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Plasticity in solids is dependent on microstructural history, temperature, and loading rate, and sample-
dependent knowledge of yield points in structural materials adds reliability to mechanical behavior. Yielding
is commonly measured through controlled mechanical testing, in ways that either distinguish elastic (stress)
from total deformation measurements or identify plastic slip contributions. In this paper, we show that yielding
can be unraveled through statistical analysis of total-strain fluctuations during the evolution sequence of profiles,
measured in situ, through digital image correlation. We demonstrate two distinct ways of quantifying yield loca-
tions in widely applicable crystal plasticity models for polycrystalline solids, using either principal component
analysis or discrete wavelet transforms. We test and compare these approaches for synthetic data of polycrystals
and a variety of yielding responses through changes in applied loading rates and strain-rate sensitivity exponents.
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I. INTRODUCTION

The understanding and classification of complex patterns
that emerge in science and engineering are a key component
of technological developments across fields, introducing di-
mensional reduction of tools and paradigms that perform at
multiple scales. The basic constituent of such a classification
is a pattern characterization parameter that should be directly
introduced from input data through simple computational
steps. In the context of materials informatics for mechani-
cal deformation applications, a major goal is the information
hidden in total-strain maps, readily measured through digital
image correlation (DIC) [1]. In crystal plasticity, information
extracted from DIC has been focused on plastic slip accu-
mulation in particular crystallographic directions, assisted by
intense finite-element modeling [2–4]. However, the informa-
tion is dependent on phenomenological constitutive laws that
are changing with temperature and loading rate, especially
under extreme conditions. In this paper, we introduce two
functional tools based on principal component analysis and
discrete wavelet transforms that aim to capture the onset of
crystal plasticity through the analysis of total-strain fluctu-
ations during mechanical loading. As a test case, we use
these tools on DIC of polycrystalline samples, synthetically
produced in a phenomenological crystal plasticity model for
pure Al.

The application of modern statistical methods to identify
transitions between phases with well-defined order parameters
in materials has become quite common [5]. The recent theme
in the physics and engineering communities is the application
of machine learning methods so that the identification of a
precise characterization parameter is avoided and automatic
detection is achieved [6–13]. However, the absence of detailed
knowledge may lead to overfitting artifacts and unsuccessful
machine learning training. In this context, the use of unsuper-
vised machine learning through principal component analysis
(PCA) has been insightful [8,9,14–16].

The investigation of total strains typically prohibits the
identification of structural defects, such as dislocations in
crystalline solids and structural hot spots in amorphous solids,
since a separation of elastic and plastic contributions to the
strain is required if defects carry plastic flow [17]. In fact,
standard mechanical testing does precisely that kind of a sepa-
ration by plotting an elastic contribution (stress) as a function
of the total contribution (total strain) (for strains <5%). The
onset of plasticity has always been connected to the daunting
task of separation between elastic and plastic contributions
that requires either standard mechanical testing or nondestruc-
tive testing through nanoindentation and defect imaging [18].
However, the determination of yield stress depends on en-
vironmental conditions, and there are still open questions in
both simulations and experiments, especially in the context of
amorphous solids [19–26].

DIC is an essential tool for acquiring full-field sur-
face displacements towards strain maps of material surfaces
at various resolutions, from millimeter to nanometer [27].
Through modern cameras and fast computational analysis,
one may track displacements of distinct features in deformed
samples. Nevertheless, DIC tracks only total displacements,
and thus, its usefulness has mainly been the assessment
of strain heterogeneity [28] or an inverse solution through
validation of microstructurally accurate finite-element model-
ing [29]. Indeed, DIC has been useful for finding similarities
in finite-element models of various types [1,29], with ad-
vanced multiscale models of microstructural deformation
behavior [30–32], and machine learning models [33–35]. But
the evolution of DIC total-strain profiles has led to rich in-
formation content that may be adequate to infer material
properties related to yielding, hardening, and eigenstrains.
Here, we explore the usefulness of this information by using
strain maps to extract the yield point of a polycrystalline
microstructure through PCA or discrete wavelet transforms
(DWTs).
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FIG. 1. Schematic of the main scenario investigated in this work.
A polycrystalline sample with an unknown mechanical response is
being (a) uniaxially loaded under tension and (b) imaged on one of
the surfaces through digital image correlation (DIC). The total-strain
image output of DIC serves as the basis of an inquiry on yielding
signatures in DIC correlations as more images are collected. In this
work, we utilize two tools based on principal component analysis and
discrete wavelet transforms. We consider various yield behaviors in
this work by phenomenologically controlling the loading rate and
rate hardening exponent (γ̇ , n).

