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Abstract
This paper proposes an approach for locating faults in a distribution grid by utilizing data measured and
gathered by distributed converters. The data, comprising grid voltages and impedances from multiple
locations, is processed using multinomial logistic regression, a machine learning algorithm, to classify a
fault location in the grid. The algorithm is first trained with simulation data, followed by evaluation of
its predictive performance using a set of test data previously unseen by the algorithm. The fault location
accuracy of the proposed approach is found resonable and encourages further studies of the unused
potential in the converters.

1. Introduction
Modern society is dependent on constant and reliable availability of electricity. Additionally, the reg-
ulations regarding the allowed outage times are tightening. This provides a challenge for the network
operators, since the power grid is a large system covering a wide area and faults can occur anywhere
within the network. In order to minimize the effect of faults, they need to be located, isolated, and re-
paired quickly. Several different methods for locating faults in the grid have been employed e.g. in [1–6].
Some of them have been built around measuring the grid impedance [1–3] while others rely on the tran-
sients generated by the fault [4, 5]. Even though the problem of fault location has existed as long as
power grids have, new approaches such as [6] are still being developed.

Like in many other engineering problems, cost optimization is one driving factor in grid fault location.
For long, large-capacity, high-voltage transmission lines, faults have a large impact and can take long to
search. It can be beneficial to install dedicated fault locator hardware on both ends of one line segment
to indicate the placement of the fault [7]. For smaller lines, the incentives for installing fault location
hardware decreases and it is not reasonable to have measurement hardware for each line segment. The
fault location methods for distribution networks have generally been based on impedance measurement,
and the methods have been developed under the assumption that measurements are only available at the
substations [8–13]. These methods rely on iterations and constructing equivalent impedance models of
the grid for each node. In addition to the traditional mathematical formulation, artificial intelligence
(AI) has been considered for network protection [14–24]. While the approach of using AI is new, most
research has been limited to the same measurement information gathered at the substation that is available
for conventional methods.
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Fig. 1: Simplified model of a grid with a fault.

An additional challenge for the previously proposed impedance-based fault location methods is caused
by the increasing amount of distributed generation (DG) and development towards smart grids [25]. This
is because the grid impedance is calculated from voltages and currents measured at the substation. Thus,
the current provided by the distributed generation might remain unknown since it does not neceessarily
flow through the substation. However, distributed generation is generally connected to the grid through
power electronic converters. They provide a possibility to develop new fault location methods utiliz-
ing the data gathered from several points around the grid, as the converters are active devices that have
built-in sensors together with processing and communication capabilities. By using e.g. grid impedances
as seen by the converters at their terminals, it might be possible to locate faults in the network without
having to resort to arduous model construction and iteration. Multiple observation points offer an oppor-
tunity for pinpointing the correct fault placement from the multiple possible locations that come up when
estimating fault distance from a single point.

The fault in the grid does not affect only to the grid impedance but also to the voltage: the fault causes
a change in the voltage level, typically a sag. The depth of the sag relates to the distance of the fault
from the observation point [26]. Thus, in addition to the impedance-based fault location, utilization
of other measurements available in the converters, such as converter terminal voltage, is an interesting
possibility. Utilizing data from multiple sources in analytical calculations would require even more
equivalent model constructions and iteration than the proposed methods, e.g. [9]. However, AI, especially
machine learning (ML), is well suited for handling large amounts of data that can be gathered from
several distributed measurement points.

This paper proposes an approach of using measurements gathered from distributed converters around
the grid for the purpose of locating faults. The measurement data consists of grid impedances estimated
by the converters and voltages measured at their connection points, named here as the point of common
coupling (PCC). Initially, faults in different test grids containing converters are simulated and analysed.
The changes in the impedance estimates and measured PCC voltages are studied in relation to the location
of a fault in the circuit. Finally, the simulated data is used to train a classifier based on multinomial
logistic regression, a ML algorithm, to predict the placement of the fault. The accuracy of the obtained
classifier is evaluated on a test data set previously unseen by the classifier.

