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a b s t r a c t

Introducing new technologies in co-generation and tri-generation systems has led to a rapid growth
toward the energy hubs (EHs) as an effective way for coupling among various energy types. On the other
hand, the energy systems have usually been exposed to uncertain environments due to the presence of
renewable energy sources (RESs) and interaction with the electricity markets. Hence, this paper develops
a novel optimization framework based on a hybrid information gap decision theory (IGDT) and robust
optimization (RO) to handle the optimal self-scheduling of the EH within a medium-term horizon for
large consumers. The proposed mixed-integer linear programming (MILP) framework aims to capture
the advantages of both the IGDT and RO techniques in dealing with the complicated binary variables and
achieving the worst-case realization arisen from wind turbine generation and day-ahead (DA) electricity
market uncertainties. The RO optimization approach is presented to model the DA electricity price un-
certainty while the uncertainty related to the wind turbine generations is taken into account by the IGDT.
Numerical results validate the capability of the model facing uncertainties. The amount of total operation
cost of the EH increases by 8.6 % taking into account the worst-case realization of uncertainties through
the proposed hybrid IGDT-RO compared to the case considering perfect information. Besides, the results
reveal that optimal decisions can be taken by the operator using the proposed hybrid IGDT-RO model.
© 2021 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY license

(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

Nowadays, researchers tend to study multi-energy systems due
to the synergic effects of the multi-carrier energy systems and their
valuable merit in increasing the efficiency of the system [1]. The
cooperation and management of electric, thermal, and gas units to
meet the customers’ demands form the energy hub (EH) [2]. The EH
may consist of different sources such as wind turbine (WT), com-
bined heat and power (CHP) plant, photovoltaic (PV), electric ve-
hicles (EV), power to gas (P2G), as well as storage units of electric or
thermal energy [3]. Themost crucial feature of EH is its capability in
converting one type of energy to other types to meet the demands
of other types of energy and assure the highest profit or reliability
[4]. Therefore, different timely topics such as EH planning and
sizing, optimal operation of EH, demand response in the EH, the
effect of uncertainty on the EH, etc., has become the primary focus
inski).

ier Ltd. This is an open access artic
of both the industrial and academic societies [5].
1.1. Literature review

Generally, one of the research directions is the short-term
scheduling of EH. In Ref. [6], the authors have proposed a bi-level
operating strategy of the EH to find the optimized day-ahead
schedule at the higher level while applying a model predictive
control to track the real-time schedule at the lower level. The
higher-level optimization was directed to minimize the fuel cost
and electrical load shedding for a 24-h horizon. The outcome of the
higher-level trajectories was used as reference trajectories of the
lower-level real-time model predictive control scheme, resulting in
a shorter prediction horizon with better resolution. The authors in
Ref. [7] investigated risk-constrained stochastic scheduling of EH
using conditional value at risk method where uncertainties related
to wind speed, solar irradiation, all demand types, and electricity
market prices were managed by k-means data cluster analysis. In
Ref. [8], the optimum operation of multiple EHs was investigated.
le under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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Nomenclature

A. Sets and Indexes
T Set of time intervals
t Index of time.
B Set of bilateral contracts
b Index of bilateral contracts

B. Constants

p
 DA

t Expected DA electricity market price ($/MWh)
DevDAmax Maximum deviation of the DA electricity price.
Gp Uncertainty budget of the DA electricity price.
Np Number of hours allowed to be affected by

uncertainties

p
 w

t Expected wind power (MW)
4w Maximum deviation of wind power (MW)
pg
t Natural gas price ($/MWh)

cp2g Discharging coefficient of P2G storage system
($/MWh)

kem Emission coefficient
gge/gpe Gas/electricity conversion coefficient to emission (kg/

MWh)

D
 e

t Electricity demand (MW)
Dq
t Heat demand (MWth)

Dg
t Gas demand (MW)

gb Conversion coefficient of the boiler unit
ge,CHP, gh,CHP Electrical/thermal coefficient of the CHP unit
gP2G Gas to electricity conversion coefficient of P2G

system
pP2Gmax Maximum electricity entered the P2G (MW)
GdchP2Gmax Maximum discharging of the P2G system (MW)
GSmin, GSmax Minimum/maximum capacity of P2G storage

system (MWh)
ESTmax Maximum capacity of the ESS (MWh)
gSTch=g

ST
Dch Charging/discharging efficiency of the battery

storage system
Echmin;E

ch
max Charging/discharging limit of the ESS (MWh)

pBCb;min;p
BC
b;max Minimum/maximum electricity of bilateral

contracts (MW)

r
 

Forecasted value of uncertainty in IGDT problem
D Critical cost

C. Variables
pDA
t Robust DA electricity market price ($/MWh)

pDAt Purchased electricity from electricity market (MW)
4pt Deviation of electricity price ($/MWh)
pwt Robust wind turbine generation (MW)
CDA
t DA electricity market cost ($)

Cg
t Gas network cost ($)

CP2G
t P2G storage system cost ($)

Cem
t CO2 emission cost ($)

CBC
t Bilateral contracts cost ($)

pDA;LDt Purchased electricity from market to transfer to the
load (MW)

pDA;STt Purchased electricity from market to feed the ESS
(MW)

pP2Gt Purchased electricity from market to feed the P2G
system (MW)

pCHPt Electrical output of the CHP (MW)
pdcht Discharging energy of the ESS (MWh)
pgt Gas entering the EH (MW)
pBCbt Purchased electricity from bilateral contracts (MW)
Gdchp2gt Discharging gas from P2G storage system (MWh)
qbt Output of the boiler (MWth)
qCHPt Thermal output of the CHP (MWth)
gCHPt Gas entering the CHP (MW)
gbt Gas entering the boiler (MW)
SOCe

t State of charge of ESS (MWh)
GchP2Gt Charging gas of P2G storage system (MWh)
SOCg

t State of charge of the P2G storage system (MWh)
De
t Electricity demand after applying electrical demand

response (MW)
drE;upt ;drE;down

t Electricity shifting up/down in EDR program
(MW)

xt ;d
 

t ;dt ;st ;6 Dual variables of the inner objective.
a Uncertainty radius in IGDT problem
r Uncertainty in IGDT problem

