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Abstract
We study the problem of finding the nearest Ω-stable matrix to a certain matrix A,
i.e., the nearest matrix with all its eigenvalues in a prescribed closed set Ω . Dis-
tances are measured in the Frobenius norm. An important special case is finding the
nearest Hurwitz or Schur stable matrix, which has applications in systems theory.
We describe a reformulation of the task as an optimization problem on the Rieman-
nian manifold of orthogonal (or unitary) matrices. The problem can then be solved
using standard methods from the theory of Riemannian optimization. The resulting
algorithm is remarkably fast on small-scale and medium-scale matrices, and returns
directly a Schur factorization of the minimizer, sidestepping the numerical difficulties
associated with eigenvalues with high multiplicity.

Mathematics Subject Classification 15A18 · 15A42 · 65K05 · 65K10 · 49M37

1 Introduction

Let Ω be a non-empty closed subset of C, and define

S(Ω, n, F) := {X ∈ F
n×n : Λ(X) ⊆ Ω} ⊆ F

n×n, (1)

the set of n × n matrices (with entries in either F = C or F = R) whose eigenvalues
all belong to Ω . (Here Λ(X) denotes the spectrum of the square matrix X .)

Given A ∈ F
n×n , we consider the problem of finding a matrix B ∈ S(Ω, n, F)

nearest to A, as well as the distance from A to B. This is known as the nearest Ω-
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818 V. Noferini , F. Poloni

stable matrix problem. More formally, the problem is to find

B = arg min
X∈S(Ω,n,F)

‖A − X‖2F (2)

together with the value of the minimum. The norm considered here is the Frobenius
norm ‖M‖F := (

∑n
i, j=1 |Mi j |2)1/2 = √

tr(M∗M).
Important examples of nearest Ω-stable matrix problems include:

– the nearest Hurwitz stable matrix problem1 (Ω = ΩH := {z ∈ C : �z ≤ 0}),
which arises in control theory [11, Section 7.6]. Here, �z denotes the real part
of z ∈ C. Hurwitz stability is related to asymptotical stability of the dynamical
system ẋ = Ax ; in some cases, numerical or modelling errors produce an unstable
system in lieu of a stable one, and it is desirable to find a way to ‘correct’ it to a
stable one without modifying its entries too much.

– the nearest Schur stable matrix problem (Ω = ΩS := {z ∈ C : |z| ≤ 1}), which is
the direct analogue of the Hurwitz stable matrix problem that arises when, instead
of a continuous-time, one has a discrete-time dynamical system xk+1 = Axk [11].

– the problem of finding nearest matrix with all real eigenvalues (Ω = R), which
was posed (possibly more as a mathematical curiosity than for an engineering-
driven application) as an openquestion in some internetmathematical communities
[2,12].

Moreover, in the literature interest has been given also to more exotic choices. For
instance, in [9] this problem is considered for the case where Ω is a region generated
by the intersection of lines and circles.

Another common related (but different!) problem is that of finding the nearest
Ω-unstable matrix, i.e., given a matrix A with all its eigenvalues in the interior of
a closed set Ω , finding the nearest matrix with at least one eigenvalue outside the
interior of Ω , together with its distance from A. For Ω = ΩH (resp. Ω = ΩS), this
minimal distance (known as stability radius) is related to the pseudospectral abscissa
(resp. pseudospectral radius), respectively, and has been studied extensively; see for
instance [4,6,7,20,21,23,26,30,31,35,36]. Other variants and extensions have been
studied recently as well [13–15,22,37].

NearestΩ-stablematrix problems are notoriously hard. Unlike various othermatrix
nearness problems [25], and to our knowledge, there is no closed-form solution based
on an eigenvalue or Schur decomposition. At least for the choices of Ω illustrated
above, the feasible region S(Ω, n, F) is nonconvex. As a result, currently existing
algorithms cannot guarantee that a global minimizer is found, and are often caught in
local minima. In the most popular case of the nearest Hurwitz stable matrix problem,
many approaches have been proposed, including the following.

1 In the control theory literature, a matrix satisfying our definition of Hurwitz stability is often referred to
as Hurwitz semistable, whereas the adjective stable is reserved for matrices in the interior of S(ΩH , n, F),
i.e., matrices whose eigenvalues have strictly negative real part. However, open sets cannot possibly contain
a nearest matrix to a given matrix A. Thus, given the context of this paper, we prefer for simplicity to simply
define stable matrices as the matrices whose eigenvalues have nonpositive real part. Similar comments
apply to other choices of Ω .
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– Orbandexivry, Nesterov and Van Dooren [38] use a method based on successive
projections on convex approximations of the feasible region S(Ω, n, F).

– Curtis, Mitchell and Overton [10], improving on a previous method by Lewis and
Overton [33], use a BFGS method for non-smooth problems, applying it directly
to the largest real part among all eigenvalues.

– Choudhary, Gillis and Sharma [9,16] use a reformulation using dissipative Hamil-
tonian systems, paired with various optimization methods, including semidefinite
programming.

In this paper, we consider the problem for a completely generalΩ andwe describe a
novel approach: we parametrize X with its complex Schur factorization X = UTU∗,
and observe that, ifU is fixed, then there is an easy solution to the simplified problem
in the variable T only. As a remarkable consequence, we demonstrate that finding an
Ω-stable matrix nearest to A is equivalent to minimizing a certain function (depend-
ing both on Ω and on A) over the matrix Riemannian manifold of unitary matrices
U (n). A version of the method employing only real arithmetic (and minimizing over
the manifold of orthogonal matrices O(n)) can be developed with some additional
considerations.

This reformulation of the problem is still difficult. Indeed, local minima of the
original problem are also mapped to local minima of the equivalent Riemannian opti-
mization problem. As a result, we cannot guarantee a global optimum either. However,
there are several advantages coming from the new point of view:

1. The approach is completely general, and unlike some previously known algorithms
it works for any closed set Ω;

2. It can exploit the robust existing machinery of general algorithms for optimization
over Riemannian manifolds [1,5];

3. In the most popular practical case of Hurwitz stability, numerical experiments
show that our algorithm performs significantly better than state-of-the-art existing
algorithms, both in terms of speed and in terms of accuracy, measured as the
distance of the (possibly not global) minimum found from the matrix A;

4. Our algorithm first finds an optimal unitary/orthogonal matrix Q, then performs
(implicitly) a unitary/orthogonal similarity A 	→ Q∗AQ, and finally projects in
a simple way onto S(Ω, n, F): the simplicity of this procedure ensures backward
stability of the computation of B.

5. The algorithm produces as an output directly a Schur decomposition B = QT Q∗
(or a close analogue) of theminimizer. This decomposition is useful in applications,
and is a ‘certificate’ of stability. Chances are that the problem of computing the
Schur decomposition a posteriori given B is a highly ill-conditioned one, since
in many cases the minimizer B has multiple eigenvalues with high multiplicity.
Hence, it is convenient to have this decomposition directly available.

The paper is structured as follows.After some preliminaries concerning the distance
from closed subsets of R

N (Sect. 2), in Sect. 3 we describe the theory underlying our
method for complex matrices, while in Sect. 4 we set up the slightly more involved
theoretical background for real matrices. Section 5 deals with the 2 × 2 case of the
problem: we compute a closed-form solution for the cases ΩH and ΩS . Section 6
describes the details of how to compute the gradient of the objective function in
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820 V. Noferini , F. Poloni

our reformulation of the problem, which is key for devising a practical algorithm.
In Sect. 7, we describe the results of some numerical experiments, comparing (with
rather promising outcome) with existing methods. We finally draw some conclusions
in Sect. 8.

The code that we used for our numerical experiments is made publicly available
from the repository https://github.com/fph/nearest-omega-stable.

2 Squared distance from closed sets

Let Ω ⊆ C be a non-empty closed set, and define

pΩ : C → Ω, pΩ(z) = argmin
x∈Ω

|z − x |2,
d2Ω : C → R, d2Ω(z) = min

x∈Ω
|z − x |2.

Note that pΩ is not always uniquely defined: for instance, takeΩ = {0, 2} ⊂ C and let
z be any point with �z = 1. In many practical cases the minimum is always achieved
in a unique point (for instance, when Ω is convex), but in general there may be a
non-empty set of points z for which the minimizer is non-unique, known as medial
axis of Ω .