2. Simplified Model of a Grid
In this paper, boldface letters refer to space vectors that are used for voltages and currents. A simplified
one-line representation of a three-phase grid without neutral conductor is shown in Fig. 1. The grid is
modelled as a voltage source eees that supplies a loading subsystem including loads and grid-connected
converters through a line impedance ZL(jω). In this paper, the line impedance is modelled as a series
connection of a resistance RL and an inductance LL, i.e. ZL (jω) = RL + jωLL. From now on, the fre-
quency dependence of impedances is not marked. The grid voltage at the PCC, cf. Fig. 1, is referred as
uuug. A fault impedance ZF splits the line impedance in two parts, dZL and (1−d)ZL, where d is the split
ratio (0 < d < 1, d ∈ R). As a result, the grid impedance Zg as seen from the PCC is

Zg = (1−d)ZL +
dZLZF

dZL +ZF
. (1)
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Fig. 2: Part of a grid with distributed converters.
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Fig. 3: Proposed fault location approach.

During normal operation, the fault impedance is infinite (ZF = ∞), and the grid impedance Zg equals to
ZL. Conversely, in the case of a finite fault impedance ZF, the grid impedance Zg depends on the distance
of the fault from the subsystem terminals as well as on the fault impedance itself, as shown in (1). From
Fig. 1 and (1), it can also be deduced that the voltage uuug and the current iiig are also affected in relation to
the distance of the fault.

3. Fault Location Approach
The proposed fault location approach assumes that multiple three-phase converters are distributed in the
grid. An example is shown in Fig 2. The converters can measure the grid voltage uuug and current iiig, and
estimate the impedance Zg from the point they are connected to the grid. Converters used for distributed
generation can be equipped with a data connection e.g. to a cloud service which can be used as a platform
for the fault location algorithm. This is illustrated in Fig. 3 where the measurements and estimates from
converters are fed to a ML-based fault location method.

During a fault, each converter observes a change in the grid impedance Zg and in the magnitude of
the PCC voltage uuug depending on the location of the fault relative to the converter. However, since
the distribution network contains many parallel connected branches where the fault may be placed, the
resulting change in the voltage or impedance estimate observed by a single converter might not be unique.
That is, a similar change in the impedance or voltage may be caused by a fault in several different
locations. Nevertheless, during a fault, each converter experiences different changes in the measured
quantities, and these changes depend on the converter location. If the measured data from all of the
converters is combined, as shown in Fig. 3, faults in different locations can lead to unique patterns that
work as a basis of the proposed ML-based fault locating method.

3.1. Impedance Estimation
In this paper, the grid-impedance estimators of the converters are based on sliding discrete Fourier trans-
form and they are implemented as in [27]. A block diagram of the converter control system with the
impedance estimation method is presented in Fig. 4. The estimator injects a small amplitude excitation
signal vvve to the converter voltage reference uuuc,ref at an intermediate frequency that is not present in the
power system naturally, and measures the resulting current iiig and voltage uuug at the converter connection
point. The impedance estimator provides the inductance estimate L̂g and the resistance estimate R̂g at
the injection frequency. Since the amplitude of the injected signal is very low compared to that of the



vvve Grid

L̂g, R̂g

PWM
uuuc,ref

iiig

LCL
filter

udc

values
Reference

Impedance estimator

Lg RgPCC

uuug

eees

Online
estimation
algorithm

Converter
controllers

Fig. 4: Converter control system with impedance estimation [27].

grid voltage and the injection frequency is chosen to be outside of the grid harmonics, the effect of the
injection signal on other components in the grid can be considered negligible. More detailed description
of the estimation method can be found in [27].

3.2. Machine Learning

AI, and ML in particular, provide powerful tools for extracting insights and predictions from large
amounts of data where conventional algorithms are too complex for practical use. While there is a
plethora of different ML methods suitable for the task of fault prediction, the main goal of this paper is to
provide a feasibility study for the proposed approach, and therefore, the multinomial logistic regression
is employed due to its simplicity and relatively good performance.

