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The relativistic theory of the time- and position-dependent energy and momentum densities of light in
glasses and other low-loss dispersive media, where different wavelengths of light propagate at different phase
velocities, has remained a largely unsolved challenge until now. This is astonishing in view of the excellent
overall theoretical understanding of Maxwell’s equations and the abundant experimental measurements of optical
phenomena in dispersive media. The challenge is related to the complexity of the interference patterns of partial
waves and to the coupling of the field and medium dynamics by the optical force on the medium atoms. In
this work, we use the mass-polariton theory of light [Phys. Rev. A 96, 063834 (2017)] to derive the stress-
energy-momentum (SEM) tensors of the field and the dispersive medium. Our starting point, the fundamental
local conservation laws of energy and momentum densities in classical field theory, is close to that of a recent
theoretical work on light in dispersive media by Philbin [Phys. Rev. A 83, 013823 (2011)], which, however,
excludes the power-conversion and force density source terms describing the coupling between the field and the
medium. In the general inertial frame, we present the SEM tensors in terms of Lorentz scalars, four-vectors,
and field tensors that reflect in a transparent way the Lorentz covariance of the theory. The SEM tensors of the
field and the medium are symmetric, form-invariant for all inertial observers, and in full accordance with the
covariance principle of the special theory of relativity. When the power-conversion and force density source
terms are accounted for, there is no need to introduce asymmetric SEM tensors or heuristic symmetrization
procedures even for the field and medium subsystems. Therefore, asymmetric SEM tensors based on strictly
classical energy and momentum densities, which have been studied in previous literature, do not account for all
aspects in the field-medium coupling of electromagnetic waves. However, being based on classical field theory,
the present work prompts for further groundwork on the classical limit of the quantum mechanical spin of light in
a medium. The SEM tensor of the coupled field-medium state of light also has zero four-divergence. Therefore,
light in a dispersive medium has a well-defined four-momentum and rest frame. The volume integrals of the
total energy and momentum densities of light agree with the model of mass-polariton quasiparticles having a
nonzero rest mass. The coupled field-medium state of light drives forward an atomic mass density wave, which
makes the constant center-of-energy velocity law of an isolated system—a fundamental conservation law of
nature—satisfied. This provides strong evidence for the consistency of the theory. The predictions of our work,
such as the atomic mass density wave associated with light, are accessible to experiments.

DOI: 10.1103/PhysRevA.104.023510

I. INTRODUCTION

Recent theoretical and experimental research of the reflec-
tion and transmission of light in dielectrics gives well-founded
evidence that optical forces associated with light lead to
atomic displacements that subsequently give rise to theo-
retically predictable and experimentally observable acoustic
waves [1,2]. The generation of acoustic waves can be under-
stood within the mass-polariton (MP) theory of light [2–7],
which describes light in a dielectric as a coupled state of
the field and the medium. The MP theory shows that atomic
displacements resulting from the optical force form, in a bulk
dielectric, an atomic mass density wave (MDW), which moves
forward with light. The acoustic waves are generated when
the atomic displacements related to the MDW are relaxed by
elastic forces. When material interfaces are present, there is
a separate optical-force-based displacement of atoms, which

also generates acoustic waves that superimpose with those
generated by the MDW.

Many previous theoretical works acknowledge that part
of the total momentum of light in a dielectric is carried by
the medium atoms [8–15]. However, in distinction to the MP
theory, they all neglect the position- and time-dependent dis-
placements of atoms by the optical force and, in particular,
the related shift of the atomic rest energy by the MDW. For
common dielectric materials, this transferred rest energy is
of the same order of magnitude as the energy of the field.
Any theory of light that does not account for this transfer
of rest energy cannot be in accordance with the principles of
the special theory of relativity. Not accounting for the correct
relativistic energy of the medium also breaks the constant
center of energy velocity law of an isolated system (consisting
of a light pulse and a medium block), and, thus, violates the
fundamental conservation laws of nature [2,3].
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In addition to its unambiguous mathematical beauty, the
MP theory of the coupled field-medium state of light has a
simple phenomenological description and its predictions are
directly accessible by experiments. The position- and time-
dependent electromagnetic field associated with light first
polarizes the medium atoms. Subsequently, these induced
atomic dipoles are coupled to the electromagnetic field of
light itself. As a result, there is an optical force on the atomic
dipoles that alternatively accelerates and decelerates them in
such a way that there will be a net displacement of atoms in the
direction of the propagation of light. A highly surprising fea-
ture of the MP theory of light is that, even though the atomic
velocities resulting from the optical force are extremely small,
the MDW associated with the MP state propagates at the
group velocity of light.

For appropriate combinations of the intensity and length
of light pulses, the atomic displacements can be fractions of
nanometers. The ultimate test of the MP theory would be
the measurement of this predicted shift of atoms. The atomic
displacements are real, and their measurement should be feasi-
ble using present photonic instruments. These measurements
also provide a complementary approach to experimental
studies of optical forces and the Abraham-Minkowski contro-
versy [1,16–28]. As shown in our recent preliminary work on
the MP theory of light for dispersive media [5], the predictions
of the MP theory for the momentum of light are in excellent
agreement with the high-precision measurements of Jones
et al. [21] for dispersive media.

In our previous works [2–4], we have presented the covari-
ant stress-energy-momentum (SEM) tensor formulation of the
MP theory of light for nondispersive media. For dispersive
media, the MP theory has been previously applied using a
quasiparticle model and optomechanical continuum dynamics
(OCD) simulations of the MDW [5]. The goal of the present
work is to develop a transparently covariant SEM tensor
formulation of the MP theory of light for dispersive media.
We also generalize the MP theory discussed in Refs. [2–5]
to include the energy exchange between the field and the
medium through the power-conversion source term. In the
previous formulation of the MP theory, we accounted only
for the optical-force-related momentum exchange between the
field and the medium.

We base our derivations of the covariant SEM tensors of the
field and the medium on the conservation laws of energy and
momentum. Thus, our starting point is close to that of a recent
theoretical work on light in dispersive media by Philbin [29],
which, however, excludes the coupling between the field and
the medium. The form invariance of the conservation laws in
different inertial frames is shown to lead to symmetric SEM
tensors that are in full accordance with the covariance princi-
ple of the special theory of relativity. The splitting of the total
MP SEM tensor of light into the field and the atomic MDW
parts is also consistent with an unambiguous expression for
the optical force in a dispersive medium. We also show how
the total momentum of the coupled MP theory of light is
split between the field and the medium. Therefore, the MP
theory solves the Abraham-Minkowski controversy [2,30–37]
for dispersive media. The SEM tensor formalism of the MP
theory in dispersive media, presented in this work, is also fully

consistent with the previously introduced MP quasiparticle
model [5].

This paper is organized as follows: Section II describes
theoretical foundations. Solution of Newton’s equation of the
medium in the presence of optical force density is described
in Sec. III. Section IV presents the formulation of the SEM
tensors of the MP theory of light for dispersive media. Sec-
tion V investigates selected properties of the SEM tensors.
Section VI presents OCD simulations of the propagation of
the MDW driven by a Gaussian light pulse. Section VII stud-
ies the energy and momentum of light measured by a general
inertial observer moving with respect to the medium. The
results are discussed and compared to previous theoretical
works and experiments in Sec. VIII. Finally, conclusions are
drawn in Sec. IX.

We have facilitated the reading of the paper with detailed
description of the physical quantities and dynamical equa-
tions for both the electromagnetic field and the medium so
that basic theoretical understanding of the electromagnetic
fields, continuum dynamics, and the special theory of rela-
tivity would be enough for the understanding the key results
of the paper. In the derivations, we have extensively used
analytical mathematical models. Detailed proofs of the most
important intermediate steps are provided in the Appendixes.

II. THEORETICAL FOUNDATIONS

A. Concepts and approximations

We assume that the medium is lossless, linear, and
isotropic. In accordance with our previous works [3,4], we
also assume that the medium is homogeneous having no ma-
terial interfaces and limit our studies to light pulses having a
narrow spectral range. Even with these restrictions, the theory
covers a broad range of optical phenomena in solids, liquids,
and gases relevant for photonics technologies. It is obvious
that our theoretical formulations can also be extended to lossy,
nonlinear, and anisotropic media. These extensions are, how-
ever, not discussed in the present work.

1. Constitutive relations and inertial frames

In linear and isotropic media, the constitutive relations
of the electric field E, magnetic field H, electric flux den-
sity D, and magnetic flux density B are given in the
laboratory frame (L frame) of the medium by the well-
known frequency-domain expressions as D(L) = ε(L)(ω)E(L)

and B(L) = μ(L)(ω)H(L), where ε(L)(ω) and μ(L)(ω) are the
frequency-dependent permittivity and permeability of the
medium in the L frame, and ε0 and μ0 are the permittivity
and permeability of vacuum. The L frame is defined as a
frame where the medium atoms are at rest before the optical
force starts to accelerate them. For lossless media studied
in the present work, ε(L)(ω) and μ(L)(ω) are real-valued.
The frequency-dependent phase refractive index n(L)

p (ω) is
related to the permittivity and permeability of the medium as
ε(L)(ω)μ(L)(ω) = ε0μ0[n(L)

p (ω)]2. The group refractive index
n(L)

g (ω) is given by n(L)
g (ω) = ∂

∂ω
[ωn(L)

p (ω)]. Below, n(L)
p and

n(L)
g without the angular frequency argument denote the phase

and group refractive indices at the central angular frequency
of the light pulse. All fields below are assumed to be given in

023510-2



COVARIANT THEORY OF LIGHT IN A DISPERSIVE … PHYSICAL REVIEW A 104, 023510 (2021)

the space-time domain. In a general inertial frame (G frame),
the constitutive relations between the field quantities are more
complicated, but they are unambiguously tied to the relations
in the L frame by the well-known Lorentz transformations of
the fields described in Appendix G. The approximations of
this section are effective throughout this work.

