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Abstract

Computational pan-genomics utilizes information from multiple individual genomes in large-
scale comparative analysis. Genetic variation between case-controls, ethnic groups, or spe-
cies can be discovered thoroughly using pan-genomes of such subpopulations. Whole-
genome sequencing (WGS) data volumes are growing rapidly, making genomic data com-
pression and indexing methods very important. Despite current space-efficient repetitive
sequence compression and indexing methods, the deployed compression methods are
often sequential, computationally time-consuming, and do not provide efficient sequence
alignment performance on vast collections of genomes such as pan-genomes. For perform-
ing rapid analytics with the ever-growing genomics data, data compression and indexing
methods have to exploit distributed and parallel computing more efficiently. Instead of strict
genome data compression methods, we will focus on the efficient construction of a com-
pressed index for pan-genomes. Compressed hybrid-index enables fast sequence align-
ments to several genomes at once while shrinking the index size significantly compared to
traditional indexes. We propose a scalable distributed compressed hybrid-indexing method
for large genomic data sets enabling pan-genome-based sequence search and read align-
ment capabilities. We show the scalability of our tool, DHPGIndex, by executing experi-
ments in a distributed Apache Spark-based computing cluster comprising 448 cores
distributed over 26 nodes. The experiments have been performed both with human and bac-
terial genomes. DHPGIndex built a BLAST index for n = 250 human pan-genome with an
870:1 compression ratio (CR) in 342 minutes and a Bowtie2 index with 157:1 CR in 397 min-
utes. For n = 1,000 human pan-genome, the BLAST index was built in 1520 minutes with
532:1 CR and the Bowtie2 index in 1938 minutes with 76:1 CR. Bowtie2 aligned 14.6 GB of
paired-end reads to the compressed (n = 1,000) index in 31.7 minutes on a single node.
Compressing n = 13,375,031 (488 GB) GenBank database to BLAST index resulted in CR
of 62:1 in 575 minutes. BLASTing 189,864 Crispr-Cas9 gRNA target sequences (23 MB in
total) to the compressed index of human pan-genome (n = 1,000) finished in 45 minutes on
a single node. 30 MB mixed bacterial sequences were (n = 599) were blasted to the com-
pressed index of 488 GB GenBank database (n = 13,375,031) in 26 minutes on 25 nodes.
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78 MB mixed sequences (n = 4,167) were blasted to the compressed index of 18 GB E. coli
sequence database (n = 745,409) in 5.4 minutes on a single node.

Introduction

Fast progress in High-throughput sequencing (HTS) technology has increased the sequencing
throughput and decreased the whole-genome sequencing (WGS) price over a thousand-fold
during the last 15 years [1]. At the same time, sequencing data volumes are growing several
orders of magnitude, and the number of assembled whole-genomes increases rapidly as well.
Storing, indexing, and searching genomic data requires a large amount of high-performance
storage space, working memory, computing power, and network capacity. Read alignment
and sequence matching are routine methods in many genomic studies. However, searching
sequences from massive genomic databases is computationally intensive, and extremely so on
whole-genome scale. To exploit the accumulating genomic data from genome research to clin-
ical practice [2, 3] the efficient compression and indexing methods on large genomic data sets
become an urgent need [4].

Computational Pan-genomics [5] exploits the information of multiple genomes in compar-
ative analytics. Pan-genomic reference index constructed from multiple sequences can enable
aligning of donor sequences to multiple genomes with a single shot instead of aligning
sequences separately to every individual genomic index. Moreover, a pan-genomic reference
can improve genetic variation discovery amongst populations by considering the genetic
diversity of individuals and recombination [5-9]. Sherman and Salzberg [10] point out the
importance and advantages of using pan-genomes in genetic variation studies instead of just a
single reference genome.

Such a massive sequence data set as a pan-genome should be compressed to reduce storage
space and to be accessed efficiently. Moreover, support for fast sequence matching and read
alignment methods is critical when pan-genomes should be analyzed. Thus, compression
methods should support random access to the compressed data. Developing text compres-
sion and indexing algorithms provide space and memory-efficient approaches to implement
practical solutions for genomic data. Traditional Burrows-Wheeler Transformation (BWT)
based self-indexes can provide such properties [11]. More sophisticated variants of self-
indexes have been developed such as Lempel-Ziv factorization-based hybrid-indexes [12, 13],
that better exploit the similarity between sequences to achieve significantly better compres-
sion ratios than traditional BWT indexes [11]. Hybrid-index combining Lempel-Ziv factori-
zation allows sequences to be aligned to all the compressed sequences simultaneously
together with tools such as BWA and Bowtie. Furthermore, the CHIC [14] aligner integrates
the standard Bowtie and BWA read aligners with the hybrid-indexing method providing
read alignment capability with compressed pan-genomes. In addition to the compression
ratio improvements, the methods for creating the used indexes should also meet the scalabil-
ity requirements with ever-growing sequencing data volumes and numbers of whole human
genomes as well. Our focus is on constructing compressed hybrid-indexes that enable effi-
cient sequence alignment to such indexes while still deploying conventional read and
sequence aligners (Fig 4).