In multinomial logistic regression, the output from the learning algorithm is typically called a classifier
and it is a function f̂ : X → Y , where X is the set of possible feature vectors and Y is the set of
possible labelings. In the case of observed data, a subscript i, i ∈ {1,2, . . . ,N}, is added to the feature
vectors and labels to distinguish the observations in a sample of size N, e.g., x1 and y1 are the feature
vector and the label for the first observation in a sample. In this paper, the feasibilities of three different
feature vectors are explored. The first feature vector consists of proportional changes in the PCC voltages
measured by each converter in the grid. The second and third feature vectors, on the other hand, consist
of, respectively, the proportional changes in the inductance and resistance estimates for each converter
in the grid. The reference voltages, inductances and resistances are those observed under fault-free
operation. Consequently, xi ∈ X ⊂ RK in a grid with K converters. For an electric grid with M different
line segments, the codomain Y is given as Y = {1,2, . . . ,M}, i.e., each line segment is defined by an
unique integer.

The multinomial logistic regression algorithm is based on learning M different weight vectors wm ∈
RK , m ∈ {1,2, . . . ,M}, which are then used to compute the probability of the observation xi having the
label m, i.e., p(m |xi). This probability is computed as [28]

p(m |xi) =
exp

(
wT

mxi
)

∑
M
k=1 exp

(
wT

k xi
) (2)

where the superscript T denotes the transpose operator. The classifier f̂ can then be written using the
above probabilities as

f̂ (xi) = argmax
m

p(m |xi). (3)

In essence, the use of the multinomial logistic regression algorithm consists of the following steps:

1. A set of N simulations is carried out under different fault conditions.



2. From each simulation, indexed as i ∈ {1,2, . . . ,N}, a feature vector xi is collected, which consists
of either proportional differences in the PCC voltages measured, or in the grid inductances or
resistances estimated by each converter.

3. For an electric grid with M line segments, each simulation case is given an integer label yi between
1 and M, which maps to a unique line segment.

4. The set of N tuples (xi,yi) is used to train the classifier f̂ by minimizing the cross-entropy error
function, defined as [28]

E(w1,w2, . . . ,wM) =−
N

∑
n=1

M

∑
m=1

tnm log[p(m |xn)] (4)

where tnm = 1 if the nth observation has label m, i.e., yn = m, and otherwise tnm = 0.

5. The obtained classifier f̂ is used to predict the fault location on previously unseen data.

4. Simulation study
The proposed fault location approach is studied through simulations by using Simulink with PLECS
blockset. A low-voltage (400 V, 50 Hz) distribution grid of a residental area, shown in Fig. 5, is consid-
ered. In the figure, the numbers refer to nodes acting either as connection points between two or more
line segments or as consumption points, e.g., buildings. The grid is fed through a 315 kVA transformer
that is located in node 0. Symbols C1 - C7 refer to converters representing distributed generation, e.g.
rooftop photovoltaics. Their nominal powers are, respectively, 5 kVA, 4 kVA, 4 kVA, 8 kVA, 5 kVA, 5
kVA, and 4 kVA. The converters are connected to the nodes with underlined numbers. Furthermore, the
colours indicate the unit impedance of each line segment. In the simulations, each converter estimates the
grid inductance and resistance as seen from its terminals and measures the magnitude of the PCC voltage
at the connection point for the three different feature vectors xi under study. These vectors are then used
to train the ML classifier (3) with the multinomial logistic regression algorithm. The trained classifier can
then be used to predict the fault location based on the input feature vector. The fault location algorithm
is implemented using the scikit-learn package in Python [29]. For the impedance estimation, each of the
converters use an 8 V injection signal. In order to prevent disturbances caused by the injection signals
from other converters connected to the same grid, the frequency of the injection voltage is unique for
each of the converters. The injection frequencies 110 Hz, 120 Hz, 130 Hz, 140 Hz, 160 Hz, 170 Hz, and
180 Hz, are used by the converters C1 - C7, respectively.

