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We present a comprehensive methodology to enable the addition of van der Waals (vdW) corrections to
machine learning (ML) atomistic force fields. Using a Gaussian approximation potential (GAP) [Bartók et al.,
Phys. Rev. Lett. 104, 136403 (2010)] as a baseline, we accurately machine learn a local model of atomic polariz-
abilities based on Hirshfeld volume partitioning of the charge density [Tkatchenko and Scheffler, Phys. Rev. Lett.
102, 073005 (2009)]. These environment-dependent polarizabilities are then used to parametrize a screened
London-dispersion approximation to the vdW interactions. Our ML vdW model only needs to learn the charge
density partitioning implicitly by learning the reference Hirshfeld volumes from density functional theory (DFT).
In practice, we can predict accurate Hirshfeld volumes from the knowledge of the local atomic environment
(atomic positions) alone, making the model highly computationally efficient. For additional efficiency, our ML
model of atomic polarizabilities reuses the same many-body atomic descriptors used for the underlying GAP
learning of bonded interatomic interactions. We also show how the method enables straightforward computation
of gradients of the observables, even when these remain challenging for the reference method (e.g., calculating
gradients of the Hirshfeld volumes in DFT). Finally, we demonstrate the approach by studying the phase diagram
of C60, where vdW effects are important. The need for a highly accurate vdW-inclusive reactive force field is
highlighted by modeling the decomposition of the C60 molecules taking place at high pressures and temperatures.

DOI: 10.1103/PhysRevB.104.054106

I. INTRODUCTION

Interatomic interactions that emanate from the underlying
quantum-mechanical nature of matter can often be broken
down into effective contributions in terms of classical force
fields. Traditionally, these contributions are four: covalent (or
“bonded”), electrostatics, Pauli repulsion, and dispersion [or
van der Waals (vdW)]. In the context of classical molecular
dynamics (MD) and the development of atomistic force fields,
covalent interactions typically account for the portion of the
potential energy surface (PES) of a system of interacting
atoms that can be parametrized into a set of harmoniclike
short-range functions. Electrostatic interactions, in their sim-
plest implementation, take the form of point charges located at
the positions of the atomic nuclei, interacting via a long-range
Coulomb potential; more complicated forms can account for
atom-centered multipole expansions and polarizabilities. Re-
pulsion (often termed exchange or Pauli repulsion) is the
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very strong interaction preventing two atoms from coming
too close to one another, a phenomenon that can be ascribed
to Pauli’s exclusion principle, and which decays very rapidly
with interatomic separation. Finally, dispersion is an umbrella
term of sorts for “the rest”, i.e., the difference between the
quantum-mechanical energies and forces and the sum of the
covalent, electrostatic and repulsion energies and forces [1].

Dispersion interactions, also often referred to as vdW in-
teractions (and making up part of the correlation energy,
as referred to within the electronic structure community),
are long ranged, but typically individually weak, e.g., the
dispersion energy between two isolated atoms or molecules
is usually much smaller than their corresponding electro-
static interaction. However, while electrostatic interactions
may cancel out due to the balance between attractive and
repulsive energy contributions, dispersion interactions are typ-
ically attractive. Thus, the dispersion interaction can be the
driving force behind interesting emerging physical phenom-
ena, such as the bonding of 2D layers of material to form
3D solids (graphite or black phosphorus being prime exam-
ples). Trending topics in nanoscience and nanotechnology
include vdW heterostructures [2] and, more generally, simply
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the desire to describe atomistic systems to a greater level of
detail.

Machine learning (ML) in molecular and materials model-
ing [3–5] is an emerging interdisciplinary field that touches on
physics, chemistry, materials science, and biochemistry, and
has seen exponential growth in recent years. Still, dispersion
interactions remain elusive. This is particularly true for mate-
rials modeling, where the greater atomic density complicates
the description of the system. At the root of the issue is the
need for local atomic descriptors as input for ML potentials
to keep the atomistic problem tractable [6,7]. In ML atomistic
modeling, the representation of the whole system is carried
out in practice by representing the individual building blocks
and then adding them together [8,9]. One of these individual
blocks can be, for example, an atom and all of its neighbors
within a given cutoff sphere of a few ångströms. This poses a
serious problem for ML potentials because the effective range
of vdW interactions for the system at hand can be in excess of
a few tens of ångströms.

To circumvent this issue, a promising solution is to rely on
simple analytical forms for the long-range dispersion inter-
actions between a pair of atoms, which are computationally
cheap to evaluate, and condense all the complicated many-
body physics into the local parametrization of said function.
This strategy is in the spirit of existing popular dispersion
corrections to density functional theory (DFT) [10]. One of
these approaches, the Tkatchenko-Scheffler (TS) vdW cor-
rection [11], is precisely the starting point for our present
approach. We will show in this paper that TS corrections,
which rely on computationally expensive integration of the
charge density field, can be effectively and accurately machine
learned. Furthermore, we will show how properties that are
not straightforward to compute within the context of the ref-
erence method (e.g., the gradients of these charge integrals)
can be readily and inexpensively obtained within our ML
framework.

Previous recent attempts at machine learning vdW
corrections have explored the ideas of mixing parametric and
nonparametric fits [12], learning highly accurate dispersion
energies to add them directly on top of DFT [13], or applying
preexisting (unmodified) vdW correction schemes on top
of ML potentials [14]. The most similar in spirit to our
current approach is the work by Bereau et al. [12], who
developed accurate all-ML interatomic potentials for small
systems and used a local parametrization of a physical vdW
model [many-body dispersion (MBD) [15]], which goes
beyond the TS model used here. Some of these models
achieve highly accurate results but still fall short of force
field computational efficiency, and are therefore not amenable
to large-scale MD simulations. Therefore, the focus in this
paper is on adding vdW corrections within a general and
flexible framework, which can be easily extended in the
future to accommodate more sophisticated vdW models and
other interactions (such as electrostatics), while maintaining
a very low computational footprint. This allows us to perform
large-scale MD simulations, with regard to both the number of
atoms and accessible timescales, albeit necessarily sacrificing
some accuracy in the process.

The outline of this paper is as follows. We first introduce
the general methodology for the addition of pairwise disper-

sion corrections on top of DFT energies. This is followed by
a general discussion of the ML methods we use to construct
force fields, namely, GAPs, kernels, and many-body atomic
descriptors. Then we discuss how this methodology is applied
to learning the dispersion energies from local parameters of
the atomic environments and how we calculate the disper-
sion forces analytically. Before moving on to the simulation
results, we also discuss the implementation of our method-
ology in the TurboGAP and QUIP codes. We then present a
GAP force field for carbon with vdW corrections, specifically
tailored for simulation of C60-based systems, and show ba-
sic performance and accuracy tests. Finally, with our GAP,
we characterize the phase stability and phase transformations
taking place in the C60 molecular system over a wide range of
pressures and temperatures.

