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Short-term statistics of ice loads on ship bow frames in floe ice 
fields: Full-scale measurements in the Antarctic ocean 
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A B S T R A C T   

Ship operation and ice loading in floe ice fields have received considerable interest during recent 
years. There have been several numerical simulators developed by different institutes which can 
simulate ship navigation through floe ice fields and estimate ship performance and local ice loads. 
However, public data obtained from full-scale measurement covering comprehensively ship 
performance and ice loads under various ice thicknesses, concentrations and floe sizes are rare. 
The 2018/19 Antarctic voyage of the Polar Supply and Research Vessel (PSRV) S.A. Agulhas II 
gathered considerable data of the ship in floe ice fields under various thicknesses, concentrations, 
and floe sizes. The aim of this paper is to carry out statistical analysis to seek suitable probability 
distributions which adequately fit the measured ice load and therefore suitable to be used as 
parent distributions for long-term estimation. For this aim, three categories of probability dis-
tributions, namely standard distributions, truncated distributions and mixture distributions are 
tested. It is found that truncated distributions can fit the load data better than standard distri-
butions bounded at the threshold. In addition, mixture distributions are shown to have promising 
features, which fit the data well and are able to separate distribution components. Sub-
sequentially, the well-performed distributions are used as parent distributions to make long-term 
load estimations. The estimation results demonstrate that long-term estimations are sensitive to 
the selection of parent distribution, which addresses the importance of finding correct distribu-
tion to model short-term ice loads. The data of ten selected cases will be published for the use of 
other researchers.   

1. Introduction 

Ships sailing through Arctic and Antarctic oceans frequently encounter floe ice fields. A floe ice field is comprised of large amount of 
ice floe with various shape and size. The thickness and concentration may also vary locally and between different ice fields. There are 
increasing number of numerical simulation programs developed by various institutes to simulate ships going through floe ice fields, e. 
g. Refs. [1–5]. However, public full-scale measurement data regarding ships in floe ice fields are rare. The Polar Supply and Research 
Vessel (PSRV) S.A. Agulhas II encountered extensive floe ice during its 2018/19 Antarctic voyage, and gathered large amount of data 
covering wide ranges of thicknesses, concentrations, and floe sizes. This provides valuable resource to investigate ship performance 
and ice loads related issues in floe ice fields. 

Due to the extensive randomness in ice conditions, ice behavior and contact scenarios, ice loads measured on the hull frames always 
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show high randomness. Fig. 1 gives an example of the time history of ice loads measured on a bow frame of S.A. Agulhas II. Typically, 
the load peaks are of concern. Probabilistic approaches are usually adopted to model the random load peaks. There are two different 
methodologies in the literature to model ice load peaks. The first works on short-term load peaks, i.e. all individual load peaks 
extracted from the time history. Standard distributions such as Rayleigh distribution [6], lognormal distribution [6–9], Weibull dis-
tribution [6–9] and exponential distribution [7–9] have been deployed to model short-term ice load peaks. Several papers have 
identified Weibull distribution as the best distribution among the tested standard distributions for short-term load peaks, e.g. Refs. 
[7–9]. However, most of these papers are not dedicated for ice loads in floe ice fields; instead, considerable level ice navigations are 
involved in these analyses. Suyuthi et al. [10] pointed out that Weibull distribution does not fit the upper tail of the ice load data 
satisfactorily and due to that they proposed a mixture of two exponential distributions which gives better fit to their data for the upper 
tail. Adequately good fitting to the upper tail is necessary if the short-term distribution is used as the parent distribution for the 
establishment of long-term distributions. Another method to fit the upper tail well is the Event Maximum Method proposed by Jordaan 
et al. [11] for ramming analysis and later used by Taylor et al. [12] for continuous measurement, which uses exponential distribution 
to fit the upper part of the data without attempting to fit the whole dataset. The drawback of such method is that it does not offer an 
overall description of the whole ice load dataset, which is not suitable if the purpose is fatigue analysis. Also, one needs to define a 
portion of the data as ‘tail part’, which is a somewhat subjective judgement. 

The second methodology for ice load analysis is to work directly on the maxima of fixed time intervals, e.g. 10-min maxima. Such 
methodology has been attempted with Gumbel distribution [13,14], average conditional exceedance rate method [15] and Event 
Maximum Method [16]. One merit of such methodology is that it does not require separate modelling of exposure because it can be 
easily defined in terms of operational time, while with short-term load peak distributions one needs to estimate the exposure (i.e. 
number of contacts) separately. Nonetheless, working with fixed time maxima leads to inefficient use of data since all the load peaks 
except for the maxima are abandoned, which then demands measurement covering rather long duration (e.g. a whole winter). Analysis 
of short-term load peaks offers more insights into events within small time scale and maximizes the usage of measurement data. 

The focus of this paper is on short-term load peaks. Within ship design context, the goal is to find appropriate probability distri-
butions which are able to describe the random nature of ice loading process, and then to use the distributions as parent distributions to 
calculate the distribution of long-term extremes (e.g. life-time maxima). This paper presents ten selected cases of the ship S.A. Agulhas 
II in floe ice fields during its 2018/19 Antarctic voyage. The datasets cover extensive information including ship navigation data, 
machinery data, ice condition data and local ice load measurements. The ice condition covers various ice thicknesses, concentrations, 
and floe sizes, which gives an overall view of the ship’s performance and ice loading in floe ice fields. A preliminary analysis of the 
whole dataset will be presented in Li et al. [17], which identifies the dependences between ship resistance, ice loads ice conditions, and 
ship maneuvers. The aim of this paper is to investigate suitable distributions for the ice load data to add further insights into the 
statistical analysis of short-term ice loads. In addition to standard exponential, Weibull and lognormal distributions, two more dis-
tribution categories, namely truncated distributions and mixture distributions are tested. These open new possibilities for the fitting of 
ice load data and the results are shown to be promising. The paper also investigates how different the estimated extreme load value can 
be if using different distributions as parent distributions for long-term estimation. The dataset will be published along with this paper, 
which complements the dataset published along with Suominen et al. [18] where the same ship in level ice condition on the Baltic Sea 
is in focus. 