In this paper, we focus on polycrystalline metals and small
quasielastic strains (<0.3%) and the incipient transition to
plasticity. Our focus is on the development of tools that can
reliably extract key material properties directly out of total-
strain maps and fill two needs at once: perform efficient
dimensional reduction of DIC image sequences and also iden-
tify key material properties without the use of local or global
stress information. For this purpose, we perform simulations
in quasi-two-dimensional (quasi-2D) and three-dimensional
(3D) samples by using a phenomenological crystal plasticity
model that incorporates well-established polycrystalline de-
formation mechanisms [36].

In the context of this model, the PCA analysis of strain
fluctuations can be used to accurately identify yield points.
If we vary the microstructural hardening exponent and strain
rate, the plasticity transition is qualitatively modified, but the
developed measures still efficiently track the yield point. Fur-
thermore, we demonstrate that DWT coefficients, designed to
identify localized features in images, can be used to identify
the onset of plasticity at the material yield point. We conclude
by comparing the two complementary approaches and discuss
how to generalize them to learning additional properties, such
as hardening and damage parameters, as well as to mutually
distinguish various hardening and damage mechanisms.

II. METHODS

We consider synthetic data of uniaxial tensile mechanical
deformation in a polycrystalline sample, where the physics
of crystal plasticity is captured in the most common, rec-
ognizable way. The model is uniaxially loaded along the x
direction, and x-y surface images were produced for close-by
strain intervals up to, typically, 0.3% total strain, where all
samples have already yielded. The focus of this work is the
analysis of these image sequences in a way that key infor-
mation about the yielding transition is directly extracted from
total-strain evolution (see also Fig. 1). We utilize phenomeno-

logical crystal plasticity in the continuum [37] to solve for
material deformation due to elasticity, plasticity, and damage
evolution within the sample.

Regarding the plasticity model, we consider [36–38] the
case of tensile loading in the x direction for 2D and 3D spec-
imens which are periodic in all directions and have sample
dimensions in (x, y, z) of (512,512,2) and (64,64,64), respec-
tively, where each cell can be interpreted as a representative
volume element with dimensions of 2 μm in each direction,
promoting the perspective of investigating 1 mm2 2D or sub-
millimeter 3D samples. We study two different geometries
so that the geometry effect on our measures is checked. The
crystalline structure of the material is fcc Al, with standard
stiffness coefficients C11 = 106.75 GPa, C12 = 60.41 GPa,
and C44 = 28.34 GPa (in reference to the cubic coordinates).
The importance of the examples studied is that the simulated
dimensions can be achieved by common DIC procedures [1].

Details of the model’s hardening dynamics can also be
found in Refs. [36,38]. The model is built upon typical phe-
nomenological crystal plasticity assumptions, capturing the
essential aspects of slip-based macroscale plasticity through
a combination of fundamental assumptions and basic consti-
tutive laws that have been confirmed in various metals [37]. In
this work, modeling examples cannot be accurate in capturing
delicate plasticity features that relate to defect-driven latent
hardening or non-Schmid effects [39]; they still capture in
a self-consistent manner the basic physical mechanisms in-
volved in the transition from elasticity to plasticity as it takes
place in most metals. In summary, the model captures finite
deformations in a cubic grid, used to calculate constitutively
plastic distortion rates along all 12 fcc slip systems. All sam-
ples have 256 grains that are distributed randomly using a
Voronoi tesselation [40] [see also Fig. 2(a)], and the model
is solved by using a spectral approach [38]. To estimate the
plastic deformation tensor and its rate, we iteratively solve

