
This is an electronic reprint of the original article.
This reprint may differ from the original in pagination and typographic detail.

Powered by TCPDF (www.tcpdf.org)

This material is protected by copyright and other intellectual property rights, and duplication or sale of all or 
part of any of the repository collections is not permitted, except that material may be duplicated by you for 
your research use or educational purposes in electronic or print form. You must obtain permission for any 
other use. Electronic or print copies may not be offered, whether for sale or otherwise to anyone who is not 
an authorised user.

Härkönen, Ville J.; Karttunen, Antti
Ab initio studies on the lattice thermal conductivity of silicon clathrate frameworks II and VIII

Published in:
Physical Review B

DOI:
10.1103/PhysRevB.93.024307

Published: 28/01/2016

Document Version
Publisher's PDF, also known as Version of record

Published under the following license:
Unspecified

Please cite the original version:
Härkönen, V. J., & Karttunen, A. (2016). Ab initio studies on the lattice thermal conductivity of silicon clathrate
frameworks II and VIII. Physical Review B, 93(2), Article 024307. https://doi.org/10.1103/PhysRevB.93.024307

https://doi.org/10.1103/PhysRevB.93.024307
https://doi.org/10.1103/PhysRevB.93.024307


PHYSICAL REVIEW B 93, 024307 (2016)
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The lattice thermal conductivities of silicon clathrate frameworks II and VIII are investigated by using ab initio
lattice dynamics and an iterative solution of the linearized Boltzmann transport equation (BTE) for phonons.
Within the temperature range 100–350 K, the clathrate structures II and VIII were found to have lower lattice
thermal conductivity values than the silicon diamond structure (d-Si) by factors of 1/2 and 1/3, respectively.
The main reason for the lower lattice thermal conductivity of the clathrate structure II in comparison to d-Si
was found to be the harmonic phonon spectra, while in the case of the clathrate structure VIII, the difference
is mainly due to the harmonic phonon spectra and partly due to the shorter relaxation times of phonons. In the
studied clathrate frameworks, the anharmonic effects have larger impact on the lattice thermal conductivity than
the size of the unit cell. For the structure II, the predicted lattice thermal conductivity differs approximately
by a factor of 20 from the previous experimental results obtained for a polycrystalline sample at room
temperature.

DOI: 10.1103/PhysRevB.93.024307

I. INTRODUCTION

Thermoelectric materials may be used to convert waste
heat to electricity and may also be used to improve the energy
efficiency of various electronic devices. It is usually considered
that crystalline materials with rather high thermoelectric
efficiency have rather low lattice thermal conductivities [1–3].
This has also motivated much of the present research efforts
on lattice thermal conductivity, since in order to calculate esti-
mates for the thermoelectric efficiency it is usually necessary
to calculate the values of lattice thermal conductivity and
these numerical results may yield useful information on the
mechanisms of lattice thermal conductivity. The calculation
of lattice thermal conductivity can be a rather challenging task
when ab initio methods are used, due to the high computational
cost of calculating third-order (or higher) interatomic forces,
for example.

There are a variety of computational approaches for pre-
dicting lattice thermal conductivity, for instance, single mode
relaxation time approximations (SMRTs) with the Boltzmann
transport equation (BTE) [4,5] and iterative solutions of the
linearized BTE [6–11]. In the iterative solution of BTE,
one obtains, up to some approximation, the nonequilibrium
distribution functions dependent on each other, while in the
SMRTs the distribution functions are independent (Sec. II B).

One class of crystalline structures for which relatively high
thermoelectric efficiencies and low lattice thermal conduc-
tivities have been measured is the so-called semiconducting
clathrates [3,12–14]. Different mechanisms behind the de-
creased lattice thermal conductivity in clathrate structures
have been proposed. In the compound clathrates such as
K8Al8Si38, in which the framework is completely or partially
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filled with guest atoms (K) and the silicon framework
includes heteroatoms (Al), the reduction in the lattice thermal
conductivity is considered to be caused by the increase of
phonon-phonon scattering due to the guest atoms [15–17].
For elemental clathrate frameworks with no guest atoms or
framework heteroatoms, no such single mechanism has been
suggested. For the clathrate framework II (sometimes denoted
as Si34 or Si136), experimental lattice thermal conductivity
data have been obtained with polycrystalline samples. For
example, the room-temperature lattice thermal conductivity
of the guest-free clathrate framework II was measured to be
2.5 W/(m K) [18].

Here, we study the lattice thermal conductivity of the silicon
diamond (d-Si) and the silicon clathrate frameworks II and
VIII by combining ab initio lattice dynamics with an iterative
solution of linearized BTE. The solution to the linearized
BTE, with three-phonon and isotopic scattering included, is
obtained with the SHENGBTE program [10]. The effect of
different quantities on the lattice thermal conductivities and
the validity of the linearized BTE approach is investigated.
The difference in the unit cell size of clathrate structures II
and VIII also enables the examination of the effect of the unit
cell size on the lattice thermal conductivity.

II. THEORY, COMPUTATIONAL METHODS, AND
STUDIED STRUCTURES

A. Lattice dynamics

The theory of lattice dynamics discussed in this section
has been described, for example, in Refs. [19–21]. Here, the
outline of the procedure that is used to derive the relations
implemented in the actual numerical calculations is described.
To solve the vibrational states of the crystal, one needs
only the zeroth-order wave function [19,21] and in this
approach one assumes that the vibrational Hamiltonian is of the
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form

H = Tn + �, (1)

Tn = 1

2

∑
l,κ,α

p2
α(lκ)

Mκ

, (2)

� = �[x(l1κ1) + u(l1κ1), . . . ,x(lnκn) + u(lnκn)], (3)

� =
∑
n=0

1

n!