2. Description of the dataset 

The data are collected through the 2018/19 Antarctic voyage of the Polar Supply and Research Vessel (PSRV) S.A. Agulhas II. Fig. 2 
illustrates the ship route during the 2018/19 voyage. The ship started from Cape Town, South Africa, on 6 December, heading south to 
Antarctic along zero meridian; then travelled through Weddell Sea with tasks and finally came back to South Africa on 15 March. The 
readers are referred to Refs. [19,20] for more information about the 2018/19 voyage. 

The ship is instrumented with shear strain gauges at the starboard side on a total of nine frames, including two at the bow, three at 
the bow shoulder and four at the stern shoulder (see Fig. 3). The forces are converted from the shear strain on the frames according to 
Suominen et al. [21]. Here the load measurement of the bow region will be analyzed because the number of loads at other locations is 
too small for statistical analysis. The measured values represent the total ice force on a frame with frame space of 0.4 m. The time 

Fig. 1. Time history of measure ice loads in Case 10 on frame #134.5 and Rayleigh separated load peaks.  
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history of measured ice loads is fed into a Rayleigh separator (see Ref. [8]) so that the load peaks can be extracted. An example of the 
time history of ice loads and the extraction method has been given in Fig. 1. A threshold of 10 kN is adopted since smaller load peaks 
contain considerable hydrodynamic load. Therefore, it should be made clear that the load data to be analyzed represent load peaks over 
10 kN. 

Fig. 2. Route of the 2018/19 Antarctic voyage.  

Fig. 3. Instrumentation of S.A. Agulhas II.  
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The ice conditions during the voyage are monitored via two sources. The first is visual observation, which are conducted by 
dedicated ice observers on the bridge, estimating ice concentration, floe size and thickness approximately every minute and sum-
marizing the results in 10-min interval (see Refs. [22,23] for more information). In addition to that, an ice condition camera (Fig. 3) is 
installed on the ship to take photos of the ice condition constantly during the voyage. The information published through this paper 
includes the visually observed ice condition together with the raw photos taken during the voyage. 

To investigate ice loads in floe ice fields, ten cases are selected from the whole voyage for further investigation. The cases are 
selected based on several requirements: i) the cases are expected to cover a wide range of ice condition parameters including thickness, 
concentration and floe size; ii) the duration of a case should be between 15 and 30 min so that enough loads are gathered for statistical 
analysis; iii) ice concentration does not vary much during each case; iv) ship speed and heading should not change too much. Table 1 
summarize the main ice condition parameters of the selected cases. Note that there is considerable variation in floe diameter within 
each case. Therefore, the values in Table 1 are the rough estimations of the categories where the majority of ice floe fall in. Fig. 4 gives 
examples of orthorectified images [24] of representative photos from the ten cases. The scope of each image is about 350 m by 350 m. 

3. Methods 

This paper investigates suitable probability distributions for the description of measured local ice loads at the bow region. The 
standard distributions commonly adopted in the literature, including exponential distribution, Weibull distribution and lognormal 
distribution, are first investigated. In addition, this paper proposes the application of truncated distributions, which offers another 
possibility to fit ice loads data. Moreover, mixture of two exponential distributions, which has been investigated by Suyuthi et al. [10], 
is tested. The methodology with mixture distributions is then generalized in this paper to test mixture of multiple exponential 
distributions. 

It is important to note that the loads data employed here (and in many other publications, e.g. Refs. [9,10]) are the load peaks above 
a certain threshold to exclude loads from waves. An example has been given in Fig. 1. We can denote the obtained load peaks with X via 
the following definition: 

X: Ice load peaks over a certain threshold T (e.g. here 10 kN). 
It is convenient to denote Z as the difference between X and the threshold: 
Z: Ice load peaks subtracting the threshold, i.e. z = x-T. 
We can then define another quantity, Y, as: 
Y: All ice load peaks without setting a threshold. 
It is difficult, if possible, to extract Y from the measurement since the small values are mixed up with loads from waves. Moreover, 

the measurement accuracy for small loads can be low since the system is set capable of measuring loads with magnitude of several MN, 
thus the noise interferes. Therefore, X is often investigated due to practicality. The distinction is very important firstly because the 
distribution fitted to one does not necessarily describe the other, and also because it relates to the definition of exposure. For example, 
to use the distribution fitted with X, one should define the exposure as number of encountered loads over 10 kN, while with Y the 
definition of exposure is free of threshold. 

3.1. Standard exponential, weibull and lognormal distributions bounded at a threshold 

The formulations of the probability density function (PDF) and cumulative distribution function (CDF) of exponential, Weibull and 
lognormal distributions as well as their maximum likelihood estimators (MLE) are summarized in Table 2. Here erf denotes the 
complementary error function; T is the threshold. The quantity z is used instead of x for CDF and MLE for simplicity. fX(x) equals fZ(z)

because of the linear transformation between x and z. The MLEs of exponential and lognormal distribution can be solved directly while 
those of Weibull distribution need to be approximated numerically by solving the system of nonlinear equations. Usually, exponential 
distribution bounded at a threshold other than zero is referred to as two-parameter exponential distribution while Weibull distribution 
as three-parameter Weibull distribution. However, with z = x-T, the PDFs and CDFs can be converted to standard distributions, for 
which the maximum likelihood estimations are straightforward. Therefore, in this paper we still use the term ‘standard distributions’ to 
refer to this distribution category. 

Table 1 
Summary of the ice condition parameters of the selected cases.  