Ḟp = LpFp, (1)

where Lp = ∑
α γ̇ αsα ⊗ nα , with s and n being the unit

vectors along the slip direction and slip plane normal, re-
spectively, and α being the index of a slip system. The total
deformation tensor is commonly split into elastic and plastic
parts through F = F eF p. We consider all 12 fcc slip sys-
tems which may become active in our single crystal with
fixed crystalline orientation. The slip rate γ̇ α is given by the
basic phenomenological crystal plasticity constitutive equa-
tion [37,41]

γ̇α = γ̇0

∣∣∣∣τα

gα

∣∣∣∣
n

sgn(τα ), (2)

where γ̇0 = 0.001/s is the reference shear rate; τα = S · (sα ⊗
nα ) is the resolved shear stress at slip resistance gα , with
S = [C]E ε being the Second Piola-Kirchoff stress tensor and
n taking the values (5,10) in this work (the inverse of the strain
rate sensitivity exponent m = 1/n); and gα is the slip resis-
tance for a slip system α. Hardening is provided by another
saturation-type crystal plasticity constitutive law [42]:

ġα =
12∑

β=1

hαβ |γ̇ β |, (3)
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FIG. 2. Polycrystalline texture and mechanical response. (a) Polycrystalline texture of samples studied in this work on 512 × 512 × 2
2D and 64 × 64 × 64 (3D) grids, with 256 grains in each microstructure. (b) Grain orientation distribution through loading-axis projection
(given the representation through Bunge-Euler angles with respect to the x-axis projection is cosφ1cosφ2-sinφ1sinφ2cos�). (c) Von Mises
stress values on the microstructure of the case (γ̇ , n) = {5 × 10−2/s, 10} for the 2D grid at total strain of 0.25%. (d) The mechanical response
(average stress along the loading x direction vs loading strain) for all studied samples, with loading along the y direction with various loading
rates and rate sensitivity exponents (γ̇ , n) in the 2D cases (� : {5 × 10−4/s, 5}, 	 : {5 × 10−4/s, 10}, • : {5 × 10−3/s, 5}, � : {5 × 10−3/s, 10},
� : {5 × 10−4/s, 10}) and also the 3D case (� : {5 × 10−4/s, 10}). The 3D sample has loading and strain-rate sensitivity identical to those in
the 2D case with parameters {5 × 10−4/s, 10}.

where hαβ is the hardening matrix,

hαβ = qαβh0

[
sgn

(
1 − gβ

gβ
∞

)∣∣∣∣1 − gβ

gβ
∞

∣∣∣∣
p]

, (4)

which phenomenologically captures the micromechanical in-
teractions between different slip systems. Here, h0 = 75 MPa
and p = 2.25 are slip hardening parameters that are typically
assumed to be identical for all fcc systems owing to the un-
derlying dislocation reactions. gβ is the resistance to shear on
the β slip system, and gβ

∞ is the saturated shear resistance on
slip system β (set at gs = 63 MPa for all slip systems); the
shear resistances asymptotically evolve towards saturation.
The parameter qαβ is a measure for latent hardening, and its
value is taken as 1.0 for mutually coplanar slip systems and
1.4 otherwise, rendering the hardening model anisotropic. It is
common in the literature to find several variants of the above
constitutive laws; nevertheless, we believe that the results in
this work are relatively model independent.

A known way to control and modify the yield stress in
this model is through the change in the rate sensitivity ex-
ponent m = 1/n. A change in the value of n naturally occurs
through changes in conditions (e.g., temperature). Here, we
modify the exponent n by considering the values 5 and 10
while the strain rate is modified through 3 orders of magni-
tude (5 × 10−4, 5 × 10−3, and 5 × 10−2). As Fig. 2(d) clearly
shows, the yield stress changes by a factor of 2, and the
hardening exponent increases drastically as well. Also, each
point in Fig. 2(d) implies a corresponding image of total strain
that is directly captured during the simulation, emulating the
DIC procedure [33,34]. Stress and strain profiles generated
in our simulations [Figs. 3(a)–3(i)] can be readily compared
to profiles generated by DIC techniques for polycrystalline
metals at small, quasielastic applied loads [1].