Traditional computational genome analysis algorithms and pipelines are developed for
sequential data processing whereas high-performance computing has evolved towards parallel
and distributed data processing for speeding up computation and analysis of massive data
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volumes. Moreover, current genome analysis tools and pipelines have been typically developed
on demand by the researchers relying on existing sequential algorithms. This has led to that
currently used bioinformatics pipelines and tools utilize a mixture of sequential algorithms
making them often poorly scalable, computationally inefficient, inflexible, and inapplicable to
distributed computing. Parallel and distributed computing frameworks, distributed filesystems
and databases have been evolving while the price of storage and memory has been decreasing
and now it is economically viable to move on to distributed computing.

In our previous studies, we have been focusing on the scalable assembling of reference pan-
genomes for enabling pan-genomic variant calling utilizing hybrid-index [15] and scalable
searching of viral sequences amongst numerous metagenomes assembled from human sam-
ples with ViraPipe [16]. Here, we focus on the distributed compressed hybrid-indexing and
propose a scalable distributed compression and indexing tool for a massive number of assem-
bled genomes with read alignment and sequence matching support. Our tool, DHPGIndex, is
compatible with BWA [17] and Bowtie [18] legacy read aligners, and BLAST [19] sequence
search tool. DHPGIndex is publicly available in GitHub (https://github.com/NGSeq/
DHPGIndex).

Materials and methods

The uncompressed size of the human reference genome is approximately 3 gigabases.
Sequencing a single human genome with NGS can output Terabytes of read data, depending
mainly on the sequencing coverage [20]. In order to assemble a reference genome or call vari-
ants based on a pan-genome, these short reads are aligned to every position in each individual
in a reference pan-genome. The rapidly accumulating Whole-genome and NGS sequencing
datasets make compression methods even more significant. However, to exploit compressed
genomic data efficiently in analysis, the compression formats must support fast sequence
searching and read alignment methods.

Human genetic variation between individuals is relatively low and, in addition, also individ-
ual genomes comprise a large number of repetitive sequences [21]. This property offers an
excellent basis for compressing and representing collections of genomes very compactly. On
the other hand, sequence searching requires that sequence is aligned base by base over the
whole reference genome. For a human, the reference genome is over three billion base pairs
long (resulting in over 3 GB of data per individual, e.g. GRCh37 assembly available from
https://www.ncbi.nlm.nih.gov/assembly/GCF_000001405.13/).

Typical NGS analysis workflow is preceded by a read alignment process where billions of
short read sequences from a donor sample can be aligned to a reference genome [22].
Sequence alignment compares short sequences to subsequences extracted from a genome. The
similarity between the sequences is scored by giving a numerical cost for each different edit
operation (substitution, insertion, or deletion). Then, we can measure the alignment quality
and deduce the best matching sequence [23]. The alignment process generally needs indexing
of a reference genome, to be able to efficiently compare a sequence to every position in each
chromosome.

To enable sequence alignment with compressed pan-genomes, the individual genomes
need to be indexed for an appropriate aligner. Typically, the amount of reference index data
remains several magnitudes smaller than the read data sequenced from a donor genome, but
with pan-genomes, the amount of index data grows in proportion to the number of individual
sequences in the collection. A traditional alignment method would require indexing of each
individual genome in the pan-genome and aligning of reads against every such index. This
would result in that the amount of total main memory needed for the index during read
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alignment grows up to N x M where N is the number of sequences in the collection and M is
the number of nodes in the cluster.

Burrows-Wheeler transformation (BWT) is an efficient method for constructing sequence
indexes and enabling fast searching. Burrows-Wheeler transformation can be enhanced using
a suffix-array for improving computational space- and time-efficiency [24]. Suffix-arrays are
data structures representing long sequences with substrings where a substring occurs multiple
times in the original sequence. Suffix-arrays can be constructed in linear time [24]. There are
several Burrows-Wheeler index-based legacy tools for relatively fast read alignment such as
BWA [17], Bowtie [18], and SOAP [25]. However, these tools do not utilize data compression
techniques such as Lempel-Ziv [26] and are developed for sequential computing, and thus, not
directly applicable to distributed systems. The index size can be reduced significantly with
compressed hybrid-indexing methods by compressing the repetitive sequences between the
genomes, that is, the human genome includes a large proportion of repetitive sequences which
can be found from every individual. The compressed hybrid-index enables indexing of large
pan-genomes as a whole that would require an unfeasible amount of memory with uncom-
pressed sequences [13].

Relative Lempel-Ziv compression

Lossless data compression algorithms based on dictionary coding, such as Lempel-Ziv (LZ77)
[26], enhanced by suffix-arrays are proven space- and time-efficient methods for compressing
repetitive sequences [12, 27]. Relative Lempel-Ziv (RLZ) is a modification to the classical LZ77
[12] and is applicable to efficient distributed genome compression. Instead of applying an
LZ77 sliding window method to limit the compression dictionary size, RLZ uses a prefix of the
data as a dictionary. Valenzuela et al. [28] propose a CHICO indexer based on a hybrid-index
implementation of LZ77 with kernelization [29] for compressing and indexing pan-genomes.
Distributed RLZ method presented here extends the CHICO indexing by distributing and par-
allelizing the RLZ compression (Fig 1) and hybrid-indexing method (Fig 2).

