

This is an electronic reprint of the original article. This reprint may differ from the original in pagination and typographic detail.

Woidy, P.; Karttunen, A.J.; Rudel, S.; Kraus, F.

The Reactions of TiCl3, and of UF4 with TiCl3 in liquid Ammonia: Unusual Coordination Spheres in [Ti(NH3)8]Cl3 · 6 NH3 and [UF(NH3)8]Cl3 · 3.5 NH3

Published in: Chemical Communications

DOI: 10.1039/C5CC04411A

Published: 01/01/2015

Document Version Peer-reviewed accepted author manuscript, also known as Final accepted manuscript or Post-print

Published under the following license: Unspecified

Please cite the original version:

Woidy, P., Karttunen, A. J., Rudel, S., & Kraus, F. (2015). The Reactions of TiCl3, and of UF4 with TiCl3 in liquid Ammonia: Unusual Coordination Spheres in [Ti(NH3)8]Cl3 · 6 NH3 and [UF(NH3)8]Cl3 · 3.5 NH3. *Chemical Communications*, *51*(59), 11826-11829. https://doi.org/10.1039/C5CC04411A

This material is protected by copyright and other intellectual property rights, and duplication or sale of all or part of any of the repository collections is not permitted, except that material may be duplicated by you for your research use or educational purposes in electronic or print form. You must obtain permission for any other use. Electronic or print copies may not be offered, whether for sale or otherwise to anyone who is not an authorised user.

The Reactions of TiCl₃, and of UF₄ with TiCl₃ in liquid Ammonia: Unusual Coordination Spheres in [Ti(NH₃)₈]Cl₃ · 6 NH₃ and [UF(NH₃)₈]Cl₃ · 3.5 NH₃

Patrick Woidy,^a Antti J. Karttunen,^b Stefan Rudel^a and Florian Kraus^{*a}

Received (in XXX, XXX) Xth XXXXXXXX 200X, Accepted Xth XXXXXXXX 200X First published on the web Xth XXXXXXXX 200X DOI: 10.1039/b0000000x

TiCl₃ forms colorless crystals of octaammine titanium(III) chloride ammonia (1/6), [Ti(NH₃)₈]Cl₃ · 6 NH₃, which presents the first example of a homoleptic, square-antiprismatic coordination sphere for monodentate ligands around a Ti(III)cation and the first structurally characterized octaammine complex of a transition metal. Quantum chemical calculations show that the absorption in the [Ti(NH₃)₈]³⁺-molecule is clearly red-shifted in comparison to the absorption of the well-known [Ti(H₂O)₆]³⁺-cation. An excess of TiCl₃ reacts with UF₄ in anhydrous liquid ammonia under abstraction of three fluoride ions and the compound octaammine fluorido uranium(IV) chloride ammonia (1/3.5), [UF(NH₃)₈]Cl₃ · 3.5 NH₃, is formed which shows a distorted threefold-capped trigonal-prismatic coordination sphere around U(IV). The compound presents a rare example of coordination number nine in mononuclear U(IV)-complexes, and is the first where the ligands are simple inorganic species. Due to the similarity of NH₃ and H₂O as solvents, the finding presents an important aid for the speciation of actinoids in aqueous solutions as well.

