report Key to compute the MAC over the
REPORT structure, and verify whether the REPORT structure was generated by the PE. If
the MAC is valid, the VE can determine that the PE is running on the same platform.

The remote attestation is extended from the local attestation; it can be used by an enclave to
prove its identity to a remote party using an attestation service. The remote attestation utilizes

ACM Computing Surveys, Vol. 54, No. 6, Article 126. Publication date: July 2021.

126:8 S. Fei et al.

Fig. 3. SGX Enclave Local Attestation. Fig. 4. SGX Enclave Remote Attestation.

a special enclave called Quoting Enclave (QE) to verify and transform the REPORT structure
into a QUOTE structure. As is illustrated in Figure 4, the specific steps can be summarized as
follows:

• After a communication channel is established between an application and a challenger (i.e.,
an attestation service provider), the challenger issues a challenge to the application to check
whether the Application Enclave (AE) is properly instantiated and the user platform is
legitimate.
• The application sends the QE’s identity and the challenge to AE.
• The AE first generates a manifest that contains a response to the challenge and an ephemeral
public key to be used by the challenger. The AE then generates a hash over the manifest and
invokes an EREPORT instruction to generate a REPORT structure. Subsequently, the AE
sends the REPORT structure to the application.
• The application forwards the REPORT structure to the QE for signing.
• The QE first invokes the EGETKEY instruction to retrieve the Report Key and verifies the
MAC in the REPORT structure. The QE then generates the QUOTE structure and signs it
with the Enhance Privacy ID (EPID) private key before sending it to the application.
• The application sends the QUOTE structure as well as the corresponding manifest to the
server.
• The server validates the QUOTE signature with the EPID public key. Then, the server checks
the integrity of the manifest with the hash from the User Data field in QUOTE.

Data Sealing. After the execution of the enclave code is ended, the enclave instance will be de-
stroyed, and all data in the enclave will be freed. Considering that some data needs to be reused,
a processor-based data sealing mechanism is applied to encrypt and store enclave data on an ex-
ternal disk for further use. Generally speaking, the sealing mechanism helps to encrypt and store
trusted data in external disks with specific security policies, thus providing secure storage with
a confidentiality guarantee. The SGX provides two sealing policies: sealing to an enclave identity
and sealing to an sealing identity. The former policy can produce a sealing key that is available
to all instances of a particular enclave; the later policy can produce a key that is available to all
enclaves that are signed by a particular sealing authority.

3 EVALUATION CRITERIA ON ATTACKS AND COUNTERMEASURES

In this section, we propose two sets of evaluation criteria. One is used to evaluate the published at-
tacks against SGX implementations, thereby making out the security risks brought by each attack
case. The other is used for evaluating the existing countermeasures to protect SGX implementa-
tions, thus analyzing the defense effects of each countermeasure.

ACM Computing Surveys, Vol. 54, No. 6, Article 126. Publication date: July 2021.

Security Vulnerabilities of SGX and Countermeasures: A Survey 126:9

3.1 Criteria for Identifying Attacks

3.1.1 Attack Surfaces. Simply put, the attack surface of SGX means the sum of points where
attackers can enter an SGX-enabled system and extract information or conduct malicious opera-
tions. Identifying the attack surfaces corresponding to each attack case could help clarifying the
correspondence between specific attack cases and security vulnerabilities. The attack surfacesmen-
tioned in this article and their abbreviations are introduced as below:

Page Table (PT). Some attack vectors are on top of the side effects of page walking. The attack
surfaces abused in this type of attack vectors is dubbed a page table unit.

SEgmentation (SE). In 32-bit SGX-enabled systems, a segmentation unit could be leveraged by
attackers to obtain fine-grained memory access patterns.

CPU Cache (CC). In SGX implementations, same caches are shared by all software. Therefore,
CPU cache is a threatening attack surface that could be leveraged to observe the time difference
between different cache accesses, thus obtaining cache access patterns.

DRAM. In a DRAMmodule, there exists a row buffer used for holding themost recently accessed
row. Attackers can leverage the time difference between accessing different DRAM rows, thus
obtaining the memory access patterns. This attack surface can be combined with the page table
and/or the CPU cache to improve the spatial granularity of attacks.

Branch Target Buffer (BTB). The idea to leverage the BTB as an attack surface is to cause colli-
sions between the victim process branches and attacker process branches. With the collisions, the
attacker can infer the direction of the victim process branch, thus obtaining sensitive information.

Return Stack Buffer (RSB). Every time a function call instruction is executed, the RSBwill be used
as a return target predictor. A malicious attacker can pollute the RSB to trigger a misprediction
that leads to sensitive information leakage.

Out-of-order Transient Execution mechanism (OTE). Results of unauthorized memory accesses
can be available to particular out-of-order transient executed instructions before the processor
roll back the incorrectly speculative executed micro-ops. Such unauthorized memory accesses in
a small time interval can be exploited to conduct attacks against SGX.

Enclave Interface (EI). With the support of SGX SDK, an SGX-powered application can use
ECALL/OCALL functions to switch code execution between inside and outside enclave in-
stances. The enclave interface invocation patterns can be exploited to conduct attacks against
SGX-powered applications and steal enclave secrets.

3.1.2 Necessary Conditions. Abusing different attack vectors against SGX implementations re-
quires various necessary conditions. Some attack vectors rely on some tight assumptions and con-
ditions to obtain desired attack outcomes. We choose some representative necessary conditions as
general as possible for evaluating the difficulty and feasibility of each attack case, thus contribut-
ing to the evaluation of the security risks brought by corresponding attacks. We generalize and
list related necessary conditions as follows:

Analysis of Victim Code (AVC). Some attack vectors are dependent on a detailed analysis of the
memory access patterns of target application binaries. If the compromised OS could know the
internal structure of the target program (including the layout of the binary, mapped pages, stack,
heap, and library addresses), the OS can profile the execution of the target program and observe
the victim’s access patterns to obtain useful information.

ACM Computing Surveys, Vol. 54, No. 6, Article 126. Publication date: July 2021.

126:10 S. Fei et al.

COre Isolation (COI). Isolating the adversary process (or thread) and the target process (or
thread) on the same physical core is usually required in some side-channel attack cases to reduce
the noise caused by other uncorrelated operations. The sources of different types of noise vary
greatly; the main sources include system interrupts and a great deal of unrelated operations
outside of the target process. In some specific situations, even the attacker process itself generates
noises, bringing negative effects on the observation of sensitive information.

CAche Isolation (CAI). Similar to the core isolation, some noise-sensitive attack cases need to
use a cache isolation mechanism to limit noise made by other uncorrelated accesses to the target
cache.

Memory Sharing (MS). Some attack vectors are independent on the condition that the adversary
process (or thread) shares the same memory (DRAM) with the target process (or thread).

3.1.3 Direct Outcomes. Direct outcomes refer to the direct result caused by a specific attack
case, which reflects the threat level of an attack to some extent. To be specific, the direct outcomes
can reflect the spatial granularity of every attack case, which describes the elementary unit of in-
formation leakage obtained by attackers. The finer the spatial granularity is, the higher the attack’s
threat level will be. The corresponding direct outcomes discussed in this article include: Page Ac-
cess Pattern leakage (PAP), Cache Access Pattern leakage (CAP), INstruction Trace leakage (INT),
Memory Content leakage (MC), and Enclave Interface Invocation Pattern leakage (EIIP).

• Page access pattern leakage allows attackers to collect a trace of page access information
(e.g., page fault exception and page table attribute information) and analyze them to obtain
secrets from enclave code/data.
• Cache access pattern leakage allows attackers to collect cache hit/miss information and an-
alyze them to obtain secrets from enclave instances.
• Instruction trace leakage allows attackers to obtain instruction invocation information (e.g.,
instruction sizes and instruction invocation sequences) and analyze them to steal sensitive
information from enclave instances.
• Memory content leakage allows attackers to abuse out-of-boundsmemory accesses and steal
sensitive information from enclave protected memory.
• Enclave interface invocation leakage allows attackers to collect interface innovation infor-
mation (e.g., input parameter sizes and function invocation delays) and analyze them to infer
sensitive information in enclave instances.

3.1.4 Compromised Security Objectives. We take the compromised security objectives as our
evaluation concern, to present an intuitive understanding of the security risks brought by specific
attack cases. The security objectives that may be damaged by malicious attacks include COnfiden-
tiality (CO), Attestation Security (AS), and USability (US).

• Confidentiality Impairment: The breach of confidentiality implies that attackers can obtain
secrets from enclave instances.
• Attestation Security Impairment: The breach of attestation security signifies that the attes-
tation mechanism is compromised. More specifically, the integrity protection of the code
running inside an enclave instance is compromised.
• Usability Impairment: The breach of usability implies that an SGX-powered trusted execution
environment cannot work properly.

ACM Computing Surveys, Vol. 54, No. 6, Article 126. Publication date: July 2021.

Security Vulnerabilities of SGX and Countermeasures: A Survey 126:11

3.2 Criteria for Evaluating Countermeasures

To obtain a deep understanding of the defense effects and performance of existing countermeasures
that protect SGX, we plan to evaluate the related work from the following aspects.

3.2.1 Defending Strategy Type. The difference in defending strategy type means different
amounts of work needed to be completed. Related defending strategy types are listed below.

Deterministic Multiplexing (DM). The idea of this type of defense strategy is to use compiler-
level techniques to modify the target program, to exhibit the same access patterns (e.g., page access
patterns or cache access patterns) whatever an input value is.

Anomaly Detection (AD). High time resolution makes it possible for attackers to observe fine-
grained information in a very short time interval. Some attack vectors against SGX rely on inter-
rupting enclave execution frequently to improve time resolution. Therefore, abnormal interrupts
can be used as indicators to detect attacks against SGX.

Randomization Techniques. Randomization techniques are used to make the OS load code and
data randomly, thus raising the bar for attackers to inter the control-flow and target data locations.
The randomization techniques discussed in this article consist of Code Randomization (CR) and
Data location Randomization (DR).

Source Code Modification (SCM). The intuition behind this type of defense strategy is to refactor
the source code of an enclave to hide the control flow and data flow within the execution of target
enclave programs.

3.2.2 Protection Scope. The protection scope mentioned here refers to the set of attacks that
can be thwarted by a particular countermeasure. Related types of attack vectors and their abbrevi-
ations are listed below: Page-Fault driven Attack (PFA), Fault-Less page table-based Attack (FLA),
SEgmentation-based Attack (SEA), CPU Cache-based Attack (CCA), the Branch Target Buffer-
based Attack (BTBA), Page History Table-based Attack (PHTA), Out-of-order Transient Execution
mechanism-based Attack (OTEA), and DRAM-based DoS Attack (DDoS).

3.2.3 Performance Overhead. Incurring additional performance overhead is a common side ef-
fect of different countermeasures. The performance overhead reflects the feasibility and efficiency
of a particular countermeasure to some extent.

4 TAXONOMY OF SECURITY VULNERABILITIES AND ATTACK VECTORS

In this section, we propose a taxonomy of SGX’s security vulnerabilities, as shown in Figure 5, for
the purpose of analyzing corresponding attack vectors. Our proposed taxonomy is based on the
classification of risky links between untrusted components and security-critical code and data. The
design philosophy of Intel SGX is to isolate security-critical execution in a trusted environment.
One significant feature of the SGX is to reduce the size of a trusted computing base, thus reducing
the number of risky links between security-critical execution and untrusted components as much
as possible. In this article, we explore the risky links that can be leveraged to launch attacks against
SGX security. The selected risky links are the security vulnerabilities as discussed in this section.
We classify these selected links according to the difference of attack surfaces, thereby dividing the
security vulnerabilities of SGX into several categories as described below.

ACM Computing Surveys, Vol. 54, No. 6, Article 126. Publication date: July 2021.

126:12 S. Fei et al.

4.1 Address Translation Vulnerabilities

The address translation mechanism is one of the important links between the SGX and potential
attackers. It is responsible for translating a virtual address to a physical address. Such a memory
management method (shown in Figure 2) in the IA-32 architecture [45] is proceeded with Memory
Management Unit (MMU), which consists of two hardware components: a segmentation unit and
a paging unit. Logical addresses used by an application software first pass through the segmenta-
tion unit, and then generate linear addresses as inputs to the paging unit. Finally, the paging unit
generates resulting physical addresses, which reference a physical address space.

4.1.1 Page Table Attacks. The paging unit has received considerable attention as an important
attack surface of the SGX. Page-fault driven attacks [91, 99] and fault-less page table attacks [53,
95, 98] against SGX have been proposed successively.

Page-Fault Driven Attacks. The page-fault driven attack is to infer sensitive information leak-
age by exploiting the target application’s page faults. Simply put, intuitive steps of the page-fault
driven attacks can be seen as follows: First, an attacker tries to infer the base address where the
binary of the target application is loaded. Then, the attacker restricts access to these pages by edit-
ing the page tables. At this moment, any access to the restricted pages will trigger a page fault
exception, which can be leveraged to distinguish which pages the target application has visited.
Combining the information in a chronological order could help to recover some protected sensitive
data of the target application. One native disadvantage of this type of attack is that the accuracy
can only reach up to page granularity, and it cannot distinguish finer-grained information. But in
some particular scenarios, this type of attack can be used by the attacker to obtain a lot of useful
information. Specifically, the adversary can invoke and execute the target application for multiple
inputs even in an offline mode and record the corresponding page fault patterns. Based on the
records of page fault patterns, the OS can observe the access patterns related to the user inputs
and map them to a pre-computed database, thus learning sensitive inputs at runtime.