The same definitions can be formulated for R
N , and indeed the definitions on C

are just a special case of the following ones, thanks to the isomorphism C � R
2. Let

now Ω ⊆ R
N be a non-empty closed set, and define

pΩ : R
N → Ω, pΩ(z) = argmin

x∈Ω
‖z − x‖2, (3a)

d2Ω : R
N → R, d2Ω(z) = min

x∈Ω
‖z − x‖2. (3b)

The following result proves differentiability of the squared distance function d2Ω :
it is stated in [8, Proposition 4.1] for a compact Ω ⊆ R

N , but it is not difficult to see
that it holds also for unbounded closed sets, since it is a local property.

Theorem 2.1 The squared distance function d2Ω(z) is continuous on R
N (or C), and

almost everywhere differentiable. Indeed, it is differentiable on the complement of the
medial axis of Ω . Its gradient is ∇zd2Ω(z) = 2(z − pΩ(z)).

In this paper, we will mostly be concerned in cases in which the set Ω is convex, so
the medial axis is empty, but most of the framework still works even in more general
cases. When the medial axis is not empty, we henceforth tacitly assume that, for all
z belonging to the medial axis, pΩ(z) has been fixed by picking one of the possible
minimizers (if necessary, via the axiom of choice).
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3 Reformulating the problem: the complex case

We start with a lemma that shows how to solve (2) with the additional restriction that
X is upper triangular.

Lemma 3.1 Let Â ∈ C
n×n be given. Then, a solution of

T ( Â) = arg min
T∈S(Ω,n,C)

T upper triangular

‖ Â − T ‖2F (4)

is given by

T ( Â)i j =
⎧
⎨

⎩

Âi j i < j (upper triangular part),
pΩ( Âii ) i = j (diagonal part),
0 i > j (lower triangular part).

(5)

Proof We have

‖ Â − T ‖2F =
∑

i> j

| Âi j |2

︸ ︷︷ ︸
1©

+
∑

i

| Âii − Tii |2
︸ ︷︷ ︸

2©

+
∑

i< j

| Âi j − Ti j |2

︸ ︷︷ ︸
3©

.

Clearly, 1© is constant, theminimumof 2© under the constraint that Tii ∈ Ω is achieved
when Tii = pΩ( Âii ), and the minimum of 3© is achieved when Ti j = Âi j . ��

In particular, it holds that

min
T∈S(Ω,n,C)

T upper triangular

‖ Â − T ‖2F = ‖ Â − T ( Â)‖2F = ‖L( Â)‖2F ,

with L( Â) = Â − T ( Â). One can see that the matrix L( Â) is lower triangular, and
has entries

L( Â)i j =

⎧
⎪⎨

⎪⎩

0 i < j,

Âii − pΩ( Âii ) i = j,

Âi j i > j .

(6)

Note that the matrices T ( Â) and L( Â) are uniquely defined if and only if pΩ( Âii )

is unique for each i . However, the quantity ‖L( Â)‖2F , which is the optimum of (4),
is always uniquely determined, since | Âii − pΩ( Âii )|2 = d2Ω( Âii ) is uniquely deter-
mined.

Thanks to Lemma 3.1, we can convert the nearestΩ-stable matrix problem (2) into
an optimization problem over the manifold of unitary matrices

min
U∈U (n)

‖L(U∗AU )‖2F . (7)
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822 V. Noferini , F. Poloni

Indeed, Theorem 3.2 below shows the equivalence of (2) and (7).

Theorem 3.2 1. The optimization problems (2)and (7)have the sameminimumvalue.
2. If U is a local (resp. global) minimizer for (7), then B = UTU∗, where T =

T (U∗AU ), is a local (resp. global) minimizer for (2).
3. If B is a local (resp. global) minimizer for (2), and B = UTU∗ is a Schur decom-

position, then U is a local (resp. global) minimizer for (7) and T = T (U∗AU ).

Proof Taking a Schur form of the optimization matrix variable X = UTU∗, we have

min
X∈S(Ω,n,C)

‖A − X‖2F = min
U∈U (n)

min
T upper triangular

Λ(T )⊆Ω

‖A −UTU∗‖2F

= min
U∈U (n)

min
T upper triangular

Λ(T )⊆Ω

‖U∗AU − T ‖2F

= min
U∈U (n)

‖L(U∗AU )‖2F ,

where the last step holds because of Lemma 3.1. All the statements follow from this
equivalence. ��

In addition, we can restrict the optimization problem (7) to the special unitary
group SU (n). Indeed, given U ∈ U (n), defining D = diag(1, . . . , 1, det(U )), we
have UD∗ ∈ SU (n) and

‖L(U∗AU )‖2F = ‖L(DU∗AUD∗)‖2F .

4 Reformulating the problem: the real case

The version of our result for F = R is somewhat more involved. We can identify
two separate cases, one being a faithful analogue of the complex case and the other
involving some further analysis.

4.1 Ä ⊆ RRR

The simpler version of the real case is when Ω is a subset of the reals. This allows one
to solve, for instance, the problem of the nearest matrix with real eigenvalues,Ω = R.

In this case, matrices X ∈ S(Ω, n, R) have a real Schur form in which the factor T
is upper triangular (as opposed to quasi-triangular with possible 2× 2 blocks). In this
case, mutatis mutandis, all the arguments in Sect. 3 still hold. Specifically, it suffices
to replace C with R, U (n) with O(n), SU (n) with SO(n) (observe in passing that
SO(n) is connected while O(n) is not) and there is nothing more to say.

4.2 Ä � RRR

In the more general case, matrices X ∈ S(Ω, n, R) may have complex eigenvalues,
so their real Schur form will have a quasi-triangular T . Since the zero pattern of T
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is not uniquely determined, we need to modify slightly the approach of Sect. 3 to be
able to define a suitable objective function f (Q). We solve this issue by imposing a
specific zero pattern for T .

Definition 4.1 A real matrix T ∈ R
n×n is said to be in modified real Schur form if it

is block upper triangular with all 2 × 2 blocks on the diagonal, except (if and only if
n is odd) for a unique 1 × 1 block at the right bottom.

Amodified real Schur decomposition of amatrixM ∈ R
n×n isM = QT Q� where

Q ∈ R
n×n is orthogonal and T is in modified real Schur form.

Since one can reorder blocks in the real Schur decomposition [29, Theorem 2.3.4], in
particular one can obtain a real Schur decomposition in which all non-trivial 2 × 2
diagonal blocks are on top. Thus, the existence of modified real Schur decompositions
is an immediate corollary of the existence of real Schur decompositions. Further mod-
ified Schur decompositions, having more non-trivial 2×2 blocks than the special ones
described above, can be obtained by applying Givens rotations to appropriate 2 × 2
triangular blocks of classical real Schur forms.

Example 4.2 The matrix

T =

⎡

⎢
⎢
⎢
⎢
⎣

1 2 3 4 5
6 7 8 9 0
0 0 1 3 7
0 0 −4 2 6
0 0 0 0 5

⎤

⎥
⎥
⎥
⎥
⎦

is in modified real Schur form. Note that in this example the top 2 × 2 block on the
diagonal is associated with two real eigenvalues, a case which would not be allowed
in the classical real Schur form.

More formally, we partition {1, 2, . . . , n} into

I = {{1, 2}, {3, 4}, {5, 6}, . . . , F}, F =
{

{n − 1, n} n even,

{n} n odd.
(8)

With this notation, T is in modified real Schur form if TI J = 0 for any two elements
I , J ∈ I of the partition such that I > J (in the natural order).

Furthermore, to solve the real analogue of problem (4), we will use a projection
pS(Ω,2,R), i.e., a function that maps any matrix A to a minimizer of the distance from
A among all 2× 2 real matrices with eigenvalues in Ω . Note that this is just a special
case of (3), with the (closed) set S(Ω, n, R) in place of Ω , since R

2×2 � R
4.

We can now state Lemma 4.3 and Theorem 4.4, the real analogues of Lemma 3.1
and Theorem 3.2. We omit their proofs, which are very similar to the complex case.

Lemma 4.3 Let Â ∈ R
n×n be given. Then, a solution of

T ( Â) = min
T∈S(Ω,n,R)

T in modified real Schur form

‖ Â − T ‖2F (9)
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824 V. Noferini , F. Poloni

is given by

T ( Â)I J =
⎧
⎨

⎩

ÂI J I < J , (block upper triangular part),
pS(Ω,2,R)( ÂI I ) I = J , (block diagonal part),
0 I > J (block lower triangular part),

(10)

where I , J ∈ I (as in (8)).

Analogously, we can define the block lower triangular matrix L( Â) = Â − T ( Â),
with blocks

L( Â)I J =
⎧
⎨

⎩

0 I < J ,

pS(Ω,2,R)( ÂI I ) I = J ,

ÂI J I > J ,

(11)

so that the optimum of (9) is ‖L( Â)‖2F .
Similarly to the complex case, we can recast any (real) nearest Ω-stable matrix

problem as the optimization problem over the manifold of orthogonal matrices

min
Q∈O(n)

‖L(Q�AQ)‖2F , (12)

where the function L is defined by either (6) (if Ω ⊆ R) or (11) (otherwise).