2. Strain energy and elastic waves caused by the optical force

By assuming that the medium is lossless, we neglect any
optical absorption, but also any strain energies that are left
in the medium by the light wave. The strain energy left in
the medium was found to be important in the description of
the relaxation dynamics of the atomic displacements in the
medium caused by the optical force [2,5,7]. However, the
strain energy is vanishingly small in comparison with the
field energy. The OCD simulations [2] showed furthermore
that, in realistic materials, the strain energy is also small in
comparison to the kinetic energy given to the atoms by the
field [2]. It is evident that the description of strain energy
could be added in the present analysis.

3. Kinetic energy given to the medium by the optical force

Since the strain energy of atoms resulting from the optical
force is exceedingly small as discussed above, virtually all
work done by the optical force goes to kinetic energy of the
atoms. When the field strength is increasing, the work done
by the optical force on the atoms is positive and the atoms
are gaining kinetic energy. Correspondingly, when the field
strength is decreasing, the work done by the optical force is
negative and the kinetic energy of atoms is returned to the
field.

Even for relatively large field strengths of the order of
1014 W/cm2, the relative magnitude of the kinetic energy
of atoms in comparison to the total field energy is in the
L frame of the order of 10−8 for common dielectric mate-
rials [4]. However, extending the MP theory to account for
the exchange of energy between the field and the medium
has fundamental theoretical interest in the study of covariance
properties of light. Therefore, in the present work, we have
explicitly included the kinetic energy in the SEM tensor of
the medium and subtracted the work done by the optical force
on the atoms from the SEM tensor of the field. This makes
the SEM tensors of both the field and the medium symmetric
in all inertial frames, which is a clear advantage regarding the
completeness of the theory.

B. Generalized optical force density and the momentum density
of the field

As the starting point of the derivation, we need an ex-
pression of the optical force and the momentum density of
the field. In previous literature, several forms of the optical
force density have been suggested [13,36,38–42]. Regarding
the MP theory of light, in Ref. [5], we found that the OCD
simulations of the MP state of light for a Gaussian light pulse
give a transferred mass of the MDW that is in agreement with
the conservation of the center of energy velocity of an isolated
system only if we use for the optical force in the L frame an

expression

f (L)
opt = n(L)

p n(L)
g − 1

c2

∂

∂t
(E(L) × H(L)). (1)

We call this expression the generalized optical force. It differs
from the conventional Abraham force by replacing the square
of the refractive index of the nondispersive medium [13] by
the product of the phase and group refractive indices of a
dispersive medium. The narrow spectral range approximation
discussed in Sec. II A applies to Eq. (1). The relation of Eq. (1)
to the MP quasiparticle model of a dispersive medium is
briefly discussed in Appendix A. The derivation of Eq. (1)
from the principle of least action in the case of a nondispersive
medium has been presented in Ref. [4]. Corresponding deriva-
tion is expected to be possible also in the present case of a
dispersive medium. This derivation as well as the microscopic
derivation of Eq. (1) are left as interesting topics of future
works.

For the momentum density of the field, we use an expres-
sion

G(L)
field = E(L) × H(L)

c2
. (2)

The Poynting vector S(L) = E(L) × H(L), appearing in Eq. (2),
is continuous at material interfaces and equal to the elec-
tromagnetic energy flux in the L frame of a dispersive
medium [43,44]. Thus, the momentum density of the field in
Eq. (2) is also continuous at material interfaces. The momen-
tum density of the field in Eq. (2) is also extensively used in
the previous optics literature [43,44], and it can be proven to
be in accordance with the MP quasiparticle model of Ref. [5];
see also Appendix A. Together with the approximations dis-
cussed in Sec. II A, Eqs. (1) and (2) can be considered as the
starting points of the derivation of the SEM tensors below.

The expressions of the generalized optical force in Eq. (1)
and the momentum density of the field in Eq. (2) are both,
within the approximations used in this work, inevitably
interconnected with the conservation of the constant center-
of-energy velocity of the field-medium system. They are also
related to the existence of the rest frame of the coupled MP
state of light. These aspects will be discussed in more detail
in Secs. V I and VII.

C. Conservation laws and dynamical equations

We start the derivation of the theory from the fundamental
conservation laws of energy and momentum in the general
inertial frame, the G frame. In this and all subsequent sections,
the quantities not having a superscript indicating a special
inertial frame, e.g., (L) for the L frame, are the quantities in the
G frame. Using the energy density W , the momentum density
G = (Gx, Gy, Gz ), and the stress tensor T , with components
T jk , where j, k ∈ {x, y, z}, the conservation laws of energy
and momentum are written for an arbitrary continuous system
as [36,43,44]

1

c2

∂W

∂t
+ ∇ · G = − φ

c2
, (3)

∂G
∂t

+ ∇ · T = −f . (4)
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Here f is the force density and φ is the power-conversion
density. Both f and φ are zero for isolated systems, in which
case Eq. (3) is equal to the conservation law of the total energy
of the system and Eq. (4) is equal to the conservation law
of the total momentum. For interacting subsystems, the force
density and power-conversion density are generally nonzero,
which means that the subsystems are exchanging energy and
momentum with each other.

1. Dynamical equations of the field

The dynamical equations of the fields are the Maxwell’s
equations, for which we use the standard presentation in terms
of the fields E, D, H, and B [43,44]. The energy density,
momentum density, and stress tensor associated to the fields
must obey the conservation laws in Eqs. (3) and (4), written
as

1

c2

∂Wfield

∂t
+ ∇ · Gfield = −φopt

c2
, (5)

∂Gfield

∂t
+ ∇ · T field = −fopt. (6)

Here fopt is the generalized optical force in the G frame,
obtained by the Lorentz transformation from its form in
the L frame, given in Eq. (1), and φopt is the related
power-conversion density. Since the power conversion density
changes only the kinetic energy of the medium, it must be
equal to the dot product of the force density fopt and the atomic
velocity va [36,45] as

φopt = fopt · va. (7)

The quantities fopt and φopt form together the generalized
optical force density four-vector as

Fopt = (φopt/c, fopt ). (8)

For the Lorentz transformations of the force and power-
conversion densities, see Appendix G.

Since we have included the kinetic-energy-related power-
conversion density in Eq. (5), it follows that the energy density
of the field Wfield accounts for the work done on the atoms
by the optical force. This differs from the definition of the
energy density of the field in previous works [2–5], where the
power-conversion density was not included.

2. Dynamical equations of the medium

From the conservation laws of the medium, we first write
the conservation law of the number of atoms using the atomic
number density na and the atomic velocity field va as [36]

∂na

∂t
+ ∇ · (nava ) = 0. (9)

Since the field and the medium form together an isolated
system, the source densities on the righthand sides of the
energy and momentum conservation laws of the medium must
be equal in magnitude but opposite in sign compared to the
source densities on the right-hand sides of the corresponding
equations of the field in Eqs. (5) and (6). The relativis-
tic total energy density of the atom distribution is equal to
Wmat = ρac2 = γva m0c2na and the total relativistic momentum
density of the medium is equal to Gmat = ρava = γva m0nava,

where ρa = γva m0na is the total mass density of atoms, m0

is the rest mass of a single atom in the medium and γva =
1/
√

1 − |va|2/c2 is the Lorentz factor corresponding to va. By
using these quantities in Eq. (3), the conservation law of the
energy of the medium is given by

1

c2

∂Wmat

∂t
+ ∇ · Gmat = φopt

c2
. (10)

Under the influence of the optical force, the atoms behave
as classical particles, and in analogy to molecular dynamics,
we can use Newton’s equation to study their trajectories. As-
suming that there are no other forces except the optical force,
the relativistic Newton’s equation of motion for the medium
is given by [36]

na
dpa

dt
= fopt, (11)

where pa = γva m0va is the momentum of a single atom.
Adding Eqs. (10) and (11) side by side, using the material
derivative, defined as d

dt = ∂
∂t + va · ∇ [45], and applying the

sum rule of differentiation gives the conservation law of the
momentum density of the medium as

∂Gmat

∂t
+ ∇ · T mat = fopt. (12)

Here the stress tensor of the medium is given by T mat =
ρava ⊗ va = γva m0nava ⊗ va, where ⊗ denotes the outer prod-
uct defined for two vectors v and u as a matrix with elements
(v ⊗ u)i j = viu j . This form of the stress tensor of the medium
is also well known from previous literature [36,46,47].

3. Energy exchange between the field and the medium

The power-conversion density in Eqs. (5) and (10) leads to
the energy exchange between the field and the medium. We
define the energy exchange density Wφ , which describes the
work done on the medium by the optical force density, as

Wφ =
∫ t

−∞
φopt dt ′ =

∫ t

−∞
fopt · va dt ′. (13)

Here the power-conversion density is given in Eq. (7). By its
definition, the energy exchange density Wφ is equal to the
change of the kinetic energy of the medium by the optical
force density. Accordingly, we define the exploitable energy
density of light as a sum of the energy density of the field and
the energy exchange density as

Wex = Wfield + Wφ. (14)

The flux of the exploitable energy density is, in the L frame,
equal to the electromagnetic energy flux given by the Poynting
vector. The exploitable energy density of light is the effective
energy density that is, e.g, usable in atomic transitions. Thus,
we can think Wφ to have an electromagnetic origin in the same
way as the polarization and magnetization energy densities.
Between inertial frames, the exploitable energy density also
experiences the experimentally verified Doppler shift as dis-
cussed in Sec. V F.