Fault-less Page Table Attacks. Based on the exploration of the page-fault driven attacks, some re-
searchers proposed to leverage new attack vectors based on other side effects of page table walks
other than page faults. With these attack vectors, attackers can infer the target application’s mem-
ory access patterns from page table attributes, and/or from the caching behavior of unprotected
page table memory.

4.1.2 Segmentation Attacks. In 2018, Gyselinck et al. [39] proposed that the x86 memory seg-
mentation unit is an overlooked attack surface of the SGX-enabled application implemented on
32-bit systems. With dedicated assumptions, attackers can control a segmentation unit to infer
fine-grained memory access patterns of a target enclave execution, which can be up to byte
granularity.

4.2 CPU Cache Vulnerabilities

In an Intel CPU, every physical core monopolizes separate L1 and L2 caches, as well as shares a L3
cache with other physical cores in the same CPU package. An L1 cache consists of a data cache and
an instruction cache, both of them have a size of 32 KB. Moreover, they are 8-way associative with
64 byte cache lines. A CPU can process data much faster than a DRAM’s supplying. When a CPU
accesses data from a DRAM, it consumes a certain period of time. However, some specific data (e.g.,
the data that were just accessed by the CPU) can be saved in the cache. If the CPU needs to access
these specific data again, it can access these data from the cache directly. Such a mechanism avoids

ACM Computing Surveys, Vol. 54, No. 6, Article 126. Publication date: July 2021.

Security Vulnerabilities of SGX and Countermeasures: A Survey 126:13

Table 2. Comparison of The Requirements for Conducting Three Cache-Timing Attacks

Requirements
Attack Variants

Evict + Reload Prime + Probe Flush + Reload

Measuring the execution time of the a victim’s

program

Measuring the execution time of the an attacker’s

program

Requiring shared memory between the a victim and

the an attacker

Only applicable with flush instruction

Can only extract statically allocated data

Only works with inclusive caches

Attackers have to know the mapping from a virtual

address to a physical address

Only works in the same CPU socket

denotes a corresponding requirement is required for an attack variant; denotes a corresponding requirement is not required for an attack variant.

repeated accesses to the DRAM, and thus reduces time consumption and improves the efficiency
of data accesses.
Specifically, a cache is to bridge this gap by utilizing high locality in memory accesses. After

caching the most recently accessed data and code, the cache memory can satisfy most memory
access requirements. It is orders of magnitude smaller and an order of magnitude faster than the
DRAM [14]. When a memory access request is received, the cache controller checks whether the
requested data has been cached. If the data is cached, the request will be served by the cache, and
this operation is called a cache hit. If not, the request will be served by the DRAM, and this oper-
ation is called a cache loss. For every memory access request, the cache controller needs to check
whether the data is cached or not. This repeated retrieval of the entire cache would bring huge
time costs. To bypass this shortcoming, the cache is divided into lines. The lower bits of a memory
address determine which cache line it maps to; therefore, there may be more than one memory
addresses map to the same cache line. Considering that all software shares the same caches in
SGX-enabled architectures, the adversary can launch attacks by exploiting the time difference
between cache accesses. Therefore, the cache timing channel is a threatening attack surface. In
recent years, several interesting explorations have been made regarding cache timing-channel at-
tacks [8, 34, 35, 47, 61, 73, 100]. Mainstream cache timing-channel attacks consist of three main
variants as described below and compared in Table 2. They all rely on the time difference between
cache hits and cache misses, but their implementation details vary from each other.

4.2.1 Evict + Reload Variant. This variant is one of the typical time-driven attacks, aiming at
obtaining sensitive information on inclusive caches. Considering that the L1-cache is multi-way
set-associative with set index, it is possible to evict all cache lines in a cache set and then probe
this cache set. The main steps can be summarized as follows: An attacker triggers a target program
and measures its execution time; the attacker fills a specific cache set with his data, thus evicting
the data cached by the target process; the attacker reloads the target program and measures the
execution time again. After the first run of the target program, the data used by the victim (i.e.,
the user who runs the target program) is cached. If the attacker exactly selects and evicts the
particular cache set that is just used by the victim by lucky coincidence, the second measurement
of the execution time will be slower than the first one. On the contrary, the second execution
will be faster than the first one. There are identifiable shortcomings with this method. First, the

ACM Computing Surveys, Vol. 54, No. 6, Article 126. Publication date: July 2021.

126:14 S. Fei et al.

attacker is assumed to know the mapping from virtual addresses to physical addresses, which
makes this attack vector infeasible especially for a physically indexed cache. Second, much noise
from different sources makes time measurement imprecise, which brings negative effects on the
fidelity of this method. Third, considering that only one cache set is evicted each round, a large
amount of time is needed to conduct the whole attack.

4.2.2 Prime + Probe Variant. The Prime + Probe variant was first proposed by Osvik et al. [73],
which is similar to the Evict + Reload variant but does not need the target process and the mali-
cious process to share the same CPU core. This type of attack is to measure the time difference
between attempts by a malicious program to access a particular cache set that is known to the at-
tacker. The main steps can be seen as follows: An attacker executes his program and measures its
time consumption; the attacker fills specific cache sets with known but random data; the attacker
triggers a victim program; the attacker reloads his program andmeasures the execution time again.
After the attacker fills cache sets with his data, the access time will increase when reloading the
attacker’s program. This variant is one of the access-driven attacks, which only measures the ex-
ecution time of the attacker’s program. Therefore, this method is more noise-resistant than the
Evict + Reload variant. Furthermore, this variant has another advantage: it could target both stat-
ically and dynamically allocated memory, whereas the Evict + Reload variant is only applicable
to the statically allocated memory. Unfortunately, a major weakness of this method is that this
method assumes that the attacker could know the specific target cache set that would be used by
the victim program, which to some extent impairs the feasibility of such an attack.

4.2.3 Flush + Reload Variant. The idea of the Flush + Reload variant was first proposed by
Gullasch et al. [37] who selected L1 cache on Advanced Encryption Standard (AES) implementa-
tions as an attack target. In 2017, Yarom et al. [101] adapted the method to attack L3 cache across
CPU cores and referred it as the Flush + Reload attack. The Flush + Reload attack can evict cache
lines from all levels of cache including cache-L3, which is based on shared memory (i.e., sharing
library or page duplication) between a target process and a malicious process [82]. This type of
attack has been studied extensively [3, 35, 38, 46–49, 60]. The main steps can be listed as follows:
An attacker maps specific binaries (e.g., shared objects) into address space; the attacker flushes a
cached memory location and measures the time used to access the specific memory location; the
attacker triggers a target program; the attacker re-accesses the memory location and measures the
access time again. If the target program accesses the specific memory location in the second step,
the access time will increase when the attacker re-access the memory location. Shared memory
and the clflush instruction are indispensable for this variant. Nevertheless, some advantages are
shining in this variant. First, the Flush + Reload attack focuses on a single cache line and is more
noise-resistant than the former two variants. Furthermore, it is applicable in an architecture with
non-inclusive caches and can work across CPU sockets [63], which is superior to the former two
variants. Based on these advantages, this variant has been widely applied to attack different sys-
tems, including virtual machines [49], clouds for platform as a service [104], and mobile devices
[60].

4.3 DRAM Vulnerabilities

Pessl et al. [74] proposed DRAM-based attacks, whose accuracy are near that of the Flush + Reload
attacks but do not need memory sharing. The adversary can launch an attack on the DRAM shared
by all virtual machines that run on the same host system. The intuition behind DRAM attacks is
that in a DRAM module, there is a row buffer responsible for holding the most recently accessed
rows. Accessing the row buffer is faster than accessing other memory locations. Therefore, it is pos-
sible to exploit the time difference to obtain information leakage across virtual machines. However,

ACM Computing Surveys, Vol. 54, No. 6, Article 126. Publication date: July 2021.

Security Vulnerabilities of SGX and Countermeasures: A Survey 126:15

DRAM attacks have some limitations that should be paid enough attention. First, in some target
applications, the memory is usually stored in the cache and only a small part needs to be fetched
from the DRAM. Second, the accuracy of DRAM is far from enough. Specifically, a page (4 KB) is
usually distributed on 4 DRAM rows. Thus, the accuracy of DRAM attacks is just 1 KB, which is
better than page table attacks, but far less accurate than the CPU cache attacks. Third, a high level
of noise of DRAM-based attacks is also a disgusting problem. Because a single DRAM row may be
used by many different pages, and the data read from different rows of the same bank could also
interfere with time measurement. The DRAM attack vectors are usually combined with the CPU
cache attacks vectors to generate efficient attack vectors.

4.4 Branch Prediction Vulnerabilities

The pipeline of a modern microprocessor contains many stages, which can be roughly divided
into four stages: fetch, decode, execution, and retirement. When a processor executes instructions,
it utilizes instruction-level parallelism and an out-of-order execution mechanism to execute dif-
ferent instructions at the same time as a pipeline. Before the target and outcome of a branch are
determined, the processor cannot execute past branch instruction. In other words, the processor
has to wait for the determination of the outcome of a branch and then take a correct branch to
enter the pipeline for processing. This could cause a huge loss of efficiency, in some cases, the ex-
ecution time could be almost delayed for an entire pipeline clock. To solve this problem, modern
processors utilize a Branch Prediction Unit (BPU) to predict the target and outcome of the branch.
Modern processors, including SGX-enabled processors, utilize BPUs to increase the speed of a

fetching process. The BPU helps processors to get rid of a long wait for the completion of previous
instructions. However, the BPU potentially opens the door for attackers to discover new attack sur-
faces. A modern processor’s BPU consists of three main components: branch target buffer (BTB),
directional predictor, and return stack buffer (RSB). The BTB is responsible for predicting the target
jump address of a branch instruction, while the directional predictor is used to predict the jump
direction of a branch instruction. A simplified BPUworkflow can be summarized as follows: When
a branch instruction comes, a branch directional predictor is used to predict the possible execution
direction of the branch (i.e., to predict jump or not). If the prediction result is that the branch will
be taken (i.e., jump), the instructions that start from the predicted target address will be fetched
and executed ahead of schedule. Otherwise, if the prediction result manifests the branch will not
be taken, the predicted target address provided by the BTB will be overlooked. Meanwhile, the pre-
dictor will be updated according to incoming branch instructions. The RSB is used to predict return
addresses by pushing the return addresses of call instructions into a hardware stack. According to
different attack surfaces exploited by attackers, four types of mainstream branch prediction-based
attack vectors are listed as follows:

4.4.1 BTB Attacks. The BTB stores the computed target addresses of the branch instructions
that have been taken. Therefore, the BTB could be exploited by an attacker to determine whether
a particular branch instruction is taken by the victim. The intuition behind the BTB attack vector
is that an attacker first fills the BTB, thereby inducing the evictions of a victim’s entries. Then,
the attacker infers the newly executed branches executed by a victim program by observing the
timing of accesses.

4.4.2 PHT Attacks. A Page History Table (PHT) is the main component in a branch directional
predictor, which is a table recording saturating counters. In the workflow of a directional predictor,
when a branch comes, a PHT entry will be selected to predict a possible direction; after the execu-
tion of a particular branch, the counter provided by the corresponding PHT entry will be updated.
The intuition behind the PHT attack vector is to cause collisions between a victim process branch

ACM Computing Surveys, Vol. 54, No. 6, Article 126. Publication date: July 2021.

126:16 S. Fei et al.

and a attacker process branch. With the collisions, the attacker can infer the direction of the victim
process branch, thus obtaining sensitive information.

4.4.3 RSB Attacks. As mentioned above, the branch predictors are responsible for predicting
the direction and the target addresses of branch instructions. The prediction of return instructions
is beyond the capabilities of these sophisticated branch predictors. The reason is that the call loca-
tion determines the return address; functions called from different locations of a programmay lead
to very poor branch predictor performance. Therefore, on modern processors, the RSB is used to
predict return addresses. Every time a call instruction is executed, the RSB will be used as a return
target predictor. The philosophy of RSB attacks is that an attacker can pollute the RSB to trigger a
mis-speculation that then leads to sensitive information leakage.

4.4.4 OTE Attacks. Original in-order execution processors have a significant flaw: If the delay
of reading instruction from amemory is long, the instruction using a instruction result will fall into
a long wait. To solve this problem, an out-of-order mechanism was proposed, which allows multi-
ple instructions to be sent separately to corresponding circuit units for subsequent processing. In
this way, the processor’s waiting caused by fetching the next program instruction can be avoided.
Specifically, for Intel x86 instruction sets [45], instructions are first decoded to be micro-ops. Con-
sidering that only micro-ops needs to be implemented in hardware, there is no need to implement
an entire rich instruction set, which contributes to optimization on processors by paralyzing three
main phases. First of all, an instruction is loaded from a main memory by a fetch-decode unit, and
then is translated to be micro-op series. Immediately following, the branch predictor of the pro-
cessor tries to predict the conditional jumps. Second, the micro-ops are scheduled into available
execution units. Third, the micro-op results are committed to a visible machine state. To ensure
correct architectural behavior, the processor needs to make sure that the micro-ops be retired
in the light of the intended in-order instruction stream. Although such in-order instruction re-
tirement yields functional correctness, the internal caches can still be affected by speculatively
executed micro-ops. Such side effects can be abused to conduct attacks against SGX-enabled pro-
cessors. Briefly, the intuition behind out-of-order transient execution (OTE) attacks is that results
of unauthorized memory accesses can be available to some particular out-of-order transiently exe-
cuted instructions before a processor rolls back incorrectly speculatively executed micro-ops. Such
unauthorized memory accesses in a small time interval can be exploited to conduct attacks against
SGX-enabled processors.