Reference assembly methods typically require an index of the whole reference genome
which has to be provided at the stage when raw reads are aligned to a reference. In the distrib-
uted setting, the reference index has to be provided as a whole for each alignment execution,
meaning that during parallelized read alignment, the index has to be copied to every node in
the computing cluster. Compressed self-indexing techniques using Lempel-Ziv and suffix trees
have been already studied and found efficient for indexing repetitive sequences [12] which can
facilitate space efficiency and reduce search space in the sequence alignment.

Valenzuela et al. propose the CHIC aligner [14] based on CHICO [28] and they have man-
aged to index 200 human genomes with a compression ratio of 3:1 (540 GB of input data to
180 GB Bowtie2 index) in 35 hours with a very large memory single node having 1.5 TB
RAM and 48 cores. There is also PanVC pipeline available from https://gitlab.com/dvalenzu/
PanVC which uses the CHIC aligner to call variants from the pan-genomic index. Kuhnle
et al. [30] propose an FM-index-based r-index tool for constructing a complete pan-genomic
index. They were able to index 10 human genomes in 380 minutes with an index size of 36
GB on a single node with 10 cores (Intel(R) Xeon(R) CPU E5-2680 v2 @2.80 GHz) and 324
GB RAM. With 10 diploid genomes (58 GB) this results in an index compression ratio of
1.6:1.

In contrast, our distributed compression approach achieved an index compression ratio
532:1 with 1000 human haploid genomes (2890 GB). Our method utilizes distributed memory
using less memory per node available and is thus more practical, e.g., for cloud computing.
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Fig 1. Distributed Relative Lempel-Ziv compression.

https://doi.org/10.1371/journal.pone.0255260.9001

Kernelization

The kernelization method has been recently proposed by Gacie and Puglisi [29] for searching
and indexing compressed genomic datasets. The kernel representation significantly reduces
the repetition of identical sequences in the pan-genome where the repetitive sequences are
parsed with LZ77 factorization using a dictionary that is constructed from the pan-genome
prefix. That is, LZ factorization breaks down the repetitive sequences in the dictionary into suf-
fix phrases (factors). Building the dictionary of the whole pan-genome would be too time-con-
suming and is not necessary due to repetitiveness, although, it can potentially improve the
compression ratio. Kernelization uses suffix phrases factorized from the input sequence (here
pan-genome) to represent the input sequence as a compact kernel sequence. To find all the
occurrences of a query string in the original text, the positions of suffix phrase boundaries and
phrase lengths in the original text are stored. The query sequences can be then searched from
the kernel sequence and all the secondary matches to the original sequence can be found effi-
ciently using advanced data structures [31].

Hybrid-indexing

Hybrid-indexing was first presented by Ferrada et al. in [13] showing that the compressed self-
index can be made compatible with conventional indexes. Hybrid-index is then accessible
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Fig 2. Distributed compression pipeline for hybrid-index.
https://doi.org/10.1371/journal.pone.0255260.g002
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with conventional read aligners enabling fast sequence alignment to compressed index without
losing aligner-specific properties. The repeating sequences in a pan-genome are compressed
with RLZ relative to a sample dictionary parsed from the beginning of a pan-genome. The pro-
duced kernel sequence can be then indexed using conventional indexes such as Bowtie or
BWA and used directly for read alignment with hybrid-index. CHIC [14] hybrid-index stores
the original positions of suffix phrase boundaries and phrase lengths and uses auxiliary data
structures to map the kernel alignments to the original pan-genomic positions. CHIC aligns
reads against a single kernel sequence instead of aligning to each individual genome separately
and the resulting kernel alignment is mapped back to the original genomic positions using the
data structure of SDSL (https://github.com/simongog/sdsl-lite) library and its suffix-array
binary searching capabilities over the suffix phrases. Read alignment is reported as a primary
match which is the best scoring match of all possible matches and optionally as secondary
matches that align to the other positions where an identical subsequence exists in the uncom-
pressed pan-genome. The primary match can span over the multiple phrase boundaries while
the secondary match can not and secondary matches are solved using the primary match as an
input and searching the identical substrings over the LZ parse [32].

Distributed computing frameworks for genomics

Apache Spark (http://spark.apache.org/) is an open-source framework developed for efficient
iterative distributed large-scale computation in computing clusters. Computation in Spark is
based on Resilient distributed datasets (RDD) [33], which are distributed and cached to work-
ing memory of multiple computing nodes in a cluster to be processed by tasks managed by
YARN node managers. Each node then assigns an executor for local tasks which are run in
parallel in multiple cores inside a node. Thus, data locality can be achieved in the nodes of the
computing cluster and data processing done in parallel without reloading or moving any data.
The existing general genomics file formats are not designed for distributed file systems and
especially binary formats BAM, BCF, and BED are not distributable without external tools.
Hadoop-BAM [34] is a library originally developed for processing NGS data formats in parallel
with both Apache Hadoop and Spark. Disq (https://github.com/disq-bio/disq) project is a con-
tinuation for Hadoop-BAM with better Spark compatibility. Hadoop-BAM can process dis-
tributed BAM and BCEF files on Hadoop Distributed File System (HDEFS) [35] in parallel and
also in-memory with Spark. It includes the Hadoop Input/Output interface for distributing
genomics file formats into HDFS and tools for, e.g., sorting, merging, and filtering of read
alignments. Currently, supported genomics file formats are BAM, SAM, CRAM, FASTQ,
FASTA, QSEQ, BCF, and VCF. Hadoop-BAM is already used in parallel genome analytics
frameworks and libraries such as GATK4 (https://github.com/broadinstitute/gatk), Adam
(https://github.com/bigdatagenomics/adam), Halvade [36], Seal [37] and SeqPig [38].