III. RESULTS

A typical first impression after observing the system behav-
ior is that the von Mises stress fluctuations across a particular
sample [seen in Fig. 2(c)] do not display any particular orien-
tation preference across the polycrystalline sample in the case
(γ̇ , n) = {5 × 10−2/s, 10} at a total strain of 0.25%. Also,

patterning in images like the ones in Fig. 3 commonly appears
mundane: There appears to be no clear correlation of the
impact that yielding has on the total strain since the plastic
distortion Fp becomes relatively important. The principal rea-
sons for this mundane impression are, clearly, the presence
of an always finite, superposing, plasticity-dependent elastic
contribution and the fact that plasticity is not homogeneous
in the sample, with only a few locations at high values,
pointing to the fundamentally important plastic localization
physics [37]. These findings are consistent with the accumu-
lated understanding in materials science that grain-boundary
misorientations correspond more to emerging stresses and
plastic distortions than actual grain orientations. Nevertheless,
to this day, classification of misorientations in polycrystals
represents a daunting classification challenge, where there is
a space of five dimensions misorientation dimensions on a
grain boundary [43]. In this paper, we focus on two tools
for generating measures that naturally, and fundamentally,
relate to the onset of plasticity. At the possible expense
of computational complexity, we introduce two total-strain
measures that are sensitive to the onset of plasticity: one
from a PCA transform analysis of the total-strain images,
designed to capture total-strain fluctuations, and one from
a DWT analysis, designed to capture the onset of strain
localization.

Principal component analysis serves the change in basis
in N data vectors Ek (here capturing the norm |F − I| of
total distortion across the sample), each entry of which cap-
tures spatial locations of total number V , so that predominant
correlations are detected in a few principal directions. In
this case, each Ek is a flattened total-strain vector of N =
Lx ∗ Ly, corresponding to an Lx × Ly total-strain image [see
Figs. 1, 3(c), 3(f) and 3(i)]. The success of the method is
gauged by the capacity to capture, almost completely (>98%),
the relative fluctuations in just two to three principal vec-
tors, like the one shown in Fig. 4(a) or the ones shown in
Figs. 4(b), 4(c), 5(b), and 5(c) for our case. In this application,
as can be seen in Figs. 4(d), PCA works well. Each compo-
nent [e.g., Fig. 4(a)] represents a “characteristic” fluctuation
pattern in the evolution of data vectors.

Then, these vectors can be projected back to the original
data vectors through a vector dot product, so that overlap with
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FIG. 3. Von Mises stress and plastic and total distortion at the yield point and postyield strain. (a), (d), and (g) Von Mises stress, (b), (e), and
(h) plastic distortion, defined as |Fp − I|, and (c), (f), and (i) total distortion, defined as |F − I|. (a)–(c) At the yield point (0.12% total strain)
for 2D samples and loading rate and rate sensitivity exponent (γ̇ , n) = {5 × 10−4/s, 10}, (d)–(f) at 0.25% total strain for loading rate and rate
sensitivity exponent (γ̇ , n) = {5 × 10−4/s, 10}, and (g)–(i) at 0.25% total strain for loading rate and rate sensitivity exponent {5 × 10−2/s, 10}.

data vectors is tracked. For the data vectors’ fluctuations to
be directly comparable, each data vector has to have the same
average value (0) and standard deviation (1), so data vectors
are rescaled in a standard way:

Ẽk = Ek − 〈Ek〉√〈
E2

k

〉 − 〈Ek〉2
, (5)

where the 〈·〉 implies a spatial average 〈Ek〉 = ∑
i E (i)

k , with i
counting spatial locations.

Principal components emerge through the singular-value
decomposition of the matrix X = {Ek} for k ∈ {range where
data are collected}, including N lines and V columns and then
focusing on the top singular values and components. In other
words, the rectangular N × V matrix X is decomposed to

X = U
W T , (6)

where U is an N × N matrix containing columns that are
orthogonal unit vectors of length N that are known as “left
singular vectors” of X . Also, W is a V × V matrix whose
columns are also orthogonal unit vectors of length V and are
known as the right singular vectors of X . For every singular
vector si, there is a corresponding singular value σi.