In the recent decades uranium chemistry experienced a renaissance, as more "non-nuclear" uses of uranium compounds, for example, in small molecule activation,^[1] or catalysis were investigated.^[2,3] Also, the workup of radioactive wastes and actinoid containing nuclear fuels, the selective extraction of actinoids, as well as the understanding of their geological fate in the environment after an accident, requires a profound knowledge of actinoid species in solution.^[4] Single crystal X-ray structures would be of aid for the assessment of potential structural motifs in the solution chemistry of the actinoids. However, structural information from single crystal X-ray diffraction was often not available as olation and oxolation reactions occur with actinoids in aqueous solutions. These were believed to lead to "ill-defined structures and chemistry" and thus it remained crystallographically unexplored.^[4] The structural chemistry of actinoid complexes obtained from aqueous solutions is therefore rather poorly understood. Liquid ammonia is a solvent system similar to water,^[5] and it may serve as a model system to obtain crystalline actinoid species which are otherwise difficult or impossible to isolate from aqueous media. Liquid ammonia shows a much lower autoprotolysis and has a broader pH range which may allow easier access to products coming from protonation and deprotonation reactions. The literature on the coordination chemistry of uranium with only simple, inorganic, monodentate ligands, with exception of the aqua ligand, is very scarce compared to the magnitude of literature of multidentate-binding organic ligands.^[6-8] Uranium compounds may feature various coordination numbers,^[8,9] often from six to eight, but also higher in the case of multidentate ligands, and even coordination numbers of twelve or more, for example in the borohydrides, are known. ^[10–12] A coordination number of nine for monodentate ligands is however rare and has, to the best of our knowledge, been reported only for the threefold capped trigonal prismatic cations of Ba^{2+,[13]} La^{3+,[14]} Sm^{3+,[15]} and for uranium compounds with DMSO, DMF, or acetonitrile as a ligand.^[16-19] Our compound seems to be a rare example of such a threefoldcapped trigonal-prismatic coordination sphere where only simple inorganic ligands are present on the uranium atom. We have previously investigated the reactions of UF₄ and UF₆ with anhydrous ammonia.^[20] In our attempts to identify usable fluoride ion acceptors for the liquid ammonia system, [20-22] and in order to expand the chemistry of UF₄, we report here the usage of titanium(III) chloride as a fluoride ion acceptor in anhydrous ammonia besides the unusual coordination spheres of U(IV) and Ti(III) in the resulting compounds.

The coordination chemistry of titanium has been extensively reviewed.[23,24] Titanium(III)-complexes of the formula types $\text{Ti}{L_6}^{\scriptscriptstyle 3^+},\ \text{Ti}{X_2}{L_4}^+$ or $\text{Ti}{X_6}^{\scriptscriptstyle 3^-}$ show an octahedronlike coordination. In aqueous solution the hexaaqua-cation [Ti(H₂O)₆]³⁺ is known,^[25] In a reaction of TiI₃ in liquid ammonia at room temperature, only a byproduct with the composition [(NH₃)₅Ti-O-Ti(NH₃)₅]I₄ · NH₃ (octahedral coordination) was observed.^[26] A square-antiprismatic coordination sphere for titanium has been reported for multidentate ligangs, such as bidentate binding oxalate,^[27] and tridentate binding C₁₆H₁₈N₄),^[28] and in the compounds Ti₈Bi₉,^[29] and TiMn₂P₁₂ (Ti(IV)).^[30] For monodentate ligands, a Ti atom was observed in a metal-organic-frameworkcompound which was coordinated by seven H₂O ligands and one hydroxide anion in a distorted square-antiprismatic manner.^[31] Octammine complexes of other metal cations are also quite rare, and structural proof is only available in case of the twofold capped trigonal prismatic cations $[M(NH_3)_8]^{2+}$ (M = Ca, Sr, Ba), [32-34] and the square-antiprismatic cation $[Yb(NH_3)_8]^{3+.[14,35]}$ During the synthesis of $TiX_3 \cdot 6 NH_3$ (X = Cl, Br) colorless-greyish compounds with the composition of $TiBr_3 \cdot 8 NH_3$ and $TiCl_3 \cdot 7 NH_3$ have been observed without the possibility of further characterization.^[36] Other investigations in the system TiCl₃/NH₃ showed that also

colorless-greyish TiCl₃ \cdot 6 NH₃ was always obtained as the only product.^[37,38] In all these cases, the colorless appearing solids were allowed to warm to room temperature after removal of the excess liquid NH₃ and the compositions were then determined by elemental analyzes.