fsðx;r Þ Target cost value in IGDT problem

D. Binary variables
vCHPt Binary variables associated with CHP ON/OFF state
IE;upt ; IE;down

t Binary variables associated with up/down electrical
demand response

Icht ; Idcht Binary variable associated with ESS Charging/
discharging state

uBCbt Binary variables associated with bilateral contracts

A. Najafi, M. Pourakbari-Kasmaei, M. Jasinski et al. Energy 238 (2022) 121661
The EH consisted of WT, PV, CHP, P2G, and gas-fired generators to
provide interdependencies of infrastructures for these energy
sources. This article used the probability density function to
consider the uncertainties of WT and PV production. A multi-
objective optimization problem was applied to maximize social
welfare while minimizing carbon dioxide emissions, and a genetic
algorithm was deployed to handle the problem. Additionally, the
Newton-Raphson method was applied to determine the flow of
heat, gas, and electricity. The optimal operation of EH was consid-
ered in Ref. [9] taking into account the uncertainties related to
electrical, heating, and cooling demands, as well as the wind power
generation via a two-stage stochastic programming model. In this
work, the Monte-Carlo simulation was used to generate initial
scenarios, and the K-means method was applied to reduce the
number of scenarios properly. The optimal scheduling of an EH was
presented in Ref. [10] taking into account the uncertainties of WT
2

and PV generation, natural gas, and electricity prices using the
probability density function. In Ref. [11], an enhanced grey wolf
optimization approach was used to handle optimal operation and
scheduling problems of an EH via a scenario-based stochastic
model aiming at maximizing its profit. In this problem, un-
certainties related to PV generation and electricity price were taken
into account by applying the Monte-Carlo simulations and k-means
method on historical data. A stochastic programming approach was
developed in Ref. [12] to handle the uncertainties of WT and PV
generation in an EH considering different configurations for the N-1
contingency. The investigated literature in operation and man-
agement of EHs within a short-term time horizon shows that the
majority of works deal with the uncertainties via stochastic pro-
gramming [7,9,11,12] and probability density function [8,10], while
their main purpose is to show how to manage the EH in the pres-
ence of uncertainties.
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The medium-term and long-term horizons are the other focuses
of researchers in EH studies. A chance-constrained optimization
model for economic dispatch and operation of EH for a 1-year ho-
rizon was investigated in Ref. [13]. In this work, the original
nonlinear problem was recast into a linear programming problem,
and the outcomes indicated that considering a well-tuned chance-
constrained model directly influenced the final solution in a cost-
effective manner. A MILP model was studied in Ref. [14] to
consider a one-year time horizon with an hourly resolution to
guarantee the optimal EH operation, including seasonal energy
storage. The proposed methodology was then used to design an EH
in a neighborhood in Switzerland, aiming at optimizing the total
annual costs and carbon dioxide emissions. Under this investiga-
tion, no uncertainty issues were included. A stochastic program-
ming approach was suggested in Ref. [15] for supplying the
required energy of clients, taking into account the uncertainties of
rival hub managers and electricity price. In the proposed approach,
the hub manager is placed in the upper level, and the clients are at
the lower level. Using the KarusheKuhneTucker optimality con-
ditions and the strong duality theorem, the bilevel nonlinear sto-
chastic programwas recast into a linear MILP one. Additionally, the
conditional value-at-risk (CVaR) indicated the effects of risk in the
trading decisions of the hub manager. The authors in Ref. [16]
proposed a tool for the medium-term time management of the EH
to make a self-scheduling for a large consumer subject to wind
speed and electricity price uncertainties. The problemwasmodeled
based on a five-stage stochastic programming approach to mini-
mize the total cost of EH in a risk-averse perspective via CVaR. The
number of operating hours significantly increases within the
medium-term and long term. Therefore, one of the main purposes
in themedium-term is to define a framework to reduce the number
of hours. The authors in Refs. [15,16] reduced the number of hours
to half in order to decrease the computational time. In addition,
some researches concentrated on the significance of the design
aspects of the EH rather than uncertainties [14].

Also, the current trend concerns the application of robust opti-
mization and the IGDT method in the EHs. The authors in Ref. [17]
focused on the hybrid stochastic/IGDT optimization method to
investigate the optimal scheduling of WT in EH. The considered
uncertainties werewind power generation, electrical energy prices,
and energy demands trying to enable the EH operator in selecting
proper risk-seeker and risk-averse strategies using a mixed-integer
nonlinear programming model. Ref. [18] discusses the risk-
constrained self-scheduling of the EH plant based on IGDT to find
the worst-case realization of wind power generation. It was then
applied to investigate the opportunity and robustness of the
models in order to assure the minimum target benefit of the risk-
averse EH, if wind power generation is lower than the forecasted
value. An IGDT-based robust scheduling strategy was proposed in
Ref. [19] for optimal on-grid EH coordination under high penetra-
tion of wind power generation. This model aimed atminimizing the
EH operational costs, wind power curtailment, and carbon emis-
sions. The authors in Ref. [20] studied an optimal load dispatch
model for a community EH, which reduced the total cost of the EH,
including operation and emission costs of the system. In this work,
the RO was deployed to tackle the uncertainties of the electricity
prices while the electrical and thermal demand responses were
included to shift the electrical and thermal loads from the peak
intervals to the off-peak. In Ref. [21], the authors presented a
robust-based mixed-integer linear programming model to handle
the day-ahead scheduling of the EH integrated with fuel cell-based
hydrogen storage system. The main scheduling was directed to
convert energy to hydrogen during low electricity prices and con-
verted back during higher electricity prices. Additionally, the RO
method was applied to consider the uncertainty of electricity price.
3

The authors in Ref. [22] proposed an optimal operating model for
managing multiple EHs with electrical and heat energy demands,
taking into account the electrical and thermal demand response
programs. The operations were directed to reduce the total cost of
the EH, while the uncertainties of WT generation and electricity
prices were considered, and the RO method was then proposed to
deal with it. In Ref. [23], a decentralized robust optimization model
was presented to take into account the multi-hub as multi-entities,
and an Alternating Direction Method of Multipliers (ADMM) was
used to solve the problem.Moreover, the ROmodel was deployed to
tackle the electricity price uncertainty. The work in Ref. [24] pro-
posed a min-max-min robust framework for the short-term oper-
ation of EH-based microgrids. The model was linearized, and then
the column-and-constraint generation procedure was applied to
decompose the framework into a master problem and a sub-
problem. The master problem tried to minimize the unit commit-
ment cost, while the sub-problem indicated the dispatch cost
associatedwith uncertainties via amax-min objective function. The
investigated literature regarding the application of robust optimi-
zation in the operation of EH demonstrates that several papers
focused on the importance of applying the IGDT or RO in the EH to
reach the worst-case realization of uncertainties [18,19,23]. Besides
[17], commenced a new way toward hybrid optimization in the EH
by deploying a combination of stochastic programming and IGDT
approach.