The condition of capturing most fluctuations in the system
is equivalent to identifying the eigenvalues σ of the covariance
matrix of the data vectors C = X T X/(n − 1), which represent
the variance of the fluctuations, and then the top three eigen-
values should roughly equal 99%. It is easy to show that C =

V [
2/(n − 1)]V −1, which promotes the equivalence of singu-
lar values with

√
λ(n − 1). Plotting the sum of σ with more

principal components leads to the conclusion [see Fig. 4(d)]
that keeping only two components completely captures the
total data variance across loading it. In retrospect, this is an
outcome of the fact that plasticity is controlled principally
by two distinct states: the elastic one before yielding and the
plastic one.

Given that the singular values are labeled σi for the ith
component, the projection (dot product) of a component si on
one of the data vectors Ẽk is defined here as

P(k)
(i) = si · Ek√

σi
. (7)

As seen in Fig. 4(e), where P(k)
1 and P(k)

2 are plotted against
each other, the maximum coincides with the sample’s yield
point, identified from stress-strain curves. By plotting the pro-
jections with respect to the applied strain, it becomes clear that
the first component projection is decreased at yielding, while
the second has a fluctuation-driven behavior, peaking at the
plasticity transition [see also Fig. 4(f)]. In addition, the yield
strain ey can be defined as the finite extremum of the second
derivative of stress with respect to the strain, after fitting it
with a continuous third-order polynomial. In this way, we can
compare the two definitions, shown in Fig. 4(h). So instead of
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FIG. 4. PCA of total strain profiles and order parameters for plasticity. Principal component analysis is applied on properly normalized
total-strain (|F − I|) maps. (a) Total-strain map for strain 0.25% and (γ̇ , n) = : {5 × 10−3/s, 10}, similar to the cases shown in Figs. 3(c), 5(f)
and 3(i), for examples, after subtracting the mean, taking the absolute value, and then dividing by the sample strain variance. (b) First and
(c) second PCA components for (γ̇ , n) = {5 × 10−4/s, 10}. (d) Principal component cumulative variance of the components, showing a
saturation to more than 95% of the observed variability by just utilizing two components. (e) The projection of the first (P(k)

1 ) and second
(P(k)

2 ) components on the strain map samples after normalizing with
√

σi, where σi is the corresponding singular case, for the various material
cases discussed in Fig. 2, with symbols corresponding to the following (γ̇ , n): �, {5 × 10−4/s, 5}; 	, {5 × 10−4/s, 10}; •, {5 × 10−3/s, 5};
�, {5 × 10−3/s, 10}; and �, {5 × 10−4/s, 10} in the 2D cases and �, {5 × 10−4/s, 10} in the 3D case. The 3D sample has loading and
strain-rate sensitivity identical to those in the 2D case, {5 × 10−4/s, 10}. (f) The first component projection P(k)

1 and, in the background,
the stress-strain curves from Fig. 2. A clear correlation with stress-strain behavior is seen in the peak of the second PCA component and the
decrease of the first PCA component, signifying the onset of the elastic-plastic transition. (g) The second component projection P(k)

2 , defined
in text, as a function of the applied strain. (h) The PCA-predicted yield point vs the actual yield point (found from the stress-strain curve).

using an engineering definition of yield stress, we suggest that
the yield strength of any sample is uniquely defined as

εy|PCA = εy

{
dP(k)

2

dεk
= 0

}
, (8)

σy|PCA = Cεy. (9)

The use of PCA analysis is focused on understanding fluc-
tuations present in images of total strain. However, another
possibility emerges through the investigation of total-strain
local features. This endeavor can be achieved through using a
DWT that is designed to capture localized features in any im-
age. In our case, we consider the image where the x direction

FIG. 5. PCA for surfaces of 3D samples. A 64 × 64 × 64 sim-
ulation was performed at (γ̇ , n) = : {5 × 10−4/s, 10}, and the same
process as in Fig. 4 leads to analogous results. (a) Grain structure in
a simulated sample with 256 grains. Each color corresponds to the
grain orientation’s Bunge Euler angles with respect to the projection
on the x axis. (b) First PCA component, analogous to the one in
Fig. 4. (c) Second PCA component, analogous to the one in Fig. 4. A
comparison of the components’ overlap in two and three dimensions
shows good agreement, with no qualitative differences (see also
Fig. 4).

signifies “space,” while the y direction signifies applied-load
evolution.