Pure TiCl₃ reacts with anhydrous liquid ammonia at -40 °C under formation of colorless crystals of octaammine titanium(III) chloride ammonia(1/6), $[Ti(NH_3)_8]Cl_3 \cdot 6 NH_3$ of which the composition was elucidated using single-crystal Xray analysis at low temperature (details available in Table S1). The observed color is in agreement with reports on other Ti(III)-ammine complexes (see above) and pale blue colors may be easily overlooked as the moisture and temperature sensitive crystals had to be manipulated in dry, cold perfluoroether oil. The compound crystallizes in the monoclinic space group P2/c. The asymmetric unit contains a Ti(1) atom on the 2e position which is coordinated by eight ammine ligands (N(1) to N(4) and symmetry equivalents) in the shape of a square antiprism (Fig. 1). Due to symmetry, the centers of both squares are 1.2619(7) Å away from the titanium atom and are tilted only by 1° towards each other. Hoffmann and coworkers analyzed the deviation from S₈-symmetry by measuring the angle between the metal-ligand bond and the S_8 -axis.^[39] In an ideal system this angle should be 59.22°. Kepert however showed that the ideal S₈-symmetry is slightly less stable compared to a marginally distorted arrangement of the ligands where the respective angle is 57.1°.[40] In the titanium compound the angles are observed with 57.1° $(Ti(1)-N(1)-S_8-axis)$ and 56.2° $(Ti(1)-N(2)-S_8-axis)$ and thus the coordination polyhedron is best described as distorted square-antiprismatic. The Ti-N-distances are observed in between 2.275(1) and 2.312(1) Å and are therefore slightly larger compared to the ones of the compound [(NH₃)₅Ti-O-Ti(NH₃)₅]I₄ · NH₃, for which Ti-N-distances of 2.21(1) to 2.29 Å were reported.^[26] This is of course due to the higher coordination number in [Ti(NH₃)₈]Cl₃ · 6 NH₃. Other ammine complexes of the titanium group, for example $M(NH_3)F_4$ or $[M(NH_3)_4F_4] \cdot NH_3$ (M = Zr, Hf), show similar M-N-distances with 2.337(4), 2.29(2) Å, and 2.397(3), 2.383(8) Å, respectively.^[41,42] In the $[Yb(NH_3)_8]^{3+}$ cation the Yb-N distances were reported in the range of 2.4 to 2.5 Å. ^[14,35] Further selected atomic distances and angles of the crystal structure are available from Table S2 in the Supporting Information and from the caption of Figure 1.

Fig. 2. The unit cell of the compound $[Ti(NH_3)_8]Cl_3 \cdot 6 NH_3$. Displacement ellipsoids are shown at the 70 % probability level at 123 K, H-atoms isotropic with arbitrary radii.

The chlorine atoms Cl(1) and Cl(2) occupy the crystallographic sites 4g and 2f, respectively. With a Ti.-Cldistance of 4.1374(4) and 4.7104(2) Å there is no direct cation-anion contact. The chloride anions act as acceptors for N-H…Cl-hydrogen bonds, for details see the Supporting Information. The unit cell of the compound [Ti(NH₃)₈]Cl₃ · 6 NH₃ is shown in Fig. 2. It is interesting to note that the compound presented here shows a Ti:N-ratio of 1:14, which has not been reported previously. Schläfer and coworkers report that TiCl₃ · 6 NH₃ is obtained when ammonia is carefully pumped off from the reaction mixture of TiCl₃ in liquid ammonia at -54 °C during five to six weeks,^[36] in our case we obtained the crystals of [Ti(NH₃)₈]Cl₃ · 6 NH₃ under autogenous pressure at - 40 °C. As Schläfer and coworkers have obained "only" TiCl₃ · 6 NH₃,^[36] it is plausible to assume that $[Ti(NH_3)_8]Cl_3 \cdot 6 NH_3$ can be converted to yield the respective compound. The decomposition of TiCl₃ · 6 NH₃ has been studied in the temperature range from -40 to +450 °C.^[43] At room temperature TiCl₃ · 6 NH₃,^[37] as well as a compound with the composition $TiCl_3 \cdot 5$ NH₃, were both reported to be stable.^[43] TiCl₃ \cdot 6 NH₃ decomposes to TiCl₃ \cdot 5 NH₃ at +7 °C.^[43] The crystals of [Ti(NH₃)₈]Cl₃ · 6 NH₃ burst upon warming to temperatures higher than approximately -40°C without autogeneous pressure present. At room temperature TiCl₃ · 5 NH₃ was obtained as evidenced by elemental analysis (calc.: N:29.26%; H:6.32%, det.:29.83%, 6.231%).

