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This article further explores a previously proposed gray-box neural network approach to
modeling LFO (low-frequency oscillator) modulated time-varying audio effects. The network
inputs are both the unprocessed audio and LFO signal. This allows the LFO to be freely
controlled after model training. This paper introduces an improved process for accurately
measuring the frequency response of a time-varying system over time, which is used to
annotate the neural network training data with the LFO of the effect being modeled. Accuracy
is improved by using a frequency domain synthesized chirp signal and using shorter and more
closely spaced chirps. A digital flanger effect is used to test the accuracy of the method and
neural network models of two guitar effects pedals, a phaser and flanger, were created. The
improvement in the system measurement method is reflected in the accuracy of the resulting
models, which significantly outperform previously reported results. When modeling a phaser
and flanger pedal, error-to-signal ratios of 0.2% and 0.3% were achieved, respectively. Previous
work suggests errors of this size are often inaudible. The model architecture can run in real
time on a modern computer while using relatively little processing power.

0 INTRODUCTION

The use of neural networks and deep learning has re-
cently become popular in audio processing research [1–5].
The first neural models for audio effects processing im-
itated time-invariant linear and nonlinear filtering [6–8].
Deep neural models are the newest phase in the black-box
modeling of audio devices, which had previously relied on
nonlinear system identification methods, such as Volterra
series [9–12] or the Wiener-Hammerstein model [13]. The
present paper focuses on neural modeling of time-variant
effects, which requires a different approach and poses a
challenge during training, as the target behavior varies over
time.

A system is time variant if its output depends on the
time at the moment of input, as well as the input signal
itself. For time-varying audio effects this is often achieved
by modulating the parameters of the effect over time. The
modulation signal varies for different effects, with some
effects, such as chorus, often utilizing low-passed noise
as a modulation signal, and with others, such as phasers
and flangers, using a periodic modulation signal, such as
a rectified sine or triangle wave [14]. A periodic modula-

tion signal is commonly referred to as a Low-Frequency
Oscillator (LFO).

This paper presents a method for modeling LFO-
modulated audio effects. Models of two LFO-modulated
analog effects pedals, a phaser and flanger, are created to
demonstrate our approach. This work refines our previous
results published at the DAFx-20 conference [15] by intro-
ducing an improved method for measuring the behavior of
a time-varying system over time, which we show improves
the reliability and accuracy of measuring the LFO signals
of audio effects. Improvements to our method include using
a frequency domain synthesized chirp signal, a new method
for tracking spectral notches/peaks over time and improv-
ing the way the measured LFO data is extrapolated when
creating the training dataset. To verify the accuracy of the
LFO measurement method it is applied to a digital flanger
algorithm, so the measured LFO signal can be easily com-
pared to the true LFO signal. For training the deep neural
network, the unprocessed audio and estimated LFO signal
are given as inputs and the processed audio is used as a
target.

This paper is organized as follows. Sec. 1 reviews the
principles of phasing and flanging. Sec. 2 describes the

J. Audio Eng. Soc., Vol. 69, No. 7/8, 2021 July/August 517



WRIGHT AND VÄLIMÄKI PAPERS

neural network used in this study. Sec. 3 details the method
used to predict time-varying effects LFO signals. Sec. 4 re-
ports experiments conducted to validate the LFO prediction
method. Sec. 5 describes the creation of phaser and flanger
pedal datasets for use in training neural network models.
Sec. 6 presents the results, and Sec. 7 concludes.

1 TIME-VARYING AUDIO EFFECTS

This section briefly describes two time-varying audio
effects, phasing and flanging, and how they are achieved.

1.1 Phasing
A phasing effect is characterized by a series of moving

notches in the system’s frequency response [16, 17]. The
frequency of some or all of the nulls is varied over time by
the LFO signal. The nulls can be introduced using notch
filters but are more traditionally created using a series of
cascaded low-order allpass filters [18–20]. Allpass filters
have a flat magnitude response but introduce a nonlinear
phase delay. For a first-order analog allpass filter, for ex-
ample, the phase response decreases monotonically from
0◦ toward −180◦ as frequency is increased.

Cascading a series of N first-order allpass filters results
in their phase responses being summed, producing an over-
all phase response that decreases monotonically from 0◦

toward −N × 180◦ [18, 14]. The phasing effect is cre-
ated by summing the original signal with the output of the
cascaded first-order allpass filters. Frequencies where the
phase response of the cascaded allpass filters is an odd-
integer multiple of −180◦ will cancel out when summed
with the original signal. The number of notches introduced
depends on the number and order of allpass filters, such that
for example two first-order allpasses produce one notch.
The frequencies of the nulls can be varied by modulating
the allpass filter parameters.

1.2 Flanging
Flanging is traditionally achieved by mixing a signal with

a delayed version of itself [21, 16, 22, 17]. This is equivalent
to applying a feedforward comb filter to the signal x(t) [18]:

y(t) = b0x(t) + x(t − τ), (1)

where y(t) is the output signal, b0 is a linear gain factor
that determines how pronounced the notches in the filter’s
frequency response are, and τ is the time delay. The transfer
function is given by [23]:

Hff(s) = b0 + e−sτ. (2)

where the latter term is the Laplace transform of time de-
lay. In practical analog flangers the time delay is realized
with a non-ideal delay implementation, such as using a
bucket-brigade circuit [19, 24], but here it is assumed that
an idealized continuous-time delay is used.