Theorem 4.4 1. The optimization problems (2) and (12) have the same minimum
value.

2. If Q is a local (resp. global) minimizer for (12), then B = QT Q�, where T =
T (Q�AQ), is a local (resp. global) minimizer for (2).

3. If B is a local (resp. global) minimizer for (2), and B = QT Q� is a (modified)
Schur decomposition, then Q is a local (resp. global) minimizer for (12) and
T = T (Q�AQ).

Moreover, it is clear that once again we can restrict the optimization problem to
Q ∈ SO(n). This concludes the theoretical overview needed to reformulate (complex
or real) nearestΩ-stablematrix problems asminimization over (unitary or orthogonal)
matrix manifolds.

To solve (7) or (12) in practice for a given closed setΩ , we need an implementation
of the projection pΩ . In addition, for real problems with Ω � R, we also need an
implementation of pS(Ω,2,R) for 2 × 2 matrices, which is not obvious. In the next
section, we discuss how to develop such an implementation in the important cases
Ω = ΩH (nearest Hurwitz stable matrix) and Ω = ΩS (nearest Schur stable matrix).
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5 Computing real 2 × 2 nearest stable matrices

We start with a few auxiliary results that will be useful in this section. Given α ∈ R,
we set

U (α) :=
[
cosα − sin α

sin α cosα

]

.

Lemma 5.1 Let A ∈ R
2×2. Then, there exists α ∈ [0, π/2) such that Â =

U (α)AU (α)� has Â1,1 = Â2,2 = 1
2 tr(A).

Proof Let f (α) = Â1,1 − Â2,2. If A1,1 = A2,2 we can take α = 0. Otherwise, note
that f (0) = A1,1 − A2,2 and f (π/2) = A2,2 − A1,1 have opposite signs. Hence, by
continuity, there is α ∈ (0, π/2) such that f (α) = 0. Since A and Â are similar, they
have the same trace, and hence tr(A) = tr( Â) = 2 Â1,1. ��
We say that a non-empty closed set S ⊆ R

2×2 is rotation-invariant if X ∈ S implies
U (α)XU (α)� ∈ S for all α ∈ R.

Lemma 5.2 Let S ⊆ R
2×2 be rotation-invariant, and let B be a local minimizer of

min
X∈S

‖A − X‖F

for some A ∈ R
2×2 satisfying A1,1 = A2,2. Then:

1. If A2,1 �= −A1,2, then B1,1 = B2,2.
2. If A2,1 = −A1,2, then there exists α ∈ [0, π/2) such that B = U (α)B̂U (α)�,

where B̂ is another local minimizer with the same objective value and B̂1,1 = B̂2,2.

Proof 1. Let f (α) = ‖A −U (α)BU (α)�‖2F . A direct computation shows that

d f

dα
(0) = 2(A1,2 + A2,1)(B2,2 − B1,1),

Note that U (α)BU (α)� ∈ S for each α. Hence, under our assumptions f has a
local minimum for α = 0. Thus the right-hand side must vanish, and this implies
B1,1 = B2,2.

2. A, U (α) and U (α)� are matrices of the form
[
a −b
b a

]
for some a, b ∈ R. Hence,

they all commute with each other; in particular, for each X ∈ S,

‖A −U (α)�XU (α)‖F = ‖U (α)AU (α)� − X‖F
= ‖U (α)U (α)�A − X‖F = ‖A − X‖F . (13)

This computation shows that if B is a local minimizer, then all matrices of the form
U (α)�BU (α) are local minimizers with the same objective value. By Lemma 5.1, we
can choose α so that U (α)�BU (α) = B̂ has B̂1,1 = B̂2,2. ��
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826 V. Noferini , F. Poloni

We say that a non-empty closed set S ⊆ R
2×2 is doubly rotation-invariant if X ∈ S

implies U (α)XU (β)� ∈ S for any α, β ∈ R.

Lemma 5.3 LetS ⊆ R
2×2 be doubly rotation-invariant, and let B be a localminimizer

of

min
X∈S

‖A − X‖F

for some diagonal A = diag(σ1, σ2) ∈ R
2×2 with σ1 > 0 and σ1 ≥ σ2 ≥ 0. Then:

1. If σ1 �= σ2, then B is diagonal with B11 − B22 ≥ 0 and B11 + B22 ≥ 0.
2. If σ1 = σ2, then there is α ∈ [0, π/2) such that B = U (α)B̂U (α)�, where B̂ is

another local minimizer with the same objective value and B̂1,2 = B̂2,1 = 0.

Proof 1.We set f (α, β) = ‖A −U (α + β)BU (α − β)�‖2F . SinceU (α+β)BU (α−
β)� ∈ S for all α, β ∈ R, f must have a local minimum for α = β = 0. A direct
computation shows that

∂ f

∂α
(0, 0) = 2(σ1 − σ2)(B21 + B12), (14a)

∂ f

∂β
(0, 0) = 2(σ1 + σ2)(B21 − B12), (14b)

∂2 f

∂α2 (0, 0) = 4(σ1 − σ2)(B11 − B22), (14c)

∂2 f

∂β2 (0, 0) = 4(σ1 + σ2)(B11 + B22). (14d)

Under our assumptions, σ1 + σ2 > 0 and σ1 − σ2 > 0, hence B21 = B12 = 0,
B11 − B22 ≥ 0 and B11 + B22 ≥ 0.

2. The matrix A is in the form
[
a −b
b a

]
, so (13) holds and shows that ‖A − B‖F =

‖A −U (α)BU (α)�‖F for each α. If σ1 = σ2 �= 0 then σ1 +σ2 �= 0, and (14b) again
shows that B21 = B12. A direct computation shows then that B̂ = U (α)�BU (α)

has B̂12 = B̂21 for each choice of α. For α = 0 we have B̂12 = B12, while for
α = π/2 we have B̂12 = −B12. Hence by continuity there is α ∈ [0, π/2) such that
B̂21 = B̂12 = 0. ��

The following result is a simple variant of the Routh–Hurwitz stability criterion
(see e.g. [28, Sec. 26.2]).

Lemma 5.4 Both roots of the polynomial p(λ) = aλ2 + bλ + c, with a �= 0 lie in
the closed left half-plane ΩH if and only if a, b, c are either all non-negative or all
non-positive.

Note that we can extend the result so that it holds also when a = 0 by considering ∞
as a root belonging to ΩH .

Proof Wemay assume (after a division) that a = 1. If p(λ) has two complex conjugate
roots α ± iβ, then stability is equivalent to b = −2α ≥ 0, whereas c = α2 + β2 ≥ 0
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Fig. 1 Some images of the set of Hurwitz stable matrices S(ΩH , 2, R) (in cyan), intersecated with the
hyperplane A11 = A22 and the cube −2 ≤ Ai j ≤ 2. The left picture is a 3D view of the set; the center and
right one are two 2D sections with A21 = 1 and A11 = A22 = −1, respectively

is vacuously true. If instead p has two real roots λ1 and λ2, then λ1 ≤ 0 and λ2 ≤ 0
if and only if

{
b = −λ1 − λ2 ≥ 0;
c = λ1λ2 ≥ 0.

��

5.1 Hurwitz stability

By applying Lemma 5.4 to the characteristic polynomial of X ∈ R
2×2, it follows

immediately that the set of 2×2 real Hurwitz stable matrices S(ΩH , 2, R) is St ∩Sd ,
where

St := {X ∈ R
2×2 : tr(X) ≤ 0}, Sd := {X ∈ R

2×2 : det(X) ≥ 0.}

Observe that the frontiers of St and Sd are, respectively, the sets of traceless and
singular matrices

∂St = {X ∈ R
2×2 : tr(X) = 0}, ∂Sd = {X ∈ R

2×2 : det(X) = 0}.

To visualize the geometry of S(ΩH , 2, R), we can assume up to a change of basis
that A11 = A22; indeed, the orthogonal change of basis in Lemma 5.1 preserves
eigenvalues and Frobenius distance. Under this assumption, since S(ΩH , 2, R) is
rotation-invariant, Lemma 5.2 shows that (even when there are multiple minimizers)
we can always choose a nearest Hurwitz stable matrix B with B11 = B22. Hence
it makes sense to visualize S(ΩH , 2, R) ∩ {A ∈ R

2×2 : A11 = A22} as a volume
parametrized by the three coordinates A11, A12, A21. We show a few images of this
set in Fig. 1.