Implementation

Distributed Relative Lempel-Ziv compression. We implement Distributed Relative
Lempel-Ziv (DRLZ) compression (Fig 2) using Apache Spark for reducing the compression
time through distributed parallelization. The RLZ compression method used in the DRLZ fol-
lows the RLZ method presented by Hoobin et al. [12] with the exception that each partition is
encoded separately in parallel. The encoding part is implemented in Scala based on the kkp3
LZ factorization variant presented in [39, 40]. The dictionary part is extracted from the first N
sequences in a partition and the dictionary is then used for compressing the rest of the
sequences in a partition. In addition, a suffix-array of the dictionary is utilized for searching
the matching suffixes from the dictionary more efficiently [12]. The suffix-array of the
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dictionary in each partition is constructed using a Scala implementation of algorithm pre-
sented by Kérkkdinen et al. [24]. The input sequence data is distributed to the HDFS and the
distributed data is read into Spark DataFrame from the HDFS, decomposed into smaller parti-
tions, and grouped by the partition identifiers. As human chromosomes are of different
lengths, the data partitions of each chromosome can be kept close to the same size by changing
the number of partitions. The limiting issue with Spark implementation is that the length of
the dictionary is restricted by Java arrays roughly to 2 billion values (Integer. MAX_VALUE),
however, the data decomposition enables us to use longer dictionaries within the partition and
thus achieving a better compression ratio. Moreover, the data decomposition allows us to con-
trol peak memory usage and the workload balance by keeping the partition size constant. To
improve the compression ratio with mixed species (e.g., bacteria or viruses), the sequences are
grouped by their taxonomies and the most complete assemblies (e.g., whole genomes and
chromosomes) are selected primarily for the dictionary. The encoded partitions are written in
binary format into HDFS and the order of the partitions is maintained by using numbered file
names. The user should be aware that searching for secondary matches is limited inside the
partition as the LZ phrases are not linked across the partitions. If all the secondary matches
should be found, one has to configure the aligner to search for approximate matches, e.g., with
bowtie2 -a option.

Distributed hybrid-indexing. The RLZ compressed data partitions are eventually merged
and downloaded from the HDEFS to distributed nodes where the kernel representations are
composed with CHIC in parallel per partition. To construct the complete Bowtie index with
human genomes, the chromosomal partitions are kernelized in parallel and the kernel
sequences are merged into a single file and indexed as a whole. For the distributed indexing
option, we have implemented tools for CHIC to merge the metadata files that it uses in the
alignment phase to map kernel-aligned sequences back to the original genomic positions. The
BLAST indexer input size is limited to 4 GB, thus with large pan-genomes we construct sepa-
rate BLAST indexes from partial kernels and link the indexes into a single searchable index
withblastdb aliastool (Fig3).

RLZ RLZ RLZ RLZ RLZ RLZ RLZ RLZ RLZ

I N V4

Merge Merge Merge
chr 1 chr2 chr N
ordered ordered ordered
Index chr 1 Index chr 2 Index chr N
BLAST BLAST BLAST
Merge
BLAST
Indexes

Fig 3. Distributed hybrid-indexing with BLAST.
https://doi.org/10.1371/journal.pone.0255260.9003
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CHIC supports legacy BWA and Bowtie2 indexes for FASTQ read alignment with the com-
pressed index, and FM indexes for full-text searching [14]. The Bowtie2 read aligner is recom-
mended to be used with pan-genomes as it can index arbitrary length sequences. In addition,
we have extended CHIC to compress BLAST indexes for searching FASTA formatted
sequences with the BLAST tool. CHIC indexer takes a maximum query length (there is no
upper bound for this parameter) as an input parameter that should be chosen carefully as it
affects the compression time and the compression ratio, and can affect the alignment accuracy.
BLAST searches initially small fractions of the query sequence defined by the word_size
parameter which is 28 bases with megablast and 11 bases with blastn in default, thus it is likely
to find similar sequences even though maximum query length is smaller than the length of the
query sequence. That is, if the alignment is longer than the maximum query length the second-
ary match may be omitted. With the read aligners, one should choose the maximum query
length based on the maximum read length. The performance-wise rule is: the longer the maxi-
mum query length the worse the compression ratio and the shorter the compression time.
However, the compression ratio depends on the compressed sequence length and its content
at the first hand.

Sequence alignment with RLZ compressed hybrid-index. CHIC aligns sequences
against a single indexed kernel sequence generated from the pan-genome instead of aligning
to each individual genome separately (Fig 4). The CHIC aligner integrates BWA, Bowtie2, and
BLAST aligners and uses them to align FASTQ or FASTA sequences to the kernel sequence
indexed by an appropriate indexer. Eventually, the kernel-aligned sequences are mapped back
to the original genomic positions using the CHIC index’s internal data structures with LZ
compressed sequences. The CHIC aligner can be executed with different parameter settings to
find primary matches only (default), to find primary and secondary matches (-sALL), and
with bowtie2 -all option (reports all approximate alignments) to find primary+second-
ary matches also from approximate read alignments (Fig 4). The integrated Bowtie2 aligner
can be configured using the original Bowtie2 parameters, and it may be useful to restrict the
number of approximate alignments, e.g., with bowtie2 -k parameter in real use cases. The
integrated BLAST search can be configured with the original BLAST search parameters and
one may find it useful to search matches by setting threshold values such as evalue, pident, and
max_hsps. A user should be aware with the distributed indexing that the secondary matches
can be reported only from the same partition that the primary match is aligned to, i.e., not
from the other chromosome. However, the omitted secondary matches can be covered by
searching the approximate alignments.