The resulting magnitude response can be seen in Fig. 1
for varying values of b0 and τ. The flanging effect is created
by using the LFO signal to modulate the length of the de-

Fig. 1. Frequency response of feedforward comb filter for (top)
positive b0, (middle) negative b0, and (bottom) different values
of τ.

lay, which results in the notch frequencies moving up and
down the spectrum. The notch locations are harmonically
related, with the difference in frequency between consecu-
tive notches being equal. A negative value of b0 results in
the first notch being located over the DC frequency, which
causes the bass frequencies to be excessively filtered, as
such a positive value of b0 is generally used.

Feedback comb filters can also be used to create a flang-
ing effect, with the following difference equation and trans-
fer function [23]:

y(t) = x(t) + ay(t − τ), (3)

Hfb(s) = 1

1 − ae−sτ
, (4)

where a is a gain factor, limited to |a| < 1 for filter stability,
which determines the strength of the comb filtering effect.
The magnitude response of the feedback comb filter can be
seen in Fig. 2 for varying values of a and τ.

Combining the two filters results in a combined feed-
forward and feedback comb filter, with the time-domain
description and transfer function, respectively:

y(t) = b0x(t) + x(t − τ) + ay(t − τ) (5)

and

Hc(s) = b0 + e−sτ

1 − ae−sτ
. (6)

If parameters are selected such that b0 = a, then the
filter becomes an allpass filter, but for flanging a positive
b0 and negative a are often chosen, so that the peaks of
the feedback comb filter coincide with the notches of the
feedforward comb filter. By adjusting the magnitudes of b0

and a the sound of the comb filter can be altered to make
the peaks and notches more pronounced without actually
changing the locations of the peak and notches. This can be
seen in the magnitude response shown in Fig. 3.

518 J. Audio Eng. Soc., Vol. 69, No. 7/8, 2021 July/August



PAPERS NEURAL MODELING OF PHASER AND FLANGING EFFECTS

Fig. 2. Frequency response of feedback comb filter for (top) pos-
itive a, (middle) negative a, and (bottom) different values of τ.

Fig. 3. Frequency response of combined comb filter with τ = 5
ms.

Fig. 4. Model structure, where x[n] is the input audio signal,
sLFO[n] is the LFO signal, f0 is the desired frequency of the LFO,
and ŷ[n] is the network’s predicted output sample.

2 NEURAL NETWORK AUDIO EFFECT
MODELING

The proposed model processes the input audio on a
sample-by-sample basis, with the time-varying aspects of
the effect modeled using an LFO signal as an additional
input to the model. The general form of the trained model
is depicted in Fig. 4. This is identical to the model used in
our previous work [15].

By including the LFO signal as an input to the network,
the required model complexity is reduced, in comparison to
a model that would have to learn the shape and frequency
of the LFO from the training data. Additionally the shape
and frequency of the LFO can be controlled freely after
the model is trained. One issue with this approach is that

Fig. 5. RNN structure, where x[n] is the input audio signal, SLFO[n]
is the input LFO signal, h and c are the LSTM Hidden and Cell
states, respectively, and ŷ[n] is the network’s predicted output
sample.

training the neural network requires input/output data from
the target device, annotated with the LFO signal. Predicting
the LFO signal accurately is not trivial and this is discussed
further in Sec. 3.

2.1 Neural Network Model
In this study validation of this approach was carried out

using the Recurrent Neural Network (RNN) model identical
to that used in our previous paper [15], depicted in Fig. 5,
consisting of a single Long Short-Term Memory (LSTM)
[25] recurrent unit followed by a fully connected layer. The
input to the model is a two-channel signal at audio rate,

u[n] = [
x[n] , sL F O [n]

]
, (7)

where x is the input audio signal and sLFO is the LFO signal.
The Hidden State, h[n], and Cell State, c[n], of the LSTM

are updated at each time step as follows:

i[n] = σ(Wii u[n] + bii + Whi h[n − 1] + bhi ), (8)

f [n] = σ(Wi f u[n] + bi f + Wh f h[n − 1] + bh f ), (9)

c̃[n] = tanh(Wicu[n] + bic + Whch[n − 1] + bhc), (10)

o[n] = σ(Wiou[n] + bio + Whoh[n − 1] + bho), (11)

c[n] = f [n]c[n − 1] + i[n]c̃[n], (12)

h[n] = o[n]tanh(c[n]), (13)

where i[n] is the input gate, f[n] is the forget gate, c̃[n] is
the candidate cell state, o[n] is the output gate, tanh(.) is the
hyperbolic tangent function, and σ(.) is the logistic sigmoid
function.
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The fully connected layer performs an affine transforma-
tion of the LSTM hidden state and sums it with the input
value to produce the predicted output for that timestep:

ŷ[n] = x[n] + W f ch[n] + b f c. (14)

During training the network learns the weight matrices and
bias vectors, denoted by W and b in the above equations.
The LSTM hidden size, h, is a user-defined parameter that
determines the size of the cell and hidden state vectors
and thus the required size of the weight matrices and bias
vectors. The model was implemented using PyTorch [26].
While this study only shows results achieved using the RNN
model, the same method should work for other audio pro-
cessing neural networks, such as the WaveNet-style model
proposed in [27].