One can distinguish, in the 3D image on the left of Fig. 1, two straight faces
(corresponding to the linear condition tr(A) = 0) and two curved ones (corresponding
to the nonlinear condition det(A) = 0). The ‘cross’ formed by the two edges A11 =
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828 V. Noferini , F. Poloni

A22 = A21 = 0 and A11 = A22 = A12 = 0 corresponds to matrices with two zero
eigenvalues.

The following result can be used to find explicitly a nearest Hurwitz stable matrix
to A.

Lemma 5.5 Let A ∈ R
2×2 have a singular value decomposition A = U

[
σ1

σ2

]
V�,

and G ∈ SO(2) be a matrix such that Â = G�AG satisfies Â11 = Â22 (G exists by
Lemma 5.1).

Then, the set

{

A, A − 1

2
tr(A)I2, B0, B+, B−

}

(15)

with

B0 = U

[
σ1 0
0 0

]

V�

and

B+ = G

[
0 Â12
0 0

]

G�, B− = G

[
0 0
Â21 0

]

G�, (16)

contains a Hurwitz stable matrix nearest to A.

Proof We assume that A is not Hurwitz stable, otherwise the result is trivial, and let
B be a Hurwitz stable matrix nearest to A. One of the following three cases must hold
(depending on which of the two constraints det(X) ≥ 0 and tr(X) ≤ 0 are active):

1. B ∈ ∂St , B /∈ ∂Sd ;
2. B ∈ ∂Sd , B /∈ ∂St , ;
3. B ∈ ∂St ∩ ∂Sd .

Indeed, any Hurwitz stable matrix B nearest to A must belong to the boundary of the
set. This implies that either det(B) = 0, or tr(B) = 0, or both. We treat the three cases
separately.

1. B ∈ ∂St , B /∈ ∂Sd . Then, B must be a local minimizer of ‖A − X‖2F in ∂St .
The only such minimizer is A − 1

2 tr(A)I : this is easy to see by parametrizing
X = [ x y

z −x

] ∈ ∂St and studying the resulting function, which is strictly convex
trivariate quadratic.

2. B ∈ ∂Sd , B /∈ ∂St . As in the previous case, note that B must be a local minimizer
of ‖A − X‖2F in ∂Sd . In addition, ∂Sd is doubly rotation-invariant, and we may
assume σ1 �= 0 since otherwise A = 0, which is Hurwitz stable. We divide further
into two subcases.

(a) σ1 > σ2. We have

‖A − X‖F = ‖U[
σ1

σ2

]
V� − X‖F = ‖[ σ1

σ2

] −U�XV ‖F ,
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hence, for a local minimizer B ∈ ∂Sd , the matrix C = U�BV is a local mini-
mizer of ‖[ σ1

σ2

] −U�XV ‖F inU�(∂Sd)V = ∂Sd . In particular, Lemma5.3
shows that

U�BV =
[
τ1

τ2

]

, τ1, τ2 ∈ R.

For this matrix to be in ∂Sd , we must have τ1τ2 = 0. Hence, we have a point
(τ1, τ2) ∈ R

2 on one of the two coordinate axes τ1 = 0 or τ2 = 0 which
minimizes locally the distance from the point (σ1, σ2) among all points on
the axes. An easy geometric argument shows that the only such minimizers
are (τ1, τ2) = (0, σ2) and (τ1, τ2) = (σ1, 0), and only the latter satisfies the
condition τ1 − τ2 ≥ 0 coming from Lemma 5.3. HenceU�BV = [ σ1

0

]
, i.e.,

B = B0.
(b) σ1 = σ2. We argue as in the previous case, but now from Lemma 5.3 it follows

only thatU�BV = U (α)
[

τ1
τ2

]
U (α)� , where

[
τ1

τ2

] ∈ ∂Sd is another local
minimizer of ‖[ σ1

σ2

] − X‖F . By the same argument as in the previous case,
this minimizer must be

[
τ1

τ2

] = [ σ1
0

]
. Hence

B = Bα = UU (α)
[ σ1

0

]
U (α)�V�.

for some α ∈ [0, π/2). The matrices Bα all have the same distance from A, but
it may be the case that only some of them are Hurwitz stable2. In the case when
B0 is Hurwitz stable, B0 is another Hurwitz stable matrix nearest to A, and
we have proved the thesis. In the case when B = Bα ∈ ∂Sd is Hurwitz stable
but B0 ∈ ∂Sd is not, by continuity there is a smallest value α̂ for which Bα is
Hurwitz stable, and Bα̂ must belong to ∂St . In particular, Bα̂ is another Hurwitz
stable matrix nearest to A in ∂St ∩ ∂Sd , and by case 3 below Bα̂ ∈ {B+, B−}.

3. B ∈ ∂St ∩ ∂Sd . Note that ∂St ∩ ∂Sd is the set of matrices with a double zero
eigenvalue, and it is rotation-invariant. We have

‖A − X‖F = ‖G�AG − G�XG‖F = ‖ Â − G�XG‖F ,

hence B is a global minimizer of ‖A − X‖F in ∂St ∩ ∂Sd if and only if C =
G�BG is a global minimizer of ‖ Â − C‖F in G�(∂St ∩∂Sd)G = ∂St ∩∂Sd . By
Lemma 5.2, we may assume (up to replacing C with another global minimizer)
that C1,1 = C2,2, and since trC = 0 it must be the case that C1,1 = C2,2 = 0.
Then, detC = 0 implies that either C21 = 0 or C12 = 0. To minimize ‖ Â − C‖F
under these constraints, the only remaining nonzero entry must be equal to the
corresponding entry of Â. Hence B = B+ or B = B−.

��
2 If U , V ∈ SO(2) are rotation matrices, then U (α) commutes with U and V and hence Bα =
U (α)B0U (α)�, so that the eigenvalues of Bα do not depend on α. However, generally U and V may
have determinant −1.
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830 V. Noferini , F. Poloni

Lemma 5.5 yields an explicit algorithm to find a projection pS(ΩH ,2,R)(A): we
compute the five matrices in the set (15), and among those of them that are Hurwitz
stable we choose one which is nearest to A. (Note that at least B+ and B− are always
Hurwitz stable, so this algorithm always returns a matrix.)

Example 5.6 Let A =
[
1 2
1 1

]

. Then,

– A is not Hurwitz stable since it has an eigenvalue 1 + √
2 > 0.

– A − 1
2 tr(A)I2 =

[
0 2
1 0

]

is not Hurwitz stable either since it has an eigenvalue
√
2 > 0.

– B0 ≈
[
1.17 1.89
0.72 1.17

]

, and this matrix is not Hurwitz stable either since it has a

positive eigenvalue ≈ 2.34.

– G = I , B+ =
[
0 2
0 0

]

, and B− =
[
0 0
1 0

]

.

So the set (15) contains only two Hurwitz stable matrices, B+ and B−. We have
‖A − B+‖F = √

3 and ‖A − B−‖F = √
6. The smallest of these two values is

achieved by B+, hence by Lemma 5.5 the matrix B+ is a Hurwitz stable matrix nearest
to A, and we can set pS(ΩH ,2,R)(A) = B+. Going through the proof of Lemma 5.5, we
can also show that this projection is unique. Note that, by continuity, for anymatrix in a
sufficiently small neighborhood of A the same inequalitieswill hold, and hencewewill
fall under the same case. In particular, the set of matrices A for which pS(ΩH ,2,R)(A)

has a double zero eigenvalue is not negligible.

Remark 5.7 After the present paper appeared as a preprint, a follow-up work has
appeared in which the authors find a different formula for the minimizer that does not
require comparing several candidates [32].

5.2 Schur stability

We can obtain analogous results for Schur stability.