4.5 Enclave Software Vulnerabilities

4.5.1 ROP Attacks. Although a strong security guarantee is provided by the SGX, the enclave
software is far from bug-free. It is necessary to pay attention to the vulnerabilities of enclave
software. In this subsection, we analyze available techniques that could be leveraged to abuse
the security vulnerabilities of enclave software and find out one practical enclave software at-
tack vector against SGX security: Return-Oriented-Programming (ROP) attacks. The ROP is one
of notorious security vulnerability exploiting techniques, which allows attackers to break through
existing defending mechanisms (e.g., executable space protection and code signing [86]), thereby
making malicious code execution possible. Some traditional security vulnerabilities that cause at-
tacks in non-SGX environments (e.g., hijacking the control flow of a victim process and execut-
ing malicious codes) are hard to be abused directly in an enclave environment. Because in some
scenarios, the program binaries are not publicly available for attackers. Besides, the critical mem-
ory values and registers needed when launching attacks are hidden from attackers. Such SGX’s
security-enhancing feature creates a high barrier for an attacker to search for code vulnerabilities

ACM Computing Surveys, Vol. 54, No. 6, Article 126. Publication date: July 2021.

Security Vulnerabilities of SGX and Countermeasures: A Survey 126:17

Fig. 5. A Taxonomy of SGX Security Vulnerabilities.

and gadgets in a victim’s codes. Some researchers have started their endeavors to explore this
problem. We will introduce their specific works in the next section.

4.5.2 Enclave Interface Attacks. As introduced in [77], using Intel SGX with the support of SGX
SDK begins with creating an enclave instance as part of an SGX-powered application. The in-
structions used to create an enclave instance can only be called from kernel mode. After the cre-
ation and initialization, the application can perform an ECALL function to enter the enclave in-
stance. Then, input parameters can be processed and the trusted code inside the enclave can be
executed. After the execution of the trusted code, an OCALL function is called by the application
to leave the enclave and execute the untrusted code outside the enclave. Enclave interface (i.e.,
ECALL/OCALL functions) invocation patterns, including input parameter sizes and function in-
vocation delay, were found to be able to be exploited as an attack surface to invade SGX-powered
applications. Because attackers can infer the information of the input parameters by collecting en-
clave interface invocation patterns and analyzing them. Such an attack vector is referred as enclave
interface-based attack.

4.6 Hardware Vulnerabilities

Malicious attackers may manipulate hardware directly and carry out physical attacks against SGX-
enabled systems. Exploiting hardware vulnerabilities requires the attackers to be familiar with the
hardware implementation details of the target system so that malicious operations could bypass
its security mechanisms. However, few publicly available details could be leveraged to obtain a
deep understanding of the hardware implementation of SGX, which brings great difficulties in an-
alyzing SGX’s hardware vulnerabilities thoroughly. Four types of physical attacks against micro-
architectures to exploit hardware vulnerabilities were listed in [14]. Those are the most representa-
tive hardware attack vectors in the non-SGX environment. We analyze them one by one to explore
the feasibility of these attack vectors to be conducted in an enclave environment. Also, a hardware
bug, dubbed RowHammer [83], which brings Denial-of-Service (DoS) threats will be discussed
below.

ACM Computing Surveys, Vol. 54, No. 6, Article 126. Publication date: July 2021.

126:18 S. Fei et al.

4.6.1 Port Attacks. According to a patent [87], many published attacks targeting debug ports
have been disabled by Intel. Considering that this work is still being pushed forward, the port
attacks can be excluded from our consideration in this article.

4.6.2 DRAM Bus Tapping Attacks. The threat model of SGX considers that both DRAM and
a DRAM bus are untrusted. SGX’s Memory Encryption Engine (MEE) provides confidentiality
protection for sensitive data stored in DRAM. As of this writing, no successful attack based on
DRAM bus tapping has been published.

4.6.3 Chip Attacks. The chip attacks require the use of many types of special equipment, as well
as non-trivial reverse-engineering techniques. For example, the chip attacks against the Intel CPUs
with 14-nm feature size require ion beammicroscopy [14]. Considering such a high cost-to-benefit
ratio, it is rational to treat chip attacks negligible when discussing the hardware vulnerabilities of
SGX.

4.6.4 Power Analysis Attacks. Power analysis attack [26–28, 55] are to measure the power con-
sumption of a target system and then analyze the connection between the power consumption
and some sensitive data computed in the target system. Considering that this type of attack vector
leverages implementation details in a manufacturing process, it cannot be addressed at an architec-
tural level. Fortunately, no power analysis attack against SGX has been published yet. Therefore,
this type of physical attack vector can also be excluded from the scope of this article.

4.6.5 DoS Attacks. Simply put, the DoS attack refers to the attacks abusing a target system’s
security vulnerabilities to terminate the target system [19]. The simplest DoS attack vector is to
disconnect power supply or network communication. As far as SGX implementation is concerned,
we only focus on the DoS attack caused by hardware, dubbed the RowHammer bug. The idea of
exploiting the RowHammer bug is to leverage the electronic interaction between adjacent memory
cells to change the cell value (0 or 1). Such a cell value change can cause data errors even without
accessing a target memory region. The intuition behind the DoS attack against SGX security is
to utilize the RowHammer bug to cause bit flips inside the memory of an enclave, which could
cause failure at integrity check. And then, an erroneous integrity check could lock an SGX-enabled
processor.

5 ATTACKS AGAINST SGX

As mentioned in Section 2, the attack model of SGX assumes that only the CPU package and
application code are trustworthy, other components including the OS and other privileged system
software may be compromised by an adversary. Such a strong attack model is vulnerable to a
variety of attacks. In this section, we will review some published attacks against SGX security on
top of the taxonomy mentioned in Section 4. Moreover, as shown in Table 3, we will evaluate and
compare these published attacks with our proposed criteria in Section 3.1.

5.1 Address Translation-based Attacks

As mentioned in Section 4, address translation-based attacks include three types of attack vectors:
page-fault driven attacks, fault-less page table-based attacks, and segmentation-based attacks.

5.1.1 Page-fault Driven Attack. The page-fault driven attack vector was first proposed by
Xu et al. [99]; their groundbreaking work introduced the concept of controlled-channel attacks,
which is a type of noise-free attack vector exploiting memory page access patterns to obtain a
target application’s secrets. The attack surface exploited by [43] is a page table to observe page
faults, which causes page access pattern leakage. This type of attacks assumes that the target

ACM Computing Surveys, Vol. 54, No. 6, Article 126. Publication date: July 2021.

Security Vulnerabilities of SGX and Countermeasures: A Survey 126:19

application’s binaries are public so that the attackers can conduct an offline analysis of observed
memory access patterns to obtain sensitive information. The first step of this attack [99] is to enter
the base address where a piece of binary code is loaded. Then, an attacker can edit particular page
tables to restrict access to particular memory pages. Once the victim application tries to access any
restricted pages, a page fault will be triggered. At this time, a trace of page access patterns is col-
lected by the compromised OS. At last, the attacker conducts an analysis on the trace and obtains
the target application’s secret. The main challenge of [99] is that the lowest 12 bits in a page fault
address can always be cleared before passing it to the untrusted OS; therefore, the untrusted OS
can only observe a page’s base address (4 KB-granular) but not the extract byte-granular address
of a page fault. To improve granularity, Xu et al. [99] proposed methods of inferring whether a
particular function has been called or a particular variable has been accessed, using a trace of
page numbers rather than complete addresses. Specifically, they ran a victim application outside
the shielding system and logged the page-fault trace by restricting access to all pages and then
removing the restriction on a specific page. They utilized the sequence of preceding page faults to
identify particular memory access without noise in a single enclave run, which helps to overcome
the defects of coarse granularity. Their attack vector is to break the confidentiality of sensitive
data. They demonstrated that with this attack vector based on page faults, they can extract large
amounts of data (hundreds of kilobytes) from a single run of the victim application. Their attack
cases include extracting text documents from widely used word processing tools, obtaining out-
lines of JPEG images decompressed by libjpeg, and undoing Windows-style Address Space Layout
Randomization (ASLR). Although the feasibility of the page-fault driven attack [99] has been
proved by these cases, extra overhead increment and high AEX rate are two notable side effects
that should be given enough attention. In 2015, subsequent work was done by Shinde et al. [91].
They demonstrated that the page fault channel could be utilized to extract cryptographic keys from
the implementations of cryptographic open source software library packages (e.g., OpenSSL and
Libgcrypt).

5.1.2 Fault-Less Page Table-Based Attack. In 2017, Van Bulck et al. [95] completed a very inno-
vative work, demonstrating that page table-channel attack threats can go beyond page faults. In
this article, we name the works similar to [95] as fault-less page table attacks. This attack vector
exploits the page table as an attack surface and assumes that the source code of victim application
is known to attackers. Van Bulck et al. [95] demonstrated that a compromised OS can infer page
access patterns from an enclaved execution without suffering from page faults. The side effects
caused by the page table walk other than page faults can be exploited by the untrusted and po-
tentially malicious OS with little to almost no noise to obtain memory access patterns. The key
property they exploited is that Intel SGX leaves page table memory under the explicit control of
OS. Previous controlled-channel attacks [91, 99] assume that an attacker can observe the faulting
sequence of distinctive pages but cannot observe consecutive page faults on the same memory
page. Van Bulck et al. [95] have broken this limit, and a new technique they proposed allows
the untrusted OS to observe consecutive page faults against the same page. They proposed two
novel attack vectors; one can be used to observe target memory access patterns from page table
attributes, and the other can be used to infer target application’s memory access patterns from
the caching behavior of unprotected page table memory. They displayed how to infer condition
control or data flow information by analyzing subsequent page accesses in page sets, which is su-
perior to the method proposed in [99]. This attack vector leverages page access patterns to break
the confidentiality of sensitive data. Van Bulck et al. [95] reproduced the published attack [91]
on Libgcrypt, demonstrating that their stealthy attack vectors can obtain the same information
leakage without triggering page faults.

ACM Computing Surveys, Vol. 54, No. 6, Article 126. Publication date: July 2021.

126:20 S. Fei et al.

Kim et al. [53] proposed an attack vector, called Version IDentification (VID) attack, which
is similar to [95]. Unlike [91], [95], and [99], reference [53] does not assume that the target code
is publicly available to attackers. Their proposed attack vector is to identify the identity of a
target code running inside the SGX enclave by exploiting its page access pattern. Reference [53]
is extended from [95], which strengthens the efficacy of previous proposed controlled-channel
attacks. On top of the observation of a large number of memory access events, their attack vector
reveals the code information inside the enclave including code algorithm, SDK library version,
and configuration information. Their experiments showed that difference of execution patterns
between different SDK versions and cryptographic algorithm modes are observable for attackers,
which breaks the confidentiality of target code in some particular scenarios.

The aforementioned two fault-less page table attacks [53, 95] get rid of the dependence on page
faults, thereby avoiding inducing a large number of AEXs. Therefore, some published countermea-
sures [10, 90] that exploit theHighAEXRate (HAR) as a significant feature to identify page-fault
driven attacks are invalidated in cases of [53] and [95], . However, their utilization granularity is
the same as page-fault attacks, still staying at page granularity. To improve the utilization granular-
ity of page table attacks, Wang et al. [98] designed a new page table attack vector with the name of
sneaky page monitoring (SPM) attack. This attack vector assumes that a victim code is publicly
available to attackers and leverages page table, CPU cache, and DRAM as attack surfaces. They
utilized a page’s accessed flag in the page table entry (PTE) to observe whether a particular page is
visited. Manipulating the accessed flags does not induce any interrupt directly, which is similar to
[53] and [95]. However, referring to [98], an attacker needs to trigger interrupts from time to time
to force the CPU set to access particular flags in PTEs. In order to reduce the interrupts as much as
possible, Wang et al. proposed two improvement measures. On one hand, they proposed to mea-
sure execution time between the entry and exit pages for inferring execution paths, rather than
tracking the access patterns in-between. This method of obtaining access patterns could bypass
a published countermeasure that put all sensitive data and codes in the same memory pages [91].
On the other hand, they utilized the Intel HyperThreading technique to let an attacker process and
the victim process share the same CPU core. With these improvements, Wang et al. demonstrated
that their attack against EdDSA only triggers almost 1,300 interrupts, while nearly 71,000 inter-
rupts are caused by the page-fault driven attacks. Moreover, the cache-DRAM attack vector (will
be introduced in the following subsections) was also used to improve the utilization granularity,
achieving a fined-grained (cache-line level) observation on the enclave memory. This attack vector
breaks the confidentiality of enclave data by causing page access pattern leakage and CPU cache
access pattern leakage.

5.1.3 Segmentation-Based Attack. All aforementioned attacks based on address translation
mechanism [53, 91, 95, 98, 99] leverage the paging unit as an attack surface. In 2018, Gyselinck et al.
[39] proposed an innovative attack vector against 32-bit SGX-enabled applications that abuses the
segmentation unit to reveal memory access patterns. Their proposed attack vector is only applica-
ble in 32-bit enclaves because the segmentation unit is disabled in a 64-bit enclave. This attacker
vector assumes that the target code is publicly available to attackers. With this attack vector, at-
tackers can obtain the page access pattern and instruction trace to break the confidentiality of
enclave execution. This attack vector is at a page-level granularity, and in some specific restricted
circumstance even at a byte-level granularity. In [39], three attack variants were proposed. The
first variant demonstrated that enclave memory access patterns can be revealed without modify-
ing PTEs. The second variant can be leveraged to observe the memory access in the first megabyte
of an enclavememory, thereby inferring instruction sizes, which can break the limit of fine-grained
address space layout randomization (ASLR) techniques. The ASLR [65] is to randomize some

ACM Computing Surveys, Vol. 54, No. 6, Article 126. Publication date: July 2021.