2.2 Training
The training process used was similar to that described in

[15]. The Training Dataset was split into 1-s segments and
processed in mini-batches. During the processing of each
mini-batch 1,000 samples were initially processed to allow
the LSTM states to initialize, then parameter updates were
carried out every 1,024 samples. The networks were trained
to minimize the Error-to-Signal Ratio (ESR) with first-order
highpass pre-emphasis filtering and DC loss term:

EESR =
∑N−1

n=0 |yp[n] − ŷp[n]|2∑N−1
n=0 |yp[n]|2 , (15)

EDC = | 1
N

∑N−1
n=0 (y[n] − ŷ[n])|2

1
N

∑N−1
n=0 |y[n]|2 , (16)

E = EESR + EDC, (17)

where yp is the pre-emphasized target signal and ŷp is the
pre-emphasized neural network output. The first order pre-
emphasis filter coefficient used was 0.85. The training was
carried out using the Adam optimizer [28]. The segments
were shuffled at the end of each epoch.

3 ACCURATE LOW-FREQUENCY OSCILLATOR
MEASUREMENT

For the proposed neural network model to work an accu-
rate measurement of the LFO signal that is modulating the
time-varying effect needs to be obtained. While in the case
of an analog effects pedal it is possible to directly measure
the LFO signal from the circuit, the method used in this
article infers the LFO purely based on measurements from
the output of the pedal. This increases the complexity of
determining the LFO signal considerably; however it al-
lows the method to be applied to other phasing or flanging
effects pedals with minimal effort and additionally creates
the possibility that non-technical users could create datasets
for modeling any pedals that they own.

This article proposes a number of improvements for the
LFO signal measurement technique proposed in [15] that
are described in this section. An overview of the complete
process for measuring the LFO of a device is shown in
Fig. 6.

Fig. 6. Process for estimating LFO frequency, ω, phase, φ, am-
plitude, A, and offset, C. Numbers in the top right hand corner of
boxes refer to the relevant subsections.

3.1 Measurement Signal
The frequency response of a Linear Time-Invariant (LTI)

system is usually found by analyzing its response to a mea-
surement signal, such as a sine-sweep or Maximum Length
Sequence [29]. Generally a longer measurement signal is
used to improve the Signal-to-Noise Ratio (SNR) achieved
during the measurement; however when measuring a time-
variant system a shorter measurement signal is advanta-
geous, as it allows for more measurements to be taken over
a short period of time [14].

In our previous work [15] we used the impulse response
of cascaded first-order allpass filters as a measurement sig-
nal, as proposed in [14]. The transfer function of the digital
first-order allpass filter is

Aap(z) = a1 + z−1

1 + a1z−1
. (18)

By definition it has unity gain for all frequencies, a phase
response of

φap(ω) = −ω + 2 arctan

(
a1 sin ω

1 + a1 cos ω

)
, (19)

and a group delay of

τap(ω) = a2
1 − 1

a2
1 + 2a1 cos(ω) + 1

. (20)

In our previous work the chirp signal was generated using
Nap = 64 cascaded allpass filters, with a1 = −0.9, resulting
in an approximately 27-ms long measurement signal. It
should be noted that for a negative a1 the group delay τap

decreases with frequency, so the chirp frequency in this
case will start at the Nyquist frequency and decrease with
time. To generate a chirp signal that takes Tc s to traverse
from wst to wen, the required number of allpass filters, Nap,
can be calculated as follows:

Nap = Tc

τap(ωen) − τap(ωst )
. (21)

An alternate method for generating chirp signals is to
start by defining the group delay of the desired chirp [30],
τ(ω, η), where η is a factor controlling the rate of change
in chirp frequency. The chirp can be synthesized in the

520 J. Audio Eng. Soc., Vol. 69, No. 7/8, 2021 July/August



PAPERS NEURAL MODELING OF PHASER AND FLANGING EFFECTS

frequency domain, as a complex signal with unit magnitude,
and phase angle calculated based on the group delay:

φ(ω) = −
∫ ω

0
τ(ω,η)dω. (22)

The time domain chirp signal can then be created by taking
the Inverse Discrete Fourier Transform (IDFT).

This method was used to generate two chirp signals,
one with a linear group delay function and one with an
exponential group delay function. The linear group delay
function is defined as

τlin(ω) = ηω, (23)

and has the corresponding phase response of

φlin(ω) = −ηω2

2
. (24)

The exponential group delay function is defined as

τexp(ω) = η ln(ω), (25)

and has the corresponding phase response of

φexp(ω) = −ηω(ln(ω) − 1). (26)

To create a chirp of length Tc s that starts at a frequency of
ωst and finishes at a frequency ωen the parameter η can be
selected such that

τ(ωen) − τ(ωst ) = Tc, (27)

for whichever group delay function, τlin(ω) or τexp(ω), is
being used to synthesize the chirp signal.