Experiments

Data preparation. The collection of genomes (i.e., the pan-genome) itself is composed of
assembled genomes. We experiment both with human genomes and with bacterial genomes.
We generate a human pan-genome of whole-genomes based on GRCh37 (NCBI accession
number GCF_000001405.13) human reference genome by applying SNPs from phased haploid
VCF data to GRCh37 reference thus generating two consensus haploids per individual into a
pan-genome. Pan-genome is generated from 1000 Genomes phase3 autosomal (chromosomes
1-22) VCF data including 2506 individuals in total available from ftp://ftp.1000genomes.ebi.ac.
uk/voll/ftp/release/20130502/. Each genome in a collection is assembled by applying subsets
of variants from VCF files to a standard reference genome with vef2multialign (https://
github.com/tsnorri/vef2multialign) tool and loading produced FASTA files into HDFS under
the same folder. The FASTA files are separated by sample id and chromosome numbers for
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Fig 4. Sequence alignment with hybrid-index.
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enabling the distributed indexing and flexible data management. When diploid genomes (e.g.,
humans) are assembled with vcf2multialign, it generates two sequences, both haploids

per genome. Each subset used in our experiments is a superset of a larger set, e.g., subset

n = 250 is contained in the n = 500 dataset.
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With the Bowtie2 read aligner, we use next-generation sequencing (NGS) reads. Whole-
exome sequencing data sequenced from single individuals (1000 genomes sample NCBI SRA
accession numbers SRR765989 and SRR233147) is used in the human pan-genome read align-
ment experiments. In the BLAST sequence search experiment with the human pan-genome,
we search CrispR-Cas9 associated guide RNA target sequences [41] downloaded from http://
arep.med.harvard.edu/human_crispr including 189,864 sequences of length 23 base pair each.

Bacterial sequences were downloaded from the NCBI assembly database (https://www.ncbi.
nlm.nih.gov/assembly/). The complete bacterial genomes and scaffolds were included generat-
ing 488 GB of FASTA data in total in total comprising of 13,375,031 sequences available from
https://doi.org/10.5281/zenod0.4958582, https://doi.org/10.5281/zenod0.4958584, https://doi.
org/10.5281/zenod0.4955279, and https://doi.org/10.5281/zenodo.4958582. Escherichia coli
RefSeq sequences were downloaded including 745,409 sequences (all assembly types) generat-
ing 18 GB dataset (available from https://doi.org/10.5281/zenodo.4926006). The E.coli pan-
genome was constructed by simply loading all the individual sequences in FASTA format into
HDFS under the same folder. The 488 GB bacterial data set is split into 25 partitions and
loaded into separate HDFS folders so that the distributed indexing can be managed flexibly on
all 25 computing nodes.

The next-generation sequencing reads used in bacterial experiments are sequenced from
Escherichia coli isolates (NCBI SRA accession number SRR13657535) and from a food-
based metagenomic WGS sample spiked with the synthetic microbial community (NCBI
SRA accession number ERR3079359). Query sequences used in the BLAST experiment with
488 GB bacterial pan-genome are randomly selected subsets of a pan-genome the sequences
are aligned to. The query subset available from https://doi.org/10.5281/zenod0.4980557
includes 599 sequences (30 MB) with mean sequence length of 50342 bp, minimum length
of 235 bp, and maximum length of 1469740 bp. The query sequences used with E.coli pan-
genome are manually selected assemblies from NCBI RefSeq sequences including E.coli,
Streptococcus and Klebsiella strains. The query subset used with the E.coli pan-genome
available from https://doi.org/10.5281/zenod0.4980557 includes 4,167 sequences (78 MB)
with mean sequence length of 19399 bp, minimum length of 179 bp, and maximum length
of 989273 bp.

Computing environment. We utilize the computing resources of the Finnish IT Center
for Science (CSC) in our experiments. We run the experiments on the Apache Spark cluster in
a cloud computing environment. The cluster consists of 25 Spark worker nodes having 40 GB
of RAM and 16 virtual cores (Intel(R) Xeon(R) CPU E5-2680 v3) in each and one Spark master
node having 256 GB of RAM and 48 cores. The whole cluster comprises 448 CPU cores, 1.256
TB of RAM, InfiniBand 40 GB/s network, 30 TB of HDD storage space in total.

Results
Compression and indexing

First, we test the effect of reference dictionary length to the compression ratio with n = 250
human haploid genomes (772.5 GB) by increasing the RLZ dictionary length from 1% to 45%
of the total pan-genome (Table 1). The results show that the compression ratio increases in
proportion to the dictionary size. The compression time increases 3.4 times while the compres-
sion ratio increases 27.6 times from 1% to 45% dictionary lengths. In the following experi-
ments, we choose to use 30% dictionary length as a compromise to keep the compression time
tolerable with the longer pan-genomes. With human pan-genomes, the chromosomes are split
to closely similar size data partitions by decreasing the number of partitions from 30 to 8 while
increasing the chromosome number from 1 to 22.
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Table 1. Compressing a human pan-genome (n = 250) with increasing RLZ dictionary length (% of pan-genome length).