Security Vulnerabilities of SGX and Countermeasures: A Survey 126:21

sensitivememory locationwhere executable codes are loaded. It can be used to thwart some attacks
that rely on an adversary to precisely guess specific sensitive memory locations to run malicious
functions. The third variant showed that attackers can infer branch target addresses when setting
segmentation limits with a byte-level granularity, which can directly bypass existing control flow
obfuscation hardening techniques [59].

5.2 CPU Cache-based Attacks

Compared with noise-free page table attacks [53, 91, 95, 99], CPU cache attacks [5, 17, 31, 69,
82] suffer from noise but have finer utilization granularity. Götzfried et al. [31] claimed to first
demonstrate that Intel SGX is vulnerable to cache-channel attacks. They selected CPU cache as
an attack surface to obtain cache access pattern, thereby breaking the confidentiality of enclave
data. They adopted a root-level cache-timing method based on a Prime + Probe method to conduct
attacks on AES implementations running inside SGX enclaves. It is assumed that the source code
of victim application is publicly available to attackers. Götzfried et al. put a single T-table (1 KB) in
64 cache sets so that all cache sets are different for each cache line, and they can exploit access to a
cache set roughly equivalent to access to a cache line. Moreover, Götzfried et al. utilized the Intel
performance monitoring counters (PMCs) to obtain a perfect measurement for cache hits or cache
misses, which could provide more accurate information compared with using time-stamp counters.
They also utilized a shared memory to make a victim application not leave enclave mode and
utilized control flags to reduce synchronization efforts. Considering that, whenever the enclave
mode switch occurs, all the memory abstractions of the current process will be replaced by the
ones of the next process. Götzfried et al. pinned an attacker thread and a target thread on a same
physical core. The result of their experiment result suggests that their attacks could retrieve an
AES key within an average of 480 times of encryption.

Almost at the same time, similar works [5, 69, 82] on cache attacks against the SGX were pro-
posed. Moghimi et al. [69] designed an attack tool named CacheZoom, which can virtually track
memory accesses of enclaveswith high precision. They selected L1-Data Cache as an attack surface.
The CacheZoom could interrupt the victim every few memory accesses, thus launching a Prime
+ Probe attack in Cache-L1 to obtain high-resolution information from a cache access pattern. It
is assumed that the source code of a victim application is publicly available to attackers. Similar
to [31], this attack vector relies on core isolation and cache isolation to reduce noise. Specifically,
there are two highlights. First, they proposed to isolate a malicious process and the execution of a
target enclave from other running operations to reduce side channel noise; specifically, they spec-
ified one dedicated physical core to implement attacks, while all other operations, including OS
operations and interrupts, are isolated from that dedicated physical core. Second, they proposed
to conduct attacks on small execution units to get clean memory traces; they utilized the local Ad-
vanced Programmable Interrupt Controller (APIC) programmable interrupt to reduce the number
of memory accesses between two malicious interrupts. With these two improvements on existing
cache timing attack vectors, they demonstrated that the CacheZoom can be used to extract keys
from almost all major AES implementations, and even those using prefetch every round as a coun-
termeasure have no exception. However, interrupting the target process frequently incurs a large
number of AEXs, making it easy to be detected by some existing countermeasures [10, 90].

Schwarz et al. [82] demonstrated a brand-new cache timing attack vector from a malicious en-
clave that targets co-located enclaves, while other cache timing attacks execute malicious codes
in non-enclave regions. Three highlights of their work can be seen as follows: First, their work is
the first one to abuse SGX security features to conceal malicious software. Specifically, they per-
formed a Prime + Probe attack on a co-located enclave running an RSA implementation by using
a constant-time multiplication primitive. Because all malicious codes are stored inside an enclave,

ACM Computing Surveys, Vol. 54, No. 6, Article 126. Publication date: July 2021.

126:22 S. Fei et al.

it is extremely hard for an anti-virus software and even a monitoring software in ring 0 to detect
the malicious codes. Second, they developed a high-accurate timing measurement technology for
Intel CPU to improve side-channel resolution. Third, they combined DRAM and cache-channel to
design a brand new method to recover physical address bits without page size assumptions. With
these three improvements in attack design, their attack vector could bypass the protection against
side-channel attacks that uses a constant-time multiplication primitive. Different from other CPU
cache-based attacks [5, 17, 31, 69], DRAM is also utilized by [82] as an attack surface. The source
code of a victim is assumed to be publicly available to attacks. Attackers exploits a cache access
pattern to break the confidentiality of enclave data. Specially, their experiment result shows that
96% of a 4096-bit RSA private key can be extracted from a single Prime + Probe trace and full key
recovery can be accomplished within 11 traces.
Brasser et al. [5] proposed novel cache-timing attack techniques tailored for Intel SGX, which

are easier to implement than other existing cache-timing attacks on SGX. They selected L3-Cache
as the attack surface and launched attacks on RSA decryption and genome indexing. Theirattacks
are hard to detect or prevent by proposed countermeasures [10, 90], which is superior to [69].
Their attacks assume that the source code of victim application is publicly available to attackers
and that the attackers can pin both an attacker thread and a victim thread in the same physical
CPU core. Specifically, there are two highlights in their work. First, their proposed attack vector
enables both the malicious process and the target enclave to be executed in parallel; therefore,
the target enclave is unaware of the malicious process. Second, they utilized the capabilities of
privileged attackers to designate the target enclave to a dedicated physical core, reduce benign
interrupts, and perform high-resolution cache monitoring with CPU performance counters. These
measures significantly facilitate reducing noise in cache monitoring. With this attacker vector,
attackers can break the confidentiality of enclave data by exploiting cache access patterns. More
specifically, two different experiments were performed in [5]. One revealed 70% of 2,048-bit RSA
key, the other extracted sensitive information from genome data analysis.
Dall et al. [17] showed another type of leakage in the implementation of the EPID protocol,

which is highly sensitive for enclave remote attestation. They proposed to recover long-term se-
crets of SGX EPID with cache attacks. The EPID protocol is to make sure that the host where
the security-critical computation execution cannot be identified by an attestation provider. Their
attack vector is based on the assumption that the source code of victim application is publicly
available to attackers. Their attack method is similar to [69], based on which they further explored
the security of the EPID protocol. The similarities shared by [17] and [69] can be seen as follows.
First, they let victim and attacker codes run as a process in two threads on an isolated physical core,
which removes noise from other irrelevant operations. Second, in [17], the time interrupt handler
is configured to be triggered within a very short time interval, while in [69], attacks are conducted
on small execution units. These two measures both facilitate reducing noises. In addition to these
two similarities, the attack raised in [17] has another highlight: it configures the processor to op-
erate on a constant frequency, which makes time measurements more accurate to reduce noises.
With these noise-reducing measures, attackers can exploit the cache access pattern to break the
sealing and attestation mechanism of SGX.

5.3 Branch Prediction-based Attacks

Apart from the address translation-based attacks and the CPU cache-based attacks, some re-
searchers have been exploiting the CUP internal structure for discovering security vulnerabili-
ties that can be leveraged to conduct attacks with finer granularity. So far, the work on abusing
the inner structure of CPU to conduct side-channel attacks mainly revolves around exploiting
the branch prediction unit (more specifically, the BTB, the PHT, and the RSB). Compared with

ACM Computing Surveys, Vol. 54, No. 6, Article 126. Publication date: July 2021.

Security Vulnerabilities of SGX and Countermeasures: A Survey 126:23

the address translation-based attacks and the CPU cache-based attacks, the branch prediction-
based attacks have two advantages: one is that the branch prediction-based attacks can bypass
some existing well-known countermeasures against the address translation-based attacks and the
CPU cache-based attacks; the other is that the utilization granularity of branch prediction attack
is finer-grained than aforementioned two types of side-channel attacks, which could be up to an
instruction-level.

5.3.1 BTB-Based Attack. To meet the rollback requirement for mispredictions, Intel provides
the last branch record (LBR) to profile branch execution. Lee et al. [59] made a point that these
changes on the processor indeed improves the efficiency but provides a huge attack surface for
side-channel attacks. When the enclave mode switches, the jump prediction records remained
in the LBR are not cleared. This allows non-enclave applications to construct a program to test
these branch prediction records. Through comparing time difference, an attacker can speculate
on branch prediction and then obtain a control flow graph of the enclave operations. With the
control flow graph, the attacker can further speculate on private data, such as cryptographic keys
and some other sensitive data. In [59], Lee et al. developed a technique, called branch shadowing,
to infer the control flow graph inside the enclave. Their proposed attack vector is based on an
assumption that the source code of victim application is publicly available to attackers. The attack
vector is based on a fact that the branch history (taken or not-taken branches) is not cleared when
enclave mode switches. The branch history leaks fine-grained traces of a process that can be lever-
aged by an adversary to infer sensitive information. They developed an LBR-based branch history
inferring technique to overcome a noise issue when exploiting fine-grained control flow leakage.
Besides, an advanced programmable interrupt controller (APIC)-based technique was proposed
to conduct sophisticated control on the enclave. Lee et al. exploited instruction trace to break the
confidentiality of enclave data. Specifically, their attack experiment against RSA demonstrates that
they can extract private keys with an accuracy of 99.8%.
Apart from abusing the LBR, a Spectre-extended attack, called SgxPectre [9], is also classified into

the BTB attack category. In 2018, Kocher et al. [54] proposed an innovative attack vector, dubbed
Spectre attack, which tricks a victim to execute speculative operations that could cause sensitive
information leakage. The Spectre attack has two variants: bounds check bypass and branch target
injection. The first variant relies on the conditional branch prediction. More specifically, the first
variant is to leverage the fact that misprediction of the conditional branch can cause out-of-bounds
memory accesses, thereby inducing implicit caching (loading a particular memory address to CPU
cache). Attackers can utilize the cache channel to exploit the implicit caching and obtain sensitive
information. The second variant relies on the indirect branch prediction. The intuition behind this
variant is that the BTB could be manipulated by the adversary so that the target address can be
misdirected to particular code that could never be executed by a normal control flow. Likewise,
attackers can abuse the cache channel to obtain sensitive information. Chen et al. [9] proposed the
SgxPectre attack, which exploits a speculative execution channel to compromise the confidentiality
of SGX enclaves. Their proposed attack vector selects both CPU cache and BTB as attack surfaces.
Attackers exploit cache access pattern and memory content to break the confidentiality of enclave
data and the sealing and the attestation mechanism. They demonstrated that the control flow of
the enclave program could be temporarily controlled to execute particular instructions that may
cause cache-state changes. And these changes can be leveraged by attackers to obtain sensitive
information inside the enclave memory. Simply speaking, an SgxPectre attack contains five steps.
The first step is to poison the BTB (i.e., manipulating the BTB, so that a particular predicted branch
target address may leak secrets when enclave program executes the branch instructions). The
second step is to increase the probability of executing the secret-leaking branch instructions. The

ACM Computing Surveys, Vol. 54, No. 6, Article 126. Publication date: July 2021.

126:24 S. Fei et al.

third step is to set the registers that will be used by the secret-leaking instructions. The fourth
step is to trigger the enclave code. The last step is to obtain sensitive information by exploiting
cache channels (specifically, leveraging the Flush+Reload attack vector). Chen et al. showed that
the SgxPectre attack can be used to steal seal keys and attestation keys from Intel signed quoting
enclaves.

5.3.2 PHT-Based Attack. In 2018, Evtyushkin et al. [21] proposed BranchScope, which is
claimed to be the first attack vector exploiting the directional branch predictor (more specifically,
the PHT) as an attack surface. They demonstrated BranchScope on three types of Intel processors
and showed that BranchScope can be extended to attack SGX-enabled systems with lower error
rates than attacking normal systems. However, three primary assumptions need to be satisfied.
The first assumption is that the attacker and the target programs run on the same physical core,
which is similar to the core isolation mentioned in Section 3. The second is that the victim process
needs to be slowed down so that the attacker can obtain high-resolution information leakage. The
third assumption is that the attacker should be able to trigger the execution of a large number of
branches so that a particular vulnerable branch can be activated before each detection. Evtyushkin
et al. argued that these primary assumptions can be satisfied in a large number of realistic scenarios.
However, it should not be ignored that these assumptions could incur some side effects that could
be exploited to design protection mechanisms. For example, the slowdown of the target program
and considerable communication overhead caused by triggeringmany branches could be leveraged
as indicators of PHT attacks. In 2020, Huo et al. [44] proposed Bluethunder, which is an evolution-
ary version of the BranchScope, creating collisions in a 2-level predictor to generate information
leakage. Bluethunder makes improvements regarding the aforementioned third assumption in the
BranchScope. Triggering the 2-level predictor only once is enough in a BranchScope attack, while
the Bluethunder attack requires executing a large number of branches to activate a bimodel pre-
dictor. Consequently, the Bluethunder attack is 52× faster than the BranchScope attack. Both the
BranchScope attack and the Bluethunder attack rely on exploiting instruction trace to break the
confidentiality of enclave execution.