II. METHODOLOGY

A. Tkatchenko-Scheffler vdW method

The TS method relies on two fundamental approximations,
one regarding the functional form of dispersion interactions
and another regarding the parametrization of said functional
form [11,16,17]. First, there is a range separation of the
electron correlation energy, where the short-range correlation
is captured by the underlying DFT functional (usually, but
not necessarily, PBE [18]) and the long-range correlation
is modeled via the London dispersion formula for pairwise
interactions with polynomial decay as ∝ 1/r6 [16]. The tran-
sition between the short and long ranges is modeled via a
damping function, an approach introduced by Grimme [10].
Second, the novelty in TS resides in how the London dis-
persion formula and the damping function are parametrized,
taking the atomic environments of the two interacting atoms
into account. TS assumes an “atom in a molecule” approach,
which approximates the properties of the atoms in a molecule
or solid as proportional to the properties of the free (neutral)
atom. The resulting equations are remarkably simple:

ETS = −1

2

∑
i

∑
j �=i

C6,i j

fdamp
(
ri j ; rvdW

i j , sR, d
)

r6
i j

,

C6,i j = 2C6,iiC6, j j
α j,0

αi,0
C6,ii + αi,0

α j,0
C6, j j

, C6,ii = νi
2Cfree

6,ii ,

αi,0 = νiα
free
i,0 , rvdW

i j = rvdW
i + rvdW

j ,

rvdW
i = νi

1
3 rvdW

i,free,

νi = Vi

V free
i

=
∫

dr wi(r)ρ(r)∫
dr ρfree

i (r)
,

wi(r) = ρfree
i (r)∑

j ρ
free
j (r)

,

fdamp
(
ri j ; rvdW

i j

) = 1

1 + exp
[ − d

( ri j

sRrvdW
i j

− 1
)] . (1)

Here, the local environment dependence of the force constants
C6,i j , vdW radii rvdW

i j and atomic polarizabilities α0 is taken
into account via the (effective) Hirshfeld volumes νi, given
as a functional of the electron density (computed at the DFT
level). The various parameters labeled as “free” refer to the
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reference quantities of the free (isolated and neutral) atoms,
and are tabulated [10,19]. The damping function used to
screen the TS force field also relies on two empirical pa-
rameters, d = 20 and sR = 0.94 (for PBE; sR is functional
dependent [11,20,21]). All other quantities within the TS
framework are extracted directly from the electron density via
the Hirshfeld volumes.

For actual simulations to be manageable, a vdW cutoff
radius needs to be introduced at a distance where vdW in-
teractions are expected to be negligible to make the sums
over atom pairs finite. The cost of computing pairwise vdW
interactions grows approximately as the cube of this cutoff
radius. Therefore, in addition to the TS damping function
that screens the dispersion interaction at short distances, we
also introduce a smoothing function that makes the dispersion
energies and their derivatives, that is, the dispersion forces,
smooth and continuous at the vdW cutoff radius, and also
takes care of the singularity at ri j → 0. For computational
reasons, we employ a polynomial function for this purpose:

ETS = −1

2

∑
i

∑
j �=i

C6,i j
fdamp(ri j )

r6
i j

fcut(ri j ; rcut, db),

fcut(ri j ) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1, if rc,i + db,i<ri j�rc,o− db,o

1 − 3r2
b,o + 2r3

b,o, if rc,o − db,o < ri j � rc,o

3r3
b,i − 2r3

b,i, if rc,i < ri j � rc,i + db,i

0, otherwise,

rb,o = ri j − rc,o + db,o

db,o
, rb,i = ri j − rc,i

db,i
, (2)

where rc,o is the cutoff radius for the vdW interaction and db,o
is the width of the buffer region where the cutoff function
smoothly switches from 1 to 0 as it approaches rc,o. The same
approach, in this case switching from 0 to 1, is used for an
inner cutoff rc,i at small interatomic separations (usually with
an inner buffer region db,i between 0.5 and 1 Å), to avoid the
singularity in the original TS expression for the damping func-
tion as ri j → 0. The combined effect of the damping function
and cutoff functions can be visualized in the Supplemental
Material (SM) [22].

A clear limitation of the TS method is that it neglects
many-body effects [15], which can be important, in particu-
lar, for accurately estimating the C6 coefficients (“electronic”
many-body effects) [23]. The D3 method [24], which also
omits many-body effects, can yield more accurate disper-
sion energies than TS in some cases and would be similarly
computationally cheap. Our choice of TS as a dispersion
correction scheme for this work serves two purposes. On
the one hand, it demonstrates that vdW corrections can be
efficiently coupled to ML potentials and used in large-scale
MD simulation. On the other, it paves the way for subsequent
improvements that directly feed on effective Hirshfeld vol-
umes [such as many-body dispersion (MBD)] or can benefit
from local parametrization of a long-range interaction with a
simple functional form, the most relevant of which would be
long-range electrostatics.

B. Gaussian approximation potentials

Within the context of the Gaussian approximation poten-
tial (GAP) framework [9,25], which is an ML approach for

atomistic modeling based on kernel ridge regression, any
physical property f that can be assigned to a local atomic
environment, such as a local energy, a force, or an effective
Hirshfeld volume, can be written as a linear combination of
kernel functions centered on the training points,

f̄∗(d∗) = δ2
∑

t

αt k(d∗, dt ), (3)

where d∗ is the local atomic descriptor for which the predic-
tion is made, dt are the descriptors of the configurations in
the training set, k(d∗, dt ) is a kernel, or similarity measure
(bounded between 0 and 1) between the atomic environments
characterized by d∗ and dt , αt are a set of fitting coefficients,
and δ is a scaling parameter with units of the magnitude
under study (e.g., for energies δ is given in eV). Due to the
large amount of available training data points, it is usually
beneficial to sparsify the model such that many fewer fitting
coefficients αt in Eq. (3) are used for prediction than there are
local environments in the training database (since the cost of
evaluating the model scales linearly in the size of the sparse
set) [25]. The atomic environments present in the training
database are also often repetitious, which means that they do
not contribute much new information to the model compared
to the computational cost of including them.

More generally, a GAP can be constructed by addition of
several terms of the form of Eq. (3), typically (but not limited
to), two-body (2b), three-body (3b), and many body (mb). A
more detailed account of GAP construction, including discus-
sion of descriptors, sparsification, regularization, and training,
has been given elsewhere [6,9,25–27]. For conciseness, here
we restrict ourselves to giving a brief overview of the mb
descriptors used for learning effective Hirshfeld volumes in
the context of the present methodology, and refer the reader to
the literature for further details.

The numerical fingerprint of an atomic environment cen-
tered on a particular atom can be obtained from the smooth
overlap of atomic positions (SOAP) [6]. For the SOAP mb
descriptor, we define the kernel directly as proportional to the
overlap integral of two atomic density fields ρ(r) and ρ ′(r)
[6,27] averaged over all possible relative orientations R̂ of the
two atomic environments,

k(ρ, ρ ′) =
∫

dR̂

∣∣∣∣
∫

dr ρ(r)ρ ′(R̂r)

∣∣∣∣
n

, (4)

where the atomic density field is constructed from the sum of
individual atomic contributions within the atomic neighbor-
hood (as defined by a cutoff distance) of the central atom i,
possibly including the central atom itself:

ρ(r − ri; i) =
∑

j

g(r − ri; ri j, {λ}) ∀ ri j < rSOAP, (5)

where g is a smearing function (e.g., a Gaussian) centered at
the position of each atomic neighbor [6,27]. We have collec-
tively represented the different SOAP hyperparameters, which
determine the fine detail of the atomic representation, by
{λ}. The integral over relative orientations in Eq. (4) ensures
the rotational invariance of this kernel, which also satisfies
the permutational and translational invariance criteria. The
integrand is raised to power n � 2 to retain all the angular
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information of the original environments [6]. To make the
integral computationally tractable, the atomic density field is
expanded in terms of a radial basis {gn} and spherical harmon-
ics Ylm,

ρ(r) ≡
∑
nlm

cnlm gn(r)Ylm(θ, φ), (6)

with the normalized power spectrum of the expansion coeffi-
cients cnlm giving the SOAP vectors:

pnn′l =
∑

m

cnlm(cn′lm)∗, q = p√
p · p

. (7)

The final (normalized) form of the SOAP kernel between
atomic environments i and j is given by a dot product [6,27],

kSOAP(i, j) ≡ qi · q j, (8)

where i refers to the atom with density ρ and j to the atom
with density ρ ′ in Eq. (4). In this paper, we use the formu-
lation of SOAP introduced in Ref. [27], which offers several
computational advantages. SOAP is particularly well suited
for the representation of atom-based properties that depend
on the entire (many-body) local atomic environment.