∑
l1,κ1,α1

· · ·
∑

ln,κn,αn

�α1···αn
(l1κ1; . . . ; lnκn)

×uα1 (l1κ1) . . . uαn
(lnκn), (4)

�α1···αn
(l1κ1; . . . ; lnκn)

≡ ∂n�

∂x ′
α1

(l1κ1) · · · ∂x ′
αn

(lnκn)

∣∣∣∣
{x ′(li κi )=x(li κi )}

, (5)

where T is the kinetic energy and � is the potential
energy, uαi

(liκi) is the displacement of the atom κi in the
unit cell labeled by li from the equilibrium position x(liκi)
in the direction αi , pαi

(liκi) the corresponding momentum
and Mκi

is the atomic mass of atom κi . The coefficients
�α1···αn

(l1κ1; . . . ; lnκn) are sometimes called the nth-order
atomic force constants or interatomic force constants. The unit
cell index l is defined by the lattice translational vector

x(l) ≡ x(l1,l2,l3) = l1a1 + l2a2 + l3a3, (6)

where li are integers and the vectors ai are called the primitive
translational vectors of the lattice. The equilibrium positions
can be written as

x(lκ) = x(l) + x(κ), (7)

where x(κ) is the position vector of atom κ within the unit cell.
Sometimes Eq. (1) is written as (static lattice contribution with
n = 0 neglected)

H = H0 + HA, (8)

with

H0 = 1

2

∑
l,κ,α

p2
α(lκ)

Mκ

+ 1

2!

∑
l,κ,α

∑
l′,κ ′,β

�αβ(lκ; l′κ ′)uα(lκ)uβ(l′κ ′), (9)

HA =
∑
n�=0,2

1

n!

∑
l1,κ1,α1

· · ·
∑

ln,κn,αn

�α1···αn
(l1κ1; . . . ; lnκn)

×uα1 (l1κ1) . . . uαn
(lnκn), (10)

where H0 and HA are sometimes called the harmonic and
anharmonic vibrational Hamiltonian, respectively.

Within the harmonic approximation, only H0 is taken
into account. One may proceed, for example, by writing the
displacements and momenta as a Fourier series (lattice period-
icity). After the substitution of the expanded displacements to
the potential term one may define the elements of the so-called
dynamical matrix as

Dαβ(κκ ′|q) ≡
∑

l′

�αβ(lκ; l′κ ′)√
MκMκ ′

e−iq·[x(l)−x(l′)], (11)

where q is the wave vector times 2π . It can be shown that
the dynamical matrix is Hermitian and for a Hermitian matrix
there exists a set of eigenvectors {e(κ|qj )} and eigenvalues
{ωj (q)} such that

ω2
j (q)eα(κ|qj ) =

∑
κ ′,β

Dαβ(κκ ′|q)eβ(κ ′|qj ), (12)

where j = 1 . . . 3n is the mode index, n being the number of
atoms within unit cell. Sometimes the eigenvalues {ωj (q)}
are called phonon eigenvalues, phonon frequencies, or as
a function of wave vector q, phonon dispersion relations.
The components of the eigenvector e(κ|qj ) of a Hermitian
matrix can be chosen to satisfy the orthonormality and closure
conditions

∑
κ,α

eα(κ|qj ′)e∗
α(κ|qj ) = δjj ′ , (13)

∑
j

eα(κ|qj )e∗
β(κ ′|qj ) = δαβδκκ ′ , (14)

where δαβ is the Kronecker delta. In addition to the Fourier
series expansion, one may introduce another unitary transform
for the Fourier coefficients in terms of the so-called normal
coordinates and eigenvectors e(κ|qj ). Furthermore, one may
write the normal coordinates in terms of the so-called creation
â
†
qj and annihilation operators âqj . The mentioned transforms

are included in the following expansions of displacement and
momentum (which are considered now as operators):

ûα(lκ) =
(

�

2NMκ

)1/2 ∑
q,j

ω
−1/2
j (q)eiq·x(l)eα(κ|qj )

× (âqj + â
†
−qj ), (15)

p̂α(lκ) = −i

(
�Mκ

2N

)1/2 ∑
q,j

ω
1/2
j (q)eiq·x(l)eα(κ|qj )

× (âqj − â
†
−qj ), (16)

where N is the number of q points in the q mesh. After the
substitution of expansion in Eqs. (15) and (16) to H0 given by
Eq. (9), one can write

Ĥ0 =
∑
q,j

�ωj (q)

(
1

2
+ â

†
qj âqj

)
, (17)

The anharmonic Hamiltonian operator ĤA can be obtained by
the substitution of expansion in Eq. (15) to Eq. (10) and can
be written as (Ref. [21], p. 32)

ĤA =
∑
q,j

V (qj )Âqj +
∑
n=3

∑
q1,j1

· · ·
∑
qn,jn

×V (q1j1; . . . ; qnjn)Âq1,j1 · · · Âqn,jn
, (18)

where

Âqj = âqj + â
†
−qj , (19)
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and [19]

V (q1j1; . . . ; qnjn)

= 1

n!

(
�

2N

)n/2
N
(q1 + · · · + qn)

[ωj1 (q1) · · · ωjn
(qn)]1/2

×
∑
κ1,α1

∑
l2,κ2,α2

· · ·
∑

ln,κn,αn

�α1···αn
(0κ1; l2κ2; . . . ; l′nκ

′
n)

×eα1 (κ1|q1j1)

M
1/2
κ1

· · · eαn
(κn|qnjn)

M
1/2
κn

ei[q2·x(l2)+···+qn·x(ln)].

(20)

In the present work, the linear term in Eq. (18) is neglected,
since it vanishes by the assumption that forces on atoms at
equilibrium vanish. However, in some applications, such as in
the case of a homogenously deformed lattice, the linear term
cannot be neglected in general [22].