Aqueous solutions of Ti(III) are known to be violet/blue. Typically they show small extinction coefficients as the electronic *d-d* transition is forbidden. $[Ti(NH_3)_8]^{3+}$ crystallizes in colorless crystals of $[Ti(NH_3)_8]Cl_3 \cdot 6 \text{ NH}_3$, suggesting that it might show interesting electronic differences in comparison to the known Ti(III) compounds. Because the compound is not stable above ca. -40 °C, we could not obtain a UV/VIS spectrum. Instead, we investigated the spectroscopic properties of $[Ti(NH_3)_8]^{3+}$ using *ab initio* quantum chemical methods (high level coupled cluster calculations at the CC2/def2-TZVPP level of theory, for further computational details see Experimental. We first investigated the well-known Ti(III) complex $[Ti(H_2O)_6]^{3+}$ as a reference case. A broad absorption band in the region around 500 nm has been reported in the most recent experimental UV/VIS spectrum, in agreement with computational results obtained with the DFT-B3LYP method.^[44] The UV/VIS results predicted here are in good agreement with the experiment, showing an absorption band centered at 490 nm. The transition strength is very low $(0.2 \cdot 10^{-6} \text{ a.u.})$, as expected for a forbidden *d-d* transition. In the case of the $[Ti(NH_3)_8]^{3+}$ complex, the predicted absorption wavelength is noticeably red-shifted to 711 nm. Therefore, the $[Ti(NH_3)_8]^{3+}$ complex should absorb in the red regime of the spectrum, suggesting in a pale blue complementary color that might be rather difficult to observe properly, e.g. from crystals in cooled perfluoro-ether oil. Also for $[Ti(NH_3)_8]^{3+}$, the transition strength of the absorption is very small $(0.2 \cdot 10^{-7})$ a.u.). A comparison between the frontier orbitals of $[Ti(H_2O)_6]^{3+}$ and $[Ti(NH_3)_8]^{3+}$ shows that in both cases the HOMO is the Ti d_z^2 orbital, which is also in line with the previous results for $[Ti(H_2O)_6]^{3+}$.^[44] The other four *d* orbitals are ordered in two practically degenerate pairs. For $Ti(NH_3)_8$ ³⁺, the lower-lying pair of *d*-orbitals is composed of d_{x-y}^{2} and d_{xy} , but the 711 nm absorption involves the higherenergy d_{xz} and d_{yz} orbitals. This energy ordering for the square antiprismatic [Ti(NH₃)₈]³⁺ ion is reversed in comparison to the octahedral [Ti(H₂O)₆]³⁺ complex.^[44] The square antiprismatic configuration of $[Ti(NH_3)_8]^{3+}$ is non-centrosymmetric, but the $d_z^2 \rightarrow (d_{xz} / d_{yz})$ transition is still symmetry-forbidden.

By comparing the radii/charge-ratios of Ti(III) and U(IV) for various coordination numbers (for C.N. 6: 0.14 and 0.17, respectively),^[45] and in view of our experiment Ti³⁺ should be a slightly harder Lewis-acid and therefore prefer the bonding to "harder" F-anions over "softer" ammine ligands. When UF₄ is reacted with TiCl₃ in liquid ammonia solution, the reaction may be described by equation 1:

$$2 \text{ UF}_{4}(am) + 2 \text{ TiCl}_{3}(am) + 23 \text{ NH}_{3} \rightarrow 2 [\text{UF}(\text{NH}_{3})_{8}]\text{Cl}_{3} \cdot 3.5$$

NH₃ + 2 "TiF₃"(am) (1)

The identity of the resulting titanium(III) compound could not be established besides numerous attempts and is therefore referred to as "TiF₃". It is obtained in the form of a greyish precipitate of variable N, H, and F content, and is X-ray amorphous. Its IR spectrum shows that besides bound NH₃ molecules also NH₂⁻ and eventually NH²⁻ anions may be present. The compound $[UF(NH_3)_8]Cl_3 \cdot 3.5 NH_3$ is obtained in the form of green crystals. The composition has been elucidated using single-crystal X-ray analysis (details in Table S1). The atoms of the asymmetric unit of $[UF(NH_3)_8]Cl_3 \cdot 3.5$ NH_3 occupy only two crystallographic sites: The atoms U(1), F(1), N(1) to N(10), N(12), and Cl(1) to Cl(3) reside on the 8f position and the nitrogen atom N(11) occupies the 4e position. The uranium atom is coordinated by one fluorine atom and eight ammine ligands (N(1-8)) forming the octaammine fluorido uranium(IV) cation $[UF(NH_3)_8]^{3+}$, shown in Fig. 3. The coordination polyhedron may be best described as a distorted, trifold-capped trigonal prism. The trigonal faces, which are formally formed by the atoms N(1), N(2), F(1) and N(4), N(5), N(7), respectively, are not parallel to each other