The unexploitable energy density components of the MP
state of light do not originate from the power-conversion den-
sity φopt = fopt · va, This includes the rest energy density of
the MDW and the kinetic energy density component of MDW
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atoms related to the kinetic energy of atoms in the equilibrium
state of the medium. For detailed consideration of the kinetic
and rest energy densities of the medium, see Sec. V E.

III. SOLUTION OF NEWTON’S EQUATION
OF MOTION IN THE L FRAME

Newton’s equation of motion of the medium in Eq. (11) can
be solved for the generalized optical force density in Eq. (1)
once the fields in this equation are given. However, in the
monochromatic field limit, the final result of the integrations
carried out to solve Newton’s equation can be presented as
a function of the original fields E(L) and H(L) and harmonic
cycle time average of 1

2 (E(L) · D(L) + H(L) · B(L)). The most
important steps of the derivations are described in the Ap-
pendixes.

The atomic displacement field in the L frame is denoted
by r(L)

a and related to the atomic velocity field v(L)
a by v(L)

a =
d
dt r(L)

a . The number density of the medium, n(L)
a , has the fol-

lowing expression relating it to the position derivative of r(L)
a :

n(L)
a = n(L)

a0

1 + ∇ · r(L)
a

. (15)

The expression of n(L)
a in Eq. (15) emerges naturally from the

contraction or expansion of the differential medium element
that is directly proportional to ∇ · r(L)

a .
One can obtain very accurate approximative analytic solu-

tions of the velocity and mass density fields of the medium. As
described in detail in Appendix B, the atomic number density
and velocity distributions obtained as a solution to Newton’s
equation in Eq. (11) are given by

n(L)
a = n(L)

a,min

1 − n(L)
p

∣∣v(L)
a

∣∣
c

, (16)

v(L)
a =

(
n(L)

p n(L)
g −1

)
W (L)

ex,nd

n(L)
a,minm0c2 v(L)

p√
1 +

[(
n(L)

p n(L)
g −1

)
W (L)

ex,nd

n(L)
p n(L)

a,minm0c2

]2
. (17)

Here W (L)
ex,nd is the conventional expression of the total ex-

ploitable energy density of light in a nondispersive medium,
given by

W (L)
ex,nd = 1

2
(E(L) · D(L) + H(L) · B(L)). (18)

There is a notation difference between the present work,
including the power-conversion density in Eq. (5) and the
previous works [2–4]. In Refs. [2–4] the field energy density
W (L)

field was defined to be the total exploitable energy density,
and, therefore, it corresponds to W (L)

ex,nd of the present work.
The phase velocity of light in Eq. (17) can be given in terms

of the field vectors by

v(L)
p = E(L) × H(L)

W (L)
ex,nd

. (19)

In Eqs. (16) and (17), the quantity n(L)
a,min is the local minimum

number density, which is an envelope function of n(L)
a formed

from its minimum values over the harmonic cycle, obtained
at points where W (L)

ex,nd and v(L)
a are zero. As detailed in Ap-

pendix B, n(L)
a,min is given by

n(L)
a,min = n(L)

a0 +
〈
W (L)

ex,nd

〉
m0c2

(
n(L)

p n(L)
g − 1

)(n(L)
g

n(L)
p

− 1

)
, (20)

where n(L)
a0 is the number density of the equilibrium state of the

medium in the absence of light and the angle brackets denote
the time average over the harmonic cycle. The mass density
corresponding to n(L)

a,min is given by ρ
(L)
a,min = m0n(L)

a,min. Using

Eq. (13), the energy exchange density W (L)
φ in the L frame is

given by

W (L)
φ =

∫ t

−∞
f (L)
opt · v(L)

a dt ′ = (
γ (L)

va
− 1

)
ρ

(L)
a,minc2. (21)

The calculation of the integral in Eq. (21) is presented in
Appendix C.

IV. SEM TENSORS IN A DISPERSIVE MEDIUM

The SEM tensor of a physical system describes the fluxes
of energy and momentum in space-time. The general con-
travariant form of a SEM tensor in the Minkowski space-time
is most conventionally defined by T = T αβeα ⊗ eβ . Here the
Einstein summation convention is used and eα and eβ are
unit vectors of the four-dimensional Minkowski space-time.
The Greek indices range over the four components of the
space-time, i.e., (ct, x, y, z). The corresponding matrix repre-
sentation of T is given by [43,46,48]

T =
[

W cGT

cG T

]
=

⎡
⎢⎣

W cGx cGy cGz

cGx T xx T xy T xz

cGy T yx T yy T yz

cGz T zx T zy T zz

⎤
⎥⎦, (22)

where the superscript T denotes the transpose. All SEM ten-
sors of the present work, including the SEM tensors of the
field and medium subsystems, are strictly based on the classi-
cal definition in Eq. (22). Thus, they are all symmetric.

In the literature, there exist asymmetric definitions of
the SEM tensors, such as the Minkowski SEM ten-
sor [13,32,36,49], which have been introduced to overcome
certain difficulties of the theory. In the present work, we
have found no need to introduce asymmetric SEM tensors.
To put the SEM tensor definition of the present work into a
wider perspective of the SEM tensor formulations in previous
literature [13,36,49–53], we have presented a brief review of
selected other SEM tensor formulations in Appendix D. We
also emphasize that, being based on the classical definition of
the energy and momentum densities and stresses, the present
work does not describe the quantum mechanical spin of light
or its classical limit [35,54,55].

In the MP theory of light, the total SEM tensor Ttot consists
of the electromagnetic field part, Tfield, and the medium part,
Tmat, as

Ttot = Tfield + Tmat. (23)
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In distinction to previous works [2–5], in Tfield, we have
accounted for the work done on atoms by the optical force
as discussed in Sec. II A 3. To describe the coupled MP state
of light in the medium, we present the SEM tensor TMDW of
the atomic MDW as the difference of the SEM tensors of the
medium with and without the influence of the optical field as

TMDW = Tmat − Tmat,0. (24)

The SEM tensor Tmat,0 is called the SEM tensor of the equi-
librium state of the medium. The SEM tensor of the coupled
MP state of light, TMP, is then given by

TMP = Tfield + TMDW. (25)

Using Eqs. (23)–(25), we can write Ttot in an alternative form,
given by

Ttot = TMP + Tmat,0. (26)

Equation (26) essentially means that TMP includes all terms
that separate the total SEM tensor of the field and the medium
from the SEM tensor of the equilibrium state of the medium.
Therefore, TMP describes all energy and momentum terms of
the coupled state of light.

The theory of relativity fundamentally requires that any
physical quantity, including the SEM tensor, must be Lorentz-
covariant. For SEM tensors, this requirement has two
meanings, which are intimately linked to each other: First,
the SEM tensors in different inertial frames must be related
to each other by the Lorentz transformation of second-rank
tensors (see Sec. IV B 1). Second, the elements of the SEM
tensor must be writable in an unambiguous way in terms
of the Lorentz-covariant dynamical variables, which trans-
form between inertial frames according to their own Lorentz
transformations (see Appendix G). This second requirement
essentially means that the laws of physics are the same for all
inertial observers.

A. SEM tensors in the L frame

In terms of the dynamical variables, the elements of the
SEM tensor must have the same functional form in all general
inertial frames, but in special inertial frames, such as the L
frame, some dynamical variables can become zero. However,
since the SEM tensor elements in different inertial frames are
related to each other by the Lorentz transformation of second-
rank tensors, the derivation of the SEM tensors in the L frame
in this section, fixes the SEM tensors in all inertial frames as
described in Sec. IV B.

1. SEM tensor of the field in the L frame

Due to the power-conversion density in Eq. (5), the
position- and time-dependent energy density of the field can-

not be obtained from the momentum density in Eq. (2) by
dividing it with the phase or group velocity of light, which is
typically done in the literature, at least in the case of nondis-
persive media [43,44]. Instead, it must be solved from the
conservation law of energy in Eq. (5). By using the expression
of the momentum density of the field in the L frame in Eq. (2)
and integrating Eq. (5) over time, the energy density of the
field is given by

W (L)
field = −

∫ t

−∞
∇ · (E(L) × H(L)) dt ′ − W (L)

φ . (27)

Here we have used Eq. (21) for the second term, which repre-
sents the work done on the atoms by the optical force.

The integral representation of the position- and time-
dependent energy density of the field in Eq. (27) is somewhat
unconventional, but it is an unambiguous solution of the con-
servation law of the field energy in Eq. (5) for the definition
of the momentum density, given in Eq. (2). The Poynting
vector and the conservation law of the energy of the field
in Eq. (5) have been used to determine the energy density
of the field in a dispersive medium also in some previous
works, e.g., in Ref. [29], but the power-conversion density
between the field and the medium has typically been set to
zero.

To define the stress tensor, we start correspondingly from
the conservation law of momentum in Eq. (6). By integrating
this equation with respect to the position in the direction of the
propagation of light, we obtain the stress tensor of the field as

T (L)
field = −

∫ s

−∞

(
f (L)
opt + ∂G(L)

field

∂t

)
ds′ ⊗ v̂(L)

p

= −n(L)
p n(L)

g

c2

∫ s

−∞

∂

∂t
(E(L) × H(L)) ds′ ⊗ v̂(L)

p . (28)

The variable s is the position coordinate parallel to the direc-
tion of the propagation of light and v̂(L)

p denotes the unit vector
parallel to v(L)

p .