To obtain the eigenvalues {ωj (q)} within the harmonic ap-
proximation, one needs to know the second-order interatomic
forces {�αβ(lκ; l′κ ′)} and the eigenvectors {e(κ|qj )}. If the
anharmonicity in the system is rather small (ĤA sufficiently
smaller than Ĥ0), then the anharmonic Hamiltonian may
be considered as a perturbation on the harmonic one. In
actual calculations, one usually imposes periodic boundary
conditions and considers a finite mesh of wave vectors when
Eq. (12) is used to obtain the eigenvalues. The calculation of
the atomic force constants for higher orders than 3 or 4 is a
rather challenging task from the computational point of view.

B. Thermal conductivity

The heat flux J and thermal conductivity κ are related as

Jα = −
∑

β

καβ

∂T

∂xβ

, (21)

which is a phenomenological relation. In the BTE approach,
one usually assumes that the heat flux is of the form

J = 1

V

∑
q,j

�ωj (q)v(qj )nqj , (22)

where v(qj ) is the phonon group velocity for the state
labeled by qj , V is the volume of the unit cell, and nqj is
the nonequilibrium phonon distribution function. The group
velocity can be written as

vα(qj ) = ∂ωj (q)

∂qα

. (23)

More general forms of the energy flux (including heat flux)
have been derived and it has been shown that Eq. (22) is
a special case of this more general energy flux [23]. The
methods used to obtain the numerical results reported in this
work are based on Eq. (22). In Eq. (22), all the other quantities
may be obtained by using the harmonic approximation, but
nqj is unknown and the BTE approach can be used to obtain
estimates for it. To obtain estimates for nqj , it is assumed that
the deviations from equilibrium distribution n̄qj are relatively
small and are caused by the temperature gradients. Thus one

may expand n̄λ up to first order as [7,24,25] (notation qj → λ)

nλ ≈ n̄λ(�ωλ + Fλ · ∇T ) = 1

e(�ωλ+Fλ·∇T )β − 1

≈ n̄λ + ∂n̄λ

∂�ω′
λ

∣∣∣∣
ω′

λ=ωλ

Fλ · ∇T , (24)

which can be written as

nλ ≈ n̄λ − βn̄λ(n̄λ + 1)Fλ · ∇T . (25)

In Eqs. (24) and (25), Fλ measures the deviation of energy from
the equilibrium value with units energy × length/ temperature
and β = 1/kBT . Substitution of Eq. (25) to Eq. (22) gives
[first term on the right hand side of Eq. (25) vanishes]

Jγ ≈ − β

V

∑
λ

3∑
α=1

�ωλvγ (λ)n̄λ(n̄λ + 1)Fα,λ

∂T

∂xα

, (26)

and a comparison of Eqs. (21) and (26) shows that

καβ = �

kBT V

∑
λ

ωλvα(λ)n̄λ(n̄λ + 1)Fβ,λ. (27)

The unknown quantity Fλ is solved iteratively from linearized
BTE, for example, by using SHENGBTE.

In this approach, BTE, for example, for phonons, can be
written as [24,25]

∂nλ

∂t
= ∂nλ

∂t

∣∣∣∣
col

+ ∂nλ

∂t

∣∣∣∣
diff

+ ∂nλ

∂t

∣∣∣∣
ext

, (28)

where nλ is the nonequilibrium distribution function for
phonons and the rate of change of nλ is written as a sum of
collision (col), diffusion (diff), and external field (ext) terms.
In the absence of external electric and magnetic fields and
assuming the steady-state condition, one may approximate
Eq. (28) as

∂nλ

∂t

∣∣∣∣
col

+ ∂nλ

∂t

∣∣∣∣
diff

= 0,
∂nλ

∂t
= ∂nλ

∂t

∣∣∣∣
ext

= 0. (29)

Furthermore, one approximates [24,25]

∂nλ

∂t

∣∣∣∣
diff

≈ −v(λ) · ∇T
∂n̄λ

∂T
. (30)

Thus it is assumed that a local equilibrium exists at different
parts of the crystal at different temperatures.

The collision term can be obtained as follows. In general,
the probability for a process in which a phonon labeled by λ

vanishes and two phonons λ′,λ′′ are created is proportional
to [26]

mλ(mλ′ + 1)(mλ′′ + 1), (31)

where mλ, etc., are the numbers of phonons on the particular
state. For an opposite process,

mλmλ′(mλ′′ + 1). (32)

In the expressions of transition probabilities, there usually
are some factors ensuring the conservation of energy and
possible momentum and these are included in the following
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expressions:

mλ(mλ′ + 1)(mλ′′ + 1)P λ′λ′′
λ , (33)

mλmλ′(mλ′′ + 1)P λ′′
λλ′ . (34)

Thus the total rate of change of the distribution function of a
state λ can be written as

∂nλ

∂t

∣∣∣∣
col

=
∑
λ′,λ′′

[
nλnλ′(nλ′′ + 1)P λ′′

λλ′

− nλ(nλ′ + 1)(nλ′′ + 1)P λ′λ′′
λ

]
. (35)

In the actual calculation of the total rate of change in Eq. (35),
all the combinations of the matrix elements of the form (all
different three-phonon processes)

| 〈n|ÂλÂλ′Âλ′′ |m〉 |2 (36)

must be considered. In Eq. (36), |n〉 and |m〉 are eigenkets
of the harmonic Hamiltonian Ĥ0. By writing all the differ-
ent combinations obtained from Eq. (36), writing the total
scattering rate in a similar way as in Eq. (35), taking a
formal nonequilibrium ensemble average, substituting for all
distributions the approximation given by Eq. (25), neglecting
the terms Fλ · ∇T with higher powers than one, and finally
substituting the result to BTE given by Eq. (29), one may
write for the αth component (possible numerical factors
and equilibrium distribution functions are absorbed into the
expressions of transition probabilities λ′′

λλ′,
λ′λ′′
λ )