Lemma 5.8 We have S(ΩS, 2, R) = S− ∩ S0 ∩ S+, where

S0 = {X ∈ R
2×2 : det(X) ≤ 1}, (17a)

S± = {X ∈ R
2×2 : ± tr(X) ≤ 1 + det(X)}. (17b)

Proof Let t = tr X and d = det X for brevity. The matrix X is Schur stable if and only
if its characteristic polynomial p(λ) = λ2 − tλ + d has both roots inside the closed
unit disk. This is equivalent to imposing that its Cayley transform [27],

q(μ) := (μ − 1)2 p

(
μ + 1

μ − 1

)

= (1 − t + d)μ2 + 2(1 − d)μ + (1 + t + d),
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Fig. 2 Some images of the set of Schur stable matrices S(ΩS , 2, R) (in cyan), intersecated with the hyper-
plane A11 = A22 and the cube −2 ≤ Ai j ≤ 2. The left picture is a 3D view of the set; the center and right
one are two 2D sections with A21 = 1 and A11 = A22 = 0, respectively

has both roots inside the (closed) left half-plane. (Note that this result extends to the
case when λ = 1 is a root, corresponding to μ = ∞, which is by convention to be
considered in the closed left half-plane.) By Lemma 5.4, this holds if and only if the
coefficients 1− t + d, 2(1− d), 1+ t + d are all non-negative or all non-positive. We
shall show that these three coefficients cannot all be non-positive at the same time:
indeed, if the three relations 1 − t + d ≤ 0, 1 − d ≤ 0 and 1 + t + d ≤ 0 hold, then
one gets

2 ≤ 1 + d ≤ t ≤ −1 − d ≤ −2,

which is impossible. Hence Schur stability is equivalent to the three coefficients being
non-negative, which are the conditions (17). ��

We note in passing that X ∈ S+ ∩ S− implies in turn that −1 − det(X) ≤ 1 +
det(X) ⇔ det(X) ≥ −1. Exactly like for Hurwitz stable matrices, one can assume
(up to an orthogonal similarity) that A has A11 = A22, and in this case Lemma 5.2
ensures that there is a nearest Schur stable matrix B with B11 = B22. Hence it makes
sense to visualize in 3D space the set S(ΩS, 2, R) ∩ {A ∈ R

2×2 : A11 = A22}. A few
images of this set are shown in Fig. 2.

Note the cross visible in the front of the figure, formed by the matrices with A11 =
A22 = −1 and either A12 = 0 or A21 = 0; these matrices all have a double eigenvalue
−1. There is an analogous cross in the back of the figure with A11 = A22 = 1. In
addition, on the top-left and bottom-right side of the 3D figure there are two sharp
edges which correspond to the matrices with A11 = A22 = 0 and A21A12 = 1. These
edges are formed by the intersection of the two smooth surfaces S+ and S−, and are
formed by points where two constraints are active simultaneously. Observe that there
are no corresponding sharp edges in the other two quadrants, since only one constraint
is active for the matrices with A11 = A22 = 0 and A21A12 = −1.

To formulate the analogue of Lemma 5.5 for Schur stable matrices, we first define
M(σ1, σ2) to be the set of critical points (τ1, τ2) ∈ R

2 of the function

(τ1 − σ1)
2 + (τ2 − σ2)

2
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832 V. Noferini , F. Poloni

subject to τ1τ2 = 1. Geometrically, these are the critical points of the distance between
a given point (σ1, σ2) ∈ R

2 and the hyperbola τ1τ2 = 1. The solutions to this problem
can be computed exactly for any given pair (σ1, σ2), since solving

d

dt

(

(σ1 − t)2 +
(

σ2 − 1

t

)2
)

= 0

amounts to computing the roots of a degree-4 polynomial. In particular, the set
M(σ1, σ2) has at most four elements for any choice of (σ1, σ2).

With this definition, we can state the following lemma.

Lemma 5.9 Let A ∈ R
2×2, and G ∈ SO(2) be a matrix such that Â = G�AG

satisfies Â11 = Â22 (G exists by Lemma 5.1). Suppose moreover that A has SVD

A = U0

[
σ0,1

σ0,2

]

V�
0 and that A ∓ I have SVDs A ∓ I = U±

[
σ±,1

σ±,2

]

V�± .

Then, the set

{A, B+, B−} ∪ B0 ∪ B+ ∪ B− ∪ B∗ (18)

where

B0 =
{

U0

[
τ1

τ2

]

V�
0 : (τ1, τ2) ∈ M(σ0,1, σ0,2)

}

,

B± = ±I +U±
[
σ±,1

0

]

V±,

B± =
{

G

[±1 Â1,2
0 ±1

]

G�,G

[ ±1 0
Â2,1 ±1

]

G�
}

,

and

B∗ =
{

G

[
0 τ1
τ2 0

]

G� : (τ1, τ2) ∈ M( Â1,2, Â2,1)

}

.

contains a Schur stable matrix nearest to A.

Note that the set in (18) contains at most 15 elements.

Proof The proof of this result is similar to the one of Lemma 5.5 but more involved.
For this reason, the arguments that are analogous to those already discussed for Lemma
5.5 will only be sketched.

We assume that A is not Schur stable, otherwise the result is trivial, and let B be a
Schur stable matrix nearest to A. Any Schur stable matrix B nearest to A must belong
to the boundary of the set S− ∩ S0 ∩ S+. Observe that ∂S0 is the set of matrices with
determinant 1, while ∂S± is the set of matrices with an eigenvalue ±1. In particular,
the set ∂S− ∩ ∂S0 ∩ ∂S+ where all three constraints are active is empty, since a 2× 2
matrix with both 1 and −1 as eigenvalues cannot have determinant 1. Hence, one of
the following cases must hold (corresponding to all possible remaining combinations
of active constraints):
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1. B ∈ ∂S0, B /∈ ∂S+, B /∈ ∂S−;
2. B ∈ ∂S+, B /∈ ∂S0, B /∈ ∂S−;
3. B ∈ ∂S−, B /∈ ∂S0, B /∈ ∂S+;
4. B ∈ ∂S0 ∩ ∂S+, B /∈ ∂S−;
5. B ∈ ∂S0 ∩ ∂S−, B /∈ ∂S+;
6. B ∈ ∂S+ ∩ ∂S−, B /∈ ∂S0;

We treat the six cases separately.

1. B ∈ ∂S0, B /∈ ∂S+, B /∈ ∂S−. Then, B is a local minimizer of ‖A − X‖F in
the doubly rotation-invariant set ∂S0, and C = U�

0 BV0 is a local minimizer of
‖[ σ0,1

σ0,2

] − X‖F in ∂S0.
If σ0,1 �= σ0,2, then C is diagonal by Lemma 5.3, and for C = [

τ1
τ2

]
(with

τ1τ2 = detC = 1) to be a local minimizer wemust have (τ1, τ2) ∈ M(σ0,1, σ0,2).
Hence, B ∈ B0.
If σ0,1 = σ0,2 instead, then C = U (α)

[
τ1

τ2

]
U (α)� and B = Bα =

U0U (α)
[

τ1
τ2

]
U (α)�V�

0 for some α ∈ [0, π/2). If B0 is stable, then B0 ∈ B0
is another nearest Schur stable matrix to A, and we are done. If B0 is not stable,
then there is a minimum α such that Bα is stable, and this is another nearest Schur
stable matrix to A in which one more constraint is active; hence it falls in one of
the cases 4–6.

2. B ∈ ∂S+, B /∈ ∂S0, B /∈ ∂S−. Then,

‖A − X‖F = ‖(U�+ (A − I )V+ −U�+ (X − I )V+‖F ,

hence B is a localminimizer of ‖A − X‖F in ∂S+ if and only ifC = U�+ (X− I )V+
is a local minimizer of ‖(U�+ (A − I )V+ − X‖F in ∂Sd (the set of singular 2 × 2
real matrices): indeed, X has an eigenvalue 1 if and only if U�+ (X − I )V+ has
determinant zero. Arguing as in Case 2 of Lemma 5.5, either C = [ σ+,1

0

]
and

hence B = B+, or we can find a minimizer with the same objective value in one
of the cases 4–6.

3. B ∈ ∂S−, B /∈ ∂S0, B /∈ ∂S+. We argue as in Case 2, swapping all plus and
minus signs.

4. B ∈ ∂S0 ∩ ∂S+, B /∈ ∂S−. Note that ∂S0 ∩ ∂S+ is the (rotation-invariant) set
of matrices with a double eigenvalue +1 (since they must have an eigenvalue
equal to +1 and determinant 1). B is a minimizer if and only if C = G�BG
is a minimizer of ‖ Â − X‖F in ∂S0 ∩ ∂S+, and by Lemma 5.2 we can assume
C1,1 = C2,2 = 1

2 tr(C) = 1
2 tr(B) = +1. Since detC = 1, at least one among

C1,2 and C2,1 is zero, and to minimize the distance from Â the other must be equal
to the corresponding element of Â. Thus we get B ∈ B+.

5. B ∈ ∂S0 ∩ ∂S−, B /∈ ∂S+. We argue as in Case 2, swapping all plus and minus
signs.

6. B ∈ ∂S+ ∩ ∂S−, B /∈ ∂S0. Note that ∂S+ ∩ ∂S− is the (rotation-invariant) set of
matrices with eigenvalues 1 and −1. Arguing as in Case 4,

G�BG = C =
[
0 τ1
τ2 0

]

, τ1τ2 = 1,
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asC must haveC1,1 = C2,2 = 1
2 trC = 0 and detC = −1.Moreover, tominimize

‖ Â − C‖F we must have (τ1, τ2) ∈ M( Â1,2, Â2,1), and B ∈ B∗.
��

6 The gradient of the objective function

To apply most optimization algorithms, one needs the gradient of the objective func-
tion; we compute it in this section. We start from the real case, which is simpler.