Case Date Start time Duration (min) hmean (cm) hmax (cm) Concentration Floe diameter (m) 

1 7-Jan-2019 18:10 28 73 170 30% 0–20 m 
2 7-Jan-2019 16:40 20 87 110 30% 10–30 m 
3 8-Jan-2019 09:48 20 72 90 50% 20–50 m 
4 8-Jan-2019 20:00 30 130 170 50% 0–20 m 
5 8-Jan-2019 21:08 16 157 225 50% 10–30 m 
6 6-Jan-2019 09:11 17 56 90 70% 50–100 m 
7 8-Jan-2019 09:00 20 106 150 70% 20–40 m 
8 3-Jan-2019 22:01 24 53 110 90% 0–30 m 
9 3-Jan-2019 20:01 29 72 150 90% 20–50 m 
10 3-Jan-2019 19:30 30 80 110 90% 20–40 m  
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3.2. Truncated distributions 

The idea of using truncated distributions to fit the load peaks above a threshold is natural. If we assume the load peaks arising from 
ship-ice interaction, i.e. the Y defined at the beginning of this section, can be modelled by a distribution bounded by zero at the lower 
end, e.g. exponential, Weibull or lognormal distributions, the load peaks above a threshold, i.e. the X defined at the beginning of this 
section, will be truncated-distributed. Denoting the PDF and CDF of a standard probability distribution bounded at zero as fX(x) and 
FX(x), the corresponding left-truncated distribution will be: 

f trun
X (x) =

fX(x)

1 − FX(T)
, x > T (1) 

Fig. 4. Orthorectified images of representative photos of the selected cases, from (a) to (j) showing case 1 to 10. The scale in (a) applies to all.  

Table 2 
PDF, CDF and MLE of exponential, Weibull and lognormal distributions.  

Distribution PDF CDF MLE 

Exponential fX(x) = fZ(z) = λ exp( − λz)

= λ exp( − λ(x − T))

FX(x) = FZ(z) = 1 − exp( − λ(z)) λ̂ =
n

∑n
i=1zi  

Weibull 
fX(x) = fZ(z) =

β
α

(z
α

)β−1
exp

(

−
(z

α

)β
)

=
β
α

(
(x − T)

α

)β−1
exp

(

−

(
(x − T)

α

)β)

FX(x) = FZ(z) = 1 − exp
(

−

(z
α

)β
) α̂ =

(
1
n

∑n

i=1
zi

β̂

)1
β̂ 

β̂ =

n
1
α̂

∑n
i=1

zi
β̂ log zi −

∑n
i=1

log zi  

Lognormal 
fX(x) = fZ(z) =

1
z

̅̅̅̅̅̅̅̅̅̅
2πσ2

√ exp

(

−
(ln(z) − μ)

2

2σ2

)

=
1

(x − T)
̅̅̅̅̅̅̅̅̅̅
2πσ2

√ exp

(

−

(ln(x − T) − μ)
2

2σ2

)

FX(x) = FZ(z) =
1
2

+

1
2

erf
(

ln(z) − μ
̅̅̅̅̅̅̅̅
2σ2

√

)

μ̂ =
1
n

∑n

i=1
ln zi 

σ̂2
=

1
n

∑n

i=1
(ln zi − μ̂)

2   
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Following this, the truncated exponential distribution is 

f exptrun
X (x) = λ exp( − λ(x − T)) = λ exp( − λz) (2)  

which is identical to the PDF of exponential distribution bounded at T listed in Table 2. Therefore, the truncated exponential distri-
bution is equivalent to the standard exponential distribution bounded at the threshold. 

Again, following Eq. (1), the PDF of the left-truncated Weibull distribution can be expressed as: 

f wbltrun
X (x) =

β
α

(x
α

)β−1
exp

((
T
α

)β

−
(x

α

)β
)

(3)  

where T is the threshold which equals 10 kN here. The CDF is then: 

Fwbltrun
X (x) = 1 − exp

((
T
α

)β

−
(x

α

)β
)

(4) 

One can compare the expression with that in Table 2 to notice the difference of the exponents. Truncated Weibull distribution has 
thicker tails comparing to standard Weibull distribution, which indicates larger extreme loads for the same return period. 

The MLE of left-truncated Weibull distribution [25] is 

α̂ =

(
1
n

∑n

i=1

ʀ
xi

β̂ − T β̂ )
)1

β̂
(5)  

1
β̂

=

∑n
i=1

(
xi
T

)
β̂ log xi

T

∑n
i=1

((
xi
T

)
β̂ − 1

) −
1
n

∑n

i=1
log

xi

T
(6) 

Similarly to standard Weibull distributions, α̂ and β̂ need to be approximated numerically by solving the system of nonlinear 
equations. Truncated Weibull distribution does not always have MLE solutions. The following needs to be satisfied by the data for the 
existence of non-zero solutions of α̂ and β̂: 

2

(
1
n

∑n

i=1
log

xi

T

)2

−
1
n

∑n

i=1

(
log

xi

T

)2
> 0 (7) 

If Eq. (7) is violated, the only solution to α̂ and β̂ is that they both equals 0. On the contrary, standard Weibull distribution always 
has MLE solutions regardless of the quality of fitting. 

Again, following Eq. (1), the truncated lognormal distribution can be expressed as: 

f logntrun
X (x) =

1
x

̅̅̅̅̅̅̅
2πσ2

√ exp
(

−
(ln(x)−μ)2

2σ2

)

1
2 + 1

2 erf
(

ln(T)−μ̅̅̅̅̅
2σ2

√

) (8) 

Fig. 5. Numerical experiment of fitting datasets with different thresholds via standard Weibull distribution bounded at the threshold and truncated 
Weibull distribution, left: histogram of the samples, inserted figure showing values larger than 1000 and vertical axis re-scaled; right: results of 
fitting as functions of the threshold. 
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An obvious advantage of using truncated lognormal distribution instead of standard lognormal distribution is that the PDF does not 
necessarily have a rising part, which potentially leads to improved fitting performance for datasets which have constantly decreasing 
probability density. The MLE of truncated lognormal distribution cannot be written in closed form. However, the solution to the 
maximum likelihood problem can be solved numerically, easily with e.g. Matlab mle function. Similarly to truncated Weibull distri-
bution, the solution of truncated lognormal distribution with MLE does not always exist. 