but deviate by $5.24(8)^{\circ}$. The centers of these faces are 1.872(1) and 1.648(1) Å away from the U atom, respectively. The tetragonal planes show angles of 63.27(3), 58.37(4) and $58.38(4)^{\circ}$ towards each other. They are capped by the ammine ligands N(6), N(8), and N(3) with distances of 1.755(2), 1.734(2), and 1.671(2) Å, to these planes, respectively. The nitrogen atoms of the tetragonal face deviate only by \pm 0.049(1) Å from the respective least-squares-planes.

Fig. 3. The $[UF(NH_3)_8]^{3+}$ -cation of $[UF(NH_3)_8]Cl_3 \cdot 3.5 NH_3$. The imaginary edges of the trigonal prism are shown dashed. Displacement ellipsoids are shown at the 70 % probability level at 123 K, H-atoms isotropic with arbitrary radii. Selected atomic distances [Å]: U(1)-F(1) 2.1174(11), U(1)-N(1) 2.5599(17), U(1)-N(2) 2.5670(17), U(1)-N(3) 2.6302(16), U(1)-N(4) 2.6106(16), U(1)-N(5) 2.6094(17), U(1)-N(6) 2.5966(19), U(1)-N(7) 2.5590(16), U(1)-N(8) 2.5875(17).

Fig. 4. Central projection of the unit cell of $[UF(NH_3)_8]Cl_3 \cdot 3.5 NH_3$. $[UF(NH_3)_8]^{3+}$ -cations are shown as grey polyhedra. Displacement ellipsoids of atoms not belonging to these polyhedra are shown at the 70 % probability level at 123 K, H-atoms isotropic with arbitrary radii.

The U-N-distances are observed in a range between 2.559(1) to 2.630(1) Å. They are comparable with distances reported for the compound $[UF_4(NH_3)_4] \cdot NH_3$ with 2.618(5) Å,^[20] where the U-atom is only eightfold coordinated. Despite the coordination number of nine, the U-F-distance is quite short with 2.117(1) Å compared to the respective distances reported for the compounds $[UF_4(NH_3)_4] \cdot NH_3$ (2.188(4) Å) and $(N_2H_7)(NH_4)[UF_7(NH_3)]$ (2.200(2) to 2.336(2) Å), where the coordination number is only eight.^[20] For the compound $[UO_2F_2(NH_3)_3]_2 \cdot 2 NH_3$ longer U-F-distances ranging from 2.217(2) to 2.241(2) Å have been observed.^[46] So, the uranium(IV) cation seems to exert a strong pull towards the F-anion. Selected atomic distances and angles of the crystal structure are available from Table S4 and the caption of Figure 3. The short N…Cl-, N…F- and N…N-distances are indicative for the presence of the respective hydrogen bonds, for details

see the Supporting Information. Fig. 4 shows the unit cell of the compound. Upon warming to room temperature an X-ray amorphous powder is obtained of which the IR spectrum shows the presence of ammine ligands. As the compound cannot be separated from the titanium compounds, elemental analysis was not undertaken. Our compound seems to be a rare example of a mononuclear uranium complex with monodentate ligands showing coordination number nine,^[4] and only a few other examples have been characterized, however with organic ligands such as dimethylformamide, acetonitrile, and dimethylsulfoxide.^[16–19] As we could characterize such a species with ligands similar to aqua ligands, we expect that this result is important for actinoid speciation in aqueous solutions as well.