∑
λ′

∑
λ′′

(
λ′′

λλ′ + λ′λ′′
λ

)
Fα,λ

∂T

∂xα

+
∑
λ′

∑
λ′′

[
λ′′

λλ′(−Fα,λ′′ + Fα,λ′ )

+λ′λ′′
λ (−Fα,λ′ − Fα,λ′′)

] ∂T

∂xα

= vα(λ)
∂T

∂xα

[
�ωλ

T
n̄λ(n̄λ + 1)

]
. (37)

Equation (37) can be used to solve the quantity Fα,λ and it can
be written as

Fα,λ = 1

Xλ

∑
λ′

∑
λ′′

[
λ′′

λλ′(Fα,λ′′ − Fα,λ′)

+λ′λ′′
λ (Fα,λ′ + Fα,λ′′ )

]

+ �ωλvα(λ)

T Xλ

n̄λ(n̄λ + 1), (38)

with

Xλ ≡
∑
λ′

∑
λ′′

(
λ′′

λλ′ + λ′λ′′
λ

)
. (39)

The transition probabilities λ′′
λλ′ ,

λ′λ′′
λ can be obtained, for

example, from the golden rule applied to the third-order an-
harmonic Hamiltonian [27] (ensemble averaged with the har-
monic Hamiltonian) or from the phonon self-energy [10,28].
For instance, by using the golden rule,

 = 2π

�
|〈n|Ĥ3|m〉|2δ(En − Em), (40)

expressions like the following can be obtained [by taking a
canonical ensemble average from Eq. (40)]:

λ′′
λλ′ = 2π

�2

∑
λ′

∑
λ′′

|V (λ; λ′; λ′′)|2

× n̄λn̄λ′(n̄λ′′ + 1)δ(ωλ + ωλ′ − ωλ′′). (41)

If the isotopic scattering is included, one usually adds the
contribution of the isotopic scattering rate to Xλ [10,27]
and thus assumes that different scattering mechanisms are
independent. Sometimes one denotes [27]

F 0
α,λ ≡ �ωλvα(λ)

T Xλ

n̄λ(n̄λ + 1), (42)

which is the solution of Eq. (38) with

Fα,λ′ = Fα,λ′′ = 0, (43)

or when∑
λ′

∑
λ′′

[
λ′′

λλ′(Fα,λ′′ − Fα,λ′ ) + λ′λ′′
λ (Fα,λ′ + Fα,λ′′ )

] = 0.

(44)

By defining the relaxation time (RT) [27]

τα(λ) ≡ T Fα,λ

�ωλvα(λ)
, (45)

and using the expression for the heat capacity at constant
volume,

cv(λ) = kBβ2
�

2ω2
λn̄λ(n̄λ + 1), (46)

one may write Eq. (27) as

καβ = 1

V

∑
λ

vα(λ)vβ(λ)cv(λ)τβ(λ), (47)

and for crystals with cubic symmetry,

καα = 1

V

∑
λ

v2
α(λ)cv(λ)τα(λ). (48)

The zeroth-order relaxation time

τ 0
α (λ) = n̄λ(n̄λ + 1)

Xλ

= T F 0
α,λ

�ωλvα(λ)
, (49)

is sometimes called the single mode relaxation time (SMRT)
since the deviations Fλ′ ,Fλ′′ vanish [Eq. (43)], while Fλ

deviates from its equilibrium value by an amount given by
Eq. (42).

The connection of Fλ, nλ, and n̄λ can be obtained from
Eq. (25):

−Fλ · ∇T = kBT

n̄λ + 1

(
nλ

n̄λ

− 1

)
. (50)

It can be seen from Eq. (38) that Fλ is independent of tem-
perature gradient. Since the steady-state condition is assumed
in the derivation of phonon BTE (local temperatures exist),
one may assume that the temperature gradient is constant
(independent of time) and has a negative value, that is, the
temperature decreases in the positive direction. Thus one may
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TABLE I. Structural data and computational details for the studied structures.

Structure Space Group Atoms/cella Elect. (k1, k2, k3)b Phon. (q1, q2, q3)c PDOS (q1, q2, q3)c TCOND (q1, q2, q3)c a(Å)d

d-Si Fd 3̄m(227) 2 12,12,12 8,8,8 80,80,80 24,24,24 5.47
II Fd 3̄m(227) 34 6,6,6 4,4,4 30,30,30 8,8,8 14.74
VIII I 4̄3m(217) 23 6,6,6 4,4,4 40,40,40 10,10,10 10.10

aNumber of atoms in primitive cell.
bThe mesh used for the electronic k sampling.
cq-meshes for phonon calculations, phonon density-of-states calculations, and lattice thermal conductivity calculations, respectively.
dLattice constant of the optimized primitive unit cell used in the calculations.

write Eq. (50) as

TG

∑
α

Fα,λ = kBT

n̄λ + 1

(
nλ

n̄λ

− 1

)
, (51)

where TG is now some positive constant. It follows from
Eq. (51) that for ∑

α

Fα,λ < 0 ⇒ nλ < n̄λ, (52)

and vice versa. This means that τα(λ) can in general also have
negative values, which might result in negative thermal con-
ductivity values calculated from Eq. (47) for some particular
states λ, implying that the heat flux is positive towards higher
temperatures for these states.