3.2 LFO Tracking
The processed measurement signal is analyzed by iso-

lating the individual chirps and then taking the Discrete
Fourier Transform (DFT), which is usually implemented
using the Fast Fourier Transform (FFT) algorithm, as sum-
marized in Fig. 6. This creates a spectrogram-like image
that shows the magnitude response of the system over the
chirp frequencies at the time of each chirp. An example of
this can be seen in Fig. 8. The LFO behavior can be inferred
by tracking the movement of a frequency notch over time.

To initiate the LFO tracking, the location of a notch
at one of the chirp times is selected manually. The notch
at the adjacent chirp times can then be tracked using the
initial LFO frequency and notch frequency range estimates
to provide a range of possible values the notch could appear
at:

ωn+1 = ωn ± p Fc αi ωLFOi, (28)

where p is a factor chosen by the user (set to p = 2 during
this work), ω is the frequency of the notch, Fc is the chirp
rate, αi is the difference between the maximum and mini-
mum frequencies of the notch being tracked, and ωLFOi is
the initial estimate of the LFO frequency. The notch fre-
quency at each subsequent chirp is simply selected as the
frequency bin with the lowest magnitude within the range
of frequencies provided by the above equation.

The frequency of the notch over the duration of each chirp
is now known, as well as the start time of each chirp in the

measurement signal. As each chirp is spread over time,
the group delay of the chirp signal can be used to more
precisely determine the time at the which the measured
notch frequency was put into the system being measured.
As the notch frequency varies over time, this means the
LFO is being sampled at a non-uniform sampling rate.

The method of notch tracking described in this section
can also be easily modified to track a peak instead, by
simply searching the frequency spectrum for a maximum
instead of a minimum. This is useful in cases where the
peaks are more pronounced than the notches.

3.3 LFO Fitting
Once the notch position over time has been measured an

LFO signal can be fitted to the data, as indicated in Fig. 6.
To fit the LFO function, as proposed in our previous work,
we use a nonlinear least-squares solver. For example, where
the LFO is a rectified sine-wave, the solver minimizes the
following equation:

f (ω,φ, A, C) = A| sin[t(ω/2) + (φ/2)]| + C − sL F O (t),

(29)

where ω and φ are the predicted LFO frequency and phase,
A and C are the LFO magnitude and offset, sLFO is the
measured LFO signal, and t is the sampling time of the LFO.
The nonlinear least-squares solver requires initial estimates
for the parameters. The initial frequency estimate can be
chosen by taking the DFT of sLFO and finding the frequency
bin with the highest energy. Initial estimates for A and C are
chosen by looking at the maximum and minimum values
observed in the measured LFO signal, and finally the initial
phase estimate is set to 0, as it was found that this does not
affect the outcome of the LFO fitting.

Once an estimate for the LFO parameters is obtained the
LFO can then be extrapolated beyond the region where the
LFO was measured. In our previous work we fit the LFO
to a single segment of the measurement signal and then ex-
trapolated out to the surrounding data [15]. In this article we
found that a more accurate estimation of the LFO parame-
ters could be achieved by fitting the LFO to two segments
of the LFO measurement signal that are separated by the
guitar audio that will be used to train the neural network.
As the LFO is effectively being fit over the duration of both
measurement signals and the gap in between them, small
frequencies error will result in a significant phase misalign-
ment and as such this results in a more accurate frequency
measurement. Fig. 7 shows the previous method of fitting
an LFO to each segment of the measurement signal in com-
parison to the proposed method of fitting the LFO jointly
to two consecutive segments of the measurement signal.

4 LFO MEASUREMENT TESTING

As it is not straightforward to verify the accuracy of
an LFO measured from an analog device, a digital imple-
mentation of the flanger audio effect described in Sec. 1.2
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Fig. 7. Measurement signal (top) and actual LFO signal (solid
line), measured LFO position (circles), and extrapolated LFO sig-
nal (offset for clarity), where one LFO signal is fit to each segment
of measured LFO (middle), or one LFO signal is fit to both seg-
ments of measured LFO concurrently (bottom). Phase misalign-
ment in middle plot is exaggerated for illustrative purposes.

was used to test the LFO measurement method, with the
following transfer function:

H (z) = b0 + z−M

1 − az−M
, (30)

where M is the length of the delay line in samples. As
the digital flanger requires a continuously varying delay-
line length, a fractional delay is required [31], which was
implemented using cubic interpolation for this article. The
LFO signal in this case controls the length of the delay line,
with the peaks and troughs of the system moving with the
delay-line length. A chirp signal can be used to determine
the frequency location of a peak or trough at a certain time
and this can be used to infer what the delay-line length was
at that time.

For the feedforward comb filter with a positive value of
b0, the notch number nnotch will appear at frequency:

fnotch = 2nnotch − 1

2τ
, (31)

where τ is the delay-line length in seconds, and for the
feedback comb filter with a negative value of a, the peak
number npeak will appear at frequency:

fpeak = npeak

τ
, (32)

where the peak corresponding to npeak = 1 is the first peak
appearing above the DC frequency. If the frequency of a
notch or peak is measured the above equations can easily
be rearranged to determine the corresponding delay-line
length, τ. This can then be compared directly to the real
LFO value at that time.

Fig. 8. Frequency response over time for digital flanger effect,
with (top) b0 = 0.95 and a = 0.05, (middle) b0 = 0.5 and a = 0.5,
and (bottom) b0 = 0.05 and a = 0.95.