C. ML model of Hirshfeld volumes and gradients

In our vdW model, SOAP descriptors are used to predict
the effective Hirshfeld volumes of the different atoms based
on their local atomic environments. These volumes can then
be used to calculate the TS dispersion correction using Eq. (1).
The effective Hirshfeld volume for atom i is thus predicted by

νi =
∑
s∈S

αs|kSOAP(i, s)|ζ , (9)

where αs are the fitting coefficients obtained from the ML
model and S denotes the chosen sparse set of atomic en-
vironments, which is a subset of the whole training set T .
We implicitly assume δ = 1 [cf. Eq. (3)]. The parameter ζ is
empirical and takes small positive values ζ � 1. It is used to
make the kernels sharper to effectively emphasize the differ-
ences between environments and to accentuate the sensitivity
of the kernel to changing atomic positions [6]. To further
improve the fitting, the reference DFT data can be shifted by
approximately the mean of the whole database:

νi = νDFT
i − ν0, ν0 = 1

N

N∑
i=1

νDFT
i . (10)

Subtraction of ν0 is done for the training stage (so the quan-
tity to be learned is smoother) and then added back at the
prediction stage. With these predicted Hirshfeld volumes, we
can calculate the pairwise dispersion energies using the TS
dispersion correction given by Eqs. (1) and (2).

The dispersion forces are given as the negative gradients of
the dispersion energy,

f α
k = −∂ETS

∂rα
k

, (11)

where k denotes the atom and α denotes the Cartesian co-
ordinate. Here we give the result of the differentiation (see

SM [22] for derivation details):

f α
k =

∑
i

∂νi

∂rα
k

∑
j �=i

[
C6,i j

νi

fdamp(ri j )

r6
i j

fcut(ri j )

− ri j(
rvdW

i j

)2

d

sR
fdamp(ri j )

2 fcut(ri j )

× exp

(
−d

(
ri j

sRrvdW
i j

− 1

))
C6,i j

r6
i j

1

3ν
2/3
i

rvdW
i,free

]

+
∑

i

δik

∑
j �=i

C6,i j

r7
i j

fdamp(ri j ) fcut(ri j )
(
rα

j − rα
i

)

×
[

6

ri j
− d

sRrvdW
i j

fdamp(ri j ) exp

(
−d

(
ri j

sRrvdW
i j

− 1

))]

+
∑

i

δik

∑
j �=i

C6,i j

r7
i j

fdamp(ri j )
(
rα

j − rα
i

)
Di j, (12)

where δik is the Kronecker delta and Di j is defined below. We
note that the expression above includes terms whose differen-
tiation is trivial but also terms which depend on the gradient
of the Hirshfeld volume, which is a functional of the electron
density. Since this functional is nonvariational with respect to
changes in the charge density (i.e., the νi are not obtained
via minimization but simply by numerical integration), the
Hellmann-Feynman theorem does not apply. Consequently,
most DFT codes do not report the contribution of the gradients
of the Hirshfeld volumes to the dispersion forces.

By contrast, in our method the gradient of the Hirshfeld
volume with respect to the position of atom k is straightfor-
ward to compute in terms of kernel and descriptor derivatives:

∂νi

∂rα
k

=
∑
s∈S

αsζ |k(i, s)|ζ−1qs · ∂qi

∂rα
k

. (13)

The derivatives of the SOAP descriptors are readily available
from any code used for regular cohesive energy GAP
computations which is able to compute forces. In our
case, these derivatives are implemented in the GAP [25] and
TurboGAP [27] codes. Finally, the coefficient Di j that appears
due to the derivative of the smoothing function fcut(ri j ) on the
final line of Eq. (12) is given by

Di j =

⎧⎪⎪⎨
⎪⎪⎩

− 6
db,o

( − rb,o + r2
b,o

)
, if rc,o − db,o < ri j � rc,o

− 6
db,i

(
rb,i − r2

b,i

)
, if rc,i < ri j � rc,i + db,i

0, otherwise,
(14)

with rb,o and rb,i given in Eq. (2).

D. TurboGAP and QUIP/GAP implementations

We have implemented the present methodology in the
GAP/QUIP [28] and TurboGAP [29] codes. To predict
the dispersion energies and forces, the implementation
uses the fitting coefficients α and the matrix of SOAP de-
scriptors for the sparse set QS . Those are both precomputed
at the training stage from the DFT reference data of Hirshfeld
volumes for different atomic environments and saved to a file,
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which is read and stored in memory at the beginning of a new
simulation. Given a new atomic structure (a molecule or a
solid), the Hirshfeld volumes are predicted for each atom in
the structure using their SOAP many-body descriptors, which
are computed on the fly, and the precomputed α and QS . The
predicted Hirshfeld volumes are given by Eq. (9), which is
used in matrix form in TurboGAP:

ν∗ = (
q∗Qᵀ

S

)�ζ
α + ν0. (15)

Here we denote the effective Hirshfeld volume and the SOAP
descriptor of a new atomic environment with the subscript
∗. The Hadamard operator � indicates elementwise expo-
nentiation in this case. If the forces are to be calculated, the
derivatives of the Hirshfeld volumes are calculated in the same
part of the code, reusing the different array quantities,

∂ν∗
∂rα

k

= (
ζ
(
q∗Qᵀ

S

)�(ζ−1) � α
)
QS

∂qᵀ
∗

∂rα
k

, (16)

where q∗ ∈ R1×NSOAP , α ∈ R1×NS , and QS ∈ RNS×NSOAP . Here,
the second Hadamard operator indicates elementwise multi-
plication.