5.3.3 RSB-Based Attack. While the aforementioned SgxPectre attacks [9] rely on the BTB,
Koruyeh et al. [56] proposed another attack vector similar to the Spectre attack, dubbed Spec-
treRSB, which exploits the RSB and CPU cache as attack surfaces. Their proposed attack vector
causes page access pattern leakage and instruction trace leakage, thus break the confidentiality
of enclave execution. They demonstrated a situation that an attacker pollutes the RSB with a tar-
get address that points to a malicious payload gadget (i.e., a sequence of malicious instructions).
Then, the attacker invokes a particular enclave call to switch its trusted execution mode. The
particular enclave call may have an unmatched return that could give rise to speculative execu-
tion at the target address that is pointed to the malicious payload gadget. At last, the attacker
can exploit the cache channel to infer the leakage. Koruyeh et al. showed that their attack could
bring great security risks to SGX-enabled systems, even those fully patched machines with no
exception.

5.3.4 OTE-Based Attack. As mentioned in Section 4, the out-of-order execution-based attack
is on top of a fact that the results of particular unauthorized memory accesses can be available
to particular out-of-order transient executed instructions, before the processor issues faults and
reverses those incorrectly executed micro-ops. However, the SGX does not issue any faults, it
just leverages abort page semantics [14] to cope with those incorrectly executed micro-ops. In
2018, Van Bulck et al. [94] proposed a software-only micro-architectural attack vector, called

ACM Computing Surveys, Vol. 54, No. 6, Article 126. Publication date: July 2021.

Security Vulnerabilities of SGX and Countermeasures: A Survey 126:25

Foreshadow, which is able to break the security objectives of recent SGX-enabled implementations.
This attack vector selects the CPU cache as an attack surface, and exploits both cache access
pattern and memory content to break the confidentiality of enclave execution. Unlike the afore-
mentioned published attacks, the Foreshadow does not make any assumptions, and attackers even
do not need kernel-level access to the target SGX-enabled implementations. Based on the abuse of
the out-of-order transient execution vulnerability, they designed an innovative method to reveal
enclave-sensitive information from the CPU cache channel. Their experiment demonstrated that
their attack vector can be used to reveal full cryptographic keys form SGX enclaves.

5.4 Enclave Software Attacks

5.4.1 ROP Attack. In 2017, Lee et al. [58] proposed a practical technique, called Dark-ROP,
which could be exploited to conduct ROP attacks in an enclave environment. As already men-
tioned in Section 4, solid hardware protection makes it hard to launch ROP attacks against SGX
implementations. To overcome this difficulty, Lee et al. [58] built several oracles to indicate the
status of enclave execution. Moreover, they exfiltrated the data and code of enclave into a shadow
application to emulate controlling the enclave execution environment. This attack vector breaks
both the confidentiality guarantee and the sealing and attestation mechanism of SGX. Specifi-
cally, their experiments showed that with the Dark-ROP attack vector, an attacker can cheat
the SGX hardware to reveal secret keys in the enclave and even defeat the remote attestation
mechanism.

5.4.2 Enclave Interface Attack. In 2018, Wang et al. [97] first presented enclave interface attacks
against SGX-powered applications. Their work selects enclave software interface (ECALL/OCALL)
as attack surfaces and exploits interface invocation patterns to obtain secrets about enclave input
parameters. There are two main phases in performing such enclave interface attacks: collecting
the enclave interface invocation patterns (e.g., input parameters sizes and function invocation de-
lay) and analyze the collected patterns. To prove the effectiveness of their proposed attacks, Wang
et al. [97] performed enclave interface attacks against SGX-assisted network function virtualiza-
tion (NFV) platforms. Their experiments were based on two necessary conditions as follows: First,
the attacker runs the victim code on an isolated CPU core to improve the measurement accuracy of
enclave interface invocation delay. Second, the attacker needs to analyze the victim code in detail
to obtain the required information. Their experiment proves that their proposed enclave interface
attacks can cause interface revocation pattern leakage and break the confidentiality of enclave
data.

5.5 Hardware Attack

DoS Attack. To prevent hardware-level data disclosure, the SGX leverages encryption and integrity
checking mechanisms to provide a security guarantee. A memory encryption engine (MEE) is
applied to ensure that all data reside in the enclave memory are encrypted. Besides, the MME
also maintains an integrity tree that is updated when the enclave data is transferred outside the
processor. The MME checks the integrity tree whenever the memory controller (MC) loads data
from DRAM to the processor. Once a mismatch on the integrity tree is detected, the MEE will lock
theMC and terminate thewhole processor , which is dubbed as a drop-and-lock policy [36]. In 2017,
Jang et al. [50] proposed a type of DoS attack vector, called SGX-bomb, which selects DRAM as an
attack surface to break the usability of SGX. Specifically, they exploited the RowHammer bug that
causes bit flips inside the enclave memory, which renders the failure of data integrity check, and
subsequently leads to the lock-down of a target system. Their experiment in a real environment

ACM Computing Surveys, Vol. 54, No. 6, Article 126. Publication date: July 2021.

126:26 S. Fei et al.

T
a
b
le
3.

C
o
m
p
a
ri
so
n
o
f
P
u
b
li
sh
ed

A
tt
a
ck
s
a
g
a
in
st
S
G
X
S
ec
u
ri
ty

V
u
ln
e
ra
b
il
it
ie
s

A
tt
a
ck

s
C
o
u
n
te
rm

e
a
su

re
s

T
y
p
e
R
e
f

A
tt
a
ck

su
rf
a
ce
s

N
e
ce
ss
a
ry

co
n
d
it
io
n
s

D
ir
e
ct

o
u
tc
o
m
e
s

C
o
m
p
ro
m
is
e
d

o
b
je
ct
iv
e
s

R
e
fe
re
n
ce
s

P
T
SE

C
C

D
R
A
M

B
T
B
P
H
T
R
SB

E
I
A
V
C

C
O
I
C
A
I

M
S

PA
P
C
A
P
IN

T
M
C

E
II
P
C
O

A
S

U
S

A
d
d
re
ss

tr
a
n
sl
a
ti
o
n

P
F

[9
9]

[1
,4
,1
0,
84
,9
0,
91
]

[9
1]

[1
,4
,1
0,
84
,9
0,
91
]

FL

[9
5]

[1
,4
]

[5
3]

[1
,4
]

[3
7]

[1
,4
]

SE
[3
9]

[1
,4
]

C
P
U
ca
ch

e
C
C

[3
1]

[1
,4
,3
3]

[6
9]

[1
,4
,3
3]

[8
2]

[1
,4
,3
3]

[5
]

[1
,4
,3
3]

[1
7]

[1
,4
,3
3]

B
ra
n
ch

p
re
d
ic
ti
o
n

B
T
B

[5
9]

[1
]

[9
]

[1
]

P
H
T

[2
1]

[1
]

[4
4]

[1
]

R
SB

[5
6]

[1
]

O
T
E

[9
4]

[1
]

E
n
cl
a
v
e

so
ft
w
a
re

R
O
P

[5
8]

[8
4]

E
I

[9
7]

\
H
a
rd
w
a
re

D
D
o
S
[5
0]

\

d
en
o
te
s
a
co
rr
es
p
o
n
d
in
g
cr
it
er
io
n
is
sa
ti
sfi
ed

in
a
sp
ec
ifi
c
at
ta
ck
;

d
en
o
te
s
a
co
rr
es
p
o
n
d
in
g
cr
it
er
io
n
is
n
o
t
sa
ti
sfi
ed

in
a
sp
ec
ifi
c
at
ta
ck
;\

d
en
o
te
s
th
er
e
is
n
o
ex
is
ti
n
g
co
u
n
te
rm

ea
su
re

co
u
ld

th
w
ar
t
a
sp
ec
ifi
c
at
ta
ck
;P

T
:P

ag
e
T
ab
le
;

SE
:
Se
g
m
en
ta
ti
o
n
;
C
C
:
C
P
U
C
ac
h
e;
B
T
B
:
B
ra
n
ch

T
ar
g
et

B
u
ff
er
;
P
H
T
:
P
ag
e
H
is
to
ry

T
ab
le
;
R
SB

:
R
et
u
rn

St
ac
k
B
u
ff
er
;
E
I:
E
n
cl
av
e
In
te
rf
ac
e;
A
V
C
:
A
n
al
y
si
s
o
f
V
ic
ti
m

C
o
d
e;
C
O
I:
C
O
re

Is
o
la
ti
o
n
;
C
A
I:
C
A
ch
e
Is
o
la
ti
o
n
;
M
S:
M
em

o
ry

Sh
ar
in
g
;

PA
P
:P

ag
e
A
cc
es
s
P
at
te
rn

le
ak
ag
e;
C
A
P
:C

ac
h
e
A
cc
es
s
P
at
te
rn

le
ak
ag
e;
IN

T
:I
n
st
ru
ct
io
n
T
ra
ce

le
ak
ag
e;
M
C
:M

em
o
ry

C
o
n
te
n
t
le
ak
ag
e;
E
II
P
:E

n
cl
av
e
In
te
rf
ac
e
In
n
o
v
at
io
n
P
at
te
rn

le
ak
ag
e;
C
O
:C

o
n
fi
d
en
ti
al
it
y
;A

S:
A
tt
es
ta
ti
o
n
Se
cu
ri
ty
;U

S:

U
sa
b
il
it
y.

ACM Computing Surveys, Vol. 54, No. 6, Article 126. Publication date: July 2021.

Security Vulnerabilities of SGX and Countermeasures: A Survey 126:27

with DDR4 DRAM showed that hanging the entire target system requires 283 seconds when using
the default DRAM refresh rate.

6 COUNTERMEASURES TO PROTECT SGX

In this section, we review and compare existing countermeasures that are used to mitigate the
aforementioned published attacks on SGX by applying the criteria proposed in Section 3.2. The re-
view result is summarized in Table 4. These reviewed countermeasures are almost self-categorized,
we group them into four categories according to the features of defense strategies.

6.1 Deterministic Multiplexing

To defend the SGX-enabled implementations against the page-fault driven attacks, Shinde et al.
[91] proposed a security property, called page-fault obliviousness (PF-obliviousness), which requires
that the input data do notmake any change on the number of allocated pages. This property assures
that no sensitive information leakage could be obtained by only observing page faults. A software
countermeasure (compiling-based), called deterministic multiplexing [91], was designed to exhibit
the same page-fault access pattern whatever the input value was. To be specific, the target program
is modified to access all the input-dependent data and code pages proactively in the same sequence,
which is independent of the input value. Such a type of software-based countermeasure could
thwart the page-fault driven attacks to some extent; however, the native implementation of this
countermeasure could lead to an overhead of almost 705× on average and maximum 4000×. To
address the overhead problem, Shinde et al. [91] also proposed a hardware-assisted solution, which
can reduce overhead to 6.77%.

6.2 Anomaly Detection

In 2016, Chiappetta et al. [12] investigated that it is feasible to use a Performance Monitor-

ing Counter (PMC) to detect cache anomalies as an indicator of on-going cache-channel attacks.
However, this defense strategy is infeasible for the SGX-enabled implementations, considering that
the SGX’s strong threat model assumes that an attacker could disable the PMC. While determinis-
tic page multiplexing techniques lead to huge performance degradation; a commodity component
of the Intel processor, called Transnational Synchronization Extensions (TSX) [78], was ex-
ploited to mitigate the SGX’s page table security threats. Simply put, the TSX was implemented to
handle all exceptions or interrupts in the core component of processors, leading to terminations
of erroneous ongoing transactions. Considering that the TSX does not allow any notification of
errors to the OS, the underlying OS cannot know whether a page fault occurs during the execu-
tion of the transaction. Shih et al. [90] proposed a novel enclave design based on this interesting
property of the TSX, called T-SGX, which transforms enclave programs to redirect all exceptions
and interrupts to a specific page. When an error occurs, a user-space fallback handler will be trig-
gered, which can bypass the underlying OS. The fallback handler can determine whether the latest
access on a particular page has triggered a page fault. If a page fault is detected, the ongoing pro-
gram will be terminated. Furthermore, the page fault will not be exposed to the underlying OS.
More specifically, the Low Level Virtual Machine (LLVM) compiler-based T-SGX needs to sat-
isfy three design requirements. First, for T-SGX implementations, all code and pages should be
wrapped with the TSX. Second, T-SGX implementations should isolate a specific page for a fall-
back handler from other program’s data and code pages, so that the OS cannot obtain any useful
information from errors. Third, T-SGX implementations need to split a target program into small
blocks that satisfy the TSX caches constraints (TSX is sensitive to cache usage). The experimen-
tal results shown in [90] demonstrated that the T-SGX can be applied to defend three page-fault

ACM Computing Surveys, Vol. 54, No. 6, Article 126. Publication date: July 2021.

126:28 S. Fei et al.

driven attack cases (JPEG, Hunspell, and FreeType). However, the execution time would increase
40%, and the memory consumption would increase 30%.