The SEM tensor of the field, T(L)
field, can be obtained by

calculating the integrals in Eqs. (27) and (28). It follows that
we can present the total SEM tensor of the field as a sum

T(L)
field = T(L)

A + T(L)
int . (29)

Here T(L)
A is equal to the Abraham SEM tensor in the L frame

and T(L)
int is the SEM tensor of the interaction. These SEM

tensors are given by

T(L)
A =

[ 1
2 (E(L) · D(L)+H(L) · B(L)) 1

c (E(L)×H(L))T

1
c E(L)×H(L) 1

2 (E(L) · D(L)+H(L) · B(L))I − E(L)⊗D(L) − H(L)⊗B(L)

]
, (30)

T(L)
int =

[〈
W (L)

ex,nd

〉(
n(L)

g /n(L)
p −1

) − W (L)
φ 0

0 −(〈
W (L)

ex,nd

〉−W (L)
ex,nd

)(
n(L)

g /n(L)
p −1

)
v̂(L)

p ⊗v̂(L)
p

]
. (31)
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In Eq. (30), I is the 3 × 3 unit matrix. How the time average
over harmonic cycle in 〈W (L)

ex,nd〉 in Eq. (31) results from the
integrals in Eqs. (27) and (28) is briefly described in ap-
pendixes E and F. For nondispersive media, the results for the
SEM tensor of the field in the L frame presented in Refs. [2,3]
are obtained from Eq. (29) by setting the phase and group
refractive indices equal as n(L)

p = n(L)
g and approximating the

energy exchange density to zero as W (L)
φ ≈ 0.

The time averages of the energy density, momentum den-
sity, and stress tensor components of the SEM tensor of the
field in the L frame in Eq. (29) can be shown to be equal to

〈
W (L)

field

〉 = 1

2

[
d (ω(L)

0 ε (L))

dω
(L)
0

〈E(L) ·E(L)〉

+ d (ω(L)
0 μ(L))

dω
(L)
0

〈H(L) ·H(L)〉
]

− 〈
W (L)

φ

〉
, (32)

〈
G(L)

field

〉 = 〈E(L) × H(L)〉
c2

, (33)

〈
T (L)

field

〉 = 1

2
(〈E(L) · D(L)〉 + 〈H(L) · B(L)〉)I

− 〈E(L) ⊗ D(L)〉 − 〈H(L) ⊗ B(L)〉. (34)

Here ω
(L)
0 is the central angular frequency of the pertinent nar-

row spectral range, �ω(L)/ω
(L)
0 , where �ω(L) is the standard

deviation of the angular frequency. In previous literature, the
form of the time-averaged energy density in Eq. (32) without
the last energy exchange density term has been called the Bril-
louin form [43,44]. The magnitude of the last term of Eq. (32)
is negligible and thus the time average of the energy density
of the present work in the L frame is very accurately equal to
the Brillouin form. The time average of the Poynting vector in
Eq. (33) is also widely used. The formula inside the brackets
in Eq. (34) is formally the Maxwell stress tensor [56–58], and
the applicability of its time average to a dispersive medium is
also well documented in the optics literature [44].

2. SEM tensor of the medium in the L frame

The SEM tensor of the disturbed medium in the L frame,
T(L)

mat (field on), is unambiguously determined by the conser-
vation laws in Eqs. (10) and (12) and Newton’s equation of
motion in Eq. (11). According to the relations of Sec. II C 2,
the energy density in T(L)

mat is given by the conventional
relativistic expression W (L)

mat = ρ (L)
a c2, the momentum den-

sity is correspondingly G(L)
mat = ρ (L)

a v(L)
a , and the stress tensor

is given by T (L)
mat = ρ (L)

a v(L)
a ⊗ v(L)

a . Thus, T(L)
mat is written

as [36,46,47]

T(L)
mat =

[
ρ (L)

a c2 ρ (L)
a (v(L)

a )T c

ρ (L)
a v(L)

a c ρ (L)
a v(L)

a ⊗ v(L)
a

]
. (35)

The atomic mass density ρ (L)
a = γ (L)

va
m0n(L)

a and the atomic
velocity v(L)

a can be solved from Newton’s equation in Eq. (11)
as described in Sec. III. Accordingly, ρ (L)

a and v(L)
a can be

unambiguously expressed in terms of the field amplitudes and
the equilibrium atomic number density n(L)

a0 using Eqs. (16)
and (17).

The SEM tensor of the equilibrium state of the medium,
T(L)

mat,0 (no field present), is also unambiguously determined
by the conservation laws in Eqs. (10) and (12). In the
equilibrium state of the medium, the atomic velocity in
the L frame is v(L)

a0 = 0. Accordingly, T(L)
mat,0 is obtained

from the definition of the SEM tensor in Eq. (22) by
setting W (L)

mat,0 = ρ
(L)
a0 c2, G(L)

mat,0 = ρ
(L)
a0 v(L)

a0 = 0, and T (L)
mat,0 =

ρ
(L)
a0 v(L)

a0 ⊗ v(L)
a0 = 0, where ρ

(L)
a0 = m0n(L)

a0 . Thus, T(L)
mat,0 is

given by

T(L)
mat,0 =

[
ρ

(L)
a0 c2 0

0 0

]
. (36)

3. SEM tensor of the atomic MDW in the L frame

The SEM tensor of the MDW, T(L)
MDW = T(L)

mat − T(L)
mat,0, de-

fined in Eq. (24), can be obtained from T(L)
mat and T(L)

mat,0, given
in Eqs. (35) and (36). It is instructive to write this SEM tensor
in terms of the excess mass density of the medium driven
forward by the generalized optical force. We define the excess
mass density of the medium by ρ

(L)
MDW = ρ (L)

a − ρ
(L)
a0 . Using

this quantity, T(L)
MDW is given by

T(L)
MDW =

[
ρ

(L)
MDWc2 ρ

(L)
MDW

(
v(L)

MDW

)T
c

ρ
(L)
MDWv(L)

MDWc ρ
(L)
MDWv(L)

a ⊗ v(L)
MDW

]
. (37)

In Eq. (37) we have defined the local position- and time-
dependent energy velocity of the MDW in the L frame by
v(L)

MDW = ρ (L)
a v(L)

a /ρ
(L)
MDW. This quantity is generally position-

and time-dependent in a way that its mass-density-weighted
time average over the harmonic cycle is equal to the group ve-
locity as

∫ t+�t
t ρ

(L)
MDWv(L)

MDW dt ′/
∫ t+�t

t ρ
(L)
MDW dt ′ = v(L)

g , where
�t is the duration of the harmonic cycle. The position and
time dependencies of v(L)

MDW are described in more detail in
Sec. VI dealing with the OCD simulations of a Gaussian light
pulse.

4. SEM tensor of the MP state of light in the L frame

The SEM tensor of the MP state of light, T(L)
MP = T(L)

field +
T(L)

MDW, defined in Eq. (25), can be obtained from T(L)
field and

T(L)
MDW, given in Eqs. (29) and (37). We have been able to

give a surprisingly simple and transparent presentation for
T(L)

field. Also, the physical quantities in T(L)
MDW can be easily

understood within the framework of the relativistic mechanics
and conservation laws, through which they are unambiguously
determined by the generalized optical force. However, both
SEM tensors in Eqs. (29) and (37) include nuance-rich inter-
ference effects, which make the actual dependence of the SEM
tensor components on the field amplitudes more sophisticated
than in the case of a nondispersive medium.

B. SEM tensors in the G frame

We next present the SEM tensors in the G frame. There has
obviously been very few attempts to formulate a rigorously
covariant theory of light in a dispersive medium starting ab
initio from the principles of the special theory of relativity.
Thus, our goal is to develop the SEM tensor formulation of
the coupled MP state of light and its field and medium parts,
which transform in a covariant way between arbitrary inertial
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frames and reduce in the L frame to the SEM tensors discussed
above.

In the representation of the SEM tensors in the G frame
below, we use the conventional electromagnetic field and dis-
placement tensors and four-velocities Ug, Up, Ua, and Ua0.
The four-velocities are defined in terms of three-dimensional
velocities and Lorentz factors as Ui = γvi (c, vi ). Using these
quantities enables a compact presentation of the SEM tensors.
These quantities are also form-invariant in transformations be-
tween general inertial frames and, thus, reflect in a transparent
way the covariance properties of the SEM tensors.

1. Lorentz transformation of the SEM tensors

To define the Lorentz transformations between two general
inertial frames, we assume that an arbitrary general inertial
frame (G′ frame) is moving in another arbitrary general iner-
tial frame (G frame) with a constant relative velocity v. In this
general case, the Lorentz boost can be written in the matrix
form as

� =
[

γv −γv
vT

c−γv
v
c I + (γv − 1)v̂ ⊗ v̂

]
, (38)

where γv = 1/
√

1 − |v|2/c2 is the Lorentz factor, and v̂ =
v/|v| is the unit vector parallel to v.

Using the Lorentz boost matrix in Eq. (38), a second-rank
tensor T in space-time transforms between the two inertial
frames as

T′ = �T�T . (39)

This condition unambiguously relates the components of
second-rank tensors in the G′ frame to those in the G
frame. However, this condition alone does not make the ten-
sor Lorentz-covariant as the tensor components must also
correspond to the unambiguous physical definition of the
components of the pertinent tensor.