6.1 Computing the gradient: real case

We assume in this section that F = R; we wish to compute the gradient of the function
f (Q) = ‖L(Q�AQ)‖2F , where the function L(·) is given by either (6) or (11).
In the set-up of optimization on matrix manifolds, the most appropriate version

of the gradient to consider is the so-called Riemannian gradient [1, Section 3.6]. In
the case of an embedded manifold (which includes our case, since O(n) is embedded
in R

n×n � R
n2 ) the Riemannian gradient grad f is simply the projection on the

tangent space TQO(n) of the Euclidean gradient of f : i.e., its gradient ∇Q f when f
is considered as a function in the ambient space R

n×n → R.
Thus we start by computing the Euclidean gradient∇Q f . The function f = g◦h is

the composition of g(X) = ‖L(X)‖2F and h(Q) = Q�AQ. Here and in the following,
for ease of notation, we set L := L(Q�AQ), together with T := T (Q�AQ) and
Â = Q�AQ = L + T . The gradient of g is

∇X g = 2L(X) :

this follows from the fact that when i �= j the gradient of L2
i j is 2Li j , and by Theo-

rem 2.1 the gradient of L2
i i = |Xii − pΩ(Xii )|2 is 2(Xii − pΩ(Xii )).

When one uses the block version (11) of the function L(·), the same result
holds blockwise: the gradient of ‖L I I ‖2F = ‖XI I − pS(Ω,2,R)(XI I )‖2F is 2(XI I −
pS(Ω,2,R)(XI I )) even when XI I is a 2 × 2 block. This follows again from Theo-
rem 2.1, applied to the closed set S(Ω, 2, R) ⊂ R

2×2 � R
4.

The Fréchet derivative of h(Q) is Dh[Q](H) = H�AQ + Q�AH ; hence, using
vectorization and Kronecker products [28, Section 11.4] its Jacobian is

Jh(vec Q) = ((AQ)� ⊗ I )Π + I ⊗ Q�A,

where the permutation matrix Π = Π� is often called the vec-permutation matrix
[3] or the perfect shuffle matrix, and it is defined as the n2 × n2 matrix such that
Π vec(X) = vec(X�) for all X .

By the chain rule,

(vec∇Q f )� = (vec∇Q�AQg)
� Jh(vec Q),
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and hence, transposing everything,

vec∇Q f =
(
Π(AQ ⊗ I ) + I ⊗ (A�Q)

)
2 vec L

= 2 vec(AQL� + A�QL).

We now need to project∇Q f = 2(AQL� + A�QL) on the tangent space TQO(n)

to get the Riemannian gradient. One has (see [1, Example 3.5.3] or more generally [3,
Lemma 3.2])

TQO(n) = {QS : S = −S�}.

In particular, we can write the projection of a matrix M onto TQO(n) by using the
skew-symmetric part operator skew(G) = 1

2 (G − G�) as

PTQO(n)(M) = Q skew(Q�M).

Thus, recalling Â = Q�AQ = L + T ,

grad f (Q) = PTQO(n)(∇Q f )

= Q skew(Q�∇Q f )

= 2Q skew( ÂL� + Â�L)

= 2Q skew((L + T )L� + (L� + T�)L)

= 2Q skew(T L� + T�L)

= 2Q skew(T L� − L�T ). (19)

The matrix T L� − L�T is a strictly upper triangular matrix with entries

(T L� − L�T )i j =
j−1∑

k=i

Âik Â jk −
j∑

k=i+1

Âki Âk j , i < j .

Remark 6.1 Observe that the gradient vanishes if and only if T L� = L�T . It follows
from the definitions of T and L that QT Q� = B and QLQ� = A − B, hence
changing basis this condition becomes B(A − B)� = (A − B)�B.

6.2 Computing the gradient: complex case

The computation of the gradient in the complex case is similar, but technically more
involved. To work only with real differentiation, following (with a slightly different
notation) [3, Section 2.1], we define a complex version of the vectorization operator
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to map C
n×n into R

2n2

cvec(X) = vec
[�X �X

] =
[
vec�X
vec�X

]

, cvec : C
n×n → R

2n2 .

Here �X and �X denote the real and imaginary parts (defined componentwise) of the
matrix X .

Similarly, we define a complex version of the Kronecker product ⊗c, to obtain a
complex version of the identity vec(AXB) = B� ⊗ A vec(X).

cvec(AXB) =
[�B� ⊗ �A − �B� ⊗ �A −�B� ⊗ �A − �B� ⊗ �A
�B� ⊗ �A + �B� ⊗ �A �B� ⊗ �A − �B� ⊗ �A

]

︸ ︷︷ ︸
=:B∗⊗c A

cvec(X).

Note that (B∗ ⊗c A)� = (B ⊗c A∗).
Finally, let Πc ∈ R

2n2×2n2 = diag(Π,−Π) be the permutation matrix (with Πc =
Π�

c ) such that Πc cvec(X) = cvec(X∗). We now have all the complex vectorization
machinery available to perform a direct analogue of the computation in the previous
section. Again, for ease of notation we define Â = U∗AU = L + T , with L = L( Â)

and T = T ( Â).
The gradient of g(X) = ‖L(X)‖2F is ∇X g = 2L(X). The Jacobian of h(U ) =

U∗AU is

Jh(U ) = ((AU )∗ ⊗c I )Πc + I ⊗c (U∗A).

Hence

cvec∇U f = (Jh(U ))� cvec∇ Âg

= (
Πc((AU ) ⊗c I ) + I ⊗c A∗U

)
2 cvec(L)

= 2 cvec(AUL∗ + A∗UL).

The tangent space to the manifold of unitary matrices is, by a special case of [3,
Lemma 3.2],

TUU (n) = {US : S = −S∗},

and the associated projection is

PTUU (n)(M) = U skew(U∗M), skew(X) = 1

2
(X − X∗).
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Thus

grad f (U ) = PTUU (n)(∇U f )

= 2U skew( ÂL∗ + Â∗L)

= 2U skew((L + T )L∗ + (L∗ + T ∗)L)

= 2U skew(T L∗ + T ∗L)

= 2U skew(T L∗ − L∗T ). (20)

The diagonal entries of T L∗ −L∗T are equal to Tii Lii −Lii Tii = 0, hence that matrix
is again strictly upper triangular. Its nonzero entries are given by

(T L∗ − L∗T )i j = Tii Â ji +
j−1∑

k=i+1

Âik Â jk + Âi j L j j − Lii Âi j

−
j−1∑

k=i+1

Âki Âk j − Â ji Tj j , i < j .

Remark 6.2 By an argument analogous to that in Remark 6.1, grad f (U ) vanishes if
and only if B(A − B)∗ = (A − B)∗B.

7 Numerical experiments

We used the solver trustregions from the Matlab package Manopt [5] (version
6.0) for optimization on matrix manifolds. The solver is a quasi-Newton trust-region
method; a suitable approximation of the Hessian is produced automatically byManopt
using finite differences.

For problems with F = R, we specified the manifold O(n), the cost func-
tion f (Q) = ‖L(Q�AQ)‖2F (with L(·) as in (11)) and the Riemannian gradient
grad f (Q) = 2Q skew(T L� − L�T ). For problems with F = C, we specified the
manifold U (n), the cost function f (Q) = ‖L(Q�AQ)‖2F (with L(·) as in (6)) and
the Riemannian gradient grad f (U ) = 2U skew(T L∗ − L∗T ).

All the experiments were performed on an Intel i7-4790K CPU 4.00 GHz with
32Gib of RAM, runningMatlabR2018b (Lapack 3.7.0 andMKL2018.0.1) on a Linux
system. Our implementation of the algorithm for the three cases Ω ∈ {ΩH ,ΩS, R} is
available for download at https://github.com/fph/nearest-omega-stable.

Remark 7.1 It is somewhat surprising that our algorithmdoes notmake use of an eigen-
solver (Matlab’s eig, schur, eigs or similar), even though the original problem (2)
is intrinsically about eigenvalues. Indeed, the minimization procedure itself is as an
eigensolver in a certain sense: it computes a Schur form by trying to minimize the
strictly subdiagonal part of Q�AQ, not much unlike Jacobi’s method for eigenvalues
( [17], see also [34] for more references). Indeed, when run with Ω = C, the method
essentially becomes a Jacobi-like method to compute the Schur form.
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7.1 Experiments from Gillis and Sharma

We took matrices with dimension n ∈ {10, 20, 50, 100} of six different types as
follows.