The DWT, as formulated by Daubechies [44], has been
extensively used to decompose time series fluctuations. In
contrast to Fourier transforms, which decompose fluctuations
across a Fourier frequency continuum, the wavelet decompo-
sition is performed across a discrete set of scales, and the
component amplitude measures how much variability exists
between adjacently located averages associated with a particu-
lar scale. Examples of the wavelet decomposition’s usefulness
are abundant in science and engineering and, for example,
include sleep state patterns [45] and stochastic fluctuations in
binary stars [46].

Regarding wavelets, they are real functions of real num-
bers, each of which is derived from the mother using
translation and scaling: 
s,x(t ) = 2s/2
(2st + x), where s, x
are real numbers, 
 is the mother wavelet, and 
s,x is a
wavelet of scale s and translation x; in other words,


s,x(t ) = 1√|s|ψ
( t − x

s

)
(10)

for s 	= 0, with 〈
〉 = 0. In this work, we use the Daubechies
wavelet transform, which uses the basic DWT structure,
where any square, real, integrable function [y(t ) ∈ L2{R}] can
be expressed in terms of the transform at multiple scales:

y(t ) =
∑

m

∑
n

ỹm,n2−m/2ψ̄ (2−mt − n) (11)
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FIG. 6. Wavelet coefficients and the onset of yielding. (a) A subset of the Daubechies coefficients in the strain direction as a function
of the applied strain for the case (γ̇ , n) = : {5 × 10−4/s, 10}. (b) Average (spatially) wavelet coefficients as a function of strain for all cases
with symbols analogous to those in the other figures for the following (γ̇ , n): �, {5 × 10−4/s, 5}; 	, {5 × 10−4/s, 10}; •, {5 × 10−3/s, 5};
�, {5 × 10−3/s, 10}; and �, {5 × 10−4/s, 10} in the 2D cases and �, {5 × 10−4/s, 10} in the 3D case. The average onset of the Daubechies
coefficients coincides with the yield point εy, detected through measuring applied loads. (c) εWavelet

Y is defined through the point of the first
nonzero value in (b). A natural comparison between PCA and wavelet predictions is shown for both the yield strain εY and yield stress σY ,
where the projected yield stress is just the yield strain multiplied by the elastic modulus. Lines are a guide to the eye.

and

ỹm,n =
∫ ∞

−∞
2−m/2ψ (2−mt − n)y(t )dt, (12)

where the functions ψ and ψ̄ are the wavelet basis functions
for analysis and synthesis [44] and they are biorthog-
onal [〈ψ (t )ψ̄ (t − m)〉 = δm,0 and 〈ψ (t )ψ̄ (t − m)〉 = δm,0].
Towards the generalization of this construction in two dimen-
sions, the 2D wavelet transform of an image f (x) computes
the set of inner products

dk
j [n] = 〈

f , ψk
j,n

〉
(13)

for scales j ∈ Z , position n ∈ Z2, and orientation k ∈
{H,V, D}.

The wavelet atoms are defined by scaling and translating
three mother atoms {ψH , ψV , ψD}:

ψk
j,n(x) = 1

2 j
ψk

(
x − 2 jn

2 j

)
. (14)

The scaling function and directional wavelets are composed
of the product of a one-dimensional scaling function φ and
corresponding wavelet ψ which follow

φ(x, y) = φ(x)φ(y), (15)

ψH (x, y) = ψ (x)φ(y), (16)

ψV (x, y) = φ(y)ψ (x), (17)

ψD(x, y) = ψ (x)ψ (y). (18)

A high number of vanishing moments allows us to better
compress regular parts of the signal. However, increasing the
number of vanishing moments also increases the size of the
support of the wavelets, which can be problematic in the part
where the signal is singular (for instance, discontinuous). In
this work, we focus on the properties of ψV and thus dD