2. SEM tensor of the field in the G frame

The SEM tensor of the field in the G frame is unambigu-
ously determined by the SEM tensor of the field in the L frame
in Eq. (29) through the Lorentz transformation of the SEM
tensors in Eq. (39). After some algebra, we find that Tfield in
the G frame is given in terms of the quantities of the G frame
and split into the transformed Abraham and interaction SEM
tensors as

Tfield = TA + Tint. (40)

The transformed Abraham SEM tensor is compactly written
as

TA = FgD − 1

4
gTr(FgDg)

− [FgD − DgF]g
Ua0 ⊗ Ua0

c2
, (41)

where Tr(x) is the trace of a matrix and g = gαβeα ⊗ eβ ,
with g00 = 1, g11 = g22 = g33 = −1, is the diagonal matrix
representation of the Minkowski metric tensor. The electro-
magnetic field tensor F in Eq. (41) is given in the contravariant

form F = Fαβeα ⊗ eβ as [43,48]

F =

⎡
⎢⎣

0 −Ex/c −Ey/c −Ez/c
Ex/c 0 −Bz By

Ey/c Bz 0 −Bx

Ez/c −By Bx 0

⎤
⎥⎦, (42)

and the electromagnetic displacement tensor D is given in the
contravariant form D = Dαβeα ⊗ eβ as [59]

D =

⎡
⎢⎣

0 −Dxc −Dyc −Dzc
Dxc 0 −Hz Hy

Dyc Hz 0 −Hx

Dzc −Hy Hx 0

⎤
⎥⎦. (43)

The Abraham SEM tensor in the G frame in Eq. (41) does
not appear in the same form in previous literature, including
previous works on the MP theory of light [3]. Instead, the
Abraham SEM tensor is typically written in the G frame using
its expression in the L frame in Eq. (30) and replacing only the
field quantities of the L frame by those of the G frame. This
has led to conclusions that the Abraham SEM tensor would
not transform covariantly between inertial frames as it would
not satisfy the Lorentz transformation in Eq. (39) [3,32].
However, this conclusion is no more valid when Eq. (41) is
used. The essential feature of the form of the Abraham SEM
tensor in Eq. (41) is that it depends on the four velocity Ua0 of
the equilibrium state of the medium. The dependence on Ua0

produces terms that make Eq. (39) satisfied. In some previous
works on light in nondispersive media [60,61], which, how-
ever, do not consider the MDW driven forward by the optical
force, the Abraham SEM tensor has been suggested to have a
form that corresponds to Eqs. (30) and (41) with an additional
symmetrization related to the order of the field quantities. This
additional symmetrization is not needed in the present work.

The SEM tensor of the interaction in Eq. (40) is given in
the G frame by

Tint

= Wex,nd(1 + ξ )

c2

(
1 + η

γ 2
vg

+ η

γ 2
va0

− 2ηCa0,g

γvgγva0

)
Ua0 ⊗ Ua0

+ ξη(〈Wex,nd 〉−Wex,nd )

γ 2
va0

c2

(
Cp,a0Cg,a0

Cp,g
−1

)[
Ua0 ⊗ Ua0

− C2
g,a0

C2
g,a0 − 1

(
Ug

Cg,a0
− Ua0

)
⊗
(

Ug

Cg,a0
− Ua0

)]

− Wφ

Ua0 ⊗ Ua0

γ 2
va0

c2
. (44)

Here Wex,nd is the conventionally used expression of the to-
tal exploitable energy density of the field in a nondispersive
medium in the G frame, given by

Wex,nd = 1

2
(E · D + H · B). (45)

Corresponding to Eq. (21) for the L frame, the energy ex-
change density Wφ in Eq. (44) is transformed to the G frame
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TABLE I. Representations of the dispersion and coupling pa-
rameters and the atomic MDW quantities in the G and L frames.
The symbol 	 denotes the relativistic velocity subtraction, defined
for two arbitrary velocity vectors v and u by v 	 u = (v − u⊥/γv −
u‖)/(1 − v · u/c2) [43]. Here the subscripts ‖ and ⊥ denote compo-
nents parallel, u‖ = (u · v̂)v̂, and perpendicular, u⊥ = u − (u · v̂)v̂,
to the velocity v, for which γv = 1/

√
1 − |v|2/c2 is the Lorentz

factor.

Quantity G frame L frame

ξ

|va0	vp |
|va0	vg | −1

1− (va0	vp )·va0
c2

n(L)
g

n(L)
p

− 1

η
c2

|va0	vp ||va0	vg | −1

1− (va0	vp )·va0
|va0	vp |2

n(L)
p n(L)

g − 1

κ
c2

|va0	vp ||va0	vg | −1

c2

|va0	vp |2 −1

n(L)
p n(L)

g −1

(n(L)
p )2−1

ρMDW ρa − ρa0 ρ (L)
a − ρ

(L)
a0

ρMDW,min ρa,min − ρa0 ρ
(L)
a,min − ρ

(L)
a0

vMDW
ρava−ρa0va0

ρa−ρa0

ρ
(L)
a v(L)

a −ρ
(L)
a0 v(L)

a0

ρ
(L)
a −ρ

(L)
a0

by

Wφ =
∫ t

−∞
fopt · va dt ′ = γva − γva0

γva0

ρa,minc2. (46)

In Eq. (44), for the sake of the compactness of the pre-
sentation, we have defined the normalized Minkowski inner
product of four-velocities by the symbol Ci, j = UigU j/c2.
We have also introduced the dispersion parameter ξ and the
coupling parameter η as given in Table I. In the L frame,
these parameters obtain simple forms ξ (L) = n(L)

g /n(L)
p − 1 and

η(L) = n(L)
p n(L)

g − 1. Thus, the dispersion parameter is zero for
nondispersive media and the coupling parameter is zero if the
product of the phase and group refractive indices is unity.

The phase and group velocities and the atomic velocity of
the equilibrium state of the medium are related to the field
amplitudes and the dispersion parameter in the G frame as

vp = E × H
Wex,nd

, vp + ξva0 = vg(1 + ξ ). (47)

Using these relations, the SEM tensor of the field in Eq. (40)
can be written as a sum of outer products of four-velocities
multiplied by scalar prefactors. This representation of Tfield

TABLE III. Lorentz invariant scalar prefactors of the outer prod-
ucts of four-velocities in the SEM tensors given in Table II. The
prefactors are given in terms of Wex,nd, Wφ , the phase velocity vp, the
group velocity vg, the atomic velocity va, and the equilibrium atomic
velocity va0. The other quantities are the local MDW energy velocity
vMDW, the dispersion parameter ξ , and the coupling parameter η; see
Table I. The symbols Ci, j are defined by Ci, j = UigU j/c2.

Quantity Expression

ρf1
Wex,nd (1+ξ )(1+η)

γ 2
vg c2

ρf2
Wex,nd (1+ξ )η−Wφ

γ 2
va0

c2

ρf3
ξη(〈Wex,nd〉−Wex,nd )

γ 2
va0

c2

Cp,a0Cg,a0
Cp,g

−1

1−C2
g,a0

ρf4
ξη(〈Wex,nd〉−Wex,nd )

γ 2
va0

c2

Cp,a0Cg,a0
Cp,g

−1

(1−C2
g,a0 )/Cg,a0

ρf5
Wex,nd (1+ξ )η

γvg γva0 c2

ρm1
ρMDW
γ 2

vg

|vMDW−va0 |
|vg−va0 | (1 − |vg−va |

|vg−va0 | )

ρm2
ρMDW
γ 2

va0
[1 − |vMDW−va0 |

|vg−va0 | (1 + |vg−va |
|vg−va0 | )]

ρm3
ρMDW
γvg γva0

|vMDW−va0 |
|vg−va0 |

|vg−va |
|vg−va0 |

is given in Table II. The prefactors appearing in Table II
are given in Table III. These prefactors can be proven to be
Lorentz scalars. Therefore, since Tfield is expressed solely in
terms of four-velocities and Lorentz scalars, it is transparently
covariant.

3. SEM tensor of the medium in the G frame

In the SEM tensor Tmat of the disturbed medium, the total
energy and momentum densities and the stress tensor in terms
of the atomic mass density ρa and atomic velocity va are
obtained from the conservation laws in Eqs. (10) and (12).
The conventional expressions Wmat = ρac2, Gmat = ρava and
T mat = ρava ⊗ va apply also in the G frame and thus Tmat is
given by

Tmat =
[

ρac2 ρavT
a c

ρavac ρava ⊗ va

]
= ρa

γ 2
va

Ua ⊗ Ua. (48)

The SEM tensor Tmat,0 of the equilibrium state of the
medium in terms of the equilibrium atomic mass density
ρa0 and the equilibrium atomic velocity va0 is of the known

TABLE II. Expressions of the SEM tensors of the MP theory of light in a general inertial frame, the G frame, in terms of four-velocities Ug,
Ua, and Ua0 and Lorentz invariant scalar prefactors ρa/γ

2
va

, ρa0/γ
2
va0

, ρfi, and ρm j , where i = 1, 2, . . . , 5 and j = 1, 2, 3. The Lorentz invariant
prefactors ρfi and ρm j are given in Table III.

SEM tensor Expression

Tfield (ρf1 + ρf3 )Ug ⊗ Ug + (ρf2 + ρf3 )Ua0 ⊗ Ua0 − (ρf4 + ρf5 )(Ug ⊗ Ua0 + Ua0 ⊗ Ug)
Tmat

ρa
γ 2

va
Ua ⊗ Ua

Tmat,0
ρa0
γ 2

va0
Ua0 ⊗ Ua0

TMDW = Tmat − Tmat,0 ρm1Ug ⊗ Ug + ρm2Ua0 ⊗ Ua0 + ρm3(Ug ⊗ Ua0 + Ua0 ⊗ Ug)
TMP = Tfield + TMDW (ρf1 + ρf3 + ρm1)Ug ⊗ Ug + (ρf2 + ρf3 + ρm2)Ua0 ⊗ Ua0

+(ρm3 − ρf4 − ρf5 )(Ug ⊗ Ua0 + Ua0 ⊗ Ug)
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conventional form, given by [46,47].

Tmat,0 =
[

ρa0c2 ρa0vT
a0c

ρa0va0c ρa0va0 ⊗ va0

]
= ρa0

γ 2
va0

Ua0 ⊗ Ua0. (49)

The scalar prefactors ρa/γ
2
va

and ρa0/γ
2
va0

of the outer products
of four-velocities in Eqs. (48) and (49) are both Lorentz invari-
ants since they are equal to the mass densities in the local rest
frames of the disturbed and equilibrium states of the medium,
respectively.