Since the SOAP many-body descriptors only see the local
environment within the SOAP cutoff sphere of radius rSOAP,
the descriptor of atom i also only has nonzero SOAP gradi-
ents for atoms within that cutoff. The SOAP descriptor of
atom i gives the gradients for a SOAP neighbor (within the
SOAP cutoff) atom k as ∂qi/∂rα

k . The cutoff for pairwise
vdW interactions rcut is generally different and usually larger
than rSOAP, because the vdW interaction is long ranged and
SOAP descriptors encode the local atomic environment only.
It is technically possible, however, to define them such that
rSOAP is larger. Whichever cutoff radius is the larger one will
determine the neighbor list that needs to be built. If atom i
in the structure has ni neighbors within rcut (also counting
the atom itself), and assuming it is the largest cutoff, the
neighbor list will have Npairs = ∑

i ni elements. The following
quantities are then calculated for all pairs of atoms i and j
within the vdW cutoff radius:

C6,i j, fdamp
(
ri j ; rvdW

i j , sR, d
)
, r−6

i j , rvdW
i j , (17)

exp

(
−d

(
ri j

sRrvdW
i j

− 1

))
, rα

j − rα
i (18)

and stored in vectors of size Npairs. By looping over the atoms i
and their neighbors j, these quantities can be used to calculate
the inner sums in Eq. (12), such that we get an equation that
reads

f α
k =

∑
i

∂νi

∂rα
k

Ai +
∑

i

δikBi. (19)

The explicit expressions for Ai and Bi can be retrieved by col-
lecting the corresponding terms in Eq. (12). Then, by looping
over atoms i and their SOAP neighbors k again, we get the
final dispersion forces for the atoms. Here, the gradients of
the effective Hirshfeld volumes are zero if rik > rSOAP, and
those terms can be skipped in the sum. The first term involves
the effect of the changing electronic density within the local
environment on the atoms in that environment. The second
term is the long-range part that also appears when neglecting

the gradients of the Hirshfeld volumes. As we have discussed
earlier, this second term gives the same TS forces that are usu-
ally reported by DFT codes, which often lack the interactions
given by the first term altogether. We provide some illustrative
examples of this issue and how the present implementation
overcomes it in Sec. III C.

A reference implementation is provided in the QUIP pack-
age [28], which together with the GAP plug-in also facilitates
fitting the model of Hirshfeld volumes from a database of
atomic configurations. For a database containing N atoms,
with effective Hirshfeld volumes obtained from DFT calcu-
lations [shifted by the approximate mean as in Eq. (10)] ν, the
set {qi}N

i=1 is first computed, of which NS representative points
are selected as the sparse set. Elements of covariance matrices
KT S and KSS are computed using the kernel definition in
Eq. (3), where the subscripts T and S indicate the full training
set and sparse set of atomic environments, respectively. In
matrix form these are given by

KSS = (
QSQᵀ

S

)�ζ
, KT S = (

QT Qᵀ
S

)�ζ
, KST = Kᵀ

T S,

(20)

where QT ∈ RNT ×NSOAP and QS ∈ RNS×NSOAP have the SOAP
descriptors as their rows. The coefficients are obtained using
the sparse Gaussian process regression [30] as

α = (KSS + KST �−1KT S )−1KST �−1ν, (21)

where � is a diagonal matrix containing the regularization
parameters associated with each effective Hirshfeld volume
observation. To predict the vdW interaction terms in QUIP,
we first obtain the atomic force constants C6,i j and the vdW
radii rvdW

i j , as well as their derivatives, if required, with respect
to the Cartesian coordinates of neighboring atoms. For each
atomic pair within the vdW cutoff, these terms are substituted
in the TS expression of the dispersion energy, while force and
stress contributions are also accumulated.

The QUIP implementation, while less efficient than the al-
ternative TurboGAP, offers the possibility of fitting and using
hierarchical (�-learning) models, as well as Python bindings
via the quippy extension of QUIP and ASE [31] integration.

For computational efficiency, the TurboGAP code offers
the capability of reusing the same SOAP descriptors that are
used for constructing a cohesive energy GAP for the Hirshfeld
volume prediction. In practical terms, this means that the
TS corrections as implemented here can be applied on top
a cohesive energy force field with only a small increment in
computational cost, of the order of 20–50% extra CPU time
for the systems studied here with the C60 GAP. We note,
however, that the computational overhead depends on many
factors, such as the effective range of vdW interactions for the
system under study, the ratio of vdW cutoff to SOAP cutoff
(since the scaling laws are different), the typical number of
neighbors within the cutoff sphere, or the relative cost of the
kernel regression step compared to building the descriptors.

III. SIMULATIONS OF CARBON-BASED SYSTEMS

As a proof of principle for the ML implementation of vdW
interactions, we study the phase diagram of the C60 molecular
system. The interaction between individual C60 molecules at
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low pressures is almost exclusively driven by vdW interac-
tions, whereas, as temperature and pressure increase, the role
of repulsion and covalent interactions (in the form of broken
and created chemical bonds) becomes more prominent. At
very high pressure there is a transition from C60 to amorphous
carbon, whereas at high temperature (but lower pressure) the
C60 molecules decompose to graphite. Both transitions re-
quire a reactive force field to be characterized. Thus, this is
a problem that requires accurate description of both vdW in-
teractions and chemical reactions via a vdW-inclusive reactive
force field. This combination of features can currently only be
delivered by ab initio methods or the present generation of ML
potentials. At the time and length scales necessary to carry
out a comprehensive characterization of the phase diagram
of C60, ab initio methods are prohibitively expensive, leaving
ML force fields as the only viable option.

A. C60 GAP force field

To accurately describe the strong interatomic interactions
in carbon materials, i.e., repulsion and covalent interactions,
we constructed a GAP force field for C, using the struc-
tural database of the 2017 amorphous carbon (a-C) GAP of
Deringer and Csányi (GAP17) [26] as a baseline. GAP17
contains different amorphous and liquid C structures, dimer
configurations, diamond, graphite, and reconstructed surfaces.
It is thus a very solid general-purpose carbon potential that
gives reasonable results for most test carbon structures. How-
ever, it lacks fine resolution for some applications. For the
present paper, we enhanced the structural database of GAP17
with graphitic structures (exfoliation curves of graphite and
bilayer graphene, and glassy carbon), some reconstructed
crystalline (diamond) surfaces, and plenty of C60-based struc-
tures, such as distorted C60 monomers, undistorted C60

dimers, and colliding C60 dimers. The latter are useful to
correctly describe the decomposition of C60 molecules at
high pressure. We also included some C trimer structures to
improve the stability of the 3b GAP terms under high com-
pression. For the Hirshfeld volume fit, the GAP17 database
and the new C60 structures were used. The GAP17 and the
new database were computed at the DFT level of theory with
the PBE [18] functional with VASP [32,33]. The reference TS
calculations (including the Hirshfeld volume computations)
follow the implementation in VASP by Bučko et al. [34].
The composition of the database of atomic structures can
be visualized in Fig. 1, where we use a method to embed
high-dimensional data in two dimensions, based on a hier-
archical combination of cluster-based data classification and
multidimensional scaling [35,36]. This is a popular tool for
visualizing structural databases in the context of ML applied
to the study of atomic systems [37–40].

The C60 GAP potential uses 2b descriptors with 4.5 Å
cutoff, 3b descriptors with 2.8 Å cutoff, and soap_turbo mb
descriptors, as available in the GAP code, with 4.5 Å cutoff.
The potential is freely available from the Zenodo repository
[41] and can be used to run simulations with QUIP/GAP
and TurboGAP. Besides the vdW capabilities, this potential
also incorporates a core potential term that ensures accurate
simulation also at very close interatomic separations, e.g.,
the potential should remain stable for simulations of atomic

Surfaces

Diamond

sp3 a-C

Graphite

Fullerenes

sp2 a-C

FIG. 1. Overview of the atomic configurations present in the
database, using a sparse set of 1000 structures. Their composition is
captured in this 2D embedding, where the distances between points
mimic the SOAP dissimilarities between the corresponding atoms.
We used a soap_turbo kernel with 4 Å cutoff for the dissimilarity
measure and a simple hierarchy of six clusters. Several representative
structures are shown for reference.

collisions up to 1–2 keV, although quantitative accuracy at
these energies has only been specifically enforced for the
C dimer. Therefore, even though we introduce the potential
as tailored for C60 simulation, it should also be regarded
as a high-quality general-purpose potential to model carbon
materials—graphitic carbons in particular. Basic tests of this
potential are summarized in Fig. 2, showing very good per-
formance across various applications. We emphasize that the
errors for the a-C tests are actually smaller than those reported
for GAP17 [26], on which the C60 GAP is based. This further
highlights C60 GAP as an excellent general-purpose carbon
potential, beyond being specifically designed to accurately
model C60 systems.