Type Description

1 Ai j =

⎧
⎪⎨

⎪⎩

1 j − i = −1,

−0.1 (i, j) = (1, n),

0 otherwise.

2 Ai j =

⎧
⎪⎨

⎪⎩

−1 j − i = −1,

−1 j − i ∈ 0, 1, 2, 3,

0 otherwise.

(Matlab’s gallery(’grcar’, n)).

3 Random with independent entries in N (0, 1) (Matlab’s randn(n)).
4 Random with independent entries in U ([0, 1]) (Matlab’s rand(n)).
5 Complex random with independent entries in N (0, 1) (Matlab’s randn(n) + 1i*randn(n)).
6 Complex random with independent entries in U ([0, 1]) (Matlab’s rand(n) + 1i*rand(n)).

Types 1–4 were used, with the same dimensions, in the paper by Gillis and Sharma
[16]. We added types 5–6 to test the complex version of our algorithm as well as the
real one.

For each matrix, we computed the nearest Hurwitz stable matrix (Ω = ΩH ) with
F = R for matrices of types 1–4 , and F = C for matrices of types 5–6. We compared
our results with the algorithms BCD, Grad, FGM from [16], the algorithm SuccConv
from [38], and aBFGSalgorithmbased onGRANSO [10] (which is an improvement of
HANSO[33]). The newalgorithmpresented here is dubbedOrth. The implementations
of all competitors are by their respective authors and are taken from Nicolas Gillis’
website https://sites.google.com/site/nicolasgillis/code. We highlight the fact that we
are comparing methods that rely on different formulations of the problem (based on
different parametrizations of the feasible set); we are not simply plugging in a different
general-purpose optimization algorithm.

The convergence plots in Figs. 3, 4, 5, 6 show that the new algorithm converges in
vastly quicker time scales on matrices of small size. In addition, in all but one case the
local minimizers produced by the new algorithm are of better quality, i.e., they have
a smaller objective function ‖A − B‖F than the ones of the competitors. This can be
seen in the plots by comparing the lower horizontal level reached by each line.

We report in Fig. 7 the results of another experiment taken from [16], which aims
to produce a performance profile. The result confirms that in the vast majority of the
cases the local minima found by the new algorithm have a lower objective function.

7.2 Multiple eigenvalues

Inspecting the minimizers produced by the various methods, we observed that in
many cases the new algorithm produces matrices with multiple eigenvalues (espe-
cially multiple zero eigenvalues), while other methods settle for worse minimizers
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Fig. 3 Hurwitz stability: distance vs. time for different matrices of size 10

Fig. 4 Hurwitz stability: distance vs. time for different matrices of size 20
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Fig. 5 Hurwitz stability: distance vs. time for different matrices of size 50

Fig. 6 Hurwitz stability: distance vs. time for different matrices of size 100
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Fig. 7 Performance profile of the values of ‖A − X‖F obtained by the algorithms on 100 random 10× 10
matrices (equal split of rand and randn). For each algorithm, given a ratio r ≥ 1 (horizontal axis), the
plot shows the fraction of test problems whose computed distance from stability is at most r times larger
than the best value amongst those computed by all the algorithms. This kind of plot is described for instance
in [24, Section 22.4]

with eigenvalues of lower multiplicities (particularly BCD and Grad). An illustra-
tive example is in Fig. 8. We observe that, as illustrated by Example 5.6, the instances
where the global minimum hasmultiple eigenvalues are not expected to be rare for this
problem. This observation provides a qualitative insight to explain why our approach
appears to be so highly competitive.

7.3 Comparison with themethod by Guglielmi and Lubich

Due to the lack of available code, we could not compare directly our method with
the algorithm in [19], which is arguably one of the best competitors. We report some
remarks about it based on published figures.

– On the matrix gallery(’grcar’, 5), the new method computes in 0.1 sec-
onds a different minimizer than the one reported in [19]; both have very close
objective values: ‖A − B‖F = 2.3097 reported in [19] vs. 2.309628 found by
the new method. We suspect that this minimal difference could simply be due to
different stopping criteria.

– On gallery(’grcar’, 10), the new method computes in 0.3 seconds a
minimizer with ‖A − B‖F = 3.2834: this time, undoubtedly a better value than
those reported in [19].

– On gallery(’grcar’, 30), the newmethod computes in 3.5 seconds amin-
imizer with ‖A − B‖F = 5.66, which again improves on the outcomes reported
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Fig. 8 Location of the eigenvalues eig(B) for the local minimizers produced by the methods on a sample
random 6 × 6 matrix A. The new method Orth produces a local minimizer with a zero eigenvalue of
multiplicity 4 and a negative real eigenvalue ofmultiplicity 2.Methods FGM, SuccConv, and BFGS produce
a different local minimizer (with worse objective function) with a double zero eigenvalue. BCD and Grad
produce two (even worse) local minimizers with only one zero eigenvalue and the others having magnitude
� 10−2

in [19]. The computed minimizer has all its eigenvalues on the imaginary axis: a
complex conjugate pair with multiplicity 14 each, and a complex conjugate pair
with multiplicity 1 each. In contrast, in [18], Guglielmi reports a minimizer with
‖A − B‖F = 6.57 and seemingly all distinct eigenvalues all on the imaginary
axis, found in 143 seconds (on a different machine, so times cannot be compared
directly: still, their very different orders of magnitude suggest that the new algo-
rithm is competitive also in terms of speed).

– Guglielmi and Lubich [19] report experiments with matrices of size 800, 1000,
and 1090. Currently, our method cannot handle those sizes, since the optimization
method used stagnates: after an initial improvement it fails to reduce the objective
function further, oscillating between various values with nonzero gradient and
showing convergence issues in the tCG algorithm used as an inner solver used
in the trustregions algorithm. It is an interesting task for future research to
study how to improve our algorithm so that it can deal with larger matrices; see
Sect. 8.

– Another advantage of the algorithm in [19] is the ability to deal with many dif-
ferent additional constraints in the form of matrix structure (e.g. sparsity, Toeplitz
structure). The new algorithm cannot handle those, and it seems challenging to
include them since they do not interact well with the conjugation Q�AQ that is a
crucial step in our procedure.

7.4 Experiments on Schur stability

We ran analogous experiments for the case of Schur stability, using (in the caseF = R)
Lemma 5.9 to solve the 2×2 case. Our terms of comparison were the algorithm FGM
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Fig. 9 Schur stability: distance vs. time for different matrices of size 10

from [13] and SuccConv from [38], again with the code from https://sites.google.com/
site/nicolasgillis/code. The algorithms were run with various choices of initial values
as suggested in [13]. We refer the reader to that paper for a more detailed description
of the other competitors.

Matrices of type 2–6 are the same that were used in Sect. 7.1; type 1 would not
make much sense here, since those matrices are already Schur stable for each n, so
we replaced it with the following, which is a case considered also in [13].

Type Description

1 all entries equal to 2 (Matlab’s 2*ones(n)).

The results in Figs. 9, 10, 11, 12 confirm the superiority of the new method in this
case, too, both in terms of computational time and quality of the minimizers.

In addition, we consider some of the special cases discussed in [13] and [22]. For
the matrix

A =
⎡

⎣
0.6 0.4 0.1
0.5 0.5 0.3
0.1 0.1 0.7

⎤

⎦ ,

we obtain the same minimizer as [13] and [22] (this is proved to be a global minimizer
in [22]). For the matrix A = [

3 3
3 3

]
we recover one of the two global minimizers

given by
[
1 3
0 1

]
and its transpose (this is not surprising, because our method based on
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Fig. 10 Schur stability: distance vs. time for different matrices of size 20

Fig. 11 Schur stability: distance vs. time for different matrices of size 50
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Fig. 12 Schur stability: distance vs. time for different matrices of size 100

Lemma 5.9 is guaranteed to compute a global minimizer for the real 2 × 2 case). For
the matrix 2*ones(3,3), our method computes the solution

B1 ≈
⎡

⎣
1.0000 0.9550 1.5848
1.0450 1.0000 2.6297
0.4152 −0.6297 1.0000

⎤

⎦ ,

with a triple eigenvalue 1 and ‖A − B1‖2F which is almost exactly 15 (up to an error
of order 10−15). This matrix is orthogonally similar to

B2 =
⎡

⎣
1 2 2
0 1 2
0 0 1

⎤

⎦ ,

which has ‖A − B2‖2F = 15 and is very likely a global optimum. A suboptimal
solution with entries similar to those of B1 and ‖A − B3‖2 ≈ 15.02 is returned in
[13]. For the 5× 5 matrix appearing in [22, Section 4.4], we obtain a local minimizer
B with ‖A − B‖2F ≈ 0.5595, beating the best value 0.5709 reported in [13].