4. SEM tensor of the atomic MDW in the G frame

The SEM tensor of the atomic MDW in the G frame,
TMDW, is obtained as the difference of Tmat and Tmat,0, given
in Eqs. (48) and (49). Using the excess mass density of the
medium driven forward by the generalized optical force in the
G frame, defined by ρMDW = ρa − ρa0, and the local position-
and time-dependent energy velocity of the MDW, defined by
vMDW = (ρava − ρa0va0)/ρMDW, TMDW is given by

TMDW

=
[

ρMDWc2 ρMDWvT
MDWc

ρMDWvMDWc ρMDW[va⊗vMDW+(vMDW−va)⊗va0]

]
. (50)

Comparison of Eqs. (37) and (50) shows that the presentations
of the MDW SEM tensor in the L and G frames are formally
identical apart from the stress tensor term ρMDW(vMDW −
va ) ⊗ va0. This term is a consequence of the form invariance
of Tmat and Tmat,0 in Eqs. (48) and (49), and it is zero in the
L frame, for which v(L)

a0 = 0. The Lorentz transformations of
the quantities ρMDW and vMDW are determined by the Lorentz
transformations of ρa, ρa0, va, and va0, given in Appendix G.

The MDW velocity vMDW and the atomic velocity va can
be written as linear combinations of the group velocity vg and
the equilibrium atomic velocity va0 as

vMDW = |vMDW − va0|
|vg − va0| vg +

(
1 − |vMDW − va0|

|vg − va0|
)

va0, (51)

va =
(

1 − |vg − va|
|vg − va0|

)
vg + |vg − va|

|vg − va0|va0. (52)

Using these relations, the expression of the SEM tensor of the
MDW in Eq. (50) can be expanded to a sum of outer products
of four-velocities multiplied by scalar prefactors. This form of
TMDW is given in Table II with scalar prefactors given in Ta-
ble III. All these scalar prefactors can be proven to be Lorentz
scalars. Thus, the form of TMDW in Table II is transparently
covariant. The covariance of TMDW is also evident from its
definition as the difference of the two covariant tensors Tmat

and Tmat,0 in agreement with Eq. (24).

5. SEM tensor of the MP state of light in the G frame

The SEM tensor of the MP state of light in the G frame,
TMP, is, according to Eq. (25), equal to the sum of Tfield

and TMDW given in Eqs. (40) and (50). The MP SEM tensor
also has an expression in terms of four-velocities and Lorentz
scalars as presented in Table II. All prefactors of the outer
products of four-velocities in the MP SEM tensor in Table II
are Lorentz scalars. Therefore, since the MP SEM tensor is
expressed solely in terms of four-vectors and Lorentz scalars,
it is transparently covariant.

V. SELECTED PROPERTIES OF THE SEM TENSORS

A. Definition of the angular momentum tensor

In addition to the energy and momentum, the SEM tensor is
also directly related to the description of angular momentum.
The definitions of the angular momentum density (AMD) ten-
sor and the related integrated quantity, the angular momentum
(AM) tensor, used below, are general and not specific to the
MP theory of light. We reiterate that, since the present work
is based on the classical definition of the energy, momentum,
and angular momentum densities, the present work does not
describe the quantum mechanical spin of light. Using the
index notation, the angular momentum density with respect
to the position four-vector x̄α is described by the AMD tensor,
which is a third-rank tensor, given by [43,46,48]

Mαβγ = (xα − x̄α )T βγ − (xβ − x̄β )T αγ . (53)

By its definition in Eq. (53), the AMD tensor is antisymmetric
with respect to the indices α and β. The boundary integral
of the AMD tensor over the three-dimensional space-time
hypersurface ∂�, which is the boundary of a four-dimensional
space-time volume �, produces the AM tensor that is a
second-rank tensor given by [46]

Mαβ = 1

c

∮
∂�

Mαβγ d�γ . (54)

The differential volume element vector d�γ is normal to ∂�

and the integral is taken over the space-time coordinates xα .
When the AMD tensor is known to become zero at infinity and
the space-time hypersurface ∂� is chosen to be a spacelike
surface of constant time with γ = 0 and d�0 = dx dy dz =
d3r, we obtain the AM tensor as [46]

Mαβ = 1

c

∫
Mαβ0 d3r. (55)

By separately using the time component and the spa-
tial three-dimensional position vector r, one can define
the conventional three-dimensional angular momentum den-
sity J [43,48,62–64] and the boost momentum density
N [3,54,65,66] as

J = (r − r̄) × G, (56)

N = W

c2
(r − r̄) + G(t − t̄ ). (57)

The boost momentum is a quantity whose conservation en-
sures the rectilinear motion of the energy centroid of light in
the assumed homogeneous medium. In terms of J and N ,
the AM tensor in Eq. (55) can be written in the contravariant
form as a matrix, given by [67]

M =
∫ [

0 −cN T

cN (r − r̄) ∧ G

]
d3r

=
∫ ⎡

⎢⎣
0 −cN x −cN y −cN z

cN x 0 J z −J y

cN y −J z 0 J x

cN z J y −J x 0

⎤
⎥⎦d3r. (58)

Here ∧ denotes the exterior product. The AM tensor of an
isolated system is form-invariant and transforms according to
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the Lorentz transformation of second-rank tensors, discussed
in Sec. IV B 1.

B. Compact presentation of the conservation laws

The conservation laws of energy, momentum, and angular
momentum of light can be written in terms of the MP SEM
tensor and the MP AMD tensor as

∂αT αβ

MP = 0, ∂γMαβγ

MP = 0. (59)

The first equation of Eq. (59) corresponds to the conservation
laws of energy and momentum in Eqs. (3) and (4), where the
right-hand sides can be set to zero since the MP is an isolated
system. Together with the conservation laws of energy and
momentum, the conservation law of angular momentum in
the second equation of Eq. (59) corresponds to the diagonal
symmetry of the SEM tensor [43,46,48]. Therefore, all the
conservation laws of energy, momentum, and angular momen-
tum of light can be compactly expressed using the MP SEM
tensor as [43]

∂αT αβ

MP = 0, T αβ

MP = T βα

MP . (60)

Here the equation on the right describes the diagonal sym-
metry that is needed to fulfill the conservation law of angular
momentum in Eq. (59). Thus, the total MP SEM tensor in Ta-
ble II fulfills all the conservation laws of energy, momentum,
and angular momentum. Consequently, this tensor is the total
conserved Poincaré current of light [4]. This is a strong argu-
ment for the ultimate consistency of the MP state of light. The
conservation laws in Eqs. (59) and (60) also naturally apply to
Tmat,0, whose elements are constants, and to Ttot , which is the
total conserved Poincaré current of the full system of the field
and the medium [4].

C. Law of action and reaction between the field and the MDW
and the generalized optical force

The SEM tensors of the field and the MDW satisfy the con-
servation laws of energy and momentum in Eqs. (3) and (4)
with the nonzero source terms φopt/c2 and fopt. The four-
divergences of these SEM tensors can then be written using
the generalized optical four-force density Fopt in Eq. (8) as

∂β (Tfield )αβ = −(Fopt )
α, (61)

∂β (TMDW)αβ = (Fopt )
α, (62)

From Eqs. (61) and (62), it follows that the four-divergence of
the total MP SEM tensor of light is zero in accordance with
Eq. (60) since the opposite source terms in Eqs. (61) and (62)
cancel each other.

The generalized optical force density, which is one of the
basic foundations of the theory, is given for the L frame in
Eq. (1). Using the Lorentz transformation of the force and
power-conversion densities, given in Appendix G, fopt is given
in the G frame by

fopt =
( ∂

∂t
+ va0 · ∇

)[
κ
(

D × B − E × H
c2

)
+ Wφva0

c2

]
.

(63)

The coefficient κ is given in Table I. The expression of the
power-conversion density in the G frame is obtained from fopt

in Eq. (63) using Eq. (7).

D. Lorentz transformations of the total energy, momentum, and
angular momentum of light

The energy density WMP and the momentum density GMP
of the MP state of light in the G frame are obtained from
the corresponding components of TMP, derived above. Using
these quantities, we can furthermore define the angular mo-
mentum and boost momentum densities of the MP state of
light in the G frame by

J MP = (r − r̄) × GMP, (64)

NMP = WMP

c2
(r − r̄) + GMP(t − t̄ ). (65)

The total energy, momentum, angular momentum, and
boost momentum of light are obtained as volume integrals of
the pertinent densities as

EMP =
∫

WMP d3r, pMP =
∫

GMP d3r, (66)

JMP =
∫

J MP d3r, NMP =
∫

NMP d3r. (67)

Since the MP is an isolated system, it is described by the
MP SEM tensor that has zero four-divergence as presented
in Eq. (60). Therefore, the volume-integrated quantities in
Eqs. (66)–(67) obey the conventional Lorentz transformations
of the energy-momentum four-vector and the angular momen-
tum and boost momentum vectors, given by

E ′
MP = γv(EMP − v · pMP), (68)

p′
MP = pMP,⊥ + γv

(
pMP,‖ − 1

c2
EMPv

)
, (69)

J′
MP = JMP,‖ + γv(JMP,⊥ + v × NMP), (70)

N′
MP = NMP,‖ + γv

(
NMP,⊥ − 1

c2
v × JMP

)
. (71)

That these Lorentz transformations are satisfied for the MP
state of light is a strong argument for the full consistency
of the SEM tensors of the present work and the results of
the previously introduced MP quasiparticle model for dis-
persive media [5]. Note that the volume-integrated quantities
corresponding to the field or the MDW SEM tensors do not
separately satisfy the Lorentz transformations in Eqs. (68)–
(71) due to their coupling through the generalized optical
force and power-conversion densities.