Table I shows timings for the present C60 GAP potential.
As can be seen, the potential runs rather fast for the tested
system and addition of Hirshfeld volume prediction has a
very small overhead of circa 5%. Adding vdW corrections
results in an additional CPU cost that depends strongly on
the vdW cutoff. For this test system, the overall overhead
of adding vdW corrections, including Hirshfeld volume pre-
diction, is circa 20% with a 10 Å vdW cutoff. This number
grows quickly to circa 50% with a 20 Å cutoff. These two
values will delimit the range of practically relevant cutoffs for
most systems. In particular, for carbon materials, a vdW cutoff
of ∼15 Å can be considered sufficient, since the pairwise
vdW interactions decay very rapidly beyond this point [see
Fig. 2(b) for the case of graphite and the SM [22] for a
thorough numerical analysis in C60 and a-C]. We find that the
TurboGAP code scales well with the number of CPU cores
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FIG. 2. Basic tests of the C60 GAP. (a) Cohesive energy predic-
tions for six crystal structures versus volume, showing the expected
stability of diamond at high pressure and graphite at low pressure.
All other phases are much higher in energy. (b) Graphite exfoli-
ation curve, compared to the VASP reference data, including TS
corrections with a 50 Å cutoff (the standard cutoff used by VASP).
The graphite exfoliation curve shows sub-meV/atom agreement be-
tween the DFT reference data and the C60 GAP. (c) a-C generation
throughout different mass densities (ten 216-atom simulations per
density value were used), closely following the strategy presented
in Ref. [26] and comparing to data reported therein. (d) Predicted
Hirshfeld volumes for a-C and C60 test sets not included in the
training set. The RMSEs are 0.0051 and 0.0046 for the a-C and
C60 test sets, respectively. (e) Energies predicted by the C60 GAP
(without vdW corrections) on the a-C and C60 test sets versus the
PBE predictions. We do not compare against the PBE+TS energies
since the agreement between TS and our present methodology is
fully captured by the Hirshfeld volume comparison in (d); further
comparison is provided in Sec. III C. The RMSEs are 37 and 21
eV/atom for a-C and C60 test sets, respectively. (f) The same com-
parison as in (e) but for forces in this case, with RMSEs of 1.17 and
1.69 eV/ Å for a-C and C60, respectively. aData from Ref. [26].

and that the addition of vdW corrections does not seem to
affect the scaling behavior. For the test shown in Table I, the
rule of thumb is that as the number of CPU cores increases
by a factor of 2, the calculation runs about a factor of x1.8
faster. In general, how far the calculation scales will depend
on the number of atoms being simulated. For small systems,
scaling is limited to a couple of compute nodes. For very large

TABLE I. Timings for the C60 GAP, computed on a test system
made up of 64 C60 units at 10 kbar; see Sec. III D for a discussion on
the structure. The timings exclude the time spent on neighbor lists,
reading input files, etc., they only report the evaluation of energy and
forces. The timings are obtained running TurboGAP on a compute
node equipped with two Intel Xeon Gold 6230 CPUs at 2.1 GHz
clock speed (20 physical cores per CPU). We note that these are CPU
times (real time times number of cores); that is the reason why the
timings increase with more cores. An example simulation of 256 C60

molecules (15360 atoms) over 100 ps of MD with 1 fs time step run
on 40 CPU cores with the vdW cutoff radius set to 20 Å would take
1280 CPUh, or 32 h of real time.

CPU time (ms/atom/MD step)

No. of cores No vdW GAP+Hirshfeld vdW (10 Å) vdW (20 Å)

1 1.29 1.49 1.58 2.25
5 1.48 1.57 1.64 2.23
10 1.62 1.70 1.79 2.42
20 2.11 2.18 2.31 3.07
40 2.13 2.24 2.65 3.00

systems, more CPU cores can be used. We managed to get
good scaling for a 1M-atom graphitic carbon system up to
2048 MPI processes (on as many physical CPU cores). Efforts
on improving the software and computational performance are
ongoing and will be reported elsewhere.

B. Hirshfeld volumes: locality and learning rates

The model involves several hyperparameters that can im-
prove the predictions but also have a huge impact on the
required computational time. Two of these parameters are the
SOAP descriptor cutoff radius and the size of the sparse set.
The former gives the locality of the physical parameters that
the model is predicting and the latter determines the learning
rate of the model. Figure 3 shows the root-mean-square er-
ror (RMSE) of the predicted effective Hirshfeld volumes for
amorphous carbon and C60 test sets as a function of SOAP
cutoff radius and the sparse set size. In Figs. 3(a) and 3(b), for
a-C and C60 test sets, respectively, it can be seen that the errors
decrease quickly as the size of the training set or the sparse
set is increased, but the model accuracy saturates such that
increasing the sparse set size is not beneficial after a certain
point due to the increased computational cost. The locality test
in Fig. 3(c) shows that for the a-C test set there is an increase
in errors after a certain SOAP cutoff. The descriptors of two
different amorphous carbon structures can be very different
from one another if a large cutoff is used while the atoms far
away from the central atom do not affect the physics of the
system significantly. On the other hand, for the C60 molecules,
the descriptors can be quite similar even for large cutoff radii.
This is also the reason why the error has not yet reached the
minimum for the C60 test set and a larger cutoff could be used.

C. Missing contribution to the forces in DFT codes

The effective Hirshfeld volumes are nonvariational func-
tionals of the charge density and calculating their gradients
thus requires the calculation of the charge density gradients.
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FIG. 3. Hirshfeld volume (a), (b) learning rates and (c) locality
tests for amorphous carbon (a-C) and C60 test sets. The RMSEs are
for predicted effective Hirshfeld volumes, that are usually slightly
smaller than one (the average of the training set is approximately
0.9). See Fig. 2(d) for a representative range of variation in these
data sets.

The DFT code we use as our reference method lacks the
implementation of these charge density gradients and the dis-
persion forces only contain the terms of Eq. (12) that do not
include the derivatives of the Hirshfeld volumes. Within the
GAP methodology, however, the calculation of the gradients
of the Hirshfeld volumes is straightforward and these terms
can therefore be included in the model.

In Fig. 4, we demonstrate that our model is capable of
reproducing the dispersion forces calculated using the DFT
method and that the missing contribution can actually be of
the same magnitude as the dispersion forces. Furthermore, we
show that the analytical dispersion forces that are produced by
our model agree well with the forces that we have calculated
using the finite difference (FD) method from the DFT total en-
ergies. For these calculations, we used an amorphous carbon
structure with 64 carbon atoms in the unit cell and a distorted

FIG. 4. (a) Comparison of dispersion forces (x, y, and z compo-
nents in the same panel) calculated analytically using the TurboGAP
implementation and with the FD method from the dispersion energies
calculated with VASP. Here the structure is amorphous carbon with
64 atoms in the unit cell and the cutoff radius for vdW interactions
is 50 Å. The VASP analytical forces show approximately 50% larger
RMSE than the analytical GAP forces, when both are compared to
the finite difference (which we treat as the reference here). (b) Com-
parison of dispersion forces for a slightly distorted C60 structure with
a vdW cutoff radius of 8 Å to only include atoms in one C60 molecule.
The RMSE is an order of magnitude larger for VASP when compared
to the GAP forces. (c) Analytical GAP and VASP dispersion forces
for amorphous carbon and C60 structures. Here we have switched off
the Hirshfeld volume gradient terms to show that we get excellent
agreement with VASP dispersion forces, which do not include these
gradients in any way.