4.1. Simplified Test Grid
First, a simplified version of the upper branch of Fig. 5, shown in Fig. 2, is studied through simulations.
Initially, the non-faulted grid simulations are carried out to determine the reference voltages and induc-
tances. They are followed by the simulations studying the effect of three-phase short-circuit as seen by
the converters. A prerequisite for the ML-based fault location method is to have sufficiently distinct
data patterns under different faults. Therefore, the changes in grid voltage magnitudes and impedance
estimates gathered from the converters are examined under various fault conditions.

Each simulation round has a unique location for the fault. That is, all the line segments are divided
evenly into 10 parts, and a fault in each location is simulated separately. The simulated fault impedance
is purely resistive with a value of RF = 0.2 p.u.

Fig. 6(a) - (c) shows the simulation results presenting the observed changes in the inductance and resis-
tance estimates, and PCC voltage magnitudes. The y axis in the figures presents the percentual change
in the estimated or measured quantity during the fault condition in comparison with the non-faulted
situation.

Figures 6(a) and 6(b) show that the inductance estimates change more consistently than the resistance
estimates. That is, in all of the simulated cases, the estimated inductances are lower in the fault situation
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Fig. 6: Percentual change observed by the converters in the (a) inductance estimate L̂g, (b) resistance
estimate R̂g, and (c) PCC voltage magnitude |uuug|. Horizontal-axis labels refer to node numbers in Fig. 2.
Between the node numbers (line segment), the axis is uniformly distributed between 0 and 1 correspond-
ing to the fault location d in the line segment.

than during normal operation. On the contrary, the resistance estimates are in many cases higher during
faults than in normal operation. This is expected, since in the simulated cases the fault is purely resistive
element, meaning that the resistance estimates from the converters contain also the fault resistance.

Changes in the measured PCC voltages are presented in Fig. 6(c). While the magnitude of the ob-
served changes in the inductance estimates and the PCC voltages differ, the curve shapes in Fig. 6(a) and
Fig. 6(c) are similar.

Results indicate that when the fault is upstream from the converter, i.e. the fault lies between the supply
and the converter, the shorter distance is seen as a larger change in both the impedance estimated and



PCC voltage measured by the converter. This is expected based on Eq. (1). Conversely, from a single
converter point of view, the changes in the estimates and measurements are nearly indistinguishable from
each other regardless of the fault location when the fault lies downstream from the converter. Based on
Fig. 6(a) and Fig. 6(c), the changes in the inductances might be better features to be used in the ML
algorithm than the changes in the PCC voltages, since the first seems to result in more distinguishable
feature pattern. Furthermore, since the faults are typically resistive, the use of inductance estimates
should be preffered over the resistance estimates in developing the fault location algorithm [30].

4.2. Fault Location in Distribution Grid
The simulations with the simplified test grid resulted in unique feature patterns. In this subsection,
the more complicated distribution grid shown in Fig. 5 is simulated and the ML-based fault location
algorithm is trained and tested.

The simulated network has a counterpart in reality, but without any converters. Thus, the grid parameters
in the simulation model were selected accordingly. The grid shown in Fig. 5 has two main branches and
several line taps with a total of 33 loads and M = 57 line segments. Balanced, three-phase loads are
assumed. The loading conditions in the simulations represent typical power consumption of each of the
load nodes in the real grid. The powers of the loads are between 3 kVA and 10 kVA (0.01 . . . 0.03 p.u.).
The K = 7 converters are spread randomly to the consumption nodes, i.e., the endpoint nodes, in the grid.
The converter ratings were selected based on the load at the node rounded down to the closest kVA. In
the simulations, each of the converters operate with the nominal power.

First, a training data set for the ML-based fault location algorithm was generated. A symmetric resistive
three-phase fault (RF = 0.2 p.u.) was simulated in every line segment at different locations. For over
10 m long line segments, the fault location d = [0.2,0.5,0.8] and for shorter line segments, d = 0.5 was
used. The total number of simulations was N = 147. The training data, containing the relative changes
observed by each converter are presented in Fig. 7 (a) - (c), for inductance estimate, resistance estimate,
and PCC voltage, respectively.