1.2. The challenges and paper contributions

The literature shows valuable works related to the optimal
operation of an EH. However, to the best of our knowledge, the
electricity market prices and renewable energy resources have
seldom been taken into account together in previous studies in the
EH. In addition, no reported study has considered a hybrid IGDT-RO
model to deal with the electricity market prices and renewable
energy sources. Modeling both uncertainties results in non-linear
terms in the IGDT model due to the presence of electricity price
in the objective function [25]. On the contrary, the IGDT approach
provides a situation to consider the binary variables easily. On the
other hand, modeling both uncertainties using robust optimization
needs complicated tools such as Benders Decomposition or
column-and-constraint generation procedure to solve the problem
[24]. In this situation, increasing the number of binary variables
may result in intractability. The situation will be more complicated
by considering medium or long-term problems that tackle with
more variables. Therefore, for the sake of simplicity, researchers
often neglect some binary variables such as the charging/dis-
charging limitation of the energy storage. Therefore, this paper tries
to capture the positive aspects of both methods by presenting a
hybrid IGDT-RO model. The positive aspects are twofold; 1) The
proposed hybrid model takes into account both uncertainties with
the ability to consider a large number of binary variables while
including a big number of integer or binary variables is always
challenging for the decomposition methods such as the benders
decomposition approach. 2) Both uncertainties are included in the
problem with the hybrid IGDT-RO method through a linear model,
while it is not possible to present a linear model only by the IGDT
approach. It means the proposed hybrid model is a linear frame-
work that can host various binary variables. By doing so, a mixed-
integer linear programming model is obtained, which can be
solved using commercial software. Moreover, the literature review
reveals that robust medium-term management has rarely been
studied in previous works. Consequently, the problem also inves-
tigated the EH management in a medium-term time horizon. Plus,
the proposed model is integrated with the P2G storage system in
order to better deal with the operation of the natural gas network.
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To summarize, the main contributions of the article are as follows.

� Proposing a linear hybrid IGDT-robust optimization model for
robust operation of EH to capture the positive features of both
the IGDT and robust optimization models in handling
uncertainties.

� Proposing a medium-term robust model for the optimal self-
scheduling of the EH to enable the medium-term contracts in
the problem for the first time. Although the medium-term
contracts have been considered in the optimal self-scheduling
of EH [15,16], the robustness of such contracts in EH has not
been addressed so far.

� Integrating the proposed robust medium-term model with the
P2G technology. Since the gas price is fixed during a day and it
varies during a week, integrating the proposed model with the
P2G system reduces the burden of the peak days when the
prices of natural gas are high.
1.3. Paper organization

The rest of this paper is organized as follows. The main
description of the problem is presented in Section 2. Section 3 gives
the problem modeling. Section 4 provides the solution methodol-
ogy. Numerical results are presented in Section 5, and finally, the
conclusion is given in section 6.

2. Problem description

The EH is a concept to consider the multi-carrier energy sys-
tems. In this paper, a medium-term hybrid IGDT-RO is developed
for the optimal self-scheduling of the EH. Four inputs from two
energy types, including the wind turbine, DA electricity market,
bilateral contracts, and the natural gas network, are taken into
account in the EH, see Fig. 1. The outputs of the EH are the elec-
tricity, heat, and natural gas to satisfy the corresponding demands.
The electricity demands are satisfied through the wind turbine, DA
electricity market, bilateral contracts, electrical storage system
(ESS), and a CHP unit. The electricity market can feed the P2G, ESS,
and also the electricity demands directly, while the bilateral con-
tracts and wind turbine generations are directly transmitted to the
electricity demands. Among the three electricity resources, i.e.,
Fig. 1. Energy hub under study.

4

wind turbine, bilateral contracts, and electricity market, only the
electricity market can be stored in the ESS. It is due to the fluctu-
ation of the prices in the electricity market, while the other elec-
tricity resources have no price fluctuation. The CHP is the co-
generation unit that links the gas, electricity, and heat energy car-
riers. Meanwhile, the boiler is fed by natural gas and generates heat.
The heat demands are met through the boiler and CHP units, while
the natural gas demands are satisfied directly with the gas network
and the P2G storage system. It is worth mentioning that the P2G is
fed by electricity and discharged into the gas network. The EH
operator is a large consumer that can directly participate in the
electricity market. The boiler and CHP are also fed through the
natural gas network. Due to the concerns regarding releasing the
emissions and especially the CO2 emissions, the cost of emissions
related to electrical energy and natural gas are taken into account.
The emission accompanies the electricity procured from the DA
electricity market and the bilateral contracts as well as natural gas
purchased from the gas network. In addition, the P2G storage
system is fed by the DA electricity market and injects natural gas
into the gas network. The DA electricity price and wind turbine
electricity production are subject to uncertainties. The robust
optimization- and IGDT-based models are two well-known
methods to address the uncertainties. While there are advantages
and disadvantages to these methods, this paper aims at capturing
the positive features of the IGDT and RO models to achieve the
worst-case realization of the uncertainties within a medium-term
horizon.
3. Problem modeling and formulation