The major advantage of adopting truncated distributions is that the obtained distribution parameters are independent of the 
threshold, while it is on the contrary with standard distributions. To demonstrate this, we implement a numerical experiment as an 
example with 104 samples drawn from a standard Weibull distribution bounded at zero: 

Y ∼ Weibull(α = 100, β = 0.5) (9) 

The histogram of the samples is shown in Fig. 5. Next, a threshold T is implemented to the dataset to get X by deleting the Y values 
lower than T. Standard Weibull distribution left-bounded at T and truncated Weibull distribution truncated at T are then fitted to the 
remaining data via maximum likelihood estimation. Fig. 5 summarizes the obtained α and β values as functions of the threshold. As 
shown here, the truncated Weibull distribution maintains the α and β values from the original distribution regardless of the threshold 
while the fitting with standard Weibull distribution is dependent on the threshold. 

3.3. Mixture of distributions 

Mixture of exponential distributions, as suggested by Suyuthi et al. [10], may offer good fitting to ice load data, especially to the 
tail. Suyuthi et al. [10] use the term ‘generalized exponential distribution’, but this term may as well refer to a different distribution [26]. 
In this paper it will be referred to as the ‘mixture of exponential distributions’ [27]. 

More generally, mixture of distributions can be mixture of any distributions, even if the individual distributions are different, e.g. 
exponential, Weibull and lognormal distributions. An example is the mixture of Gaussian distributions, which is widely used in 
machine-learning related topics [28]. Mixture of distributions can be universally expressed as 

f mix
X (x) =

∑m

j=1
wjfXi (x) (10)  

with the constraint 
∑m

j=1
wj = 1, where wi are the weights; m is the total number of distribution components; and fXi (x) the individual 

distribution components. 
The rationale of using mixture of distributions is also natural. Ship-ice interaction may come from different processes when a ship 

goes through a floe ice field. For instance, a load may arise from the force to push away an ice floe, or from the force to break the floe by 
bending, sometimes with splitting prior to bending. It is natural to assume ice loads arising from different processes are differently 
distributed. In addition, ice condition parameters in a floe ice field are never as constant as one can set in a simulator. Ship speed may 
also vary even if the crew try to maintain a constant speed. It is then natural to regard the measured ice load as the result of combining 
various distributions with different weight. 

Using mixture of distributions opens wide possibilities for the modelling of ice loads, since the distribution type as well as number 
of distributions can be varied flexibly. In this paper, however, we only investigate the mixture of exponential distributions and leave 
the rest for future research. The mixture of exponential distributions can be expressed as 

f mixexp
X (x) =

∑m

j=1
wjλje−λi(x−T) (11)  

with the constraint 
∑m

j=1
wj = 1. The total number of distribution parameters to be estimated is then 2m-1 due to the constraint of w. The 

mixture distribution is then the weighted sum of m exponential distributions. Suyuthi et al. [10] tested a special case where m equals 2, 
while Eq. (11) gives the generalized version. 

Statistical inference with mixture distributions is not as straightforward as those for standard single distributions, due to the fact of 
being a sum of several components, which leads to no maximum likelihood estimator in closed form. Nonetheless, there is a standard 
approach to make maximum likelihood estimation for mixture distributions, which is the Expectation-Maximization (EM) algorithm 
[28]. A derivation of the implementation of EM algorithm for mixture of exponential distributions is given in Appendix I. Here we 
simply list the procedure to obtain the wi and λi parameters through iteration:  

1) Initialize wj and λj, where j = 1,2, …m.  
2) Evaluate γij, where i = 1,2, …,n and j = 1,2, …m; n denotes the number of ice load data in a dataset, according to the following 

equation 

γij =
wjλj exp

ʀ
− λj(xi − T)

)

∑m
j=1wjλj exp

ʀ
− λj(xi − T)

) (12) 
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3) Update wj and λj by 

wj =

∑n
i=1γij

n
(13)  

λj =

∑n
i=1γij

∑n
i=1(xi − T)γij

(14)    

4) Iterate to Step 2, until wj and λj converge to the desired level. 

The above step gives EM algorithm solution for a mixture of any number of exponential distributions. It is natural to ask whether a 
higher number of mixed exponential distributions leads to better fitting. In this paper, we will investigate the mixture of two, three, five 
and ten exponential distributions for the fitting of measured ice loads in order to provide an answer to this question. 

3.4. Goodness of fit 

Although there are various statistical hypothesis testing methods which can test whether to accept a distribution for a dataset, e.g. 
Kolmogorov-Smirnov test, in this paper these are not adopted due to several reasons. First, the statistical modelling of ice loads in this 
paper is in the context of long-term extreme value prediction, for which the parent distribution for the measured short-term dataset is 
sought. Considerable focuses are given to the upper tail region of the probability distributions, where the measurement is scarce. 
Therefore, results from a statistical testing method may not adequately reveal the goodness of fit to the tail. Second, the aim of the 
investigation is to identify the most suitable distribution from the ones in focus here. What is needed is an index to compare the fitting 
performance between distributions. It is then not necessary to know whether a distribution is to be accepted or not according to certain 
statistical test. 

In this paper, to compare the fitting performance between distributions, the resulting distribution and the datasets are plotted in 
quantile-quantile plot (Q-Q plot) and the R-square values are evaluated and compared. Results based on Q-Q plot gives more focus on 
the tail region compared to probability-probability plot (P–P plot), therefore suitable for our purpose of comparison. The R-square 
values are calculated for the whole dataset and for the upper 20% of data (which roughly represents the tail) respectively, in order to 
offer insights to the fitting performance to the whole dataset as well as to the upper tail. 

3.5. Long-term estimation with extreme distributions 

For ship design purpose, one needs to estimate the life-time maximum load on the structure. The distribution used to fit measured 
short-term load peaks is then applied as parent distribution to derive the distribution of life-time maxima. Denote the maximum load 
among n loads as M, i.e. 

M = max(X1, X2, …, Xn) (15) 

Here n can be the estimated number of ship-ice contact events during a certain period, e.g. 25 years. The CDF and PDF of M can be 
expressed as 

FM(m) = [FX(m)]
n (16)  

fM(m) = n[FX(m)]
n−1fX(m) (17)  

where FX is the CDF of the individual loads (short-term load peaks). FX is then the parent distribution while FM is the extreme value 
distribution. 