E. Kinetic and rest energies of the MDW

The kinetic energy density WMDW,kin and the rest energy
density WMDW,rest of the MDW can be defined in terms of
the differences of the corresponding terms of the SEM tensors
Tmat and Tmat,0 as

WMDW,kin = Wmat,kin − Wmat,0,kin

= (γva − 1)m0c2na − (γva0 − 1)m0c2na0

= γva − 1

γva

ρac2 − γva0 − 1

γva0

ρa0c2, (72)
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WMDW,rest = Wmat,rest − Wmat,0,rest

= m0c2na − m0c2na0

= ρac2

γva

− ρa0c2

γva0

. (73)

Equation (73) can be used to define the MDW rest mass
density as

ρMDW,rest = WMDW,rest

c2
= m0(na − na0) = ρa

γva

− ρa0

γva0

. (74)

The integral of this rest mass density over the light pulse gives
the total transferred medium rest mass as

δM =
∫

ρMDW,rest d3r. (75)

This transferred rest mass is Lorentz invariant scalar meaning
that the integral on the right-hand side gives the same value
for all inertial frames. For the volume-integrated rest energy of
the MDW, we obtain EMDW,rest = ∫

WMDW,restc2 d3r = δMc2.
The kinetic energy density of the MDW, as defined in

Eq. (72), does not fully belong to the exploitable energy of
light since it includes the equilibrium state kinetic energy den-
sity of the medium corresponding to the MDW rest mass den-
sity, given by WMDW,kin,0 = (γva0 − 1)ρMDW,restc2. This kinetic
energy is obtained from the equilibrium state of the medium,
and it is carried forward in a form of flux by the MDW.
As we will see below, the total kinetic energy of the MDW
in Eq. (72) also includes other terms that behave as flux.

Multiplying Eq. (9) by m0 and subtracting it from Eq. (10)
side by side, multiplying both sides of the resulting equation
by c2, integrating over time from negative infinity to t , and
rearranging the terms gives

WMDW,kin

=
∫ t

−∞
fopt · va dt ′ −

∫ t

−∞
∇ · (Wmat,kinva ) dt ′

= Wφ + WMDW,kin,0 + (γva − γva0 )

(
ρa

γva

− ρa,min

γva0

)
c2. (76)

Here the first term on the right-hand side is the energy ex-
change density. It converts field energy into kinetic energy of
atoms in regions where the field energy density is increas-
ing and returns this energy to the field in regions where the
field energy density is decreasing. Thus, Wφ is part of the
exploitable energy density of light.

The second term on the right-hand side of the first line
of Eq. (76) describes the flux of the kinetic energy density.
A detailed consideration of this term shows that WMDW,kin,0

generally dominates the flux part. The MDW transfers this
kinetic energy through the medium. Since this kinetic energy
moves in the medium in a form of flux, there should not
be a power-conversion density source term in the dynamical
equations related to this part of the kinetic energy density.
Therefore, we call it an unexploitable part of the kinetic energy
density of the MDW.

F. Exploitable energy and Doppler shift

The total exploitable energy density of light is the sum of
the electromagnetic energy density Wfield and the exploitable
part of the kinetic energy density of the MDW in Eq. (76),
which equals the energy exchange density Wφ , given in
Eq. (13). Therefore, we can write the total exploitable energy
of light as given in Eq. (14). The total exploitable energy of
light is obtained as a volume integral of Wex in Eq. (14) over
the light pulse as Eex = ∫

Wexd3r. From the Lorentz transfor-
mations of the quantities of Eq. (14), given in Appendix G, it
follows that the total exploitable energies of light in the G and
G′ frames are related by

E ′
ex = γv

(
1 − v · v̂p

|vp|

)
Eex, (77)

For a monochromatic field, v̂p/|vp| = k/ω, where ω is the
angular frequency and k is the wave number of light in the
medium. Then, comparing Eq. (77) with the Lorentz trans-
formation of the frequency, given in Appendix G, we see
that E ′

ex/ω
′ = Eex/ω. Thus, the transformation of the energy

Eex in Eq. (77) corresponds to the accurately experimentally
verified Doppler shift of the frequency of light in a dispersive
medium [68].

G. Lorentz invariance of the SEM tensor contractions

The contraction is a tensor operation that, in the case of
a second-rank tensor, produces a scalar quantity. This scalar
quantity is known to be Lorentz invariant for a tensor satis-
fying Eq. (39) [46]. The contraction of a SEM tensor T αβ

with a matrix presentation T in the Minkowski spacetime
is defined as T α

α = T αβgαβ = Tr(Tg). The Lorentz invariant
contractions of the SEM tensors of the present work are given
by

Tr(TAg) = 0, (78)

Tr(Tintg)

= Wex,nd(1 + ξ )

(
1 + η

γ 2
vg

+ η

γ 2
va0

− 2ηCa0,g

γvgγva0

)
− Wφ

γ 2
va0

+ 2ξη
(〈Wex,nd〉 − Wex,nd

)
γ 2

va0

(
Cp,a0Cg,a0

Cp,g
−1

)
, (79)

Tr(Tmatg) = ρac2

γ 2
va

, (80)

Tr(Tmat,0g) = ρa0c2

γ 2
va0

, (81)

Tr(Tfieldg) = Tr(TAg) + Tr(Tintg), (82)

Tr(TMDWg) = Tr(Tmatg) − Tr(Tmat,0g), (83)

Tr(TMPg) = Tr(Tfieldg) + Tr(TMDWg). (84)

The contractions of the SEM tensors of the disturbed and
equilibrium states of the medium in Eq. (80) and (81) are
equal to the pertinent rest energy densities of the medium.
The physical interpretation of the contraction of the MP SEM
tensor is discussed in the next subsection.
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H. Lagrangian and Hamiltonian of the MP state of light

The volume integral of the MP SEM tensor contrac-
tion, Tr(TMPg), normalized by the photon number N0

and a negative sign in the G frame is equal to L =
− ∫

Tr(TMPg) d3r/N0 = −mMPc2
√

1 − v2
g/c2, where mMP =

n(L)
p

√
(n(L)

g )2 − 1 h̄ω
(L)
0 /c2 is the MP quasiparticle rest

mass [5]. Thus, this integral is the Lagrangian of a relativistic
quasiparticle with a rest mass mMP moving at velocity vg [48].
The corresponding Hamiltonian is given by H = vg∂L/∂vg −
L = γvg mMPc2, and it is the relativistic total energy of the MP
quasiparticle [5].

I. Constant center-of-energy velocity of an isolated system

The center of energy of an isolated system moves with a
constant velocity. This is a fundamental law of nature that any
consistent physical theory must fulfill. As discussed below,
this conservation law is a synthesis of the conservation laws
of energy and momentum of an isolated system. We will show
that this law is fulfilled for the MP theory of light in a disper-
sive medium by considering a Gaussian light pulse having in
vacuum the field energy E (L)

field, which enters a material body
having a rest mass M (L)

body. To simplify the model, we assume
no reflection at the interface.

When the light pulse and the related field energy are still in
the vacuum, the velocity of the center of energy is given by

v
(L)
CEV =

∑
i E (L)

i v
(L)
i∑

i E (L)
i

= E (L)
fieldc

E (L)
field + M (L)

bodyc2
. (85)

After the light pulse has entered the body, the total energy
of the system consists of two components: (1) The energy of
the coupled field-medium MP state of light is given by E (L)

MP =
n(L)

p n(L)
g E (L)

field. This energy includes the rest energy of the trans-

ferred mass of the MP state equal to δM (L) = ∫
ρ

(L)
MDW d3r =

(n(L)
p n(L)

g − 1)E (L
field/c2. (2) The energy of the body is equal

to M (L)
r c2, where M (L)

r = M (L)
body − δM (L) is the recoil mass.

The recoil mass takes the recoil following from the momen-
tum change of light from p(L)

vac = E(L)
field/c to p(L)

MP = n(L)
p E (L)

field/c
when it enters the medium. The mass Mr moves with the
recoil velocity v(L)

r after the field has entered the medium. The
kinetic energy of the recoil is negligibly small in comparison
to the field energy by the same argument as the kinetic energy
of the MDW is extremely small in the L frame. Therefore, it
is enough to account for the recoil momentum of the body,
which is not small.

From the conservation law of momentum at the interface,
we obtain v(L)

r = (1 − n(L)
p )E (L)

field/(Mrc). Thus, the center of
energy velocity of the system, when light is propagating inside
the body, is given by

v
(L)
CEV =

∑
i E (L)

i v
(L)
i∑

i E (L)
i

= n(L)
p n(L)

g E (L)
fieldv

(L)
g + M (L)

r c2v(L)
r

n(L)
p n(L)

g E (L)
field + M (L)

r c2
.

(86)

By expressing M (L)
r and v(L)

r in terms of M (L)
body and δM (L) =

(n(L)
p n(L)

g − 1)E (L
field/c2, given above, one can directly see the

equivalence of Eqs. (85) and (86). Thus, the constant center-
of-energy-velocity law of an isolated system is satisfied in the
MP theory of light. The equality of the numerators of Eqs. (85)
and (86) divided by c2 corresponds to the conservation law of
momentum and the equality of the denominators is the con-
servation law of energy. In the case of nondispersive media,
the corresponding analysis of the velocity of the center of
energy is presented in Ref. [2] and, for a different geometry,
in Ref. [69].

VI. SIMULATION OF THE ATOMIC MDW IN A
DISPERSIVE MEDIUM

The analytic solution of Newton’s equation in Sec. III can
be used to calculate the position and time dependence of the
medium dynamics for a given optical field. In this section, we
illustrate the behavior of selected key physical variables of
the field and the medium for a realistic Gaussian light pulse
in a dispersive medium. Here we solve the coupled dynamical
equations of the field and the medium numerically as a func-
tion of the position and time using the finite-difference-based
OCD method described in Ref. [2]. This provides an inde-
pendent cross-check of the numerical and analytical results
directly on the basis of Newton’s equation.