3.1. CHP model

The electrical and thermal outputs of the CHP are mutually
dependent. Their dependency is defined through an enclosed curve
which is called a feasible operation region. Fig. 2 shows the feasible
operation region represented by three lines that are described by a
set of coordinates (P, Q). For instance, the coordinate of the point A
is represented by (PA, QA). Eqs. (1)e(5) indicate the constraints of
the CHP feasible operation region. Eq. (1) indicates the coordinates
(P, Q) stay below line AB. (2) and (3) show the coordinates upper the
BC and CD lines. (4) and (5) force the bounds for the amount of heat
and electricity outputs and also assure staying at the right hand
side of line AD. Considering all these equations simultaneously
guarantees that the coordinates (P, Q) is definitely within the closed
area of ABCD.
3.2. Demand response model

In this paper, electrical demand response is implemented to
shift the peak hours energy consumption to the off-peak intervals.
It reduces the cost of procuring electricity by the EH owner in the
proposed model. It should be noted that the EH should keep the
total electrical energy consumption constant while applying the
demand response program. The electricity demand after applying
the electrical demand response (EDR) is indicated in (6). The elec-
tricity energy shifting up and down are declared by (7) and (8),
respectively, and (9) guarantees either shifting up or shifting down
occurs at a time.

De
t ¼ D

 e

t þ drE;upt � drE;down
t (6)



Fig. 2. Feasible operation region for the CHP unit [16].

pCHPt � PA � PA � PB

QA � QB
ðqCHPt �QAÞ � 0 (1)

pCHPt � PB � PB � PC

QB � QC ðqCHPt �QBÞ � �ð1� vCHPt Þ,M (2)

pCHPt � PC � PC � PD

QC � QD ðqCHPt �QCÞ � �ð1� vCHPt Þ,M (3)

0 � qCHPt � QB,vCHPt (4)

0 � pCHPt � PA,vCHPt (5)
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drE;upt � EDR,D
 e

t ,I
E;up
t (7)

drE;down
t � EDR,D

 e

t ,I
E;down
t (8)

IE;upt þ IE;down
t � 1 (9)

drE;upt ;drE;down
t � 0 (10)
3.3. Uncertainty modeling

The uncertainty of the DA electricity market price is modeled by
the RO approach. This uncertainty has to be maximized to consider
the worst-case realization of the DA electricity price. The objective
function in (11) aims at maximizing the deviation of the DA elec-
tricity price. The deviation is added to the expected DA electricity
price in (12), while (13) declares that the deviation can be either
positive or negative and the total value is limited by the uncertainty
budget in (14).
5

max
4p

XT
t¼1

pDA
t pDAt ct ¼ 1;…; T (11)

pDA
t ¼ p

 DA

t þ 4pt : xt ε R; ct ¼ 1;…; T (12)

r4ptr � Devpmaxp
 DA

t : dt � 0; dt
 
� 0; ct ¼ 1;…; T (13)

PT
t¼1

r4ptr � Gp : s � 0; st ε R; ct ¼ 1;…; T

Gp ¼ NpDev
p
max

XT

t¼1
p
 DA

t
T

(14)

The mentioned absolute values in (13) and (14) make the
problem non-linear. Therefore, the uncertainty model needs to be
linearized using the method presented in Appendix A. Then, the
equivalentmin problem of the objective function (11) is obtained in
the following using the duality theory. Eqs. 16e19 are the con-
straints of the dual problem.

min
XT
t¼1

p
 DA

t xt þ DevDAmaxp
 DA

t d
 

t � DevDAmaxp
 DA

t dt þ G6 (15)

xt � pDAt (16)

�xt þ d
 

t þ dt þ st ¼ 0 (17)

�st þ6 � 0 (18)

st þ6 � 0 (19)
3.4. Main model

The aim of this paper is to minimize the total operation cost of
the system in (20). The objective function consists of the costs
related to the DA electricity market, purchased electricity from the
bilateral contracts, purchased natural gas, P2G operation, and the
CO2 emission. Eqs. 21e25 indicate the mentioned costs, respec-
tively; the electricity, heat, and natural gas demands are presented
in (26)-(28); the electricity purchased from the bilateral contracts
are bounded by (29) and (30): the gas to heat conversion is per-
formed by (31); and (32) and (33) indicate the generated electricity
and heat through the CHP, respectively. The P2G technology pro-
duces natural gas through DA electricity. First, the electricity is
converted to the equivalent natural gas via (34) and then it is
charged in P2G storage system [21], while (35) stands for the en-
ergy balance in the P2G storage system. The state of charge of the
P2G storage system is equal to the amount of charge in the previous
hour plus the amount of charging in the current hour minus the
discharging amount of natural gas to the gas network. The power
injected to the P2G, the amount of discharging gas from the P2G
storage system, and the state of the charge are limited by (35)-(38).
The energy balance for the ESS is presented in (39). The ESS state of
the charge and charging/discharging electricity energy to the ESS
are bounded in (40)-(43), while (44) ensures that only one of the
states of charging/discharging occurs at a time. Finally, (45) shows
that the first part of the purchased electricity from the DA
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electricity market is transferred into the output directly, and the
second part is stored in the ESS and the third part is injected into
the P2G system.

max
4w

min
F

max
4p

Xt¼T

t¼1

CDA
t þ Cg

t þ CP2G
t þ Cem

t þ CBC
t (20)

Subject to (1)e(10), (12)e(14), and,

CDA
t ¼ pDA

t pDAt (21)

Cg
t ¼ pg

t p
g
t (22)

CP2G
t ¼ cp2gGdchp2gt (23)

Cem
t ¼ kem

 
ggepgt þ gpepDAt þ gpe

X
bεB

pBCbt

!
(24)

CBC
t ¼

X
bεB

pBC
b pBCbt (25)

pDA;LDt þ pCHPt þ pwt þ pdcht ¼ De
t (26)

qbt þ qCHPt ¼ Dq
t (27)

pgt þ GdchP2Gt ¼ gCHPt þ gbt þ Dg
t (28)

pBCbt � pBCb;max,u
BC
bt (29)

pBCbt � pBCb;min,u
BC
bt (30)

qbt � gbgbt ¼ 0 (31)

pCHPt ¼ ge;CHPgCHPt (32)

qCHPt ¼ gq;CHPgCHPt (33)

GchP2Gt ¼ gP2GpP2Gt (34)