For distributions within exponential family, e.g. exponential, Weibull and lognormal distributions, when n is large, FM converges to 
Type I extreme distribution, i.e. Gumbel distribution [29], which is characterized as 

FM(m) = exp
(

− exp
(

−
m − α

β

))

(18)  

where α is the characteristic extremes and β the dispersion factor. With standard exponential, Weibull and lognormal distributions, α 
and β can be expressed in terms of the parent distribution parameters in closed-form. With truncated distributions and mixture of 
exponential distributions, closed-form solutions may not exist. However, it is convenient to carry out Monte Carlo simulation to sample 
the extremes and get the Gumbel distribution parameters. Here the following procedure is adopted:  

1. Randomly generate n samples from the parent distribution FX  
2. Find the maximum of the n samples  
3. Repeat above steps and get 10,000 maxima 
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4. Fit Gumbel distribution to the 10,000 maxima to get α and β 

Once α and β are obtained, the PDF and CDF of the extreme distribution are known. One can calculate the characteristic extreme 
load (which is α) or the load corresponding to a certain probability of exceedance depending on the actual need. 

Although all the tested distributions converge to Gumbel distribution, the convergence behaves differently. Referring to Ref. [29], 
lognormal and truncated lognormal distributions belong to Class E3 [29], which results in flatter Gumbel distribution (larger β) when 
the number of loads n increases. Exponential and mixture of exponential distributions belong to class E2, which results in stable 
behavior with the shape unchanged (constant β) regardless of n. Weibull distribution may belong to class E1 if the shape parameter is 
less than 1, which results in more peaked Gumbel distribution with larger n, or belong to class E2 if the shape parameter equals 1, or E3 
if the shape parameter is larger than 1. 

4. Results 

Since there are in total 20 datasets from the two bow frames of the ten cases, the majority of the results are attached in Appendix II. 
Only the results with the data of bow frame #134.5 of case 10 are plotted in this section as an example dataset. To enable a direct visual 
comparison between the fitting of different distributions to the data, the example dataset as well as fitted distributions are plotted on 
exponential probability paper in Fig. 6, where the abscissa gives the force magnitude while the ordinate gives the CDF in the scale of −
log(1 − CDF). The Q-Q plot of each fitted distribution for the example dataset is then plotted individually in Fig. 7. In addition, the R- 
square values of the fittings to the entire 20 datasets are summarized in the histograms shown in Fig. 8 distribution-wise. 

4.1. Results of distribution fittings 

4.1.1. Standard distributions 
It is easily seen from Fig. 6 that exponential distribution fits mainly to the lower part of the example dataset, while the larger forces 

are significantly deviated. The fitting is apparently unsatisfactory judging from a simple visual examination. The Q-Q plot presented in 
Fig. 7 further proves that exponential distribution is not able to give a proper fit especially to the tail. From Fig. 8 it can be observed 
that with exponential distribution, the R-square values calculated for the tail are rather low for most of the datasets. It can be concluded 
that exponential distribution is not suitable to describe the selected datasets. 

Comparing to exponential distribution, the Weibull distribution shows clearly better fitting performance to the example dataset as 
shown in Fig. 6. However, the tail part of the dataset still seems not properly fitted, as the Weibull distribution underestimates the force 
for the same cumulative probability. This is further indicated by the Q-Q plot in Fig. 7, where the R-square value for the tail part is 
obviously lower than that for the whole example dataset. The generally better fitting to the whole dataset rather than the tail can be 
seen in the histograms of Fig. 8, where the R-square values are mostly above 0.9 for all data but rarely exceed 0.9 for tail data. 

The lognormal distribution shows similar feature of fitting as the Weibull distribution, that the distribution is better fitted to the 
lower part of the data but deviates more for the tail part. However, unlike the Weibull distributions which has the R-square values all 
above 0.5, the fitting performance of the lognormal distributions varies significantly, spreading from negative values to near 1. The 
performance is not as good as the Weibull distributions for most of the cases as shown in Fig. 8. 

Therefore, it can be concluded that Weibull distribution gives the best fitting performance among the three standard distributions. 
Nonetheless, the fittings to the tail are not very good with all the three distributions. 

Fig. 6. Measure data in Case 10 and fitted distributions on exponential probability paper: (a) standard and truncated distributions; (b) mixture of 
exponential distributions. 
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4.1.2. Truncated distributions 
As derived in Section 3.2, the truncated exponential distribution is the same as the standard exponential distribution bounded at the 

threshold, thus the results of fitting are the same. Fig. 6 shows that the truncated Weibull and lognormal distributions fit the dataset 
better than the standard Weibull and lognormal distributions. The Q-Q plot in Fig. 7 also proves that. In this case, both truncated 
distributions give rather good agreement with the data, both for the whole dataset and for the tail parts. The truncated Weibull 
distributions give slightly higher R-square values, but the difference is rather small. The histograms in Fig. 8 shows that both truncated 
distributions give R-square values over 0.9 for most of the cases in terms of the whole datasets. The R-square values in terms of the tail 
part are smaller, but still quite high (mostly over 0.8) in contrast to standard distributions. Again, the truncated Weibull distribution 
shows better performance than the truncated lognormal distribution, especially for the tail part. It can be concluded here that trun-
cated Weibull and lognormal distributions are more suitable for the available datasets comparing to standard distributions bounded at 
the threshold. 

However, there are five of the 20 datasets which cannot be fitted with truncated Weibull or lognormal distributions with maximum 
likelihood estimation, including both frames of Case 3, both frames of Case 6 and frame #134 of Case 7. These datasets have the 
common feature that there seems to be a gap which separates the datasets into two parts. For example, the histogram in Fig. 9 shows 
the distribution of measured ice loads on frame #134.5 of Case 3. There is a gap between 60 kN and 210 kN where no loads are detected 
but several loads above this gap detected. The dataset then looks like coming from two different distributions, one resulting in smaller 
loads while the other generating larger loads. Since the number of ice loads encountered during this case is rather small, this might be 
caused by the randomness of the sample dataset. It is also likely due to the existence of possible ridges or thick ice in the case, which 
results in the larger forces with a gap. Similar gaps are also observed in other datasets where truncated distributions fail to give MLE 
solutions. It should be noted that the truncated distribution parameters can still be estimated through e.g. method of moments. 
However, these are not adopted in order to maintain the consistency in parameter estimation method. 