7.5 Nearest matrix with real eigenvalues

For a final set of experiments, we have implemented the version of the algorithm that
computes the nearest matrix with real eigenvalues. As discussed in Sect. 4, in this
case we do not need to use the quasi-Schur form, and we can simply take T ( Â) =
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triu( Â), the upper triangular part of Â = Q�AQ. Then L( Â) = Â− T ( Â) is defined
accordingly, and we can use the objective function f (Q) = ‖L(Q�AQ)‖2F and the
gradient computed in Sect. 6. We tested the algorithm on the examples discussed in
[2]. On the matrix

A =
⎡

⎣
1 1 0

−1 0 0
0 0 0

⎤

⎦ ,

the candidates suggested in [2] are:

– the matrix obtained from the eigendecomposition A = V DV−1 as B1 =
V (�D)V−1, which has distance ‖A − B1‖F = 1.5811;

– the matrix

B2 =
⎡

⎣
0.9 0 0
−2 −0.1 0
0 0 0

⎤

⎦ ,

which has distance ‖A − B2‖F = 1.4213 (this matrix actually is not even a local
minimizer);

– the matrix obtained from the real Schur factorization A = QT Q� as B3 =
Q triu(T )Q�, which has distance ‖A − B3‖F = 0.5.

Our method computes in about 0.1 seconds a minimizer

B4 ≈
⎡

⎣
1.2110 0.7722 −0.0962

−0.7722 −0.2416 −0.0962
−0.0962 0.0962 0.0306

⎤

⎦ ,

with a triple eigenvalue at 1/3 and slightly lower distance ‖A − B4‖F = 0.4946. So
in this example the matrix produced via the truncated real Schur form is very close to
being optimal.

Another example considered in [2] is the matrix

A =

⎡

⎢
⎢
⎣

0 1 0 0
−1 0 a 0
0 0 0 1
0 0 −1 0

⎤

⎥
⎥
⎦ ;

we tested this problem setting, for concreteness, a = 10. The user Christian Remling
suggested [2] the minimizer (having two double eigenvalues at ±1)

B1 =

⎡

⎢
⎢
⎣

0 1 0 0
−1 0 10 0
0 0.4 0 1
0 0 −1 0

⎤

⎥
⎥
⎦ ,
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which achieves ‖A − B1‖F = 0.4, beating the minimizer constructed with the Schur
form, which has ‖A − B2‖F = √

2. Our method computes in less than 1 second the
minimizer

B3 ≈

⎡

⎢
⎢
⎣

−0.0000 0.9815 −0.0000 0.0018
−0.9721 0.0000 10.0045 0.0000
−0.0000 0.1907 0.0000 0.9815
0.0945 −0.0000 −0.9721 0.0000

⎤

⎥
⎥
⎦ ,

with a quadruple eigenvalue at 0 and ‖A − B3‖ = 0.2181.
These results confirm that none of the strategies suggested in [2] are optimal, and

suggest that minimizers with high-multiplicity eigenvalues are to be expected for this
problem as well.

7.6 The complex case and a conjecture

An interesting observation is that in all the (limited) examples that we tried, for a real
A ∈ R

n×n we observed that the solution of

B = arg min
S(ΩH ,n,R)

‖A − X‖2F (21)

was also a solution of the corresponding problem where X is allowed to vary over the
larger set of complex matrices, i.e.,

arg min
S(ΩH ,n,C)

‖A − X‖2F . (22)

It does not seem obvious to prove that this must be the case, since the set S(ΩH , n, C)

is non-convex, and in particular there are examples of matrices such that X ∈ C
n×n

is Hurwitz stable, but �X is not. We formulate it as a conjecture.

Conjecture 1 For any A ∈ R
n×n , the problem (22) has a real solution B.

To support this conjecture, we prove a weaker result.

Theorem 7.2 Let B ∈ R
n×n be a solution of (21), i.e., a real nearest Hurwitz stable

matrix to a given A ∈ R
n×n. Then, B has a complex Schur decomposition UTU∗

where T = T (U∗AU ), and U is a stationary point of (7).

Proof In this proof, we need to relate the quantities computed in Sects. 6.1 and 6.2;
we use a subscript R or C to tell them apart, so for instance the formula in the theorem
becomes TC = TC(U∗AU ).

We start by proving that TC = TC(U∗AU ) in the 2×2 case.We assume that A is not
already Hurwitz stable (otherwise the result is trivial), and divide into two subcases.

– B has real eigenvalues. Then, one can take a real modified Schur decomposition
B = QTRQ� in which Q is real and TR is truly upper triangular and not a 2 × 2
block. By Theorem 4.4, TR = TR(Q�AQ) and Q is a minimizer of (12), hence
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grad fR(Q) = 0. Since B = QTRQ� is also a complex Schur form, we can take
Q = U and hence TC = TR = TC(U∗AU ).

– B has two complex conjugate eigenvalues α ± iβ. Then, looking at Lemma 5.5
and its proof, we see that we must fall in case 1, because in all the other cases
B has real eigenvalues. Hence α = 0 and tr(A) > 0. In addition, B = A −
1
2 tr(A)I2. So A and B have the same eigenvectors, and (taking an arbitrary complex
Schur decomposition B = UTCU∗) the matrix U∗AU = 1

2 tr(A)I + TC is upper
triangular. Thus it is easy to see that TC = TC(U∗AU ).

We now show that TC = TC(U∗AU ) holds also for larger matrices A ∈ R
n×n .

Let B = QTRQ� be a modified real Schur decomposition. Note that to obtain a
complex Schur decomposition it is sufficient to reduce the 2 × 2 diagonal blocks
to upper triangular form with an unitary block diagonal matrix D, thus obtaining
a decomposition with TC = D∗TRD and U = QD. Since B is a real minimizer,
TR = TR(Q∗AQ).

From these equalities it follows that DTCD∗ = TR(DU∗AUD∗). We can use this
equality to prove that TC = TC(U∗AU ). Let us split TC into blocks according to the
partition I as in (8). The maps TR and TC leave unchanged the blocks in the strictly
upper triangular part, hence for I < J we have

DI I (TC)I J D
∗
J J = (TR(DU∗AUD∗))I J = DI I (U

∗AU )I J D
∗
J J ,

thus (TC)I J = (TC(U∗AU ))I J = (U∗AU )I J . On diagonal blocks, (TR)I I is a dis-
tance minimizer, hence by the 2 × 2 version of this result that we have just proved

(TC)I I = TC(D∗
I I (Q

∗AQ)I I DI I ) = TC((U∗AU )I I ).

It remains to prove that grad fC(U ) = 0. This follows by combining Remarks 6.1
and 6.2: if B ∈ R

n×n is aminimizer on the reals, then grad fR(Q) = 0 by Theorem 4.4
and B(A − B)� = (A − B)�B; both A and B are real matrices, so B(A − B)∗ =
(A − B)∗B also holds, and grad fC(U ) vanishes. ��

8 Conclusions

In this paper, we introduced a method to solve the nearest Ω-stable matrix problem,
based on a completely novel approach rather than improving on those known in the
literature. The algorithm has remarkably good numerical results on matrices of suffi-
ciently small size (up to n ≈ 100), both in terms of computational time compared to
its competitors, and of quality of the local minima found.

We attribute a good part of the success of this method to the fact that it computes
eigenvalues only indirectly; thus, it is able to avoid the inaccuracies associated with
multiple eigenvalues. Indeed, it is well-known that computing eigenvalues with high
multiplicity is an ill-conditionedproblem: if amatrix has an eigenvalueλofmultiplicity
k, a perturbation of size ε will, generically, produce a matrix with k simple eigenvalues
at distance O(ε1/k) from λ (see, for instance, [39, Chapter 2]). The method can,
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in principle, be generalized to similar problems by defining appropriate Schur-like
decompositions; for instance, to the problem of finding matrices with at least a given
number k of eigenvalues inside a certain set Ω .

In our future research, we plan to study extensions such as the one mentioned
above, and to investigate further the behaviour of the method on larger matrices.
Hopefully, convergence on larger matrices can be obtained by adjusting parameters in
the optimization method, deriving preconditioners that approximate the Hessian of the
objective function f (Q) = ‖L(Q�AQ)‖2F , or including some techniques borrowed
from traditional eigensolvers.
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