SOCg
t ¼ SOCg

t�1 þ GchP2Gt � GdchP2Gt (35)

pP2Gt � pP2Gmax (36)

GdchP2Gt � GdchP2Gmax (37)

SOCg
t � GSmax (38)
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SOCg
t � GSmin (39)

SOCe
t ¼ SOCe

t�1 þ pDA;STt � pdcht (40)

SOCe
t � ESTmax (41)

pDA;STt � Echmax,I
ch
t (42)

pdcht � Edchmax,I
dch
t (43)

Icht þ Idcht � 1 (44)

pDAt ¼ pDA;STt þ pDA;LDt þ pP2Gt (45)
4. Solution methodology

4.1. Solution steps

The volatile nature of the DA electricity price and wind turbine
generation cause a challenge for the EH manager to make appro-
priate decisions to schedule the operation of the EH. Therefore, it is
crucial to deploy a useful approach to tackle the uncertainties. The
IGDT and robust optimization techniques are two commonly-used
approaches to increase the robustness of uncertainty-based prob-
lems. These methods, besides their merits, have some shortcom-
ings. The IGDT often converts the problem to a non-linear problem
[25] resulting in difficulties for commercial solvers to find the
optimal solution. Since the RO techniques are often applied to
convex problems, increasing the binary variables in a problem
makes a limitation in deploying the RO in the problems with
various binary variables [24]. This paper presents a hybrid IGDT-RO
model aiming at taking advantage of both techniques in the process
of maximizing the inner and outer layer of the (46) (as the uncer-
tainty layers) and minimizing the middle layer (as the cost objec-
tive function). To tackle the uncertainties and the mentioned
deficiencies, the Hybrid IGDT-RO is described within the following
steps.

� Step 1: linearizing the nonlinear terms of the proposed robust
optimization model for the DA electricity price uncertainty
presented in (12)-(14), using the method introduced in the
Appendix A.

� Step 2: transforming the linearized version of the max problem
of the DA electricity price mentioned in (A.1)-(A.5) to a min
problem using duality theory, see (15)e(19).

� Step 3: replacing the
PT

t¼1p
DA
t pDAt in (46) with the equivalent

min objective obtained in Step 2.
� Step 4: applying the IGDT method to Step 3 to take into account
the wind turbine generation, see (56)e(58).



max
4w

min
F

( PT
t¼1

pg
t p

g
t þ pf P2Gcp2gGdchp2gt þ kem

 
ggepgt þ gpepDAt þ gpe

X
bεB

pBCbt

!
þ

þP
bεB

pBC
b pBCbt þmax

4p

XT
t¼1

pDA
t pDAt

)

F ε

n
pgt ;Gdch

p2g
t ; pDAt ; pDA;STt ; pdcht ; pDA;LDt ; pCHPt ; pP2Gt ; qbt ; q

CHP
t ;

gCHPt ; gbt ;Gch
P2G
t ; SOCg

t ; SOC
e
t

o

(46)
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4.2. Information gap decision theory

The IGDT approach is deployed to model the robustness of the
problem against wind generation. The IGDT is useful when there is
a high level of uncertainty in the problem [26]. Based on the de-
cision maker's opinion, the uncertainties can be treated to have
more cost/less profit or less cost/more profit. The IGDT considers
these conflicts using two concepts, including robustness and op-
portunity functions [27,28]. Since the robust version of the IGDT is
utilized here to reach theworst-case realization for thewind power
uncertainty, the opportunity function is not required to be
considered. The uncertainty in the IGDT model is presented as
follows [29,30].

Uða; r Þ ¼
n
r :
��� ðr� r

 Þ
r
 

����a
o
; a � 0 (47)

where (47) declares that the value of uncertainty in the IGDT, r, falls

within the bounds ð1�aÞr and ð1 þ aÞr .
In the robustness function, the maximum uncertainty radius (a)

is determined by dedicating a specific risk value to the base
deterministic mode of the objective function. In other words, the
objective function is robust against uncertain input parameters,
and the amount of objective function is lower than the specific
valuewithin the obtained radius of the uncertainty. These decisions
are made by risk-averse decision-makers to reach the worst-case
realization. The mathematical representation of the robustness
function is described as follows.

max
x

a (48)

Hiðx; r
 Þ � 0 (49)

Gjðx; r
 Þ ¼ 0 (50)

D ¼ ð1þ bÞ,fb (51)

fsðx; r Þ � D (52)

ð1�aÞ,r � r � ð1þaÞ,r (53)

0 � b � 1 (54)
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where (48) maximizes the uncertainty radius with respect to
the decision variable x. The sets of equality and inequality con-
straints are presented in (49) and (50). According to (51) and (52),

for a minimization problem, the robustness target fsðx; r Þ should be
lower than a critical value, which is calculated by the risk level and
the base objective function. The base objective function is obtained
using the expected values as input for solving the problem. The
uncertainty is bounded by (53) within either the negative or pos-
itive uncertainty radius, while (53) bounds the risk level.
4.3. Hybrid IGDT-RO model

In order to deploy the IGDT model for the wind power uncer-
tainty, the uncertainty radius of the wind power generation is
described as follows.

ð1�aÞ,p 
w

t � pwt � ð1þaÞ,p 
w

t (55)

By conducting Steps 1 to 4, the hybrid IGDT-RO model is ob-
tained as follows.

max
F

a (56)

Subject to (1)e(10), (16)e(19), (26)e(45) and,

pwt ¼ ð1�aÞ,p 
w

t (57)

( PT
t¼1

(P
bεB

pBC
b pBCbt þ pg

t p
g
t þ cp2gGdchp2gt þ

kem
 
ggepgt þ gpepDAt þ gpe

X
bεB

pBCbt

!))
þ

( PT
t¼1

p
 

DA

t

xt þ DevDAmaxp
 

DA

t

d
 

t

� DevDAmaxp
 DA

t dt þ G6

)

� ð1þ bÞfb
(58)

The objective function of the Hybrid IGDT-RO is presented in
(56). The worst-case for the wind power in a minimization problem
means decreasing from the forecasted wind power value. In other
words, the worst-case occurs for the wind power in (57). The
constraint of the critical cost is given in (58). The left side includes
two parts. The first part constitutes the bilateral contracts cost,
natural gas and P2G operation costs, and the emission cost. The



Fig. 3. Flowchart of the proposed hybrid IGDT-RO framework.