Déjá vu [10] is another anomaly detection technique to thwart some privileged side-channel
attacks against the SGX, including the page-fault driven attacks. More specifically, such a software
framework proposed by Chen et al. [10] enables a shielded execution to check the execution time
of target programs at the granularity of the enclave execution path. Their proposed framework
can be used to time its executions steps, thereby detecting whether an exception or an interrupt
occurs (may lead to AEXs and context switches from user space to kernel space). Themain obstacle
of such a detection technique is that it lacks a reliable time measurement tool to measure the
path-level execution time. Because the strong security model of the SGX allows the OS (maybe
untrusted) to manipulate timers, which makes the timers untrusted. To make up for this deficiency,
Chen et al.[10] utilized the TSX to protect the software reference clock, to provide a trustworthy
time measurement resource. The transnational support provided by the TSX allows to construct a
software reference clock that will trigger a transaction termination when a reference-clock thread
is interrupted. The experiment results in [10] showed that the best policy for anomaly detection
is application-specific, even so, such anomaly detection techniques supported by Déjá vu can be
used to effectively thwart the page-fault driven attacks against the SGX.
Gruss et al. [33] accomplished another interesting anomaly detection work, dubbed Cloak,

which is an effective defending approach against CPU cache attacks. The Cloak utilizes Hardware
Transactional Memory (HTM) to prevent malicious observations on cache misses. The HTM was
commonly designed for high concurrency systems. Typically, the CPU caches are used to trace all
transaction changes. For example, the TSX (a representative HTM implementation) requires that
all memory accesses should be cached in CPU caches in a transaction period. The intuition behind
the cloak is to run potentially leaky programs in TSX-enabled transactions, thereby assuring that
all security-critical data and codes reside in a transaction memory. When a transaction succeeds,
sensitive control flows and data accesses are ensured to reside in the CPU caches. If not, erroneous
transaction will be terminated. Gruss et al. proved the efficacy of Cloak with several existing CPU
cache attacks against some particular implementations. They also showed that the run-time over-
head of Cloak is between −0.8% and +1.2% when executing low-memory tasks, but up to +248%
when running memory-intense tasks in SGX implementations.

6.3 Randomization

6.3.1 Code Randomization. Address Space Layout Randomization (ASLR) is a memory-
protection technique, which is primarily used to mitigate memory corruption attacks. The intu-
ition of the memory corruption attack is to abuse memory corruption vulnerabilities such as buffer
flow to modify control-flows or data flows, thereby running malicious codes. The ASLR makes the
OS randomly load data and codes, which makes it hard for attackers to infer the location of target
data and codes. In 2017, Seo et al. [84] proposed SGX-Shield, which is an innovative ASLR frame-
work tailored for the SGX. In an SGX-shield environment, a secure in-enclave loader is used to
bootstrap the memory space layout secretly with fine-grained randomization, which hides all sen-
sitive operations from potential attackers. To increase the degree of randomness of memory space
layout as much as possible, the target code was split into a set of individual randomization units
(RUs). The granularity of the RU is smaller than the pages. Each RU is loaded on a random address,
and the RU jumps are handled with additional branch instructions. Seo et al. implemented a pro-
totype of SGX-Shield on both the Windows OS and the Linux OS. Their experiment demonstrated
that the SGX-Shield can thwart the security threats caused by the memory corruption attacks,
because a great burden is imposed on attackers, particularly for the page-fault channel attackers.

ACM Computing Surveys, Vol. 54, No. 6, Article 126. Publication date: July 2021.

Security Vulnerabilities of SGX and Countermeasures: A Survey 126:29

T
a
b
le
4.

C
o
m
p
a
ri
so
n
o
f
E
xi
st
in
g
C
o
u
n
te
rm

ea
su
re
s
to

T
h
w
a
rt
A
tt
a
ck
s
a
g
a
in
st
S
G
X

C
o
u
n
te
rm

e
a
su

re
s

R
e
f
D
e
fe
n
d
in
g
st
ra
te
g
ie
s

P
ro
te
ct
io
n
sc
o
p
e

P
e
rf
o
rm

a
n
ce

o
v
e
rh

e
a
d

D
M

A
D

C
R

D
R

SC
M

P
FA

FL
A

SE
A

C
C
A

B
T
B
A

P
H
T
A

O
T
E
A

R
O
PA

D
D
o
SA

[9
1]

70
5×

o
n
av
er
ag
e
an
d
40
00
×
o
n
m
ax
im

u
m

[9
0]

50
%
o
n
av
er
ag
e

[1
0]

58
%
o
n
av
er
ag
e

[3
3]

24
8%

fo
r
m
em

o
ry
-i
n
te
n
si
v
e
ta
sk
s

[8
4]

7.
61
%
fo
r
co
m
m
o
n
m
ic
ro
b
en
ch
m
ar
k
s

[4
]

4.
36
×
w
it
h
o
u
t
re
ra
n
d
o
m
iz
at
io
n
an
d
fr
o
m

5×
to

11
×
u
si
n
g
re
ra
n
d
o
m
iz
at
io
n

[1
]

7.
61
%
fo
r
co
m
m
o
n
m
ic
ro
b
en
ch
m
ar
k
s

d
en
o
te
s
a
co
rr
es
p
o
n
d
in
g
cr
it
er
io
n
is
sa
ti
sfi
ed

in
a
sp
ec
ifi
c
co
u
n
te
rm

ea
su
re

ca
se
;

d
en
o
te
s
a
co
rr
es
p
o
n
d
in
g
cr
it
er
io
n
is
n
o
t
sa
ti
sfi
ed

in
a
sp
ec
ifi
c
co
u
n
te
rm

ea
su
re

ca
se
;D

M
:D

et
er
m
in
is
ti
c
M
u
lt
ip
le
x
in
g
;A

D
:A

n
o
m
al
y
D
et
ec
ti
o
n
;C

R
:

C
o
d
e
R
an
d
o
m
iz
at
io
n
;D

R
:D

at
a
R
an
d
o
m
iz
at
io
n
;S
C
M
:S
o
u
rc
e
C
o
d
e
M
o
d
ifi
ca
ti
o
n
.P

FA
:P

ag
e-
Fa
u
lt
-b
as
ed

A
tt
ac
k
;F
L
A
:F
au
lt
-L
es
s
p
ag
e
ta
b
le
-b
as
ed

A
tt
ac
k
;S
E
A
:S
eg
m
en
ta
ti
o
n
-b
as
ed

at
ta
ck
;C

C
A
:C

P
U
ca
ch
e-
b
as
ed

at
ta
ck
;B

T
B
A
:B

ra
n
ch

ta
rg
et

b
u
ff
er
-b
as
ed

at
ta
ck
;P

H
T
A
:P

ag
e
h
is
to
ry

ta
b
le
-b
as
ed

at
ta
ck
;O

T
E
A
:O

u
t-
o
f-
o
rd
er

tr
an
si
en
t
ex
ec
u
ti
o
n
-b
as
ed

at
ta
ck
s;
R
O
PA

:R
et
u
rn
-o
ri
en
te
d
-p
ro
g
ra
m
m
in
g
at
ta
ck
;D

D
o
SA

:D
R
A
M
-b
as
ed

D
o
S
at
ta
ck
.

ACM Computing Surveys, Vol. 54, No. 6, Article 126. Publication date: July 2021.

126:30 S. Fei et al.

6.3.2 Data Location Randomization. As mentioned above, the SGX-Shield techniques focus on
the randomization of codes and do not deal with data access pattern leakage. Therefore, the data
access leakage attacks [5, 17, 31, 69, 82] cannot be protected by the SGX-shield. Fortunately, a data
location randomization technique, called DR.SGX, as a countermeasure was proposed by Brasser
et al. [4]. This work could break the link between an attacker’s memory observations and a victim’s
data access patterns. Specifically, the DR.SGX is a compiler-based tool to permute data locations
at a fine granularity. To obtain secure and practical realization, Brasser et al. cleverly handled sev-
eral technical challenges as follows: First, to prevent attackers from deriving useful information
from the process of address permutation, they leveraged small-domain encryption and the CPU’s
hardware acceleration units (AES-NI) to enhance security. Second, considering repetitive access
patterns may cause correlation attacks, Brasser et al. applied periodic re-randomization of the en-
clave data, to hide repeated memory access patterns but at the cost of performance decrease. Their
evaluation results showed that the DR.SGX could incur 4.36× run-time overhead basically with re-
randomization. When utilizing different re-randomization rates, the incurred run-time overhead
ranged from 5× to 11×.

6.4 Source Code Modification

ORAM [30] is originally a popular cryptographic construct, which provides secure access chan-
nels to particular memory regions on untrusted servers. Secure access is achieved in the follow-
ing two ways. The first is to access multiple memory locations for each operation; the second is
to re-shuffle and re-encrypt the particular target memory regions with a random seed. Ahmad
et al. [1] proposed a system, called OBFUSCURO, providing program obfuscation by using the
SGX. The philosophy of OBFUSCURO is to enforce code executions and data accesses with ORAM
operations. Specifically, the OBFUSCURO first turns the original program layout into an ORAM-
compatible layout. Then, the OBFUSCURO needs to ensure that the target programs run for a
fixed time interval. Their evaluation results demonstrated that the OBFUSCURO can protect the
SGX implementations against nearly all side-channel attacks. Their experiments showed that the
OBFUSCURO incurs high run-time performance (83×on average). However, it is much faster than
most of the existing cryptographic obfuscation schemes.

7 OPEN ISSUES AND FUTURE DIRECTIONS

7.1 Open Issues

Based on the review and comparison of the existing works on published attacks and corresponding
countermeasures in Section 5 and Section 6, we sum up several open issues in the research of SGX
security as follows:
First, many published attacks are based on side-channel leakage (e.g., the leakage from page

tables, segmentation units, and CPU cache). These notorious attack surfaces that could cause side-
channel leakage have been thoroughly studied in both attack vectors and defending strategies.
There exist efficient countermeasures to thwart those well-known attack vectors. How to find
new uncovered attack surfaces that can be used to launch efficient side-channel attacks against
SGX is very difficult, but worth exploring by the research community.
Second, none of the existing countermeasures can thwart the DRAM-based DoS attack,

SGX-bomb [50]. The primary cause of the SGX-bomb is not the design flaw of SGX, but a hardware
bug called RowHammer. How to cope with the RowHammer bug that could cause bit flips in the
DRAM row remains to be an open issue worth being explored.
Third, the aforementioned three anomaly detection-based countermeasures [10, 33, 90] rely on

the Intel TSX, which can be used to support the atomic execution of security-critical regions of

ACM Computing Surveys, Vol. 54, No. 6, Article 126. Publication date: July 2021.

Security Vulnerabilities of SGX and Countermeasures: A Survey 126:31

programs. However, the Intel TSX has its limitations that it may be vulnerable to side-channel
attacks, which needs to be seriously studied further.
Fourth, constant execution flows and secret-independent memory accesses may be two feasible

approaches to thwart side-channel attacks against SGX security. Deterministic multiplexing tech-
nique such as [91] is an interesting attempt, but it leads to significant performance overhead. How
to design new deterministic multiplexing techniques to strike a balance between defense effect
and performance overhead is an open issue that should be solved in the future.

7.2 Future Directions

On top of the above-listed open issues, we further propose a series of future directions to guide
future research on SGX security.
Firstly, exploring new uncovered attack surfaces that can be leveraged to attack SGX implemen-

tations is a promising research direction, which could prompt the research community to design
new defending techniques to enhance the security of SGX. Moreover, most of the attack cases
reviewed in Section 5 only abuse one attack surface (including [99], [91], [95], [39], [31], [69],
[5], [17], [59], [21], [44], [94], [50]). Another promising research direction is to integrate newly
discovered attack surfaces with those well-known ones (e.g., page table, CPU cache, and branch
prediction table) to develop hybrid multi-level attack vectors with high precision.
Second, as mentioned above, the fundamental solution to thwart the DDoS attack on SGX like

SGX-bomb is to cope with the RowHammer bug. The target-row refresh (TRR) and the pseudo-
TRR (pTRR) techniques could be effective solutions tomake the DRAMbe free from the RowHam-
mer bug. However, these two solutions do not work with DRAMs that are not compatible with the
TRR and the pTRR extensions. Therefore, exploring new solutions to cope with the RowHammer
bug is a promising research direction.
Third, our reviewed anomaly detection countermeasures [10, 33, 90] are all dispensable on the

Intel TSX, which may be vulnerable to some uncovered side-channel attacks. Therefore, exploring
the security of Intel TSX could be an interesting research topic.
Fourth, deterministic multiplexing techniques can be used to prevent access pattern leakage,

which is an effective strategy to thwart the attacks caused by access pattern learning but suffers
from a high run-time overhead. Therefore, optimizing existing deterministic multiplexing tech-
niques or exploring other new ones is a very interesting research direction.

8 CONCLUSIONS

SGX-enabled processors have been widely used to provide security and trust guarantees for var-
ious computing systems and services. Although SGX is increasingly showing promising applica-
tion prospects in many areas, its security vulnerabilities (especially the side-channel threats) cast
a huge shadow over its widespread applications. In this survey, we first gave an overview of Intel
SGX. Subsequently, we proposed two sets of criteria for evaluating published attacks and exist-
ing countermeasures. After that, we proposed a taxonomy of the security vulnerabilities of SGX
and analyzed corresponding attack vectors. By employing our proposed evaluation criteria, we
reviewed and compared the published attacks and existing countermeasures, respectively. Based
on our serious review, we highlighted several open issues and proposed a series of interesting
directions to guide future research on SGX security.

REFERENCES

[1] Adil Ahmad, Byunggill Joe, Yuan Xiao, Yinqian Zhang, Byoungyoung Lee, and Insik Shin. 2019. OBFSCURO: A

commodity obfuscation engine on Intel SGX. In 26th Annual Network and Distributed System Security Symposium,

(NDSS 2019), (San Diego, CA, February 24-27, 2019).

ACM Computing Surveys, Vol. 54, No. 6, Article 126. Publication date: July 2021.

126:32 S. Fei et al.

[2] Ittai Anati, Shay Gueron, Simon Johnson, and Vincent Scarlata. 2013. Innovative technology for CPU-based attesta-

tion and sealing. In 2nd International Workshop on Hardware and Architectural Support for sScurity and Privacy.