Dict.length (%) DRLZ (min) Compressed size (GB) CR Bpc
1 111 52.2 13.8 0.072

15 269 4.8 150.5 0.0066

30 326 2.8 258.0 0.0039

45 398 1.9 380.3 0.0026

https://doi.org/10.1371/journal.pone.0255260.t001

Table 2. Compressing human pan-genomes using reference sequence size of 30%.

n Size (GB) DRLZ (min) Compressed size (GB) CR Bpc
250 772.5 326 2.8 258.0 0.0039
500 1445 678 6.8 208.0 0.0048
750 2217.5 1049 11.6 187.4 0.0053
1000 2890 1421 16 176.8 0.0057

https://doi.org/10.1371/journal.pone.0255260.t002

Secondly, we test the scalability of Distributed RLZ compression with different pan-genome
sizes ranging from n = 250 to n = 1000 haploid genomes. The compressed size equals the ker-
nel size which is indexed in the following experiments. Table 2 shows the compression result
with accumulating pan-genome size. The total runtime with n = 250 is 326 minutes, 678 min-
utes with n = 500, 1049 minutes with n = 750, and 1421 minutes with n = 1000. Compression
ratios are 258:1, 208:1, 187.4:1 and 176.8:1 respectively. Bytes per character (Bpc) is simply the
inverse of the compression ratio.

Third, we construct complete indexes for compressed pan-genomes of sizes n = 500 and
n = 1000 compatible with Bowtie2 and BLAST (Table 3). Here, the indexing time includes also
the distributed kernelization step using RLZ compression from the DRLZ step. The index size
includes the index generated by the standard tool and the data generated by the CHIC. Bow-
tie2 index is constructed from a single kernel sequence concatenated from the chromosomal
kernels on a single node. The BLAST index is constructed from chromosomal kernels on 22
nodes and the BLAST database is concatenated from the chromosomal indexes with blas-
tdb_aliastool due to its limited input size (4 GB). Fig 5 summarizes the DRLZ compres-
sion and distributed indexing execution times with different pan-genome sizes. Then n = 250
subset was indexed in 71 minutes with Bowtie2 and in 16 minutes with BLAST with compres-
sion ratios of 157:1 and 870:1 respectively. The n = 500 subset was indexed in 222 minutes
with Bowtie2 and in 64 minutes with BLAST with compression ratios of 87:1 and 542:1 respec-
tively. The n = 1000 subset was indexed in 517 minutes with Bowtie2 and in 107 minutes with

Table 3. Building a complete hybrid-index for a human pan-genome using distributed indexing.

n Size (GB) Tool Indexing (min) Index (GB) CR Bpc
250 722.5 Bowtie2 71 4.6 157.07 0.00637
250 722.5 BLAST 16 0.83 870.48 0.00115
500 1445 Bowtie2 222 16.2 87.03 0.0115
500 1445 BLAST 64 2.6 542.31 0.00184
1000 2890 Bowtie2 517 38 76.05 0.0131
1000 2890 BLAST 107 53 532.08 0.00188

Bowtie2 index is created on a single node. BLAST index is created in parallel on 22 nodes from chromosomal kernels. The kernelization step is included in the indexing
time and it has been performed in parallel on 22 nodes in both cases.

https://doi.org/10.1371/journal.pone.0255260.t003
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Fig 5. Summary of compressing and indexing complete human pan-genomes with distributed and non-distributed methods.
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BLAST with compression ratios of 76:1 and 532:1 respectively. To note, the distributed kernel
sequence construction time observed was 62 minutes for n = 500 and 104 minutes for
n = 1000 with both tools, and the rest of the indexing time was spent in the index construction
with the used tool. The Bowtie2 input kernel sequence size was 2.8 GB for n = 250, 6.8 GB for
n =500 and 16 GB for n = 1000. The BWA was not able to index the same data sets. The CHIC
indexer has been run with the maximum query length parameter of 102 base pairs which cov-
ers the maximum sequence length of the test datasets used in the alignment experiments. As a
reference, we compress and index a human pan-genome (n = 10) with the original CHIC tool
(non-distributed in Fig 5). Non-distributed RLZ compression took 138 minutes and Bowtie2
indexing 161 minutes on a single node using 16 cores resulting in index compression ratio of
1.67:1.

Fourth, we test distributed RLZ compression and indexing of mixed bacterial populations
(Table 4). Compressing 18 GB E.coli data set took 33 minutes using the whole computing

Table 4. DRLZ compression and indexing of bacterial pan-genomes with BLAST.

Tool Pan-genome (size) Segs. DRLZ Indexing Index size CR Bpc
BLAST E.coli (18 GB) 745k 33 min 2 min 0.177 GB 101.69 0.0098
BLAST GenBank (488 GB) 134 M 551 min 24 min 7.9 GB 61.78 0.0162
Bowtie2 E.coli (18 GB) 745k 33 min 8 min 0.356 GB 50.56 0.0198
Bowtie2 GenBank (488 GB) 13.4M 551 min 58 min 46 GB 10.61 0.0943

Bowtie2 index is created on a single node from concatenated kernel. BLAST index is created in parallel on 25 nodes from distributed kernels. The kernelization step is

included in the indexing time.

https://doi.org/10.1371/journal.pone.0255260.t004
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Table 5. Aligning sequences to compressed human pan-genome index of size n genomes.