Fig. 4. Electricity and natural gas prices [16,33].

Fig. 5. Wind power generation [16].
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second term is the dual objective of the DA electricity market cost,
which imposes the worst-case realization of the DA electricity
price, and it is obtained from Step 2. The right side declares the
maximum deviation from the expected (based) cost. For more
comprehension, Fig. 3 presents the flowchart stating the procedure
of the proposed hybrid IGDT-RO framework, where the steps of the
RO and IGDT are determined separately.
8

5. Numerical results

5.1. Case study

The proposed hybrid model is tested on the aforementioned EH
presented in Fig. 1 containing three inputs and three outputs. The
DA electricity market prices and wind turbine generations are
subject to uncertainty. The electricity market prices in themedium-
term and long term are modeled by autoregressive integrated
moving average (ARIMA) time series [31]. The wind speed is also
can be modeled by autoregressive and moving average (ARMA)
time series [32]. The data related to the electricity market prices
and wind turbine characteristics and generations during four
weeks, equal to 672 h, is obtained from Ref. [16]. The natural gas
prices are taken from Ref. [33]. Fig. 4 shows the DA electricity
market and natural gas prices. The electricity prices are changed
hourly, daily, and weekly while the gas prices only vary daily. The
electricity prices change from a minimum value of 12.15 $/MWh in
hour 557 to a maximumvalue of 39.6 $/MWh in hour188, while the
minimum andmaximumvalues of the gas prices are 20 $/MWh and
29.16 $/MWh on days 3 and 9, respectively.

The wind generation is depicted in Fig. 5 that varies from 0 to
40 MW, and the average electricity production through the wind
turbine within 672 h is 33.87 MWh. Fig. 6 shows the electricity,
heat, and natural gas demands. The electricity and heat demands
are adopted from Ref. [16]. For creating the gas demands, the pre-
sented short-term demands in Ref. [21] has been extended to four
weeks using the normal distribution function. The mean values are
assumed like the short-term demands, and the standard deviation
is considered 3%. The electricity demands range from 73.9 MW to
129 MW during the 672 h, while the natural gas demands change
within a narrower interval of 74.2 MWand 106 MW. The minimum
and maximum values of the heat demands are 22.27 and 119 MW.

Table 1 provides six candidates for the bilateral contracts,
including the contract prices and minimum/maximum values of
the electrical energy that could be purchased. Two first candidate
contracts cover the whole period, and the other ones could be
purchased for part of the periods. The maximum generation of the
boiler is equal to the maximum heat demands with 85 % efficiency.
Four (heat, electricity) coordinates of the feasible operation region
of the CHP unit with respect to MW are (0,35), (25,25), (20,5), and



Fig. 6. Electricity, natural gas and heat demands [16,21].

Table 1
Candidate bilateral contracts data.

Contract Price PBmin PBmax
Time

1 35.2 0 25 Four weeks
2 29.8 0 22.5 Four weeks
3 29 0 20 First two weeks
4 28.8 0 25 Last two weeks
5 26 0 19 Last three weeks
6 40.5 0 25 Last week

Table 2
Details of the ESS and P2G systems.

Device Parameter Value

P2G pP2Gmax 50 (MW)

GSmin 20 MWh)
GSmax 180 (MWh)
Gdchmax 30 (MWh)
gP2G 0.75

Electrical storage ESTmax
100 (MWh)

Edchmax
30 (MWh)

Echmax
30 (MWh)

gch, gdch 0.9

Fig. 7. Robust electricity price and wind generation.
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(0,10), considering 0.45 and 0.4 for the heat and electricity con-
version, respectively. The other details of the technical specifics of
the P2G and ESS are given in Table 2. The emission coefficients are
taken from Ref. [22]. To assess the proposed model properly, two
studies are conducted. In the first study, the Np, risk level, and EDR
are assumed to be 336, 0.1, and 10 %, respectively. The sensitivity
analysis on the characteristics of the proposed hybrid model and
the demand response is done in the second study. Finally, taking
into account all the aforementioned data, the MILP model is carried
out with CPLEX solver under GAMS environment version 34 [34].
5.2. Discussion

First, the results of the dispatches and purchased energy carriers
are presented. For to sake of clarity and reducing the line conges-
tion, the results of the second week are shown in the figures. The
9

analysis of the other weeks is similar. The results are presented in
three types of solutions. The expected solution gives the results
without considering the uncertainties. Having the results of the
expected solution provides an opportunity to compare the results
with and without considering the uncertainties. In our analysis, the
term Robust means solving the problem considering the robust
optimization only for the DA electricity price uncertainty, while the
term Hybrid means considering both uncertainties, i.e., robust
optimization for the DA electricity price and IGDTmodel for dealing
with wind power uncertainty. Fig. 7 demonstrates the robust un-
certainty sources and the expected values. The DA electricity prices
increase in the robust solution to reach the worst-case realization,
while the wind generation decreases for the same goal. Fig. 8 de-
picts the purchased electricity energy in three solutions. More
electricity is purchased from the DA electricity market in the ex-
pected mode. It is because the DA electricity price is lower in the
expected situation compared to the robust and hybrid solutions.
Since the generated electricity by wind turbine reduces in the
hybrid model, the amount of electricity purchased from the DA
market in the hybrid model is more than the robust model.



Fig. 8. Purchased electrical energy from the electricity market.

Fig. 9. Natural gas purchased from the gas network.
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Therefore, the purchased electricity from the DA electricity market
raises to compensate for the lack of wind generation in the hybrid
solution.