C60 molecule. For the latter, we only included the dispersion
interactions within the molecule by making the simulation box
large enough and the vdW cutoff radius small enough. For the
former, we chose a vdW cutoff radius of 50 Å, which is the
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default cutoff used by VASP. We have included an analysis of
the effect of vdW radius on the dispersion forces in the SM
[22].

For amorphous carbon, the RMSE is approximately 50%
larger for the VASP analytical forces than it is for the ana-
lytical forces calculated with GAP, when compared to the FD
forces that we have calculated with VASP. For the distorted
C60 structure the errors are an order of magnitude larger
for VASP. The database contains a number of different C60

structures which enables accurate interpolation with GAP. For
the C60 molecule the contribution from the Hirshfeld volume
gradients to the vdW forces is smaller, compared to a-C, thus
making the absolute and relative errors smaller too.

In Fig. 4(c), we show that when we set the Hirshfeld vol-
ume gradients to zero, effectively removing the first term of
Eq. (12), we obtain almost perfect agreement with the ana-
lytical dispersion forces given by VASP. GAP is thus able to
closely reproduce VASP dispersion forces and, for structures
that are well represented in the database, it can indeed predict
forces that are more accurate than those produced by the
reference method. This is one of the strongest results in this
paper and we expect it to generalize to other problems where
computation of gradients is hindered by complications in the
implementation.

D. Structural transitions in C60

C60 has been extensively studied in the literature [42–45],
see, e.g., Refs. [46] and [47] for recent overviews. There
is fundamental interest since C60 is the molecule with the
highest symmetry: 120 symmetry operations altogether (each
an element in the icosahedral symmetry group), including 60
rotational symmetry operations. But there is also a strong
interest in using C60 precursors to synthesize new forms of
carbon by applying different heat and pressure treatments
[45,46].

Individual C60 molecules are expected to behave similarly
to soft spheres that interact among each other via vdW forces
at long distances. When the C60 molecules get close enough
that the constituent carbon atoms see individual C-C interac-
tions (2b, 3b, and mb), rather than an effective spherically
symmetric potential centered on the center of mass (CM) of
the C60 molecule, the situation becomes more complicated.
In particular, we are interested in finding out deviations from
ideal Lennard-Jones (LJ) fluid behavior at low pressure and
in working out the thermodynamic conditions for the transi-
tion from a C60 fluid to amorphous carbon (a-C) and liquid
carbon (l-C) at high pressure and high temperature, respec-
tively. All the simulations in this section use the C60 GAP
and TurboGAP, a cutoff for vdW interactions of 20 Å, and
sR = 0.893, which was optimized for C as detailed in the SM
[11,20,22,48].

1. Clustering at low pressure

At low pressure and low temperature, real systems that
behave close to ideal LJ fluids, such as Ar and other noble
gases, tend to cluster into closed-packed structures [49,50]. To
elucidate, first, the existence and, subsequently, the structure
of C60 clusters at low pressure and temperature, we carried
out MD simulations with our C60 GAP potential and the

TurboGAP code. We simulated systems made up of 64 C60

molecules (a total of 3840 C atoms) in large cubic simulation
boxes of size 150 × 150 × 150 Å3 under periodic boundary
conditions. The positions of the initial configurations were
generated by randomizing the position of the CM of each C60

molecule while avoiding two C60 units from coming too close
to one another. We scanned the temperature range from 10 K
up to 5000 K, using a Berendsen thermostat [51] with time
constant 100 fs and time steps for the MD integration of 2 fs
below 500 K and 1 fs at and above 500 K. Each individual
MD simulation at a given temperature is run for 500 000 time
steps, i.e., 1 ns below 500 K and 500 ps at and above 500 K.
Structural analysis is performed after the structural indicators,
as described below, have stabilized. This means that we only
perform structural analysis on the final portion of the 1 ns or
500 ps trajectories.

To characterize the structure of the clusters, we tried using
the popular Steinhardt parameter analysis [52,53], but this
proved to be insufficient to clearly resolve the structure of the
C60 clusters. Therefore, we resorted to a more sophisticated
analysis based on mb SOAP descriptors [6,37], where the
same kernel used in Eq. (8) to build GAP potentials is used to
characterize the similarity between atomic environments (see
Ref. [54] for a recent example in carbon materials). For that
purpose, we mapped each C60 unit into its CM and computed
the radial distribution function (RDF) of the CMs from our
MD data. From the location of the first peak in the RDF,
we inferred the typical CM-CM first-neighbors distances in
the C60 fluid, and constructed body-centered cubic (bcc),
face-centered cubic (fcc) and hexagonal close-packed (hcp)
reference lattices. We then compared the SOAP descriptors of
the C60 CMs in the simulated clusters to the reference lattices,
obtaining numerical scores for each of them. This allows us to
establish whether a given C60 cluster resembles a bcc, fcc, or
hcp structure the most. All the results for these low-pressure
simulations are summarized in Fig. 5.

In Fig. 5, the top row shows the structures resulting after
equilibration for selected temperatures: 100, 500, 1000, and
5000 K. We additionally performed simulations at 10, 20, 50,
200, and 2000 K (not shown). However, the most represen-
tative situations are those depicted in the figure. In particular,
below 500 K we observed that the individual C60 units sponta-
neously coalesce to form compact clusters. The characteristic
distance between C60 units is about 9.7 Å and the structures
are clearly ordered, as evidenced from the RDF plot in the
middle row (note the RDF is computed for the C60 CMs, not
the individual C atoms). The bottom row shows the similarity
analysis between the actual cluster and the reference fcc, hcp,
and bcc lattices. The similarity measures, computed for each
and all C60 units in the system, are plotted as a function of
the distance between the CM of the entire system and the CM
of the corresponding C60 unit. This is necessary since as one
moves toward the surface of the cluster, the resemblance to an
extended crystal is necessarily lost. From this SOAP analysis,
we conclude that the structure of the clusters resembles a
hcp lattice arrangement, and more so than fcc or bcc. We
should note, however, that at these low pressures and temper-
atures, the error in the TS vdW correction due to the missing
many-body effects could become significant. The importance
of many-body effects on C60 clustering should be assessed
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FIG. 5. Top row: Different structures resulting from the MD simulations; at low temperature, the C60 units coalesce to form clusters,
whereas as the temperature is raised to around and above 500 K these clusters become unstable and there is a transition to a C60 gas first, and
then to an atomic C gas. Middle row: Radial distribution function (RDF) g(r) for the center of mass (CM) representation of the C60 molecules
(i.e., each C60 unit is mapped onto its CM and the CMs are used to compute the RDF). The RDF is shown, for convenience, multiplied by the
factor required for the integral of the curve from 0 to R to yield the number of C60 units at R. Bottom row: SOAP similarity measures between
the CM representation and reference simple crystal lattices, plotted as a function of distance between the CM of the C60 units and the overall
CM of the system. Here the kernel in Eq. (8) is raised to the power of 4 to improve visualization of the difference among crystal structures.
Note that the SOAP descriptors used in this analysis are computed for the CM representation, not the full atomic representation.

when a computationally affordable implementation becomes
available. Our group is currently working on extending the
present model to account for these missing terms.