In the calculation of the lattice thermal conductivity, SHENG-
BTE does not take into account the shifts of phonon eigenvalues
due to third- and fourth-order atomic force constants. In
particular, the fourth-order atomic force constants may have
some significance since quartic contribution to frequency shift
can be obtained from the first-order phonon self-energy [28]
(or some other perturbation method), while the lowest-order
contributions to the frequency shift due to third-order atomic
forces are in the second order. In SHENGBTE, the so-called
phase space calculations for the allowed processes [delta
functions for momentum and energy in Eq. (41)] are made
by using the harmonic phonon eigenvalues ωλ, assumed to
be independent of temperature. In addition, the third- and
fourth-order forces change the eigenvectors obtained within
the harmonic approximation and the thermal expansion shifts
the phonon eigenvalues as a function of temperature [29].
These effects are neglected in the present approach. Thus, if the
interactions in the system are sufficiently strong, the harmonic
approximation may not describe the system as expected and
more rigorous methods may be needed to describe the system
in more proper detail. Techniques based on the variational
method have already been used to calculate lifetimes and cross
sections for materials that are experimentally known to have a
rather strong anharmonicity [30].

C. Studied structures and computational details

The structural characteristics of the silicon structures
considered in this paper are described in Table I and the
clathrate frameworks II and VIII are illustrated in Fig. 1. The ab
initio density functional calculations to optimize the structures
and to calculate the phonon dispersion relations were carried
out with the QUANTUM ESPRESSO program package (QE,
version 5.0.3) [32]. The silicon atoms were described using

ultrasoft pseudopotentials and plane-wave basis set [33]. The
generalized gradient approximation (GGA) was applied by
using the PBE exchange-correlation energy functionals [34].
In all calculations, the following kinetic energy cutoffs have
been used: 44 Ry for wave functions and 352 Ry for charge
densities and potentials. The applied k and q sampling for
each studied structure are listed in Table I. The q meshes for
the lattice thermal conductivity calculations et cetera were
Fourier interpolated from the mesh used in the corresponding
phonon calculation (QE module matdyn.x) [35]. We carried
out convergence tests for both total energy and phonon
calculations with different k meshes for d-Si. The convergence
with (12,12,12) k mesh was accepted and thus used. Similarly,
an acceptable convergence was found for the (8,8,8) q-mesh
in the case of d-Si. The k and q meshes listed in Table I
for the clathrate frameworks were chosen as a compromise
between accuracy and computational cost. Both the lattice
constants and the atomic positions of the studied structures
were fully optimized (applying the space group symmetries
listed in Table I, in which the lattice constants for the optimized
structures are also shown). In the structural optimizations, the
convergence thresholds on total energy and forces were set to
10−6 and 10−5 a.u., respectively. The nonanalytic corrections
to dynamical matrices in the limit q → 0 were taken into
account in the QE and SHENGBTE calculations. All lattice
thermal conductivity calculations were made by using the
version v1.0.2 of SHENGBTE.

To our knowledge, there is no way to label the phonon
modes (and phonon eigenvectors) uniquely at a point of
degeneracy when the diagonalization of the dynamical matrix

II (Fd-3m) VIII (I-43m)

FIG. 1. Schematic figures of the silicon clathrate frameworks II
and VIII studied in this work. The vertices of the polyhedral cages
represent silicon atoms. The crystallographic unit cell edges are drawn
in black. For a more detailed description of the framework structures,
see Ref. [31].
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[Eq. (11)] is done numerically. This is true also for the QE and
SHENGBTE program packages and probably results in minor nu-
merical inaccuracies in the calculation of the quantities listed
in Tables III and IV. Some phonon labeling could be carried
out by continuity arguments for the phonon eigenvectors as a
function of wave vector in a particular direction when using
relatively dense q meshes, but in the absence of a rigorous
general approach, the labeling of the phonon modes is left to
the default algorithm in QE and SHENGBTE.

In the lattice thermal conductivity calculations, both iso-
topic and three-phonon scattering were included. In the
calculation of the isotopic scattering rates, the default Pearson
deviation coefficients incorporated in SHENGBTE were applied.
The so-called proportionality constant scalebroad was set to
0.5 in all SHENGBTE calculations (the constant is related to
the adaptive Gaussian broadening technique used in SHENG-
BTE for obtaining energy-conserving three-phonon scattering
processes) [10,36]. For every structure, all third-order atomic
force constants were calculated up to sixth-nearest neighbours
using the program thirdorder.py included in the SHENGBTE

distribution [37]. The supercells used to calculate the third-
order atomic force constants with thirdorder.py were (4,4,4),
(3,3,3), and (2,2,2) for stuctures d-Si, VIII and II, respectively.
In all single-point total energy calculations with supercells,
only -point k sampling was used and the total energy con-
vergence threshold for self-consistency was set to 10−12 a.u.

III. RESULTS AND DISCUSSION

A. Phonon spectra

In the case of d-Si, experimental results for the phonon
eigenvalues {ωj (q)} are available [38]. The maximum dif-
ference between the experimental values and the eigenvalues
obtained in this work is approximately 11%. Similar compu-
tational results have been obtained earlier by using both local
density approximation (LDA) and GGA with the plane-wave
pseudopotential method [39–42]. The maximum difference
between the eigenvalues obtained here and the eigenvalues
obtained by using LDA with Martins-Troullier-type norm-
conserving pseudopotentials is approximately 10% [43].

Figure 2 shows the calculated phonon dispersion relations
for the clathrate structures II and VIII. As in the case of d-Si,
similar results are obtained by using the present computational
methods or LDA with Martins-Troullier-type norm-conserving
pseudopotentials [43]. From the similar phonon dispersion
relations of the clathrate structures II and VIII, it follows that
their thermal properties within the harmonic approximation
are rather similar, as well. Furthermore, the calculation of an-
harmonic properties such as thermal expansion and Grüneisen
parameters within the so-called quasiharmonic approximation
have previously lead into similar results for the structures II
and VIII [43].