Tool n Query sequences min Mapped
Bowtie2 1000 2x28.86M (2x7.3 GB) 31.7 10.12M
BLAST(megablast) 1000 189.9k (23 MB) 452 639k

https://doi.org/10.1371/journal.pone.0255260.t005

cluster. Indexing the compressed E.coli data set on a single node took 2 minutes resulting in a
compression ratio of 101.69:1 with BLAST and 8 minutes with Bowtie2 resulting in a compres-
sion ratio of 50.56:1. With the GenBank 488 GB data set we use distributed indexing method
and harness all 25 computing nodes for indexing. 488 GB GenBank data set was DRLZ com-
pressed and indexed with BLAST in 575 minutes resulting in CR 61.78:1 and in 609 minutes
with Bowtie2 resulting in CR 10.61:1. The DRLZ compression time was 551 minutes with the
488 GB mixed data set, where the distributed kernelization took 23 minutes, and the distrib-
uted BLAST indexing took only 1 minute. With the Bowtie2, the CHIC indexer has been exe-
cuted with the maximum query length parameter of 502 base pairs which covers the
maximum read length of the test datasets used in the alignment experiments. In the BLAST
experiments, the query length parameter of 1000 bp (the parameter sets the maximum sup-
ported length for the query sequence) has been used which was assumed to cover most of the
aligned sequence lengths.

Searching and read alignment

First, we align sequences to a compressed index of human pan-genome (n = 1000) with differ-
ent tools, see Table 5. Read alignment is performed on a single node (16 cores) with the
paired-end read data sequenced from a single individual. The CHIC aligner finds only primary
matches as a default which is used in the experiments unless otherwise stated. Bowtie2 aligned
14.6 GB of paired-end reads to compressed index of size n = 1000 in 31.7 minutes. BLAST
search is tested by aligning 189,864 Crispr-Cas9 gRNA target sequences of length 23 base pairs
each [41] (23 MB Fasta data in total) to the compressed BLAST index of 1000 human haploid
genomes. The BLAST search is performed in parallel per chromosomal partitions on 22 dis-
tributed nodes (16 cores in each) with parameters: ~task megablast -word size 23.
Megablast is used as we want to find exact matches of Crispr-Cas9 target sequences and it is
intended to find highly similar sequences. Crispr-Cas9 target sequence BLAST search took 45
minutes. As a reference, the same sequence alignment to a single uncompressed GRCh37 ref-
erence genome index took 15 minutes with Bowtie2, and 7 minutes with BLAST using a single
node and 16 cores. The secondary matches are not relevant to be reported in most use cases.
However, the effect of searching all the matches with different CHIC aligner parameters from
a human pan-genome is demonstrated in Table 6. The number of mapped reads grows greatly
when secondary matches with the ~sALL option are included, and especially so when the
Bowtie2 is set to search also approximate alignments (withbowtie2 -a option).

Table 6. The effect of CHIC aligner parameters to the number of pan-genome mapped reads (n = 10).

Mapped (min)
n Reads (size) default sAll bowtie2 -a
10 2x14.69M (2x949 MB) 0.126M (0.6) 530.14M (12.3) 8154.46M (302)

The CHIC aligner with Bowtie2 was run with three different parameter settings: default to find primary matches only, -sALL to find primary+secondary matches, and

bowtie2 -a option (reports all approximate alignments) to find primary+secondary matches also from approximate read alignments.

https://doi.org/10.1371/journal.pone.0255260.t006
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Table 7. Aligning bacterial sequences to a compressed index with BLAST (blastn).

Matches(min)
Pan-genome (segs., size) Query segs. (size) primary -sALL
E.coli (745k, 18 GB) 4.2k (78 MB) 1741k (5.38) 1872k (7.55)
GenBank (13.4M, 488 GB) 599 (30 MB) 13.79M (26.17) 43.60M (44.56)

The CHIC aligner was run with two different parameter settings: default to find primary matches only, and -sALL

to find primary+secondary matches.

https://doi.org/10.1371/journal.pone.0255260.1007

Secondly, we test alignment performance with the index generated from bacterial popula-
tions (Tables 7 and 8). With the E.coli 18 GB pan-genome, the alignment experiment is per-
formed on a single node (16 cores). With the GenBank 488 GB data set, the alignment
experiment is performed in parallel per database partition on 25 distributed nodes (16 cores
in each). Searching primary matches for 4,167 (78 MB) sequences from the 18 GB com-
pressed E.coli index took 5.38 minutes outputting 1741k matches. Searching all the matches
with chic_align -sALL parameter (includes primary and secondary matches) for the same
sequences took 7.55 minutes outputting 1872k matches. Searching primary matches for 599
(30 MB) randomly selected GenBank sequences from the 488 GB compressed GenBank
index took 26.17 minutes while searching all the matches with chic_align -sALL option
(includes primary and secondary matches) for the same sequences took 44.56 minutes. 43.60
million matches were found in total from which 13.79 million matches were primary
matches. BLAST task blastn was run with 16 threads using default parameters. As the
alignment quality is not restricted by any constant value as default, the same sequence can
align to several positions and several reference sequences resulting in a large number of
matches. As a reference, the same BLAST search of 4.2k sequences from a collection of 27.8k
(1 GB) E.coli sequences using a conventional BLAST index took 8.9 minutes on a single node
with 16 cores.