At around 500 K, there is a transition between tightly and
loosely connected clusters, with the single cluster that forms at
lower energies now splitting into two subunits of similar size.
The SOAP similarity analysis does not provide a clear prefer-
ence for a specific crystal-like structure anymore, although the
RDF still shows a clearly orderly arrangement. Above 500 K,
the structure transforms into a gas and the vdW interactions
are no longer able to keep the C60 molecules bound together.
The individual C60 units remained chemically stable at 1000
and 2000 K (not shown), but they broke apart into their atomic
constituents at 5000 K. At this temperature the structure turns
into loosely connected open C chains. At this point, the system
does not retain any memory of having originally been made of
C60 units.

2. Solid phase at ambient conditions

At near-ambient conditions, solid C60 is experimentally
known to adopt an fcc structure [42,44]. There is also an
experimental observation of a transition from a rotationally

oriented phase, where the C60 units are able to librate about
equilibrium positions and orientations but not freely rotate,
to an orientationally disordered structure where the C60 can
rotationally diffuse [44]. The temperature of this phase transi-
tion has been established experimentally at around 260 K. In
this section we try, with mixed success, to reproduce these
experimental results, which are a very stringent test of the
quality of our model due to the small magnitudes of the
energies involved.

All the results of this section are summarized in Fig. 6.
First, we try to elucidate the crystal structure predicted by
the C60 GAP for C60 at ambient conditions. Figure 6(a)
shows a series of successive heating and cooling cycles that
we applied to 32-molecule samples arranged in fcc and hcp
lattices, coupled to a barostat at 1 bar and a variable thermostat
that changes the temperature from 1000 K down to 10 K
and back up in 200 ps cycles. The figure shows that fcc is
consistently lower in energy than hcp at these conditions. For
the low temperature structure (at 10 K), our results indicate a
cubic lattice constant for fcc of 13.7 Å, and a cohesive energy
of the order of only 1.67 meV/atom (100 meV/molecule)
lower (more stable) than hcp. Note that we fixed the c/a
lattice parameter ratio of hcp to the ideal value during the
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FIG. 6. (a) Cohesive energy (referenced to that of an isolated
C60) for 32-molecule systems in fcc and hcp structures as the tem-
perature is cycled from 1000 K to 10 K and back to 1000 K in 200 ps
cycles, at P = 1 bar. (b) Potential energy surface of a four-molecule
fcc unit cell as a function of the concerted rotation of angle θ ; see
text for details. (c) Rotational self-diffusion coefficient computed for
the 32-molecule fcc system at different temperatures and 1 bar.

simulation; it is therefore possible that the energy difference
might decrease even further if allowing for nonideal c/a ratios
(i.e., anisotropic barostating). These tiny energy differences,
which are one order of magnitude lower than typical available
kinetic energies per degree of freedom at room temperature,
explain why under different conditions hcp may become more
stable than fcc. We found this to be the case for clusters in the
previous section and will also observe this behavior at high
pressure and temperature in the next section.

Another intriguing aspect of the structure of C60 at ambi-
ent conditions is the orientationally ordered to orientationally
disordered phase transition [42], which has been thoroughly
characterized in Ref. [44]. Namely, below the transition tem-
perature, experimentally observed at around 260 K, the four
molecules at the fcc lattice sites are rotationally locked in
place. Above the transition temperature, they are free to rotate
about the fcc lattice sites. The specific orientation at low
temperature can be retrieved by a concerted rotation of all
four molecules, by the same angle θ , around four different
local axes (going though each molecule’s CM). These axes
are indicated in the inset of Fig. 6(b) and in more detail in
Refs. [44,47]. In that figure, we show the PES as a function
of θ . We find, for the C60 GAP optimal lattice parameter,
a = 13.7 Å, that there is indeed a local minimum at θ = 99◦,
very close to the experimental value of 98◦. We also verified
with stochastic sampling (1 000 000 random orientations of
the four molecules around the fcc lattice sites), that this is
also probably the global minimum. We note, however, that
this analysis is based on a rigid molecule picture. Indeed,
Fig. 6(a) shows that a lower energy configuration can be
achieved if the molecules are allowed to deform elastically
(as is the case in the course of MD). We also note the very
strong dependence of the energy profiles in Fig. 6(b) on the
lattice parameter. At the low-temperature experimental value,
a ≈ 14 Å, this minimum becomes less stable compared to
other local minima.

Finally, we tried to elucidate the rotational ordered-to-
disordered phase transition by calculating the rotational
self-diffusion coefficient Drot for 32-molecule fcc systems as
a function of temperature, within 20 ps MD trajectories at
each T . Within the Stokes-Einstein picture, Drot is expected
to grow linearly in T for freely rotating spherical molecules.
As expected for C60 at low temperature, we find that this
is not the case in Fig. 6(c). There is clearly a transition
between a rotationally locked phase at low temperature to
a rotationally diffuse phase at high temperature, with expo-
nential growth of Drot, which increases by several orders of
magnitude, in between. This growth of Drot over a range
of temperatures is qualitatively in agreement with the exis-
tence of a range of temperatures over which C60 transitions
from fully orientationally ordered to fully orientationally dis-
ordered. Within that range, from ∼90 K to 260 K, certain
fractions of molecules attain one of two possible specific rel-
ative orientations (so-called P orientation and H orientation),
the precise fraction depending on T and P [47]. Again, we find
in Fig. 6(c) that there is a strong dependence of the specific
characteristics on the lattice parameter. When we adjust the
simulated lattice parameter to the experimental one (which
involves an increase of about 2.7% in the lattice parame-
ter), the transition temperature goes down by about 300 K,
from ∼800 K to ∼500 K. Still, this temperature is far away,
quantitatively, from the experimental observation of the phase
transition. This may be indicative, together with the underes-
timation of the lattice parameter, that our approach may be
overestimating the vdW interaction. We remain, nonetheless,
very satisfied with the overall performance of the present
approach, which qualitatively reproduces much of the fine
detail of the structure of C60, especially given the tiny energy
differences involved.
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FIG. 7. Metastable phase diagram for the C60 system at high pressure (at and above 1 kbar). Transitions to other allotropes of C from the
C60 seed can be observed as temperature, pressure, or both are increased. See text for a detailed discussion. The atomic structures were drawn
with VMD [55,56] and structure manipulation and analysis were carried out with ASE [31] and different in-house codes.