B. Thermal conductivity results

To test the computational methods used in this work,
the calculated thermal conductivity results for d-Si are
compared with the experimental results [44] in Fig. 3.
The maximum difference between the calculational and
experimental results is approximately 7%–51% within the
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FIG. 2. Phonon dispersion relations along high symmetry paths
in the first Brillouin zone for the clathrate structures II and VIII.
PDOS is the phonon density-of-states plot.

temperature range 5–100 K. At temperatures higher than
100 K, the maximum difference between the computational
and experimental results is between 4%–13% (the largest
difference is at 125 K). The computational results are similar
to those obtained earlier for d-Si by using DFT-LDA [27],
or by combining DFT calculations of the force constants
and the Green-Kubo formalism applied by using molecular
dynamical simulations [45]. Acoustic phonon modes have
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FIG. 3. The calculated lattice thermal conductivity of d-Si and
experimental values with natural isotopic composition of Si [44].

024307-6



AB INITIO STUDIES ON THE LATTICE THERMAL . . . PHYSICAL REVIEW B 93, 024307 (2016)

TABLE II. The contributions of different phonon modes to the
total lattice thermal conductivity within two different temperature
ranges (all values are in percentages): T = 5−75 K for subscript l and
T = 100−350 K for subscript h. LA = longitudinal acoustic mode,
2TA = two transverse acoustic modes, and OP = optical modes.

Structure LAl 2TAl OPl LAh 2TAh OPh

d-Si 0–9 100–91 0–0 22–29 78–65 0–6
II 0–26 100–65 0–8 27–25 60–51 13–24
VIII 0–22 100–74 0–4 24–26 69–58 7–16

the largest contribution to the lattice thermal conductiv-
ity, contributing approximately 100%–94% at temperatures
5–350 K. In particular, the longitudinal acoustic (LA) mode
contributes around 0.3%–9.4% at 5–20 K, while within the
temperature range 40–350 K its contribution is 22%–29% and
the corresponding two other acoustic modes both contribute
about 39%–32%. The contributions of the different phonon
modes to the lattice thermal conductivity are shown in Table II.
These results are in line with the previous results for mode
contributions as a function of temperature obtained by using a
different method [45].

The lattice thermal conductivities calculated here do not
include the contributions arising from boundary scattering,
which is expected to play a role in the low-temperature regime,
but requires empirical, sample-dependent parametrization [9].
At 100 K, the experimental value is approximately two times
smaller than the calculated one. The largest MFP at 100
K is approximately 10−8 m, while the minimum crystal
dimension is approximately 2 mm, for which the experimental
lattice thermal conductivity values are obtained (similar to
those presented in Fig. 3) [46]. The difference between the
experimental and computational results at low temperatures
may not be solely explained with the neglect of boundary
scattering. One possible reason for this difference is the model
used to describe the isotopic scattering. In SHENGBTE, the
form of isotopic scattering rate is derived in such a way
that it is valid for relatively weak perturbations and for rather
long wavelengths [47]. Due to this, for example, there might
be inaccuracies related to the calculated isotopic scattering
rates, making the predicted lattice thermal conductivities for
lower temperatures more vulnerable to errors. For higher
temperatures, the effect of isotopic scattering decreases. At
350 K, the isotopic scattering decreases the lattice thermal
conductivity approximately 2.2%, while at 100 K the effect is
approximately 24.8%. To test the convergence with respect to
the size of the q mesh at low temperatures, the lattice thermal
conductivity calculation for d-Si was also done by using
(32,32,32) q mesh at 20 K. The lattice thermal conductivity
value obtained was approximately 48% higher than obtained
with a (24,24,24) q mesh (at 300 K the value is 2%),
which indicates rather poor convergence at relatively low
temperatures.

The calculated lattice thermal conductivities for the
clathrate structures II and VIII are shown in Fig. 4. The
clathrate structure II has lower lattice thermal conductivity
than the structure VIII at temperatures below 50 K, while
above this temperature the result is opposite. At 300 K, the
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FIG. 4. The calculated lattice thermal conductivity of the
clathrate structures II and VIII.

lattice thermal conductivity values obtained for the clathrate
structures II and VIII are approximately 52 and 43 W/(m K),
respectively. The results are summarized in Table II. Within the
temperature range 100–350 K, the lattice thermal conductivity
of the structure VIII is approximately 86%–82% of the values
of the structure II. Compared with d-Si, the lattice thermal
conductivity values of structure II are about 42%–38% of the
values of d-Si within the temperature range 100–350 K. For the
structure VIII, the predicted lattice temperature conductivities
are 36%–31% of the values predicted for d-Si within the
temperature range 100–350 K. In all structures considered,
the iterative solution of the BTE converged in ten steps or
less. This indicates that the SMRT solution is rather similar
to the iterative solution for these structures. The difference
between the SMRT and iterative solution for the lattice thermal
conductivity at 300 K is approximately 0.6% for the clathrate
structure II and about 0.4% for the clathrate structure VIII.

The lattice thermal conductivity values for each state as
a function of phonon frequency at 300 K are represented in
Fig. 5. In particular, for the clathrate structures II and VIII, the
number of acoustic modes within the range 10–0.1 W/m K is
to some extent lower than in the case of d-Si. The fact that the
clathrate structure II (34 atoms in the primitive cell) has higher
lattice thermal conductivity than the clathrate structure VIII
(23 atoms in the primitive cell) is somewhat unexpected: when
comparing structures with similar tetrahedral coordination of
the Si atoms, it is usually expected that a structure with the
larger unit cell would have lower lattice thermal conductivity.
An extreme example of such allotrope of Si with relatively low
thermal conductivity values is amorphous Si.

The lattice thermal conductivities calculated here for the
structure II are over one order of magnitude higher than the
experimental values obtained for hot-pressed pellets prepared
from polycrystalline powder samples [18]. However, the low
lattice thermal conductivity values observed in Ref. [18]
have also been suggested to arise from the porosity of the
polycrystalline samples [48]. For a better comparison, the
experimental values for the lattice thermal conductivity of
single-crystal samples should be obtained.
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FIG. 5. The calculated values for each state λ as a function of phonon frequency for d-Si and the clathrate structures II and VIII at 300 K.
(a) The lattice thermal conductivity κ(λ) = 1/3

∑
α κα(λ) (negative values are not shown), (b) quantities ξ (λ) [Eq. (54)], (c) relaxation times

τ (λ) [Eq. (56), negative values are not shown] and (d) phonon phase space P3(λ). For all quantities, the acoustic modes are drawn in red and
the optical modes in black. The reported P3(λ) values are unitless, relative values obtained from P3(λ)/ max {P3(λ)|d−Si}.