The LFO measurement algorithm was tested on two set-
tings of the combined comb filter, with the parameters for
the feedforward and feedback gain, b0 and a being varied.
In all cases the delay-line length was varied by a rectified
sine wave, from 0.6250 ms to 2.5 ms. Additionally white
noise at −60 dBFS was added to the measurement signal
to try and emulate the measurement conditions of an ana-
log device. Fig. 8 shows a spectrogram-like image of the
magnitude response of the flanger effect over time. It can
be seen that when a is close to 1, the notches are wide, and
the peaks are very sharp. As such in this configuration it
should be easier to track the LFO via a peak as opposed to a
notch, as the center of the notches are less pronounced than
the center of the peaks. When b0 is close to 1 the opposite
is true, so in this case the notch should be tracked instead.

For each stage of the LFO measurement and prediction
process this article has proposed an improvement over the
existing method [15], and these two methods are directly
compared in this section.

4.1 Measurement Signal
Three different chirp signals were tested: the previously

proposed impulse response of cascaded first-order allpass
filters, sap, the linearly swept chirp, slin, and the exponen-
tially swept chirp, sexp. Additionally the effect of chirp rate
on the measurement accuracy was also tested. The chirp
spacing refers to the time elapsed between the start of suc-
cessive chirps. The chirp rate is thus the reciprocal of the
chirp spacing. Chirp spacings of 10, 20, and 30 ms were
trialed, corresponding to chirp rates of 100, 50, and 33.3
chirps per second, respectively. The chirp signal lengths
were adjusted such that successive chirps do not overlap
and the overall measurement signal used was 5.0 s long.

Table 1 shows the results, with all cases showing that the
cascaded allpass chirp performs worst in terms of mean er-
ror when compared to the linearly and exponentially swept
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Table 1. Accuracy of the LFO measurement of the digital
flanger effect for the three tested chirp signals; left column
indicates flanger parameters and which notch or peak was

tracked to achieve the reported result.

Chirp Mean Error (%)
Rate (/s) sap sexp slin

b0 = 0.95 100 1.50 1.03 0.51
a = 0.05 50 1.41 0.19 0.25
Notch 1 33.3 2.04 0.15 0.26

b0 = 0.05 100 4.99 5.64 1.85
a = 0.95 50 3.02 2.62 1.28
Peak 1 33.3 2.63 1.97 1.52

Table 2. Accuracy of the LFO measurement of the digital
flanger effect for the previously proposed peak picking

algorithm and the newly proposed candidate frequency range
method; left column indicates flanger parameters and which

notch or peak was tracked to achieve the reported result.

Chirp Mean Error (%)
Rate (/s) Method of [15] Proposed

b0 = 0.95 100 0.51 0.51
a = 0.05 50 0.26 0.26
Notch 1 33.3 0.26 0.26

b0 = 0.05 100 78.3 1.79
a = 0.95 50 12.0 1.32
Peak 1 33.3 25.9 1.66

chirps. The linearly swept chirp seems to perform best out
of the tested signals. The results also show that even with
10 ms–long chirp signals, an accurate measurement of the
LFO signal can be achieved.

4.2 LFO Tracking
Two different methods for tracking the notch location

over successive chirps were tested: the new method de-
scribed in Sec. 3.2 and the previously proposed method
[15], which used a peak picking algorithm. The two meth-
ods were trialed on the measurement signal consisting of
linearly swept chirps, with a chirp rate of 100, 50, or 33.3
chirps per second. The results are shown in Table 2, where
it can be seen that in the case with a small feedback gain, a,
the tracking algorithms achieve the same error, indicating
that they have both tracked the same peak or notch. How-
ever when the feedback gain is larger, the proposed tracking
algorithm performs considerably better.

4.3 LFO Fitting
The LFO function is fitted to the measured LFO using a

nonlinear least-squares solver. The existing method of fit-
ting the LFO to one segment of a measurement signal and
the proposed method of fitting an LFO jointly to two sep-
arated measurement signals were compared. In both cases
a measurement signal totaling 20 s in length was used, but
in the proposed method 60 s of audio was inserted in the
middle of the measurement signal. The test was conducted
with a chirp rate of 100, 50, or 33.3 chirps per second. The

Table 3. Performance of the existing and proposed LFO
extrapolation method, in terms of error in the predicted LFO

frequency.

Chirp Freq Error (× 10−6) Hz
Rate (/s) Method of [15] Proposed

b0 = 0.95 100 1.6 0.5
a = 0.05 50 1.6 0.4
Notch 1 33.3 0.3 0.3

b0 = 0.05 100 12 4.9
a = 0.95 50 7.9 0.7
Peak 1 33.3 25 0.1

results in Table 3 show that while both methods achieve
a very small error the proposed method performs better in
all the tests conducted. It is noted that while the error is
very small in all cases shown here, we found that when
measuring analog devices the errors were generally much
higher and as such the improvement in frequency estimation
should be more significant when applied to analog effects
pedals.

5 ANALOG EFFECTS MODELING

Neural network models of two effects pedals were cre-
ated, the Behringer VP-1 Vintage Phaser and Donner Jet
Convolution Flanger. The phaser pedal has a “Rate” con-
trol that sets the LFO frequency and a “Tone” switch. The
flanger pedal has a “Rate,” “Color,” and “Range” control
and a mode selector switch, which determines whether the
LFO is on (“Normal” mode) or off (“Filter” mode). The ef-
fects of each of these controls are explored further in Secs.
5.2 and 5.3.