[3] Naomi Benger, Joop Van de Pol, Nigel P. Smart, and Yuval Yarom. 2014. “Ooh aah... Just a little bit”: A small amount

of side channel can go a long way. In International Workshop on Cryptographic Hardware and Embedded Systems.

Springer, 75–92.

[4] Ferdinand Brasser, Srdjan Capkun, Alexandra Dmitrienko, Tommaso Frassetto, Kari Kostiainen, and Ahmad-Reza

Sadeghi. 2019. DR. SGX: Automated and adjustable side-channel protection for SGX using data location randomiza-

tion. In 35th Annual Computer Security Applications Conference. 788–800.

[5] Ferdinand Brasser, Urs Müller, Alexandra Dmitrienko, Kari Kostiainen, Srdjan Capkun, and Ahmad-Reza Sadeghi.

2017. Software grand exposure: SGX cache attacks are practical. In 11th USENIX Workshop on Offensive Technologies.

[6] Stefan Brenner, Colin Wulf, David Goltzsche, Nico Weichbrodt, Matthias Lorenz, Christof Fetzer, Peter Pietzuch,

and Rüdiger Kapitza. 2016. Securekeeper: Confidential zookeeper using Intel SGX. In 17th International Middleware

Conference. 1–13.

[7] Xingjuan Cai, Shaojin Geng, Di Wu, Jianghui Cai, and Jinjun Chen. 2020. A multi-cloud model based many-objective

intelligent algorithm for efficient task scheduling in Internet of Things. IEEE Internet of Things Journal (2020). https:

//doi.org/10.1109/JIOT.2020.3040019

[8] Sébastien Carré, Adrien Facon, Sylvain Guilley, Sofiane Takarabt, Alexander Schaub, and Youssef Souissi. 2019.

Cache-timing attack detection and prevention. In International Workshop on Constructive Side-Channel Analysis and

Secure Design. Springer, 13–21.

[9] Guoxing Chen, Sanchuan Chen, Yuan Xiao, Yinqian Zhang, Zhiqiang Lin, and Ten H. Lai. 2019. SgxPectre: Stealing

intel secrets from sgx enclaves via speculative execution. In 2019 IEEE European Symposium on Security and Privacy

(EuroS&P). IEEE, 142–157.

[10] Sanchuan Chen, Xiaokuan Zhang, Michael K. Reiter, and Yinqian Zhang. 2017. Detecting privileged side-channel

attacks in shielded execution with Déjá Vu. In 2017 ACM on Asia Conference on Computer and Communications

Security. 7–18.

[11] Yaxing Chen, Qinghua Zheng, Zheng Yan, and Dan Liu. 2020. QShield: Protecting outsourced cloud data queries with

multi-user access control based on SGX. IEEE Transactions on Parallel and Distributed Systems 32, 2 (2020), 485–499.

[12] Marco Chiappetta, Erkay Savas, and Cemal Yilmaz. 2016. Real time detection of cache-based side-channel attacks

using hardware performance counters. Applied Soft Computing 49 (2016), 1162–1174.

[13] Rafael C. R. Condé, Carlos A. Maziero, and Newton C. Will. 2018. Using intel SGX to protect authentication creden-

tials in an untrusted operating system. In 2018 IEEE Symposium on Computers and Communications (ISCC). IEEE,

00158–00163.

[14] Victor Costan and Srinivas Devadas. 2016. Intel SGX explained. IACR Cryptol. ePrint Arch. 2016, 86 (2016), 1–118.

[15] Victor Costan, Ilia Lebedev, and Srinivas Devadas. 2017. Secure processors Part I: Background, taxonomy for secure

enclaves and Intel SGX architecture. Foundations and Trends in Electronic Design Automation 11, 1–2 (2017), 1–248.

[16] Victor Costan, Ilia A. Lebedev, and Srinivas Devadas. 2017. Secure processors Part II: Intel SGX security analysis and

MIT sanctum architecture. Foundations and Trends in Electronic Design Automation 11, 3 (2017), 249–361.

[17] Fergus Dall, Gabrielle De Micheli, Thomas Eisenbarth, Daniel Genkin, Nadia Heninger, Ahmad Moghimi, and

Yuval Yarom. 2018. CacheQuote: Efficiently recovering long-term secrets of SGX EPID via cache attacks. IACR Trans.

Cryptogr. Hardw. Embed. Syst. 2018, 2 (2018), 171–191.

[18] Judicael B. Djoko, Jack Lange, andAdam J. Lee. 2019. NEXUS: Practical and secure access control on untrusted storage

platforms using client-side SGX. In 2019 49th Annual IEEE/IFIP International Conference on Dependable Systems and

Networks (DSN). IEEE, 401–413.

[19] Shi Dong, Khushnood Abbas, and Raj Jain. 2019. A survey on distributed denial of service (DDoS) attacks in SDN

and cloud computing environments. IEEE Access 7 (2019), 80813–80828.

[20] Qi Duan and Ehab Al-Shaer. 2013. Traffic-aware dynamic firewall policy management: Techniques and applications.

IEEE Communications Magazine 51, 7 (2013), 73–79.

[21] Dmitry Evtyushkin, Ryan Riley, Nael CSE and ECE Abu-Ghazaleh, and Dmitry Ponomarev. 2018. Branchscope: A

new side-channel attack on directional branch predictor. ACM SIGPLAN Notices 53, 2 (2018), 693–707.

[22] Ben Fisch, Dhinakaran Vinayagamurthy, Dan Boneh, and Sergey Gorbunov. 2017. Iron: Functional encryption using

Intel SGX. In 2017 ACM SIGSAC Conference on Computer and Communications Security. 765–782.

[23] Tommaso Frassetto, David Gens, Christopher Liebchen, and Ahmad-Reza Sadeghi. 2017. Jitguard: Hardening just-in-

time compilers with SGX. In 2017 ACM SIGSAC Conference on Computer and Communications Security. 2405–2419.

[24] Benny Fuhry, Lina Hirschoff, Samuel Koesnadi, and Florian Kerschbaum. 2020. SeGShare: Secure group file sharing in

the cloud using enclaves. In 2020 50th Annual IEEE/IFIP International Conference on Dependable Systems and Networks

(DSN). IEEE, 476–488.

ACM Computing Surveys, Vol. 54, No. 6, Article 126. Publication date: July 2021.

https://doi.org/10.1109/JIOT.2020.3040019

Security Vulnerabilities of SGX and Countermeasures: A Survey 126:33

[25] Keke Gai and Meikang Qiu. 2017. An optimal fully homomorphic encryption scheme. In 2017 IEEE 3rd International

Conference on Big Data Security on Cloud (bigdatasecurity). IEEE, 101–106.

[26] Daniel Genkin, Lev Pachmanov, Itamar Pipman, and Eran Tromer. 2015. Stealing keys from PCs using a radio: Cheap

electromagnetic attacks on windowed exponentiation. In International Workshop on Cryptographic Hardware and

Embedded Systems. Springer, 207–228.

[27] Daniel Genkin, Itamar Pipman, and Eran Tromer. 2015. Get your hands off my laptop: Physical side-channel key-

extraction attacks on PCs. Journal of Cryptographic Engineering 5, 2 (2015), 95–112.

[28] Daniel Genkin, Adi Shamir, and Eran Tromer. 2014. RSA key extraction via low-bandwidth acoustic cryptanalysis.

In Annual Cryptology Conference. Springer, 444–461.

[29] Craig Gentry and Dan Boneh. 2009. A Fully Homomorphic Encryption Scheme. Vol. 20.

[30] Oded Goldreich and Rafail Ostrovsky. 1996. Software protection and simulation on oblivious RAMs. Journal of the

ACM (JACM) 43, 3 (1996), 431–473.

[31] Johannes Götzfried, Moritz Eckert, Sebastian Schinzel, and Tilo Müller. 2017. Cache attacks on Intel SGX. In Proceed-

ings of the 10th European Workshop on Systems Security. 1–6.

[32] Trusted Computing Group et al. 2011. Trusted Computing Group. TPMmain specification level 2 version 1.2, revision

116.

[33] Daniel Gruss, Julian Lettner, Felix Schuster, Olya Ohrimenko, Istvan Haller, and Manuel Costa. 2017. Strong and

efficient cache side-channel protection using hardware transactional memory. In 26th USENIX Security Symposium

(USENIX Security 17). 217–233.

[34] Daniel Gruss, Clémentine Maurice, KlausWagner, and Stefan Mangard. 2016. Flush+ Flush: A fast and stealthy cache

attack. In International Conference on Detection of Intrusions and Malware, and Vulnerability Assessment. Springer,

279–299.

[35] Daniel Gruss, Raphael Spreitzer, and Stefan Mangard. 2015. Cache template attacks: Automating attacks on inclusive

last-level caches. In 24th USENIX Security Symposium (USENIX Security’15). 897–912.

[36] Shay Gueron. 2016. Memory encryption for general-purpose processors. IEEE Security & Privacy 14, 6 (2016), 54–62.

[37] David Gullasch, Endre Bangerter, and Stephan Krenn. 2011. Cache games–bringing access-based cache attacks on

AES to practice. In 2011 IEEE Symposium on Security and Privacy. IEEE, 490–505.

[38] Berk Gülmezoğlu, Mehmet Sinan Inci, Gorka Irazoqui, Thomas Eisenbarth, and Berk Sunar. 2015. A faster and more

realistic flush+ reload attack on AES. In International Workshop on Constructive Side-Channel Analysis and Secure

Design. Springer, 111–126.

[39] Jago Gyselinck, Jo Van Bulck, Frank Piessens, and Raoul Strackx. 2018. Off-limits: Abusing legacy x86 memory

segmentation to spy on enclaved execution. In International Symposium on Engineering Secure Software and Systems.

Springer, 44–60.

[40] Muneeb Ul Hassan, Mubashir Husain Rehmani, and Jinjun Chen. 2019. DEAL: Differentially private auction for

blockchain-based microgrids energy trading. IEEE Transactions on Services Computing 13, 2 (2019), 263–275.

[41] Muneeb Ul Hassan, Mubashir Husain Rehmani, and Jinjun Chen. 2019. Privacy preservation in blockchain based

IoT systems: Integration issues, prospects, challenges, and future research directions. Future Generation Computer

Systems 97 (2019), 512–529.

[42] Matthew Hoekstra, Reshma Lal, Pradeep Pappachan, Vinay Phegade, and Juan Del Cuvillo. 2013. Using innovative

instructions to create trustworthy software solutions. HASP@ ISCA 11, 10.1145 (2013), 2487726–2488370.

[43] ARM Holdings. 2009. ARM security technology: Building a secure system using trustzone technology. Retrieved on

June 10, 2021 from https://developer.arm.com/documentation/PRD29-GENC-009492/c?lang=en.

[44] Tianlin Huo, Xiaoni Meng, Wenhao Wang, Chunliang Hao, Pei Zhao, Jian Zhai, and Mingshu Li. 2020. Bluethunder:

A 2-level directional predictor based side-channel attack against SGX. IACR Transactions on Cryptographic Hardware

and Embedded Systems (2020), 321–347.

[45] Intel Corporation. 2004. Intel architecture software developers manual, volume 1: Basic architecture. IA-32 Intel

Architecture Software Developer’s Manuals

[46] Mehmet Sinan Inci, Berk Gulmezoglu, Gorka Irazoqui, Thomas Eisenbarth, and Berk Sunar. 2016. Cache attacks

enable bulk key recovery on the cloud. In International Conference on Cryptographic Hardware and Embedded Systems.

Springer, 368–388.

[47] Gorka Irazoqui, Thomas Eisenbarth, and Berk Sunar. 2015. A shared cache attack that works across cores and defies

VM sandboxing and its application to AES. In 2015 IEEE Symposium on Security and Privacy. IEEE, 591–604.

[48] Gorka Irazoqui, Thomas Eisenbarth, and Berk Sunar. 2016. Cross processor cache attacks. In 11th ACM on Asia

Conference on Computer and Communications Security. 353–364.

[49] Gorka Irazoqui, Mehmet Sinan Inci, Thomas Eisenbarth, and Berk Sunar. 2014. Wait a minute! A fast, Cross-VM

attack on AES. In International Workshop on Recent Advances in Intrusion Detection. Springer, 299–319.

ACM Computing Surveys, Vol. 54, No. 6, Article 126. Publication date: July 2021.

https://developer.arm.com/documentation/PRD29-GENC-009492/c?lang=en

126:34 S. Fei et al.

[50] Yeongjin Jang, Jaehyuk Lee, Sangho Lee, and Taesoo Kim. 2017. SGX-Bomb: Locking down the processor via Rowham-

mer attack. In 2nd Workshop on System Software for Trusted Execution. 1–6.

[51] Jeremy Powell David Kaplan, Jeremy Powell, and Tom Woller. 2016. AMD memory encryption, white paper.

[52] Vishal Karande, Erick Bauman, Zhiqiang Lin, and Latifur Khan. 2017. SGX-LOG: Securing system logs with SGX. In

Proceedings of the 2017 ACM on Asia Conference on Computer and Communications Security. 19–30.

[53] Deokjin Kim, Daehee Jang, Minjoon Park, Yunjong Jeong, Jonghwan Kim, Seokjin Choi, and Brent Byunghoon Kang.

2019. SGX-LEGO: Fine-grained SGX controlled-channel attack and its countermeasure. Computers & Security 82

(2019), 118–139.