Second, a validation data set for the fault location algorithm was generated. The validation data was
generated by simulating a fault in different locations and collecting the data from the converters. Both
symmetric (RF = [0.002,0.2,2.0,20] p.u.) and asymmetric (RF = 0.2 p.u. between phases a and b) resis-
tive faults were simulated. Each of the defined faults was simulated separately in three random locations
in each of the line segments over 10 m long, and in a single random location in each of the shorter line
segments. The loading condition in the grid was also varied between the simulations.

Fig. 8 (a) - (b) presents the prediction accuracy of fault location for the various fault conditions included
in the validation data set described above. Fig. 8(a) shows the prediction accuracy when the ML algo-
rithm indicates the faulting line segment correctly, while in Fig. 8(b) predictions to the line segments
next to the actual one are also considered as correct predictions.

The results show that when the fault resistance is the same as in the training data set but the fault location
and grid loading condition are randomized, the accuracy of the predictions is good. Considering that the
test grid has several short branches and only a few converters, the capability to correctly identify the area
where the fault happens is a desirable result. When the fault resistance differs from the training data, the
amount of correct fault location predictions drops drastically, especially when the resistance estimate is
used. The last one is reasonable, since the resistance estimate is affected by the fault resistance. However,
using either of the three feature vectors, it is still possible to find the general area where the fault is located
quite reliably. The asymmetric phase-to-phase fault shows interesting results. Using inductance change,
it is possible to pinpoint the correct fault placement in significant majority of the cases. Since the voltages
are averaged across all three phases in this approach, the PCC voltage measurement is less accurate for
unbalanced faults.

The results obtained using the voltage measurement are generally very close to the ones obtained using
the inductance estimate, despite the overlap of observed changes seen in Figs. 6 and 7. This is possible
due to the topology of the network under observation. Not all converters provide significant information
in all fault situations, so even overlapping results are enough to differentiate between fault placements.
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Fig. 7: Percentual change observed by the converters in (a) inductance estimate L̂g, (b) resistance esti-
mate R̂g, and (c) PCC voltage magnitude |uuug|. Horizontal-axis labels refer to the node numbers in Fig. 5.
Between the node numbers (line segment), the axis is uniformly distributed between 0 and 1 correspond-
ing to the fault location d in the line segment.

(a) (b)

Fig. 8: Accuracy of the fault location with different fault resistances, when (a) only the correct predictions
are accepted, and (b) when the predictions in the line segments next to the correct one are accepted.

5. Conclusions
This paper proposed an approach for locating faults in a distribution grid utilizing data gathered from
distributed converters. The approach was based on a ML algorithm that utilized either the grid inductance
or resistance estimates, or the PCC voltage measurements. The results indicated good accuracy in the
prediction of the fault location in the selected distribution grid.

According to the results, inductance estimates produce more distinguishable patterns and consistent re-
sults than PCC voltage measurements. However, they provide quite similar prediction accuracy for the
fault location. It was noticed that resistance estimates are affected by the fault resistance, and thus the
prediction accuracy decreases when the actual fault resistance differs from the training data. An impor-
tant finding was also that the ML algorithm was able to locate asymmetric faults based on the inductance
estimates. However, the fault location based on the PCC voltage measurement might be more preferable



choice, since it does not require any signal injection which needs to have unique frequencies for each of
the converters, and moreover, which may cause disturbances in the grid.

In this paper, the main goal was to provide a feasibility study for the proposed approach. Therefore, the
multinomial logistic regression that is known to be simple and offer relatively good performance, was
used. In the future studies, in order to improve the prediction accuracy, other ML approaches, such as
the support vector machine (SVM), could be applied. The prediction accuracy could also be improved
e.g. by pre-processing the input features, such as filtering only the relevant features for each label. In the
future, utilization of more complicated feature vectors, including e.g. both the PCC voltages and the grid
currents, should be studied.
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