The compound $[Ti(NH_3)_8]Cl_3 \cdot 6 NH_3$ presents so far the compound with the highest observed ammonia content in the system TiX_3 / NH_3 (X = Cl, Br). It contains a squareantiprismatic octammine titanium(III) cation, which, to the best of our knowledge, represents the first example of this coordination number with monodentate homoleptic ligands on Ti. Also, the compound seems to be the first example of an octaammine complex of a transition metal. Interestingly, the titanium(III)-compound appears colorless to the eye. As it is unstable towards the loss of ammonia above -40 °C, further analytic methods were hampered. Quantum chemical calculations show that the absorption in $[Ti(NH_3)_8]^{3+}$ is clearly red-shifted in comparison to the absorption of the well-known $[Ti(H_2O)_6]^{3+}$, resulting in a pale blue complementary color that might be difficult to observe with the naked eye.

Titanium(III)-chloride seems to be a fluoride ion acceptor usable for the liquid ammonia system. It is able to subtract three fluoride ions from UF₄ and green crystals of $[UF(NH_3)_8]Cl_3 \cdot 3.5$ NH₃ are formed as a product. The $\left[UF(NH_3)_8 \right]^{3+}$ cation is best described as a distorted, trifoldcapped trigonal prism. Despite the coordination number of nine, the U-F-distance is quite short with 2.117(1) Å, thus showing the high Lewis-acidity of U(IV). The compound seems to present the first example of a mononuclear uranium complex of coordination number nine with inorganic monodentate ligands. Due to the similarity of the aqueous and the ammonia solvent systems, we believe that the existence of such a species in liquid ammonia is an important addition and aid for the knowledge and detection of actinoids in aqueous solutions. Eventually, the respective aquo complex [UF(H₂O)₈]³⁺ can also be detected in dilute aqueous solutions from which UF₄ or its hydrates do not yet precipitate.

Notes and references

^a Anorganische und Fluorchemie der Philipps-Universität Marburg, Hans-Meerwein-Straße 4, 35032 Marburg, Germany;

florian.kraus@chemie.uni-marburg.de

^b Department of Chemistry, Aalto University, FI-00076 Aalto, Finland † Electronic Supplementary Information (ESI) available: Experimental Procedures, Crystallographic Details and Hydrogen Bonding, Computational Information. See DOI: 10.1039/b000000x/

1 I. Castro-Rodriguez, H. Nakai, L. N. Zakharov, A. L. Rheingold, K. Meyer, *Science* **2004**, *305*, 1757.

2 A. R. Fox, S. C. Bart, K. Meyer, C. C. Cummins, *Nature* **2008**, *455*, 341.

3 S. M. Mansell, F. Bonnet, M. Visseaux, P. L. Arnold, *Dalton Trans.* 2013, *42*, 9033.

4 K. E. Knope, L. Soderholm, Chem. Rev. 2013, 113, 944.

5 V. Doetsch, J. Jander, U. Engelhardt, C. Lafrenz, J. Fischer, H. Nagel, W. Renz, G. Türk, T. von Volkmann, G. Weber, *Chemistry in Nonaqueous Ionizing Solvents - Volume I Chemistry in Anhydrous Liquid Ammonia -Part 1 Anorganische Und Allgemeine Chemie in Flüssigem Ammoniak*, Friedr. Vieweg & Sohn, Braunschweig, **1966**.

6 S. C. Bart, K. Meyer, in *Structure and Bonding 127: Organometallic and Coordination Chemistry of the Actinides*, Springer-Verlag, Berlin, Heidelberg, **2008**, pp. 119.

7 J. L. Sessler, P. J. Melfi, G. D. Pantos, *Coord. Chem. Rev.* **2006**, *250*, 816.

8 S. A. Cotton, Annu. Rep. Prog. Chem., Sect. A: Inorg. Chem. 2011, 107, 264.

- 9 M. B. Jones, A. J. Gaunt, Chem. Rev. 2013, 113, 1137.
- 10 S. R. Daly, G. S. Girolami, Inorg. Chem. 2010, 49, 5157.
- 11 S. R. Daly, G. S. Girolami, Chem. Commun. 2010, 46, 407.
- 12 S. R. Daly, M. Ephritikhine, G. S. Girolami, *Polyhedron* **2012**, *33*, 41.

13 H. Brumm, E. Peters, M. Jansen, Angew. Chem. Int. Ed. 2001, 40, 2069.

D. M. Young, G. L. Schimek, J. W. Kolis, *ChemInform* 1997, 28, 12.
C. C. Quitmann, K. Müller-Buschbaum, Z. Anorg. Allg. Chem. 2005,

631, 564.