The results of gas entering the EH are given in Fig. 9, where it
declares that more natural gas is procured in the robust and hybrid
solutions. That is, at least one part of the shortage of electricity
purchased from the DA electricity market in the robust solution is
compensated through the natural gas using the CHP unit. It can be
verified via Fig. 10-a. For instance, for the expected state, from
hours 169 to 240, no electricity is generated by the CHP, while a
significant amount of electrical energy is produced in the robust
and hybrid states during the same period. As mentioned in Fig. 8,
more electricity is purchased from the DA electricity market in the
expected solution during the range of hours 169e240. It is due to
the lower expected electricity price compared to the robust elec-
tricity prices. It means, since more electricity is purchased from the
DAmarket, there is no need to generate electricity by the CHP in the
expected solution during this range. On the other hand, since less
10
electricity is purchased from the DA market in the robust and
hybrid solutions (compared to the expected solution), the lack of
required electricity is compensated through the CHP during the
time interval 169e240. Meanwhile, the amount of electrical energy
generated in the hybrid model shows a higher amount in com-
parison with the robust model. As mentioned before, there is a
reduction in wind turbine generations in the hybrid model.
Therefore, other devices have to compensate for the lack of elec-
trical energy to meet the electricity balance equation. It should be
noted that the heat generated through the CHP has a similar pattern
to the CHP electricity output due to the mutual dependency of the
heat and electricity in the CHP unit.

The results of procuring electricity from the bilateral contracts in
the hybrid solution are provided in Fig. 11. No electricity energy has
been purchased from contracts 1 and 6 due to the higher prices of
these contracts. On the contrary, the transaction of contract 5, as
the cheapest contract, is fully conducted. Less electrical energy is
purchased from contract 4 compared to contract 3. It is due to the
fact that their validation times are different. Contract 3 is for the
first two weeks and contract 4 is valid for the last two weeks. The
charging/discharging state of the ESS is given in Fig. 12 where the
negative part shows the discharging state and positive values stand
for the charging state. For a period of one week, it indicates seven
charging and seven discharging states. The charging occurs in off-
peak hours when the electricity market price is low and the dis-
charges take place in peak hours. For example, it charges between
hours 194 to 197 and discharges from hours 207 to 212, which are
corresponding to the off-peak and peak hours electricity prices, see
Fig. 4. It is worth mentioning that since charging in off-peak in-
tervals and discharging in peak intervals are always beneficial, the
pattern of the expected, robust, or hybrid models do not experience
a significant difference.

It can be seen from Fig. 13 that more charging/discharging
natural gas occurs in the expected state. The input charging natural
gas is obtained using the purchased electricity from the DAmarket.
In both the robust and hybrid models, the DA electricity prices in-
crease to reach the worst-case realization. Therefore, when the
electricity price goes up, less natural gas is charged into the P2G
storage system. The other feature which can be captured from the
figure is that the P2G storage system is charged in the off-peak
hours of electricity prices and discharges in natural gas peak in-
tervals. For instance, it charges from hours 194 to 197, which is
equal to the off-peak electricity market prices, and discharges from
hours 198 to 215, which is the peak hours of the natural gas prices.
It means that the P2G system can help to supply a part of the
natural gas entering the EH. For better evaluation, Fig. 14 shows the
effect of P2G on the reduction of the total gas entered the EH.
Obviously, in some hours, the amount of purchased natural gas
decreases significantly, especially in the times between 146 and
220 and also 384 to 435, which are the peak intervals of the natural
gas prices in Fig. 4.

For more comprehension, the average values of energy dis-
patching of the CHP and boiler, the ESS and P2G storage system as
well as average values of procuring energy from the natural gas
network and purchasing electricity from the bilateral contracts and
DA electricity market are provided in Table 3 in all periods. This
table verifies the mentioned results for one sample week. For
example, the amount of natural gas purchased from the network
and gas entered the CHP experience an increase in the RO and
hybrid model. Similar to the purchased gas, the procured electricity
from the bilateral contract raises from 1.57 MWh to 3.2 MWh and
3.3 MWh for the robust and hybrid approaches, respectively. On the
other hand, the amount of electrical energy purchased from the DA
electricity market shows a decrease of about 21.14 MWh in the RO
solution and an increase of about 9.65 MWh in the hybrid model to



Fig. 10. Electricity and heat produced through the CHP.

Fig. 11. Electricity purchased from the bilateral contract.
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compensate for the lack of wind turbine generation. Meanwhile,
the operation mode does not affect the charging/discharging
pattern of the ESS and consequently, it does not change the amount
of charging/discharging values via different solution approaches.
Finally, the operation costs are provided in Table 4. Achieving the
worst-case realization considering the DA electricity price uncer-
tainty increases the gas network operation cost from 2,366,226 to
2,532,198 $ while it decreases the electricity market operation cost
from 858,839 to 630,263 $ in the robust solution. It does not have a
remarkable effect on the reduction of the emission cost due to
replacing the DA electricity with a source with similar emissions in
the robust solution. Since wind power (as clean energy) reduces in
11
the hybrid mode, the emission cost goes up. By comparing the
robust optimization solution and hybrid solution, which includes
both sources of the uncertainties, it can be found that the cost in-
creases due to the decrements of the wind turbine free-cost gen-
eration. Totally, the proposed hybrid IGDT-RO model shows the
total cost of 3,799,229$, which is the highest cost among all since it
considers the worst-case realization for both the DA electricity
price and wind turbine generation.
5.3. Sensitivity analysis

This section performs a sensitivity analysis on the main



Fig. 12. Charging/discharging of ESS

Fig. 13. Charging/discharging of P2G.

Fig. 14. Effect of P2G on gas entering the EH.

Table 3
Generation/dispatching mean values of the resources (MWh).

Expected Robust optimization Hybrid

Natural gas 152.1 162.8 162.9
Electrical output of the CHP 5.8 11.1 11.2
Gas entering the boiler 56 49.1 48.9
Gas charging the P2G 7.3 2.8 2.8
Gas discharging from the P2G 7.3 2.7 2.7
Day ahead electrical energy 64.59 43.45 53.1
Charging Electricity to the ESS 4.6 4.6 4.6
Discharging Electricity from the ESS 3.75 3.75 3.75
Bilateral contract power 1.57 3.2 3.3

Table 4
Operation costs in different solutions ($).