C. Group velocity and heat capacity

In this section, the following term

ξ (j ) ≡ 1

3V

∑
q,α

v2
α(qj )cv(qj ), (53)

included in Eq. (48) is considered. In Table III, results
calculated by using Eq. (53) for different structures are listed
at 300 K. The results in Table III (and IV) are shown for
the phonon modes 1–6. The modes 1–3 are discussed here
as acoustic modes, but we note that due to band crossings
with the optical modes the labeling of the modes is not fully
rigorous (see computational details). The values for d-Si are
10–100 times larger than for the clathrate structures. For the

clathrate structures II and VIII, the differences are relatively
small, indicating that the differences in the lattice thermal
conductivity are mainly due to other reasons. In all structures,
the optical modes have approximately ten times smaller values

TABLE III. The quantities given by Eq. (53) at 300 K. Here, the
units of ξ (j ) are in W/(m K s) ×1012. Only modes 1–6 are considered.

Structure ξ (1) ξ (2) ξ (3) ξ (4) ξ (5) ξ (6)

d-Si 0.69 1.24 2.13 0.71 0.07 0.07
II 0.07 0.08 0.08 0.02 0.02 0.02
VIII 0.09 0.10 0.11 0.01 0.01 0.02
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TABLE IV. The quantities given by Eq. (55) at 300 K. Here, the
units of τ (j ) are in s ×10−10. Only modes 1–6 are considered.

Structure τ (1) τ (2) τ (3) τ (4) τ (5) τ (6)

d-Si 0.37 0.28 0.08 0.08 0.06 0.06
II 1.44 1.47 0.80 0.51 0.43 0.39
VIII 0.90 1.00 0.48 0.33 0.29 0.23

than the acoustic modes, except in the case of d-Si, where one
optical mode has value in the same order as the acoustic modes.

The results listed in Table III manifest the similarity of
the harmonic phonon spectra in the clathrate structures II
and VIII and point out that to explain their different lattice
thermal conductivities, one may find larger differences through
the study of the anharmonic interatomic forces and quantities
derived from them.

In Fig. 5, the following quantities

ξ (λ) ≡ 1

3V

∑
α

v2
α(λ)cv(λ), (54)

are represented as a function of the phonon frequency.
Essentially, the same features can be seen as for ξ (j ) in
Table III, but in more detail. In particular, the clathrate
structures II and VIII have a similar distribution of the ξ (λ)
values, which implies that the largest differences in lattice
thermal conductivity are due to the RTs and quantities used to
calculate RTs.

D. Phonon lifetimes

If the finite lifetime of a phonon mode is assumed to
result from the third-order atomic force constants, it has
been shown that the one-phonon coherent neutron scattering
cross section has approximately a Lorenzian line shape,
provided that the third-order atomic forces are relatively
weak [28]. The criterion for this is usually taken to be such
that 2π(qj )/ωj (q)  1, where the width of a Lorenzian peak
at half maximum (qj ) of the one-phonon coherent neutron
scattering cross section line is related to the relaxation time (or
lifetime) of a state qj as τ (qj ) = 1/2(qj ).

To study the validity of SMRT, the percentage of q
points violating the criterion 2π(qj )/ωj (q) < 0.1 has been
calculated here. In the case of d-Si, approximately 1.9% of the
acoustic and 2.5% of the optical modes violate the criterion at
300 K (mean values for acoustic and optical modes). In the case
of the clathrate structure II, the corresponding percentages are
14% for the acoustic and 52% for the optical modes. Lastly,
in the case of the clathrate structure VIII, the percentages
are 6% for the acoustic and 38% for the optical modes. For
a mode violating this particular criterion, for example, with
ωj (q) = 400 cm−1, the width at half maximum of a Lorenzian
peak would be equal to or larger than 40 cm−1. Instead of this,
one probably has peak forms deviating from a Lorenzian form.

Next, the following quantities are considered:

τ (j ) ≡ 1

3

∑
q,α

τα(qj ). (55)

The results are listed in Table IV at 300 K. The smallest RTs are
obtained for d-Si. For acoustic modes, the clathrate structures
II and VIII have approximately three and two times higher
values, respectively. For the optical modes considered, the
difference is approximately two times larger. For d-Si, the
percentage of acoustic states for which τ (λ) < 0 at 300 K is
between 0% − 0.5%, while for the clathrate structures II and
VIII these percentages are 0% and 0% − 2%, respectively.

In Fig. 5, the quantities

τ (λ) ≡ 1

3

∑
α

τα(λ) (56)

are represented as a function of phonon frequency. The results
of Fig. 5 appear to contradict with the results given by
Table IV, since for d-Si it seems that the acoustic modes
have in general larger values for the lifetimes than in the
case of the clathrate structure II. However, in the case of the
clathrate structure II, the values for τ (λ) are clustered within
the range 10−9–10−10 s, while for d-Si there are more values
of τ (λ) for acoustic modes within the range 10−11–10−12 s, as
well. The difference between the RTs of the acoustic modes in
the clathrate structures II and VIII is rather small but can be
identified from Fig. 5, the structure VIII having slightly lower
values in general.

To summarize, within the current formalism, the results
given by Tables III and IV and Fig. 5 indicate that the lower
lattice thermal conductivity of the clathrate structure VIII can
be partly explained with relatively short RTs and with differing
harmonic phonon spectra, that is, ξ (j ) values lower than for
d-Si and similar to those of structure II.