5.1 Dataset Creation
The accuracy and reliability of the LFO measurement

technique was tested by creating input-output datasets of
both of the analog pedals and annotating them with the
predicted LFO signal. By using the LFO-annotated datasets
to train neural network models of the effects, it should be
clear if the measured LFO signal is accurate, as a poorly
fit LFO signal will result in the neural network failing to
train well. Based on experiments conducted in our previous
work [15], we consider a training dataset of 60 s in length
to be sufficient to train a neural network model.

To create the datasets, the LFO measurement and predic-
tion method described in Sec. 3 was used, with the mea-
surement signal being inserted periodically throughout the
training dataset. A measurement signal of 20 s in length was
inserted at the start of the dataset, then every subsequent 80
s, and finally again at the end of the dataset. This means that
each 80-s segment of guitar audio has two 20-s measure-
ment signals adjacent to it, one preceding and one following
it. For each of the 80-s segments, the LFO signal is tracked
over the duration of the adjacent measurement signals, and
an LFO is fitted simultaneously to the measured LFO from
both measurement signals. This improves the accuracy of
the predicted LFO frequency, as a small error in frequency
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Fig. 9. Measurements of the Behringer Vintage Phaser Pedal’s
frequency response over time with the “tone” switch off (top) and
on (bottom).

will result in the predicted LFO gradually going more out
of sync at each subsequent LFO period.

The audio used in the dataset consisted of 16 guitar clips
of 15 s each, 12 of which were taken from the IDMT-SMT-
Guitar database [32] for guitar transcription and 4 of which
were recorded by the authors. Eight of the clips were of
country or classical style and processed through a guitar
amplifier emulator on a clean setting. The other eight clips
were of the metal or rock style and processed through a
guitar amplifier on an overdriven setting. Twelve of the
clips were selected for use in the training set, two were
used in the validation set, and the remaining two made up
the test set. Each 15-s clip was split into three 5-s segments,
and three sub-datsets of 80 s in length were formed by
concatenating a 5-s segment from each of the 16 clips.

This was done to ensure that each of the three sub-
datasets contained one 5-s segment from each of the 16
original 15-s guitar clips. For each 80-s sub-dataset, the
first 60 s makes up the training dataset, the following 10 s
makes up the validation dataset, and the final 10 s makes
up the test dataset. The clips were ordered such that the
training, validation, and test datasets were always drawn
from the same original guitar clips. Each sub-dataset can
then be used to train a different neural network emulation of
the effect, and the loss achieved by the network on the test
dataset can be used to infer whether the LFO measurement
was sufficiently accurate.

5.2 Phaser Pedal
The Behringer VP-1 Vintage Phaser pedal has a “Rate”

control that controls the LFO rate as well as a “Tone”
switch. Using the chirp train method described in Sec. 3, a
spectrogram-like image was created, shown in Fig. 9, for
both settings of the “Tone” switch, with the “Rate” set to
5. It is clear from the image that the LFO rate is decreased
when the tone switch is in the on position. Furthermore the
peaks in between the notches of the phaser effect become
much more pronounced, and the frequency range of the two
notches shown becomes greater.

Fig. 10. Measured LFO (solid line) and fitted LFO (dashed line)
for the phaser pedal with the “Tone” switch set to either off (top)
or on (bottom).

Two datasets were created for the phaser pedal, one with
the “Tone” switch in the on position and one with the “Tone”
switch in the off position. The “Rate” control was set to
three o’clock. Both datasets consist of three sub-datasets,
created as described in Sec. 5.1. Examples of the measured
LFO signal and resulting fitted LFO signal for the phaser
pedal with the “Tone” switch set to either off or on are
shown in Fig. 10 (top) and Fig. 10 (bottom), respectively.
When the “Tone” switch is set to off, the measured notch
frequency is very clean. The fitted LFO also very closely
matches the measured LFO. When the “Tone” switch is set
to on the measurement is noisier and the fitted LFO does
not fit as well. It also appears that the measured LFO signal
does not exactly match the shape of a rectified sine-wave
anymore.

Each of the six sub-datasets were used to train two neural
network models of the phaser pedal, with the neural net-
works having a hidden size of either 16 or 32. Training was
run for 500 epochs and took approximately 2.5 hours.

5.3 Flanger Pedal
The Donner flanger pedal has a “Rate” control that con-

trols the LFO rate, as well as a “Color” and “Range”
control. Using the chirp train method described in Sec.
3, spectrogram-like images were created with the “Color”
control, Fig. 11, or the “Range” control, Fig. 12, being set
to either the 9 (top), 12 (middle), or 3 (bottom) o’clock
positions.

Increasing the “Color” control results in the peaks be-
coming more pronounced and the notches becoming wider,
while decreasing the “Color” control produces the oppo-
site effect. This behavior is similar to that observed in the
combined feedforward-feedback comb filter frequency re-
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Fig. 11. Measurements of the Donner Flanger Pedal’s frequency
response over time with the “Color” knob set to (top) nine, (mid-
dle) twelve, and (bottom) three o’clock positions.

sponse shown in Fig. 3, where increasing the gain of the
feedback results in the peaks becoming more pronounced.
As such this suggests that the “Color” control increases the
feedback gain of the flanger pedal.