[54] Paul Kocher, Jann Horn, Anders Fogh, Daniel Genkin, Daniel Gruss, Werner Haas, Mike Hamburg, Moritz Lipp,

Stefan Mangard, Thomas Prescher, Michael Schwarz, and Yuval Yarom. 2019. Spectre attacks: Exploiting speculative

execution. In 2019 IEEE Symposium on Security and Privacy (SP). IEEE, 1–19. DOI:10.1109/SP.2019.00002
[55] Paul Kocher, Joshua Jaffe, and Benjamin Jun. 1999. Differential power analysis. In Annual International Cryptology

Conference. Springer, 388–397.

[56] Esmaeil Mohammadian Koruyeh, Khaled N. Khasawneh, Chengyu Song, and Nael Abu-Ghazaleh. 2018. Spectre re-

turns! Speculation attacks using the return stack buffer. In 12th USENIXWorkshop on Offensive Technologies (USENIX

WOOT 18).

[57] Roger Lai. 2013. AMD security and server innovation. UEFI PlugFest-March (2013), 18–22.

[58] Jaehyuk Lee, Jinsoo Jang, Yeongjin Jang, Nohyun Kwak, Yeseul Choi, Changho Choi, Taesoo Kim, Marcus Peinado,

and Brent Byunghoon Kang. 2017. Hacking in darkness: Return-oriented programming against secure enclaves. In

26th USENIX Security Symposium (USENIX Security 17). 523–539.

[59] Sangho Lee, Ming-Wei Shih, Prasun Gera, Taesoo Kim, Hyesoon Kim, and Marcus Peinado. 2017. Inferring fine-

grained control flow inside SGX enclaves with branch shadowing. In 26th USENIX Security Symposium (USENIX

Security 17). 557–574.

[60] Moritz Lipp, Daniel Gruss, Raphael Spreitzer, Clémentine Maurice, and Stefan Mangard. 2016. Armageddon: Cache

attacks on mobile devices. In 25th USENIX Security Symposium (USENIX Security’16). 549–564.

[61] Fangfei Liu, Yuval Yarom, Qian Ge, Gernot Heiser, and Ruby B. Lee. 2015. Last-level cache side-channel attacks are

practical. In 2015 IEEE Symposium on Security and Privacy. IEEE, 605–622.

[62] Gao Liu, Zheng Yan, Wei Feng, Xuyang Jing, Yaxing Chen, and Mohammed Atiquzzaman. 2021. SeDID: An SGX-

enabled decentralized intrusion detection framework for network trust evaluation. Information Fusion 70 (2021),

100–114.

[63] Yangdi Lyu and Prabhat Mishra. 2018. A survey of side-channel attacks on caches and countermeasures. Journal of

Hardware and Systems Security 2, 1 (2018), 33–50.

[64] Dinesh Raj Mahendran, Arshad Jamal, Rabab Alayham Abbas Helmi, and Mariam Aisha. 2018. Trusted computing

and security for computer folders. International Journal of Medical Toxicology & Legal Medicine 21, 3 and 4 (2018),

83–86.

[65] Hector Marco-Gisbert and Ismael Ripoll Ripoll. 2019. Address space layout randomization next generation. Applied

Sciences 9, 14 (2019), 2928.

[66] Sinisa Matetic, Moritz Schneider, AndrewMiller, Ari Juels, and Srdjan Capkun. 2018. Delegatee: Brokered delegation

using trusted execution environments. In 27th USENIX Security Symposium (USENIX Security 18). 1387–1403.

[67] Sinisa Matetic, Karl Wüst, Moritz Schneider, Kari Kostiainen, Ghassan Karame, and Srdjan Capkun. 2019. BITE:

Bitcoin lightweight client privacy using trusted execution. In 28th USENIX Security Symposium (USENIX Security 19).

783–800.

[68] FrankMcKeen, Ilya Alexandrovich, Alex Berenzon, Carlos V. Rozas, Hisham Shafi, Vedvyas Shanbhogue, and Uday R.

Savagaonkar. 2013. Innovative instructions and software model for isolated execution. Hasp@ isca 10, 1 (2013).

[69] AhmadMoghimi, Gorka Irazoqui, and Thomas Eisenbarth. 2017. Cachezoom: How SGX amplifies the power of cache

attacks. In International Conference on Cryptographic Hardware and Embedded Systems. Springer, 69–90.

[70] Morris Thomas. 2011. Trusted Platform Module. Encyclopedia of Cryptography and Security. Springer, Boston, MA.

https://doi.org/10.1007/978-1-4419-5906-5_796

[71] Bernard Ngabonziza, Daniel Martin, Anna Bailey, Haehyun Cho, and Sarah Martin. 2016. Trustzone explained: Ar-

chitectural features and use cases. In 2016 IEEE 2nd International Conference on Collaboration and Internet Computing

(CIC). IEEE, 445–451.

[72] Alexander Nilsson, Pegah Nikbakht Bideh, and Joakim Brorsson. 2020. A survey of published attacks on intel SGX.

arXiv preprint arXiv:2006.13598 (2020).

[73] Dag Arne Osvik, Adi Shamir, and Eran Tromer. 2006. Cache attacks and countermeasures: The case of AES. In

Cryptographers’ Track at the RSA Conference. Springer, 1–20.

[74] Peter Pessl, Daniel Gruss, Clémentine Maurice, Michael Schwarz, and Stefan Mangard. 2016. DRAMA: Exploiting

DRAM addressing for cross-cpu attacks. In 25th USENIX Security Symposium (USENIX Security’16). 565–581.

ACM Computing Surveys, Vol. 54, No. 6, Article 126. Publication date: July 2021.

10.1109/SP.2019.00002
https://doi.org/10.1007/978-1-4419-5906-5_796

Security Vulnerabilities of SGX and Countermeasures: A Survey 126:35

[75] Global Platform. 2013. Global platformmade simple guide: Trusted execution environment (tee) guide.Derniere visite

12, 4 (2013).

[76] Christian Priebe, Kapil Vaswani, and Manuel Costa. 2018. Enclavedb: A secure database using SGX. In 2018 IEEE

Symposium on Security and Privacy. IEEE, 264–278.

[77] Intel R. 2016. Software guard extensions SDK for Linux* OS, 2016. Citado na (2016).

[78] Ravi Rajwar and Martin Dixon. 2012. Intel transactional synchronization extensions. In Intel Developer Forum San

Francisco.

[79] Xiaoyu Ruan. 2014. Platform Embedded Security Technology Revealed. Springer Nature.

[80] Muhammad Sajjad, Ijaz Ul Haq, Jaime Lloret, Weiping Ding, and Khan Muhammad. 2019. Robust image hashing

based efficient authentication for smart industrial environment. IEEE Transactions on Industrial Informatics 15, 12

(2019), 6541–6550.

[81] Felix Schuster, Manuel Costa, Cédric Fournet, Christos Gkantsidis, Marcus Peinado, Gloria Mainar-Ruiz, and Mark

Russinovich. 2015. VC3: Trustworthy data analytics in the cloud using SGX. In 2015 IEEE Symposium on Security and

Privacy. IEEE, 38–54.

[82] Michael Schwarz, Samuel Weiser, Daniel Gruss, Clémentine Maurice, and Stefan Mangard. 2017. Malware guard

extension: Using SGX to conceal cache attacks. In International Conference on Detection of Intrusions and Malware,

and Vulnerability Assessment. Springer, 3–24.

[83] Mark Seaborn and Thomas Dullien. 2015. Exploiting the DRAM rowhammer bug to gain kernel privileges. Black Hat

15 (2015), 71.

[84] Jaebaek Seo, Byoungyoung Lee, Seong Min Kim, Ming-Wei Shih, Insik Shin, Dongsu Han, and Taesoo Kim. 2017.

SGX-Shield: Enabling address space layout randomization for SGX programs. In 24th Annual Network and Distributed

System Security Symposium, NDSS 2017, San Diego, California, USA, February 26 - March 1, 2017.

[85] SGX. 2017. Intel software guard extensions programming reference. (2017).

[86] Hovav Shacham, E. Buchanan, R. Roemer, and S. Savage. 2008. Return-oriented programming: Exploits without code

injection. Black Hat USA Briefings (August 2008) (2008).

[87] Vedvyas Shanbhogue, JasonW. Brandt, and JeffWiedemeier. 2015. Protecting information processing system secrets

from debug attacks. US Patent 8,955,144.

[88] Rupam Kumar Sharma, Hemanta Kumar Kalita, and Biju Issac. 2014. Different firewall techniques: A survey. In Fifth

International Conference on Computing, Communications and Networking Technologies (ICCCNT). IEEE, 1–6.

[89] Changxiang Shen, Huanguo Zhang, Huaimin Wang, Ji Wang, Bo Zhao, Fei Yan, Fajiang Yu, Liqiang Zhang, and

Mingdi Xu. 2010. Research on trusted computing and its development. Science China Information Sciences 53, 3 (2010),

405–433.

[90] Ming-Wei Shih, Sangho Lee, Taesoo Kim, and Marcus Peinado. 2017. T-SGX: Eradicating controlled-channel attacks

against enclave programs. In 24th Annual Network and Distributed System Security Symposium, NDSS 2017, San Diego,

California, USA, February 26 - March 1, 2017. The Internet Society.

[91] Shweta Shinde, Zheng Leong Chua, Viswesh Narayanan, and Prateek Saxena. 2015. Preventing your faults from

telling your secrets: Defenses against pigeonhole attacks. arXiv preprint arXiv:1506.04832 (2015).

[92] Shweta Shinde, Dat Le Tien, Shruti Tople, and Prateek Saxena. 2017. Panoply: Low-TCB linux applicationsWith SGX

enclaves. In 24th Annual Network and Distributed System Security Symposium, NDSS 2017, San Diego, California, USA,

February 26 - March 1, 2017. The Internet Society.

[93] Claudio Soriente, Ghassan Karame, Wenting Li, and Sergey Fedorov. 2019. Replicatee: Enabling seamless replication

of sgx enclaves in the cloud. In 2019 IEEE European Symposium on Security and Privacy (EuroS&P). IEEE, 158–171.

[94] Jo Van Bulck, Marina Minkin, Ofir Weisse, Daniel Genkin, Baris Kasikci, Frank Piessens, Mark Silberstein, Thomas F.

Wenisch, Yuval Yarom, and Raoul Strackx. 2018. Foreshadow: Extracting the keys to the intel SGX kingdom with

transient out-of-order execution. In 27th USENIX Security Symposium (USENIX Security 18). 991–1008.

[95] Jo Van Bulck, Nico Weichbrodt, Rüdiger Kapitza, Frank Piessens, and Raoul Strackx. 2017. Telling your secrets

without page faults: Stealthy page table-based attacks on enclaved execution. In 26th USENIX Security Symposium

(USENIX Security 17). 1041–1056.

[96] Marten Van Dijk, Craig Gentry, Shai Halevi, and Vinod Vaikuntanathan. 2010. Fully homomorphic encryption over

the integers. In Annual International Conference on the Theory and Applications of Cryptographic Techniques. Springer,

24–43.

[97] Jinwen Wang, Yueqiang Cheng, Qi Li, and Yong Jiang. 2018. Interface-based side channel attack against intel SGX.

arXiv preprint arXiv:1811.05378 (2018).

[98] Wenhao Wang, Guoxing Chen, Xiaorui Pan, Yinqian Zhang, XiaoFeng Wang, Vincent Bindschaedler, Haixu Tang,

and Carl A. Gunter. 2017. Leaky cauldron on the dark land: Understanding memory side-channel hazards in SGX. In

Proceedings of the 2017 ACM SIGSAC Conference on Computer and Communications Security. 2421–2434.

ACM Computing Surveys, Vol. 54, No. 6, Article 126. Publication date: July 2021.

126:36 S. Fei et al.

[99] Yuanzhong Xu, Weidong Cui, and Marcus Peinado. 2015. Controlled-channel attacks: Deterministic side channels

for untrusted operating systems. In 2015 IEEE Symposium on Security and Privacy. IEEE, 640–656.

[100] Yuval Yarom and Katrina Falkner. 2014. FLUSH + RELOAD: A high resolution, low noise, L3 cache side-channel

attack. In 23rd USENIX Security Symposium (USENIX Security’14). 719–732.

[101] Yuval Yarom, Daniel Genkin, and Nadia Heninger. 2017. CacheBleed: a timing attack on OpenSSL constant-time RSA.

Journal of Cryptographic Engineering 7, 2 (2017), 99–112.

[102] Peiter Charles Zatko and Dominic Rizzo. 2017. Trusted computing. US Patent 9,569,638.

[103] Huanguo Zhang, Wenbao Han, Xuejia Lai, Dongdai Lin, Jianfeng Ma, and Jianhua Li. 2015. Survey on cyberspace

security. Science China Information Sciences 58, 11 (2015), 1–43.

[104] Yinqian Zhang, Ari Juels, Michael K. Reiter, and Thomas Ristenpart. 2014. Cross-tenant side-channel attacks in PaaS

clouds. In Proceedings of the 2014 ACM SIGSAC Conference on Computer and Communications Security. 990–1003.

[105] Yahui Zhang, Min Zhao, Tingquan Li, and Huan Han. 2020. Survey of attacks and defenses against SGX. In 2020 IEEE

5th Information Technology and Mechatronics Engineering Conference (ITOEC). IEEE, 1492–1496.

[106] Wei Zheng, Ying Wu, Xiaoxue Wu, Chen Feng, Yulei Sui, Xiapu Luo, and Yajin Zhou. 2021. A survey of Intel SGX

and its applications. Frontiers of Computer Science 15, 3 (2021), 1–15.

Received October 2020; revised January 2021; accepted March 2021

ACM Computing Surveys, Vol. 54, No. 6, Article 126. Publication date: July 2021.