E. Phonon phase space

The so-called phonon phase space can be used as a measure
of available scattering channels for phonons obeying the
conservation of energy and quasimomentum. The transition
probabilities, for example, in Eq. (41), are proportional to the
phonon phase space. The phase space for processes in which
one phonon is annihilated (−) or two phonons are annihilated
(+), can be written as [10,49]

P ±
3 (qj ) ≡

∑
j ′,j ′′

∑
q′

δ[ωj (q) ± ωj ′(q′) − ωj (q + q′ − G)],

(57)

and the total phase space is given as a sum of these terms times
some normalization factor (one may replace the summation
over q′ by integral in the continuum limit). In Fig. 5, the results
based on the relation (times some normalization factor 1/�)

P3(λ) = 1

�
[P +

3 (λ) + P −
3 (λ)] (58)

are represented. It is usually expected that the larger values
of P3(λ) result in smaller values for τ (λ). However, this is
not necessarily the case since the values of V (λ; λ′; λ′′) and
n̄λn̄λ′(n̄λ′′ + 1) have some significance and may change the
outcome to opposite. Indeed, it can be seen from Fig. 5 that
with frequency values 8–10 THz, there is some correlation be-
tween the relaxation times and phase space values. The largest
values of P3(λ) are obtained for the clathrate structure II, which
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is true for acoustical and optical modes in general. Due to this
observation and since the harmonic phonon spectra are rather
similar for the clathrate structures II and VIII, it seems that
the shorter RTs of structure VIII are caused by the differences
in factors proportional to |V (λ; λ′; λ′′)|2n̄λn̄λ′(n̄λ′′ + 1) [see
for instance Eqs. (39) and (41)].

The phase space results for the clathrate structures II and
VIII show that seemingly small changes in the harmonic
phonon spectra, even for structures with similar thermody-
namical properties arising from the harmonic phonon spectra,
can lead to relatively large differences in the phase space
calculations.

F. Mean free paths

One criterion for evaluating the validity of the propagating
phonon picture is to calculate the length of the MFP of
a phonon state. It has been suggested that the propagating
phonon picture is a reasonable approximation to work with
if the mean free paths are larger than the distance between
the nearest atoms in the crystal [50]. This may cause some
problems from a physical point of view since in the present
BTE approach, one considers phonons propagating in the
lattice with wave lengths larger than the distance between
the nearest atoms and on the other hand the obtained results
may imply that MFPs are smaller than this distance, while
such phonons do not exist in the harmonic spectra. In these
cases, the vibrational states of a crystal may be considered as a
linear combination of the harmonic states with some periodic
time dependence. Classification of different vibrational states,
which cannot be described as phonons, has been made [51]. For
states with MFPs shorter than interatomic distances, the lattice
thermal conductivity may not be described by the heat flux
given by Eq. (21) in proper detail, but the use of a more general
heat flux might yield further information on the mechanisms
of lattice thermal conductivity and could change the outcome
of the present results up to some degree. Such heat fluxes
have been derived [23] and used to calculate lattice thermal
conductivity values of amorphous Si by using linear response
approach [50].

The MFPs represented here are calculated by using

mfp(λ) ≡ τ (λ)|v(λ)|, τ (λ) ≡ 1

3

∣∣∣∣∣
∑

α

τα(λ)

∣∣∣∣∣. (59)

For d-Si, the percentage of q-points violating the criterion
mfp(λ) < a (a being the lattice constant of the primitive
unit cell) is 0.5%–1.0% (the values for acoustic modes are
between 0.5%–1.0%) and 0.7%–2.4% (optical modes) at
300 K. For the clathrate structure II, the same percentages
are 0% (acoustic modes), 0%–86% (optical modes), while
for the clathrate structure VIII they are 2% (acoustic modes)
and 2%–96% (optical modes). The largest percentages for the

clathrate structures II and VIII are about 100 times higher than
for d-Si. In any case, the largest lattice thermal conductivity
contribution arises from the states that do not violate the above
MFP criterion. However, one may ask, how to describe the
states violating the MFP criterion and what kind of errors
might arise from the present perturbative approach where the
harmonic states are assumed to be stationary.

IV. CONCLUSIONS

The lattice thermal conductivity of silicon clathrate frame-
works II and VIII was investigated by using ab initio DFT
lattice dynamics with an iterative solution of the Boltzmann
transport equation. At 100–350 K, the lattice thermal conduc-
tivities of the clathrate structures II and VIII are approximately
42%–38% and 365–31% of the lattice thermal conductivity
of d-Si, respectively. While the harmonic phonon spectra of
the studied clathrate frameworks are rather similar, the lattice
thermal conductivity values of the framework VIII at 100–350
K are approximately 14%–18% lower than for the framework
II. Analysis of the results shows that the difference in the lattice
thermal conductivity of the clathrate structures II and VIII
is due to the shorter relaxation times of the acoustic modes
in the structure VIII, which seem to arise in part from the
stronger three-phonon interaction coefficients V (λ; λ′; λ′′). In
the present approach, the harmonic phonon frequency shifts
due to anharmonic interatomic forces are neglected, which
is a point of improvement for future studies in this field. In
particular, the three-phonon phase space was found to be rather
sensitive to changes in the harmonic phonon spectra when
comparing the clathrate structures II and VIII. Thus more
detailed calculations on the lattice thermal conductivities of
the clathrate structures II and VIII could change the results
obtained here up to some degree, for instance, by taking
into account the harmonic phonon frequency shifts due to the
third and fourth-order interatomic forces. Overall, the present
analysis on the lattice thermal conductivity of the clathrate
frameworks II and VIII may facilitate further theoretical work
towards more detailed understanding of the lattice thermal
conductivity and thermoelectric efficiency of semiconducting
clathrate materials.
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