Increasing the “Range” control results in a reduction of
the minimum and maximum frequencies of the notches and
peaks. This means that there are more peaks/notches vis-
ible in the spectrum, as less of them exceed the Nyquist
frequency. As can be seen in Figs. 1 and 2, increasing the
length of the delay line results in more peaks/notches and
also reduces the frequency at which they occur. This sug-
gests that the “Range” control adjusts the LFO range, in-
creasing both the maximum and minimum delay-line length
used in the flanger.

Six datasets were created for the flanger pedal: three
with the “Color” switch set to the 9 o’clock position and
the “Range” switch set to the 9, 12, or 3 o’clock position
and three with the “Color” switch set to the 12 o’clock
position and the “Range” switch again being set to the 9,
12, or 3 o’clock position. Again, each of these six datasets
consist of three sub-datasets, created as described in Sec.
5.1. This results in a total of 18 sub-datasets.

Examples of the measured LFO signal and resulting fit-
ted LFO signal for the flanger pedal with “Color” set to 9
are shown in Fig. 13 and with “Color” set to the 12 o’clock
position 12 in Fig. 14. When “Color” is set to the 9 o’clock
position the tracked notch frequency reading is also fairly
smooth. The shape of the measured LFO again deviates
from the rectified sine-wave shape, although not signifi-
cantly. When “Color” is set to the 12 o’clock position the
measurements become noisier, with the noisiness increas-
ing as the “Range” control is increased. In the last case
when “Range” is set to the 3 o’clock position, the LFO fit-
ting algorithm seems to perform quite poorly, with the fitted
LFO being clearly out of sync with the measured LFO. The
poorer performance when the “Color” is on a higher setting
is similar to the findings from Sec. 4, where increasing the

Fig. 12. Measurements of the Donner Flanger Pedal’s frequency
response over time with the “Range” knob set to (top) nine, (mid-
dle) twelve, and (bottom) three o’clock positions, With the dotted
lines indicating the approximate minimum and maximum frequen-
cies of the first peak.

Fig. 13. Measured LFO (solid line) and fitted LFO (dashed line)
for the flanger pedal with the “Color” set to the nine o’clock
position and the “Range” set to the (top) nine, (middle) twelve, or
(top) three o’clock position.

feedback gain in the digital flanger effect also resulted in
less accurate LFO measurement.

Each of the 18 sub-datasets were used to train 2 neural
network models. For the flanger pedal, neural network hid-
den sizes of either 32 or 48 were used. Training was again
run for 500 epochs and took approximately 2.5 hours.
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Fig. 14. Measured (solid line) and fitted LFO frequency (dashed
line) for the flanger pedal with the “Color” set to the twelve
o’clock position and the “Range” set to either the (top) nine,
(middle) twelve, or (bottom) three o’clock position.

Table 4. Prediction of LFO frequency for each of the three
sub-datasets created using the Behringer Vintage Phaser Pedal
with the tone switch off or on, as well as the ESR loss achieved
on the test dataset for a neural network model with hidden size

of 16 or 32.

Dataset # Pred. LFO Freq (Hz) ESR (%)

Tone Switch: Off h = 16 h = 32

1 0.4904 0.47 0.19
2 0.4904 0.31 0.29
3 0.4905 0.47 0.29

Tone Switch: On

1 0.3524 1.05 0.24
2 0.3524 2.4 0.67
3 0.3524 0.71 0.48

6 RESULTS

For the phaser pedal Table 4 shows the predicted LFO
frequency and ESR for the neural networks of hidden size
16 and 32. For both datasets the predicted LFO frequencies
for each of the three sub-datasets are identical up to three
significant figures. This consistency between predictions
provides confidence that the predicted LFO frequency is
accurate. While it was observed that the LFO shape devi-
ated from the rectified sine wave when the “Tone” switch
was activated, the ESR loss achieved on the test dataset

Table 5. Prediction of LFO frequency for each of the three
sub-datasets created using the Donner Flanger with various

“Color” and “Range” settings, as well as the ESR loss achieved
on the test dataset for a neural network model with hidden size

of 32 or 48.

Dataset # Pred. LFO Freq (Hz) ESR (%)

Color: 9, Range: 9 h = 32 h = 48

1 0.2649 1.2 1.1
2 0.2648 0.9 0.3
3 0.2648 0.9 0.6

Color: 9, Range: 12

1 0.2649 3.2 1.4
2 0.2648 1.7 1.1
3 0.2649 3.6 1.4

Color: 9, Range: 3

1 0.2650 3.4 2.7
2 0.2650 5.7 2.9
3 0.2649 2.4 2.5

Color: 12, Range: 9

1 0.2650 1.9 1.9
2 0.2650 2.9 2.3
3 0.2649 2.4 2.5

Color: 12, Range: 12

1 0.2649 9.3 5.7
2 0.2649 2.4 4.6
3 0.2649 9.3 8.7

Color: 12, Range: 3

1 0.2543 53 54
2 0.2636 16 19
3 0.2545 54 57

was still very low for all models trained, with most of them
achieving a loss of less than 1%. However the model gen-
erally performed better when the “Tone” switch was set to
off. It is not clear from these results whether the difference
in model performance is due to the fitting of the LFO or the
behavior of the effect itself.