4.1.3. Mixture of exponential distributions 
To illustrate the parameter optimization process described in Section 3.3, an example of the EM algorithm in terms of Case 10 with 

mixture of two exponential distributions is given here. To start with, the parameters w1,w2,λ1,λ2 are randomly initialized, shown as the 
left-most points in Fig. 10. At each step, these parameters are updated according to the procedure in Section 3.3, which results in a new 
set of distribution parameters. The process continues until the results converge. The same procedure is repeated with different 
initialization of the parameters, which gives different optimization chains. Finally, the optimized parameters w1,w2,λ1,λ2 are extracted 

Fig. 7. Q-Q plots of the data in Case 10 fitted with different distributions, red marks denoting data in the tail while blue marks the remaining data. 
(For interpretation of the references to colour in this figure legend, the reader is referred to the Web version of this article.) 
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from the chain which leads to the maximum likelihood. Fig. 10 shows that most of the chains lead to rather similar converged results, 
although the starting points are rather different. The log-likelihoods increase after each iteration and finally converge to a similar level. 

Fig. 6(b) shows the fitting to the example dataset with mixture of one (i.e. standard/truncated exponential distribution), two, three, 
five and ten exponential distributions. It can be clearly observed that the distributions get better fitted to the tail with the increase of m 

Fig. 8. Summary of the R-square values of the 20 datasets, dashed lines at 0.9: (a) R-square in terms of each whole dataset; (b) R-square in terms of 
the tail of each dataset. 

F. Li et al.                                                                                                                                                                                                               



Marine Structures 80 (2021) 103049

12

(number of components) up to three, but not much improved when m is further increased to ten. The same conclusion can be drawn 
from the Q-Q plots in Fig. 7 by calculating the R-square values. For the example dataset, it seems adequate to have three mixed 
exponential distribution components. From Fig. 8 where the results of all datasets are shown, it can be observed that for most cases the 
R-square values change very little between fittings with m equaling 3, 5 or 10. For some other cases, e.g. Case 1 frame #134.5, it is 
sufficient to have two components. Such results indicate that the force data may come from two or three different distributions which 
might be the result of different ship-ice interaction processes. 

Table 3 listed the obtained λ and w values sorted by the weights, with different number of exponential distribution components. It 
can be seen that when m increases from 1 to 3, there are major changes in λ and the corresponding w. However, when m is further 

Fig. 9. Histogram of the force on frame #134.5 during case 3.  

Fig. 10. Results of EM algorithm with mixture of two exponential distributions with different initial values for the distribution parameters, with 
Case 10 as the example. 
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increased, the major components remains similar, while some minor components with rather small weights come out. The weights of 
the minor components are so small that it does not lead to much change in the obtained probability distribution, which explains the 
similar performance when m increases from 3 to 10. The same information as given in Table 3 is plotted in Fig. 11, where the minor 
components with weights below 0.01 are left out. This can be seen as the spectrum of the fitted mixture distributions, where w are 
plotted as a function of λ. There seems to be three main components, the first located at around λ equaling 0.035, the second between 
0.1 and 0.15 and the third at 0.01. When m is less than 3, the components cannot be sufficiently separated and thus mixed up. When m 
is larger than 3, the components are adequately separated and increasing the number of components does not further improve the 
fitting. 

4.1.4. Summary of distribution fittings 
The above analysis has shown that Weibull distribution as well as truncated Weibull distribution are the best performed distri-

butions among the categories of standard distribution and truncated distribution. It also shows that mixture of three exponential 
distribution is able to fit the datasets well while adding more components do not further contribute to the performance. To summarize 
the findings through the large number of distribution fittings (nine distributions, ten cases, two frames), a comparison is made between 
standard Weibull distribution, truncated Weibull distribution and mixture of three exponential distributions case-wise and rank their 
performance in terms of R-square values in Table 4. Here the fittings to loads on frame #134.5 are used since similar conclusions can be 
drawn in terms of frame #134. Overall, the truncated Weibull distributions show similar performance as mixture of three exponential 
distributions, while standard Weibull distributions perform poorer compared to the other two. 

4.2. Long-term estimations 

Following Section 4.1.4, we compare the long-term estimation of extreme ice loads using the obtained standard Weibull distri-
bution, truncated Weibull distribution and mixture of three exponential distributions, in order to check how sensitive the estimation is 
to the parent distributions. The procedure given in Section 3.5 is followed. The results obtained with dataset of frame #134.5 Case 10 
are again used as the example. 

Fig. 12 presents an example of the obtained Gumbel distributions with n = 10,000, i.e. the probability distribution of the maximum 
load among 10,000 ship-ice contacts. The characteristic loads (i.e. the most probable loads) are marked with dashed lines. It can be 
seen that with different parent distributions, the obtained extreme distributions are rather different. In this case, the extreme distri-
bution with truncated Weibull distribution as parent distribution is much flatter than the remaining distributions, and estimates higher 
characteristic extreme load. This is because truncated Weibull distributions have thicker tails comparing to the other two distributions. 
Fig. 13 presents the characteristic loads as functions of the return periods in number of loads with different parent distributions. The 
same can be observed that the estimated characteristic load is rather sensitive on selected parent distributions. For a comparison, the 
ice class of S.A. Agulhas II is PC5 while the hull is enforced to DNV ICE 10, which requires capacity about 1500 kN on the instrumented 
frame. The estimated extremes with Weibull distribution and mixture of three exponential distributions are well below this value while 
that with truncated Weibull distribution exceeds this when the number of contacts increases to 105. It is worth noting that according to 
Fig. 7, the truncated Weibull distribution and mixture of three exponential distributions show rather similar performance on the fitting 
to the whole dataset as well as to the tail. But the long-term estimations using these two distributions differs significantly. 