With the Bowtie2 read aligner, we use next-generation sequencing reads. 3.1 million reads
were aligned (NCBI SRA accession number SRR13657535) to E.coli pan-genome in 5.94 min-
utes with default parameters resulting in 73 mapped reads, with —~secondary report =
ALL (-sALL) option in 5.98 minutes resulting in 73 mapped reads, and in 31.47 minutes by
executing bowtie2 -a option resulting in 548 mapped reads. 27.2 million reads (NCBI SRA
accession number ERR3079359) were aligned to GenBank pan-genome in 12 minutes with
default parameters resulting in 1.07k mapped reads, in 24 minutes SALL parameter resulting
in 41.5k mapped reads, and in 92 minutes by executing bowtie2 with -a parameter resulting in
228.4k mapped reads.

Table 8. Aligning next-generation sequencing reads to a compressed index with Bowtie2.

Mapped (min)
Pan-genome (segs., size) Reads (size) default -sAll bowtie2 -a
E.coli (745k, 18 GB) 3.1IM (792 MB) 73 (5.94) 73 (5.98) 2.2k (31.47)
GenBank (13.4M, 488 GB) 27.2M (4334 MB) 1.07k (12) 41.5k (24) 228.4k (92)

The CHIC aligner has been executed with three different parameter settings: default to find primary matches only, —sALL to find primary+secondary matches, and

bowtie2 -a option (reports all approximate alignments) to find primary+secondary matches also from approximate read alignments.

https://doi.org/10.1371/journal.pone.0255260.t008
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Discussion

In this work, we design and implement a distributed version of the compressed hybrid index-
ing method based on Relative Lempel-Ziv (RLZ) compression for scaling pan-genomic read
alignment and sequence search to perform on large pan-genomes in practice. We have experi-
mented with the Distributed Relative Lempel-Ziv (DRLZ) compression and distributed hybrid
indexing methods in Apache Spark computing cluster comprising 448 cores distributed on 26
nodes. The developed DHPGIndex tool has been tested with human and bacterial genomes
but can be used with any species with little effort. The experiments have been conducted using
different settings and input data sets for demonstrating the performance and scalability of our
methods.

With the increasing number of genomes, the distributed DRLZ compression scales quite
well with the 30% dictionary length (Table 2). The effect of dictionary size is experimented
with 250 genomes (Table 1) by increasing the dictionary size from 1% to 45%. The DRLZ com-
pression ratio increases in proportion to the dictionary length and the compression time
increases only 3.4 times while the compression ratio increases 27.6 times from 1% to 45% dic-
tionary length. This is because that a longer reference dictionary sequence contains more
repetitive subsequences with the rest of the pan-genome, and thus, increases the compression
ratio. The 30% dictionary size was chosen as a compromise between the compression time and
the compression ratio in the experiments.

BLAST indexing step with human pan-genome is distributed by chromosomes and the
chromosomal indexes are merged. We were able to compress 1000 genomes index with a com-
pression ratio of 532:1. Distributed BLAST indexing time is negligible compared to kerneliza-
tion time which was 104 minutes with 1000 genomes. With Bowtie2 the pan-genome was
kernelized in chromosomal partitions in parallel and the generated kernels were merged for
indexing on a single node as a whole. By using longer dictionary sequences, the compressed
distributed kernel sequence size stays below the maximum input sequence length limited by
the BLAST (4 GB) indexer. Moreover, the longer dictionary increases the compression time
but decreases the indexing time due to the shorter kernel sequence.

The limiting issue in our current implementation to use whole human genomes as a dictio-
nary with Spark, is that the length of the dictionary is restricted by Java array which can hold
up to roughly 2 billion (Integer. MAX_VALUE) values. Additionally, a long dictionary uses
more memory while compressing. Thus, to improve the compression ratio while keeping the
peak memory usage low, we split each chromosome into N partitions and increase the number
of dictionary reference sequences in each partition.

The compression ratio of the mixed bacterial population is lower than with the human
genomes. That is, the DNA sequences between bacterial genomes vary greatly and less repeti-
tion is present. By grouping the bacterial sequence by their taxonomies, the compression ratio
improved slightly but stays still relatively low compared to the compressed human genome. In
the near future, we will study alternative methods, such as sequence clustering to improve
compression ratio with microbial genomes.

The alignment performance depends greatly on the number of the matched sequences
thus we observe a great increase in alignment time when secondary matches are included as
human pan-genome comprises highly similar sequences (Table 6). With dissimilar bacterial
sequences the alignment time increases only slightly due to few or zero additional matches
(Tables 7 and 8).

Altogether, our distributed DHPGIndex (https://github.com/NGSeq/DHPGIndex) tool
enables now compressing and indexing large pan-genomes in a tolerable time in practice. The
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compressed pan-genomic hybrid-index can be directly used with read aligners such as Bowtie2
and BWA or with the BLAST search tool.
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