3. High-pressure/high-temperature phase transitions

We have further studied the structure of the C60 fluid
under high pressure conditions. In particular, we are inter-
ested in demarcating the phase boundary between a molecular
fluid/solid made up of individually stable C60 units, on the
one hand, and a-C and l-C on the other. In these simula-
tions, we scanned the temperature range where we expect to
find the phase boundary, and ran MD simulations at 1000,
2000, 3000, 4000, and 5000 K. We scanned the range of
pressures throughout five orders of magnitude on a logarith-
mic scale, from 1 kbar to 10 Mbar. The simulations were
carried out in the following way. (1) A random arrangement
of 256 C60 units was generated as in the previous section.
(2) For each pressure value, a 200 ps equilibration was car-
ried out at 1000 K using the Berendsen thermostat with the
same parameters as in the previous section and the Berend-
sen barostat with time constant of 1 ps and bulk modulus
of γp = (

√
P/1000/4.5 × 10−5) bar, where P is in units of

bar; in the TurboGAP implementation, the bulk modulus is
specified in units of the approximate inverse compressibility
of water, 1/(4.5 × 10−5 bar−1). We find that a variable bulk
modulus is necessary to accommodate the changing elastic
response of the system as it becomes compressed. (3) After
the equilibration phase, the barostat is turned off and a box
scaling transformation is used to very slowly change the lat-
tice vectors, starting from the last snapshot of the equilibration
and ending at the average lattice vectors during the part of
the equilibration period where the potential energy has settled.
This is done over 20 ps of MD. (4) A fixed-volume simulation
is run for another 20 ps with only the thermostat turned on,
and structural data (atomic positions) is gathered for further
analysis. (5) The last snapshot from step 4 is taken as starting
configuration for a new step 2, increasing the temperature by
1000 K. Therefore, for each pressure, there is a continuous
transformation in temperature from 1000 K to 5000 K, at
1000 K steps, throughout all the stages detailed above.
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TABLE II. Selection of structural indicators for the C60 system
at high pressure: (i) Approximate location of the first RDF peak in
the CM representation of the C60 condensed phase (solid and liquid,
i.e., excluding clusters at low pressure) at different temperatures and
pressures. (ii) Mass densities for the different structures depicted in
Fig. 7.

RDF first peak

1000 K 2000 K 3000 K 4000 K 5000 K

1 kbar 9.85 Å 10.13 Å 10.45 Å N/A N/A
10 kbar 9.71 Å 10.03 Å 10.12 Å N/A N/A
100 kbar 8.86 Å 8.96 Å N/A N/A N/A
� 1 Mbar N/A N/A N/A N/A N/A

Mass density (g/cm3)

1000 K 2000 K 3000 K 4000 K 5000 K

1 kbar 1.57 1.27 0.91 0.42 0.33
10 kbar 1.68 1.61 1.47 1.77 1.23
100 kbar 2.09 2.09 2.41 2.40 2.41
1 Mbar 3.89 3.90 3.90 3.90 3.96
10 Mbar 7.23 7.21 7.16 7.17 7.16

The results of our simulations are summarized in Fig. 7 and
Table II. We find that the region of metastability for a C60 con-
densed phase lies in the lower left quadrant of the metastable
phase diagram at and below approximately 3000 K and 100
kbar. At higher temperatures, the C60 system transforms into
either liquid C (l-C) or graphite/graphitic C, depending on
the pressure, whereas at higher pressures the transition is to
extremely highly sp3-rich amorphous C (a-C), which we have
denoted on the graph as amorphous diamond (a-D). At T =
5000 K and 1 Mbar, we start to observe crystalline diamond
nucleation and grain formation, identified as polycrystalline
diamond in the figure. For very high pressures (10 Mbar),
the density (Table II) rises to more than twice the density of
crystalline diamond at ambient pressure (∼3.5 g/cm3). This
high-pressure phase shows, besides high sp3 content in the
vicinity of 75%, also sizable exotic coordinations where C
atoms can be surrounded by five and more nearest neigh-
bors. We have thoroughly studied fivefold coordinated carbon
complexes in the context of GAP simulation in our previous
work [54]. We have based the neighbor counts on a cutoff
scheme, which is commonplace in the literature and usually
chosen at 1.85 Å, the first minimum in the RDF at ambient
conditions. Due to the extreme compression of a-D in Fig. 7,
we adjusted this cutoff to account for the increase in mass den-
sity compared to crystalline diamond at ambient conditions,
rcut = 1.85 Å × 3

√
ρdiamond/ρ.

The structure of the C60 condensed phase was probed using
the SOAP similarity metric as in the previous section. We
found that the structure is not fcc anymore at the probed
pressure/temperature combinations, even though we chose to
simulate 256 C60 units precisely to accommodate a possible
fcc arrangement. While the high-pressure C60 structure resem-
bles hcp more than either fcc or bcc, its overall resemblance
to hcp decreases, compared to clusters at low pressure. For
this reason, we have denoted the structure as hcp-like in
Fig. 7.

FIG. 8. Vibrational density of states of all the liquid struc-
tures identified in Fig. 7 plus the one identified as “polycrystalline
diamond”, which is used as a reference for a solid.

To elucidate the true nature of the liquid structures, in
Fig. 8 we show vibrational density of states (DoS) calculations
carried out with the DOSPT code [57–59]. The vibrational
DoS spectra show characteristic profiles with strong self-
diffusion of the individual C atoms, which is proportional to
the zero-frequency DoS [60,61]. The self-diffusion constant
decreases as pressure increases. Together with the high tem-
perature structures identified as liquid C in Fig. 7, we have
also included what we identify as polycrystalline diamond.
The vibrational DoS for that structure shows the bimodal
features typical of diamond and no self diffusion, highlight-
ing that, even at 5000 K, 10 Mbar of pressure is enough to
suppress liquid behavior from the sample. Finally, we note
the high-frequency peaks at low pressure, at around 50 THz,
which correspond to the sp chains present in those liquid
samples (and which are visible in Fig. 7).

IV. CODE AND POTENTIAL AVAILABILITY

The GAP and TurboGAP codes are freely available on-
line for noncommercial academic research [28,29]. The
soap_turbo library with modified SOAP descriptors [27] is
also freely available under the same terms. QUIP [28] and the
C60 GAP [41] are freely available online for noncommercial
as well as commercial research.

V. SUMMARY AND OUTLOOK

We have presented a complete methodology for accurate
incorporation of vdW interactions to ML interatomic po-
tentials based on the TS approach. The approach has been
implemented in the GAP and TurboGAP codes and is freely
available for academic research. Excellent computational per-
formance can be achieved, with only minor to moderate
increase in CPU cost compared to simulations without vdW
corrections. We have trained a ML GAP potential for carbon
enabled with this methodology and optimized it specifically
for simulation of C60. The force field has been validated as
an excellent general-purpose carbon potential and utilized to
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chart the phase transformations taking place in C60 under a
wide range of temperatures and pressures, reproducing many
of the features observed experimentally.

We expect that this C60 GAP potential will open the
door for accurate simulation of carbon materials and C60 in
particular. There is interest in C60 as a precursor material
for other carbon-based allotropes synthesized under extreme
conditions, and we believe that the C60 GAP may guide future
experimental efforts in this regard. Methodologywise, the next
steps to build up and improve the inclusion of vdW interac-
tions from the current work will focus on reproducing more
accurate schemes like PBE+MBD [15] and vdW-DF [62], as
well as fitting vdW-inclusive GAPs for materials other than
carbon. Extending our methodology to other nonionic materi-
als is straightforward, and preliminary work on vdW-inclusive
general-purpose GAPs for systems containing C, H, and O
atoms indicate that the approach works similarly well. On the
other hand, systems where significant charge transfer occurs
(e.g., when ions are present) will require further development
to take into account the nonlocality of the effective Hirshfeld

volumes. If they are to remain computationally tractable, and
thus amenable to large-scale MD simulation, these approaches
may require a combination of short-range many-body descrip-
tors and simple (e.g., pairwise) long-range ones. All in all,
we expect rapid advances in the development of accurate and
computationally efficient dispersion correction schemes for
ML-driven atomistic modeling in the near future.
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