2 .
Here, our 2D images are composed of total-strain features

in columns, while each row contains a different applied strain.
For clarity, in this way, the images have 30 rows but 218 or
216 columns. We focus solely on the features of ψV which

capture localization along the loading direction. By plotting
DWT coefficients (just a small sample of 500 coefficients out
of the 218 or 216) along the loading direction (see Fig. 6), for
a particular yielding case, one can see that the coefficients
become nonzero only at a particular value, which can be as-
sociated with the yield point. By performing a spatial average
of all coefficients’ absolute values, one can calculate

Dav = 1

N

∑
n∈[1,N]

dD
2 [n], (19)

where N is the number of pixels and the behavior of Dav is
shown across all cases in Fig. 6(b), with coefficients acquiring
nonzero values at a point that resembles the yielding transition
very much. So in this way, we suggest that another computa-
tional definition of the yield point is

ey|Wavelet = LOC{max(Dav = 0)}, (20)

σy|Wavelet = C ∗ ey. (21)

IV. DISCUSSION

The PCA and wavelet yield point definitions can also
be compared directly, as shown in Fig. 6(c). As the direct
comparison shows, the predictions from the two methods are
closely related, possibly giving an edge to wavelets if the
focus is on the identification of the departure from elasticity,
while the predictive edge belongs to PCA when elastoplastic
fluctuations become maximum and elastic deformation disap-
pears.

It is worth noticing that it was expected that the PCA
predictions are always larger in magnitude than the wavelet
ones. The reason is that the wavelet-based criterion concen-
trates on detecting the onset of localized fluctuations, while
the PCA-based one focuses on detecting the maximum of
the fluctuations (not localization). Nevertheless, the evidently
constant offset between wavelet and PCA predictions seems to
be accidental due to the fact that elastic-plastic nonlinearities
in the models considered are quantitatively similar. A possi-
ble consideration of highly nonlinear elastic responses and
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unconventional hardening should have a strong effect on the
offset between wavelet and PCA predictions.

In conclusion, we presented two distinct computational
tools that are easily implemented through modern compu-
tational software and can be used towards the identification
of yielding in polycrystals through only total-strain mea-
surements, without the need to separate elastic from plastic
contributions from total-strain profiles. In the performed sim-
ulations, each pixel’s linear dimension corresponds to 2 μm,
and the linear size of tracked areas approaches 1 mm. Thus,
standard experimental tests should be capable of matching
these conditions. By comparing two distinct geometries, we
found that the transition from elasticity to plasticity is equally
detectable in 2D and 3D cases. The effects reported here
originate in the large-scale features of elastic fluctuations
during the transition from elasticity to plasticity, without ex-
plicit connection to the character and dynamics of plasticity
defects, such as dislocation dynamics and slip localization.
The studied models are coarse grained and do not cap-
ture the detailed mechanisms of plastic slip localization.
Atomic resolution in DIC would introduce additional features
to the behavior of PCA/DWT observables, with expected
resolution-dependent scaling phenomena, in a manner anal-
ogous to the common collective dynamical transition of com-
plex physical systems [47]. Then, the identified PCA/DWT
behavior would be enriched with additional physical fea-
tures and finite-size scaling (originating from the increasing
resolution) that may unveil additional nanoscale physical
mechanisms. While beyond this work’s scope, it is important
to explore the application of these methods to discrete dislo-
cation plasticity models [48] in connection with previously

identified collective plasticity mechanisms [49,50], so that
localization criteria become associated with the behavior of
PCA/DWT observables.

In addition, large-scale elastic fluctuations are influenced
by plastic yielding and may also unveil hardening and damage
sample behaviors beyond the yield point. Characteristically,
one may tentatively conclude through data like those in
Fig. 4(g) that the slope of P(k)

2 beyond yielding is inversely
related to the hardening coefficient. Through preliminary
studies, we find analogous dependencies for damaged spec-
imens’ synthetic data. The generality of these dependencies
and the formulations towards microscopically motivated scal-
ing functions [51] will be the subject of future works. In
addition, it is worth exploring experimental validation routes
and ways to identify further material properties by detailed
analysis of total-strain fluctuations in evolving images.
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