It should be noted that the obtained Weibull and truncated Weibull distribution shape parameters (β in Table 2 and Eq. (4)) are less 
than 1, thus belong to class E3 parent distribution (see Section 3.5). The extreme distribution thus gets flatter when n increases. 
However, the flatness of the extreme distribution with mixture of exponential distributions remain unchanged regardless of n. This 
may lead to more significant difference in the estimated load level if a probability of exceedance, e.g. 0.01, is considered for safety 
reason. 

5. Discussions and conclusions 

This paper has investigated three different categories of probability distributions, namely standard distributions, truncated 

Table 3 
List of obtained λ and w with different number of exponential distribution components.  

m = 1 m = 2 m = 3 m = 5 m = 10 

Λ w λ w λ w λ w λ w 

0.035 1 0.091 0.64 0.035 0.49 0.033 0.45 0.032 0.44   
0.016 0.36 0.138 0.39 0.116 0.40 0.111 0.35     

0.010 0.13 0.010 0.11 0.010 0.11       
0.416 0.04 0.129 0.03       
0.029 <0.01 0.137 0.03         

0.455 0.03         
0.035 <0.01         
0.319 <0.01         
0.092 <0.01         
0.412 <0.01  
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Fig. 11. Distribution spectrum of fitted mixture distributions.  

Table 4 
Comparison of the fitting performance between standard Weibull (SW), truncated Weibull (TW) and 
mixture of three exponential distributions (ME).  

Case number Best 2nd 3rd 

1 ME TW SW 
2 TW ME SW 
3 ME SW  
4 TW ME SW 
5 TW ME SW 
6 ME SW  
7 ME TW SW 
8 TW ME SW 
9 ME TW SW 
10 TW ME SW  
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distributions, and mixture of exponential distributions. Here the advantages and shortcomings of these probability distributions will be 
discussed. 

5.1. Standard distributions bounded at the threshold 

Standard exponential, Weibull and lognormal distributions bounded at the threshold have the advantage that the maximum 
likelihood solution always exists. Among these, Weibull distribution has shown its superiority in fitting performance comparing to the 
others. Despite that, Weibull distribution fails to give satisfactory fitting to the tail part of the majority of the cases. For the aim of long- 
term extreme value analysis, it is then questionable to use these standard distributions bounded at the threshold as the parent dis-
tribution due to the sensitivity on the tail part. Nonetheless, if the aim is to investigate fatigue of structures where more focus is put on 
the lower part of ice loads, Weibull distribution bounded at the threshold may fulfill the required accuracy. 

5.2. Truncated distributions 

Truncated distributions have the major advantage that the concept naturally follows common sense, that if all ice load (the defined 
Y in Section 3) on a frame follows a certain distribution, the loads above a threshold should follow the corresponding truncated 
distribution. Using a threshold is due to the practical reason to filter out the loads from waves. It comes then naturally that the original 
distribution parameters should be independent of the chosen threshold. Truncated distributions keep these features while standard 
distributions are not capable of. With truncated Weibull and lognormal distributions, the fitting performance is obviously improved 
comparing to standard distributions, especially at the tail part. This indicates that truncated distributions may be a promising concept 
for the modelling of measured ice loads which have been cut off by a certain threshold. The downside of truncated distributions is that 
it does not always give MLE solutions, especially when there is discontinuity in the datasets. However, in these cases the standard 
distributions are not able to give good fitting either. 

Fig. 12. PDF of the extreme load among 10,000 loads with different parent distributions.  

Fig. 13. Characteristic loads as a function of return period (in number of loads) with different parent distributions.  
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5.3. Mixture distributions 

Mixture of exponential distributions show promising feature from another perspective. With mixture distributions, the data are 
identified as coming from several different distribution components and mixed up with certain weight. This is in line with the 
knowledge of ship-ice interaction, that a ship may break/clear ice through different means, e.g. bending failure or pushing aside. 
Different ship-ice interaction processes result in different load distribution and therefore naturally mixed together, yielding mixture 
distributions. The results of this paper indicate that mixture of distributions can give rather good fitting both in terms of the lower part 
and tail part. The performance is similar to those with truncated distributions. The fitting performance does not increase all the time 
with more components. Instead, it stabilizes at a small m and rarely increases further. This results in a distribution spectrum which 
describes the distribution composition of a dataset. It is worth investigating whether such spectrum with several major spikes is 
common for general ice load datasets. It is also relevant to test the method on longer datasets and see how the number of parameters 
changes. 

Another merit of mixture distribution is that it works as well for dataset which are not pure, e.g. the ice condition and ship speed 
varying a lot or existence of ridged ice. Mixture distributions potentially can automatically separate these as different components 
while single distributions always treat them as coming from the same distribution. This broadens the capability of using probability 
distributions to analyze measured ice loads. 

5.4. Estimation of extreme loads based on short-term measurements 

The results in Section 4.2 have demonstrated that long-term estimations are very sensitive to the selected parent distributions for 
short-term load peaks. This tells that the choice of the parent distribution form is of vital importance for long-term distribution, even if 
the fitting performance on short-term load peaks is similar. This leads to a question: how one can make long-term estimations with 
confidence based on short-term load analysis? One possibility is to carry out validation with long-term load measurements and 
compare the estimations with measured extremes, in order to confirm which probability distribution leads to correct estimation. This 
will be possible with the continuous S.A. Agulhas II measurement in the Antarctic ocean. The number of cases presented in this paper is 
not large enough to draw a firm conclusion on the choice of parent distributions between truncated Weibull and mixture distributions. 
It is therefore also important to conduct similar studies on other short-term datasets to further compare the performance with different 
distributions. 