Expected Robust optimization Hybrid

Gas network operation 2,366,226 2,532,198 2,534,354
Emission 98,612 98,079 102,650
Electricity market operation 858,839 630,263 796,870
Total cost 3,497,253 3,618,313 3,799,229

Fig. 15. Effect of the risk level on uncertainty radius and total cost.
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characteristics of the proposed hybrid IGDT-RO model and EDR to
properly assess the model. Fig. 15 shows the results of evaluating
the effectiveness of the risk level (b) on the uncertainty radius and
total operation cost. The higher risk level means the higher values
for both the uncertainty radius and the total cost. For example, a
risk level equal to 0.04 means the objective function is allowed to
increase by 4 %. In this situation, the uncertainty radius reaches
0.238. In other words, the wind generation decreases by 23.8 %, due
to Eq. (57) to reach the 4 % risk level for the objective function.

Figs. 16 and 17 demonstrate the sensitivity analysis on the
12
number of hours allowed to affect the DA electricity prices. The
former one (Fig. 16) shows the variation of the total discharging gas



Fig. 16. Effect of the Np on the generation of the resources.

Fig. 17. Effect of the Np costs.

Table 5
Effect of DR on the operation costs of natural gas network and the electricity market.

EDR%

Cost ($) 0 % 5 % 10 % 15 %
Gas network operation 2,535,832 2,535,047 2,534,354 2,533,026
Electricity market operation 813,533 804,269 796,870 790,969
Total cost 3,825,441 3,812,213 3,799,229 3,786,332
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from the P2G storage system, total generated electricity through
the CHP, and the total purchased electricity from the bilateral
contracts. The latter figure (Fig. 17) depicts changing natural gas
operation cost, the DA electricity procuring cost, and the total
operating cost. Fig. 16-a shows that by increasing the Np, the total
discharging gas from the P2G system decreases. It is because the
number of affected DA electricity market prices increases, and the
DA electricity market feeds the P2G storage system. Therefore, it is
not an economic decision to charge the P2G system from an
expensive source. On the contrary, according to the Fig. 16-b and
Fig. 16-c, the total procured electricity from the CHP and the
bilateral contracts increases. In order to justify this, it should be
noted that the natural gas and bilateral contracts are more
reasonable sources compared to the DA electricity market, espe-
cially when the DA electricity market prices increase in the worst-
case. It is because the bilateral contracts and natural gas prices are
lower compared to the DA electricity prices in the worst-case.
Meanwhile, the trend of the total cost of the natural gas network
operation in Fig. 17 confirms increasing the gas entered the CHP.
Moreover, the decrement in the total cost of interactionwith the DA
electricity market by increasing the Np means that the proposed
model prefers to procure the required electricity from cheaper
sources such as the CHP and the bilateral contracts, instead of
buying electricity from the DA electricity market. Fig. 17-c shows
that on the whole, a higher total cost is imposed on the system by
increasing the number of hours subject to uncertainty (Np) in the
13
DA electricity prices. It is noteworthy to mention that the curves in
the mentioned figures are flattened after hour 500. This happens
since the number of defined uncertainty budgets limits the amount
of number that they can affect the problem. As mentioned in (13),
there is a bound for the deviation of each hour, while the total
deviations are limited by the uncertainty budget. In other words,
the total amounts of the deviations reach the defined budget.

Table 5 provides the effect of changing the EDR on the natural
gas and DA electricity energy purchasing costs. The EDR ranges
from 0 to 15 %. As can be seen from Table 5, the EDR is significantly
effective in reducing the DA electricity purchasing cost from
813,533 to 790,969$, which is equal to a 2.88 % reduction in the DA
electricity purchasing cost. It also reduces the total operation cost
from 3,825,441 $ to 3,786,332$, however, its effect on the natural
gas purchasing costs is not remarkable.
6. Conclusion

In this paper, a hybrid IGDT-RO framework has been proposed to
investigate the robust operation of an EH within a medium-term
time horizon for a large consumer. Since the problem deals with
the uncertainties of the wind generations and DA electricity prices,
the developed model maximizes the DA electricity prices deviation
using the RO approach, and then the IGDT maximizes the wind
generation uncertainty radius when the total operation cost of the
EH has been incorporated in the IGDT part. The main results of the
paper are as follows.

� The robust electricity prices rise most of the time, and conse-
quently, the procured electricity from the DA electricity market
is reduced. On the other hand, the electricity purchased from the
bilateral contracts and generated through the CHP unit increases
to compensate for the lack of purchased electricity from the DA
electricity market. Therefore, the cost of procuring energy from
the bilateral contracts and natural gas network increases in
comparison with the expected solution.

� On thewhole, the total operation cost of EH increases by 8.6 % in
hybrid solution compared to the expected one.

� The emission costs go up in the hybrid IGDT-RO model due to
the decreasing generation of the emission-free wind turbine
generator.

� The P2G storage system purchases electricity from the DA
market in the off-peak intervals and discharges into the natural
gas network during the peak intervals.

� The ESS always charges in off-peak hours of the DA electricity
price and discharges in the peak hours without dependency on
the operation mode.

� The sensitivity analysis reveals that the higher risk level results
in more operation costs and more uncertainty radius for the
wind turbine generation.

� Changing the uncertainty budget of the DA electricity price
shows that the problem is robust against different levels of the
DA electricity price uncertainty.

� Sensitivity analysis on the EDR demonstrates that the EDR re-
duces the DA electricity market operation cost significantly, in
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which the total cost of purchasing electricity from the DA mar-
ket reduces by 2.77 %, in case 15 % EDR is included.

As the prospect of future works, the proposed hybrid IGDT-RO
can be further developed to reach the worst-case realization of
various kinds of uncertainties in the operation of power system
problems with a large number of binary variables due to the
operation conditions of assets such as energy storage systems,
distributed generators, ramp up and ramp down of generators, etc.
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Appendix A. Linearization of absolute value function

Since there is an absolute value functions in the proposed RO
model, which maximizes the DA electricity price deviation, it
causes difficulties in applying the duality theorem. The inequalities
(13)e(14) are reformulated as the linear version follows.

pm
t ¼ p

 m

t þ 4pt : xt (A.1)

4pt � Devpmaxp
 m

t : d
 

t (A.2)

4pt � �Devpmaxp
 m

t : dt (A.3)

4pt � 4þ
pt þ 4�

pt ¼ 0 : st (A.4)

XT
t¼1

4þ
pt þ 4�

pt � Gp : 6 (A.5)
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