For the flanger pedal Table 5 shows the predicted LFO
frequency and ESR achieved on the test dataset for each
sub-dataset for the neural networks of hidden size 32 and
48. Generally the LFO predictions between the different
datasets are again very consistent.

The exception to this is when the “Color” and “Range”
controls are set to the 12 and 3 o’clock positions, respec-
tively. In this case the predicted LFO frequencies vary con-
siderably for each sub-dataset. This indicates that the LFO
tracking has performed poorly in this case, most probably
due to noisy measurements, such as that shown in Fig. 14
(bottom). As might be expected this resulted in a poor per-
formance in terms of the test loss achieved by the neural
network models. It should be noted that for sub-dataset 2,
when the predicted frequency was reasonably close to the
majority of the other predicted LFO frequencies, the test
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Table 6. Number of parameters and floating point operations
per sample for neural network model with various LSTM

hidden sizes.

Hidden Size Parameters Ops/sample GFLOPS

8 393 1,849 0.08
16 1,297 4,721 0.21
32 4,641 13,537 0.60
48 10,033 26,449 1.17

loss is much lower than for sub-datasets 1 and 3. This in-
dicates that the model may still be capable of modeling the
flanger effect on this setting, if it were provided with more
accurate LFO data.

The general pattern that can be observed is that accu-
racy achieved by the models decreases as the “Color” and
“Range” settings increase. It is not clear whether this is due
to lower LFO tracking accuracy, limitations of the neural
network model, or a combination of both. It is possible
that the model struggles to deal with the longer delay-line
length or increased number of notches/peaks required when
the “Range” parameter is increased. Likewise the increase
in the feedback gain introduced by increasing the “Color”
setting may also be hard for the network to emulate.

It can also be noted that for both the phaser and flanger
pedals some parameter settings cause the LFO signal to
deviate from the rectified sine-wave shape. In these cases
the LFO fitting algorithm is often still able to generate a
reasonable frequency estimate, and in some cases the neural
network is still able to accurately model the effect. However
further work could extend the method such that it could fit
alternate LFO shapes more accurately.

For most of the settings trialed, the network was able
to achieve a loss of less than 3%, which previous lis-
tening tests, conducted for guitar amplifiers models [3],
suggest correspond to very minor differences being per-
ceived between audio produced by the model and the target
device. Informal listening also indicates that the models
sound very similar to the target devices, although further
listening tests should be conducted to confirm the accu-
racy of the models. Audio examples are available at the
accompanying web page [33]. The Matlab code used to
create the datasets and the Python code used to create
and train the neural network models are also available at
https://github.com/Alec-Wright/NeuralTimeVaryFx.

6.1 Computational Complexity
In Table 6 we report the number of learnable parame-

ters in the model, as well as the number of floating point
operations per sample and number of floating point oper-
ations per second (FLOPS), assuming the model is run at
a sample rate of 44.1 kHz. The number of floating point
operations were estimated by counting the number of mul-
tiplications, additions, and activation function evaluations,
assuming 30 operations for both tanh(.) and sigma(.). The
estimated FLOPS are well within the capabilities of real-
time performance for a modern computer.

While the required processing power for running the
neural network model was not measured in this study, the
model is very similar to a previously tested model [34],
which, when run on an Apple iMac with 2.8 GHz Intel
Core i5 processor, could process 1 second of audio in 0.12
s when an LSTM hidden size of 32 was used, or 0.24 s for
a hidden size of 64.

7 CONCLUSION

This paper has shown how a neural network can be used
to model LFO-modulated effects, such as phaser and flanger
pedals. During training, the target is audio processed by the
effect, and the neural network inputs are the unprocessed
audio and an estimated LFO signal. An improved method
for estimating the LFO frequency and phase was intro-
duced that is more accurate than a previous method. The
LFO estimation method was tested on a digital flanger al-
gorithm, in which case the measured LFO signal could be
compared to the real LFO signal. This showed that a suffi-
ciently accurate measurement of the effect behavior could
be taken, even when taking measurements as frequently as
every 10 ms. Furthermore the error in the predicted LFO
frequency was generally very small and often less than
0.01%.

Real analog phaser and flanger pedals were then modeled
by first estimating the frequency and phase of their LFO
signal. This turned out to be more reliable in the case of
the phaser pedal than the flanger. The data obtained from
the LFO estimation was used for training neural network
models, with hidden sizes between 16 and 48. Using an
LSTM with a hidden size of 32 for the phaser pedal, an ESR
of 0.2% was obtained. An LSTM with a hidden size of 48
achieved an ESR of 0.3% for the flanger pedal. According
to our previous studies these values correspond to hardly
audible modeling errors. A formal listening test would still
be needed to verify the good perceptual quality obtained
with the best neural models of this work. This is left for
future work.

The results of this paper show that time-varying effects
pedals can be successfully emulated with a deep neural
network when the LFO signal is modeled and shown to
the neural network separately. The neural networks used
here are sufficiently compact to be included in real-time
applications.
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