16 J. Maynadie, J.-C. Berthet, P. Thuery, M. Ephritikhine, *Cambridge Crystallographic Data Centre, Private Communication* **2013**, ZIXLEZ.

17 N. Koshino, Y. Kachi, T. R. Varga, A. C. Benyei, M. Shiro, K. Takao, Y. Ikeda, *Inorg. Chim. Acta* **2009**, *362*, 3433.

18 M.-J. Crawford, A. Ellern, K. Karaghiosoff, P. Mayer, *Inorg. Chem.* 2009, *48*, 10877.

19 Jean-Claude Berthet, P. Thuery, M. Ephritikhine, *Inorg. Chem.* 2005, 1142.

- 20 F. Kraus, S. A. Baer, Chem. Eur. J. 2009, 15, 8269-8274.
- 21 F. Kraus, BioInorg. React. Mech. 2012, 8, 29.
- 22 F. Kraus, S. A. Baer, M. R. Buchner, A. J. Karttunen, *Chem. Eur. J.* **2012**, *18*, 2131.
- 23 R. C. Fay, Coord. Chem. Rev. 1981, 37, 9.
- 24 R. C. Fay, Coord. Chem. Rev. 1982, 45, 9.

25 M. Hartmann, T. Clark, R. van Eldik, J. Phys. Chem. A 1999, 103, 9899.

26 T. Sichla, R. Niewa, U. Zachwieja, R. Eámann, H. Jacobs, Z. Anorg. Allg. Chem. 1996, 622, 2074.

- 27 R. B. English, D. J. Eve, Inorg. Chim. Acta 1993, 203, 219.
- 28 X.-Q. Zhang, B. Xu, Y.-H. Li, W. Li, Acta Crystallogr., Sect. E:
- Struct. Rep. Online 2008, 64, m437.
- 29 C. G. Richter, W. Jeitschko, J. Solid State Chem. 1997, 134, 26.
- 30 U. D. Scholz, W. Jeitschko, Z. Anorg. Allg. Chem. 1986, 540, 234.

31 M.-H. Xie, X.-L. Yang, Y. He, J. Zhang, B. Chen, C.-D. Wu, *Chem. Eur. J.* **2013**, *19*, 14316.

32 P. Woidy, A. J. Karttunen, T. G. Müller, F. Kraus, Z. Naturforsch. 2014, 69b, 1141.

33 R. E. Johnsen, P. B. Jensen, P. Norby, T. Vegge, J. Phys. Chem. C 2014, 118, 24349.

- 34 N. Korber, J. Daniels, Z. Anorg. Allg. Chem. 1999, 625, 189.
- 35 K. Müller-Buschbaum, Z. Anorg. Allg. Chem. 2007, 633, 1403.
- 36 H. L. Schläfer, W. Schroeder, Z. Anorg. Allg. Chem. 1966, 347, 45.
- 37 W. C. Schumb, R. F. Sundström, J. Am. Chem. Soc. 1933, 55, 596.
- 38 H. Goerges, A. Stähler, Ber. Dtsch. Chem. Ges. 1909, 42, 3200.
- 39 J. K. Burdett, R. Hoffmann, R. C. Fay, Inorg. Chem. 1978, 17, 2553.
- 40 C. Kepert, Prog. Inorg. Chem. 1978, 24, 179.
- 41 C. Plitzko, M. Strecker, G. Meyer, Z. Anorg. Allg. Chem. 1997, 623, 79.
- 42 F. Kraus, S. A. Baer, M. B. Fichtl, Eur. J. Inorg. Chem. 2009, 441.
- 43 H. L. Schläfer, W. Schroeder, Z. Anorg. Allg. Chem. 1966, 347, 59.
- 44 S. Maurelli, S. Livraghi, M. Chiesa, E. Giamello, S. Van Doorslaer,
- C. Di Valentin, G. Pacchioni, Inorg. Chem. 2011, 50.

⁴⁵ A. F. Holleman, N. Wiberg, *Lehrbuch Der Anorganischen Chemie*, Walter De Gruyter, Berlin, **2007**.

⁴⁶ P. Woidy, A. J. Karttunen, F. Kraus, Z. Anorg. Allg. Chem. 2012, 638, 2044.