A general issue related to short-term load distribution fitting is the estimation of long-term (e.g. lifetime) exposure, which is needed 
together with the parent distribution to make long-term estimations. This is not in focus of this paper, and is rarely addressed in the 
literature. It is important for future work to investigate the exposure so that the parent distributions can actually be used for long-term 
estimation. Another general issue related to probabilistic modelling of ice loads is that the distribution parameters need to be linked to 
the prevailing ice conditions, so that long-term estimations can be made given a certain operational area. There have been some 
examples dealing with this issue, e.g. Refs. [7,13,16], attempting to connect distribution parameters to varying ice thickness or/and 
ship speed. However, influence of other factors such as floe size, hull form and ship maneuvering has not been thoroughly investigated. 
Overall, there is still extensive work needed before the methodology of modelling short-term load peaks becomes a feasible tool for 
long-term load estimation. 

5.5. Other future work following the findings 

This paper has shown the merit of truncated distributions and exponential distributions. A natural question following this is that: 
will mixture of truncated distributions perform even better? Mixture of truncated distributions can merge the merits of both truncated 
distributions and mixture distributions, and yield distributions following common sense. It should be noted that although this paper 
investigates mixture of exponential distributions, the methodology of mixing distributions and the EM algorithm can be applied to 
mixture of any type of distributions, and even mixture of different types of distributions, e.g. an exponential distribution and a Weibull 
distribution. This then opens a much wider range to seek the correct distribution for ice load modelling. 
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Appendix A. Derivation of EM algorithm for mixture of exponential distributions 

EM algorithm is a widely adopted algorithm for mixture distributions. We will not prove its validity here since it has been widely 
accepted. Here we simply derive Eq. (12-14) following the standard EM procedure. 

The starting point is Eq. (11). We will use z which equals x-T instead of x for simplicity. The PDF of z can be written as: 

f (z) =
∑m

j=1
wjλje−λiz (I.1) 

The PDF of z can be expressed indirectly via a latent variable, q, which is a binary vector (i.e. elements either 0 or 1) of m elements, 
with the following PDF: 

f (q) =
∑m

j=1
wqj

j (I.2)  

with the constraint 
∑m

j=1
qj = 1, i.e. only one of the q elements equals 1 and the rest equal 0. Equivalently, f(qj = 1) = wj. 

The PDF of z is expressed via q by the basic probability rule: 

f (z) =
∑

q
f (q)f (z|q) (I.3)  

where the conditional probability f(z|q) is: 

f (z|q) =
∏m

j=1

ʀ
λj exp

ʀ
−λjz

))qj (I.4) 

The joint PDF of z and q is 

f (z, q) = f (q)f (z|q) =
∏m

j=1

ʀ
wjλj exp

ʀ
−λjz

))qj (I.5) 

Therefore, denoting γj as the PDF of qj conditional on z, γj can be written as: 

γj = f
ʀ
qj = 1

⃒
⃒z

)
=

f
ʀ
z, qj = 1

)

f (z)
=

wjλj exp
ʀ
−λjz

)

∑m
j=1wjλje−λiz

(I.6) 

For a dataset z=(z1, z2, …, zn), Eq. (I.5) and (I.6) can be rewritten as: 

f (zi, qi) =
∏m

j=1

ʀ
wjλj exp

ʀ
−λjzi

))qij (I.7)  

γij =
wjλj exp

ʀ
−λjzi

)

∑m
j=1wjλje−λizi

(I.8)  

which gives Eq. (13). The vectors qi forms a matrix, denoted by Q. 
With Eq. (I.7), the log-likelihood of the joint PDF of z and Q is 

f (z, Q|w, λ) = log

(
∏n

i=1

∏m

j=1

ʀ
wjλj exp

ʀ
−λjzi

))qij

)

=
∑n

i=1

∑m

j=1
qij

ʀ
log wj + log λj − λjxi

)
(I.9) 

So the expectation of the log-likelihood with regards to Q is: 

E[f (z, Q|w, λ)] =
∑n

i=1

∑m

j=1
γij

ʀ
log wj + log λj − λjxi

)
(I.10) 

The final step is to take the derivative of the expectation with regards to wj and λj and set the derivatives to zero, which gives: 

wj =

∑n
i=1γij

n
(I.11)  

λj =

∑n
i=1γij

∑n
i=1ziγij

(I.12) 

The EM algorithm is realized by iterating with Eq. (I.8), (I.11) and (I.12) to constantly update w and λ. The iteration constantly 
increases the likelihood function f(z|w, λ) and converges to a local maximum value. One need to set different initial w and λ and run the 
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algorithm multiple times to find the global maximum value. 

Appendix B. Q-Q plots of all scenarios 

Fig. B.1. Q-Q plot of distribution fittings to the data in Scenario 1; top: fr. #134.5, bottom: fr. #134    
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Fig. B.2. Q-Q plot of distribution fittings to the data in Scenario 2; top: fr. #134.5, bottom: fr. #134    
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Fig. B.3. Q-Q plot of distribution fittings to the data in Scenario 3; top: fr. #134.5, bottom: fr. #134    
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Fig. B.4. Q-Q plot of distribution fittings to the data in Scenario 4; top: fr. #134.5, bottom: fr. #134    

F. Li et al.                                                                                                                                                                                                               



Marine Structures 80 (2021) 103049

22

Fig. B.5. Q-Q plot of distribution fittings to the data in Scenario 5; top: fr. #134.5, bottom: fr. #134    
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Fig. B.6. Q-Q plot of distribution fittings to the data in Scenario 6; top: fr. #134.5, bottom: fr. #134    
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Fig. B.7. Q-Q plot of distribution fittings to the data in Scenario 7; top: fr. #134.5, bottom: fr. #134    
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Fig. B.8. Q-Q plot of distribution fittings to the data in Scenario 8; top: fr. #134.5, bottom: fr. #134    
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Fig. B.9. Q-Q plot of distribution fittings to the data in Scenario 9; top: fr. #134.5, bottom: fr. #134    
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Fig. B.10. Q-Q plot of distribution fittings to the data in Scenario 10; top: fr. #134.5, bottom: fr. #134  

Appendix C. Supplementary data 

Supplementary data to this article can be found online at https://doi.org/10.1016/j.marstruc.2021.103049. 
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