The only assumptions in the simulations are the values
of the material parameters and the generalized optical force
density calculated using Eq. (1) for the given Gaussian light
pulse. In this section, we present the results of these simula-
tions for the atomic MDW and the local energy velocity of
light. The numerical accuracy of the simulations is approx-
imately seven digits. The comparison between the analytical
results and numerical simulations is partly limited by the finite
spectral width used in the simulations. Within the numerical
accuracy of the simulations and the limited accuracy due to
the finite spectral width, all results obtained in this section are
in agreement with the analytic results derived above and the
MP quasiparticle model of a dispersive medium presented in
Ref. [5]. In the figures of this section, we have presented the
results of the numerical simulations. The analytic results agree
with these results so accurately that they could not be seen as
separate graphs.

A. Dispersion relation

Independently of the actual form of the dispersion relation
of a lossless dispersive medium, for a narrow spectral range, it
can be approximated by a linear form. The linearized disper-
sion relation is a good approximation if the actual dispersion
relation does not have sharp variations due to resonances, and
if the distance traveled by light is not very long. The linearized
dispersion relation around the central frequency ω

(L)
0 contains

the zeroth- and first-order terms of the Taylor expansion of
ω(L)(k) as

ω(L)(k) ≈ ω
(L)
0 + (

c/n(L)
g

)(
k − k(L)

0,med

)
. (87)

Here k(L)
0,med = n(L)

p k(L)
0 is the wave number of light in the

medium, in which k(L)
0 = ω

(L)
0 /c is the wave number in vac-

uum at ω
(L)
0 and n(L)

p is the phase refractive index of the

medium at ω
(L)
0 . The group refractive index n(L)

g is constant.
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For a more accurate description, one should also account for
higher-order terms in the Taylor expansion of ω(L)(k).

The linear dispersion relation in Eq. (87) can be used to
define the frequency-dependent phase refractive index in the
L frame as

n(L)
p (ω) = n(L)

g + (
n(L)

p − n(L)
g

)ω(L)
0

ω
. (88)

The linear form of the dispersion relation in Eq. (87) does not
lead to distortion of the light pulse envelope while the pulse is
propagating.

B. Electric and magnetic fields

The most general form of the electric field of a one-
dimensional light pulse, linearly polarized in the x direction
and propagating in the z direction in a dispersive medium, is
written as [70]

E(L)(r, t ) = Re
[ ∫ ∞

−∞
Ẽ (L)(k)ei[kz−ω(L) (k)t] dk

]
x̂. (89)

Here x̂ is the unit vector parallel to the x axis and Ẽ (L)(k) is the
Fourier component of the field. Using Maxwell’s equations
and the constitutive relations given in Sec. II A, expressions
corresponding to Eq. (89) apply also for the other field vectors
with the exception that the magnetic field and magnetic flux
density are parallel to the y axis.

We assume that the electric field of the
light pulse has a Gaussian form with Ẽ (L)(k) =

ω
(L)
0 E√

2π n(L)
g �k(L)

0

e−[(k−n(L)
p k(L)

0 )/(n(L)
g �k(L)

0 )]2/2, where E is a nor-

malization factor and �k(L)
0 is the standard deviation

of the wave number in vacuum. The pulse width in
the z direction is given by �z = 1/(

√
2n(L)

g �k(L)
0 ).

The corresponding width of the pulse in time is then
�t = n(L)

g �z/c = 1/(
√

2�k(L)
0 c) and the full width at half

maximum is given by �tFWHM = 2
√

2 ln 2 �t . Using Eq. (89)
with the linear dispersion relation in Eq. (87), the electric
field becomes

E(L)(r, t ) = ω
(L)
0 E cos

[
n(L)

p k(L)
0

(
z − ct

n(L)
p

)]

× e−(n(L)
g �k(L)

0 )2(z−ct/n(L)
g )2/2x̂. (90)

The normalization factor E in Eq. (90) can be determined so
that the integral of the corresponding instantaneous energy
density over z gives Eex/A, where A is the cross-sectional area.

In the calculation of the energy density and Poynting
vector in the monochromatic field limit, i.e., for small
�k(L)

0 /k(L)
0 = �ω(L)/ω

(L)
0 , we can approximate the Fourier

components of the field vectors D(L), H(L), and B(L)

as D̃(L)(k) ≈ ε(L)Ẽ (L)(k), H̃ (L)(k) ≈
√

ε(L)/μ(L)Ẽ (L)(k), and
B̃(L)(k) ≈ μ(L)H̃ (L)(k), where ε(L) = ε(L)(ω(L)

0 ) and μ(L) =
μ(L)(ω(L)

0 ). With these approximations, the electric field of the
Gaussian light pulse in Eq. (90), and the corresponding ex-
pressions for the other field vectors approach an exact solution
of Maxwell’s equations in the monochromatic field limit.

C. Simulation parameters

We apply the OCD model to illustrate the node structure
of the MDW and the atomic displacements resulting from the
optical force of a Gaussian light pulse of Eq. (90) in a material
where the dispersion is approximately linear near the central
frequency. We assume that the vacuum wavelength of light
is λ

(L)
0 = 800 nm corresponding to the central frequency of

ω
(L)
0 = 2πc/λ(L)

0 . The total exploitable energy of the Gaussian
light pulse is E (L)

ex = 500 nJ (recall the definition of the ex-
ploitable energy used in this work). This energy is incident to
a circular cross-sectional area A = π (d/2)2 of diameter d =
100 μm. The resulting maximum value 4.3 × 1011 W/cm2

of the Poynting vector averaged over the harmonic cycle is
below the bulk value of the breakdown threshold irradiance
of many common materials, e.g., 5.0 × 1011 W/cm2 reported
for fused silica [71]. The relative spectral width of the pulse,
in our example, is �ω(L)/ω

(L)
0 = �k(L)

0 /k(L)
0 = 0.05, which

corresponds to the FWHM of �t (L)
FWHM = 15 fs. The FWHM

is fixed to this close to feasibility limit value to make the
node structure of the MDW visible in the same scale with
the Gaussian envelope of the field. In our simulations, we use
space discretization of hz = λ/80 and time discretization of
ht = 2π/(80ω0) that are dense compared to the scale of the
harmonic cycle. The computational details of the simulation
are described in more detail in Appendix C of Ref. [2].

For visualization needs, we assume here an artificial dielec-
tric material for which the phase refractive index is n(L)

p = 1.2
and the group refractive index is n(L)

g = 2. The chosen phase
refractive index is below typical values for glasses and the
group refractive index is larger by a suitable amount to enable
a clear visual separation of the phase velocity dynamics of the
nodes inside the Gaussian envelope. The equilibrium density
of the medium is assumed to be ρ

(L)
a0 = 2500 kg/m3, which

is close to typical values for glasses. The medium is assumed
to be isotropic, and we use the value B = 50 GPa for the bulk
modulus and G = 25 GPa for the shear modulus. These values
are close to typical values of the corresponding quantities
for glasses. The elasticity parameters of the medium have,
however, no visible effect on the dynamics of the field of the
very short Gaussian light pulse. We neglect losses like phonon
scattering altogether.

D. Simulation results

Figure 1(a) shows the simulated atomic MDW as a function
of the position when the light pulse is propagating at the
position z = 0 μm. The time-dependent simulation is pre-
sented as a video file in the Supplemental Material [72]. The
MDW mass density ρMDW is the difference of the disturbed
mass density ρ (L)

a and the equilibrium mass density ρ
(L)
a0 of

the medium and it is obtained by solving Newton’s equation
of motion with the optical force density in Eq. (1) and using
Eq. (15). Figure 1(a) also presents the lower envelope function
of the atomic MDW, given by ρ

(L)
MDW,min = ρ

(L)
a,min − ρ

(L)
a0 . The

higher and lower envelopes of the MDW clearly follow the
Gaussian form of the pulse as expected. As the light pulse
is not very long compared to the harmonic cycle, the node
structure of the MDW can be seen in the same scale with
the Gaussian envelope. The energy density of the field has
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FIG. 1. Simulation of the atomic MDW in the L frame of a
dispersive dielectric medium, where the dispersion is linear around
the central frequency with the phase refractive index n(L)

p = 1.2 and
the group refractive index n(L)

g = 2. (a) The mass density of the
atomic MDW and its lower envelope, (b) the atomic velocity, and
(c) the atomic displacement as a function of the position. All figures
correspond to the same instance of time when the center of the
Gaussian light pulse is at z = 0 μm. The Gaussian light pulse has
a central wavelength of λ

(L)
0 = 800 nm, a field energy E (L)

field = 500 nJ
per circular cross-sectional area of diameter d = 100 μm, and a
temporal FWHM of �t (L)

FWHM = 14 fs.

the same node structure as the MDW in Fig. 1. The nonzero
lower envelope function is a result of the interference of par-
tial waves. This same interference pattern is seen in Fig. 1
of Philbin [29] since the exclusion of the power-conversion
density does not lead to observable differences in the L frame,
where it is negligibly small.

When we integrate the MDW mass density in Fig. 1(a)
over the volume, we obtain the total transferred mass of
δM = 7.79 × 10−24 kg. Dividing this by the photon number
of the light pulse, we then obtain the value of 2.17 eV/c2 for
the transferred mass per photon. Within the relative error of
9 × 10−4, this equals the MP quasiparticle value, given by
(n(L)

p n(L)
g − 1)h̄ω

(L)
0 /c2. For a more detailed discussion of the

correspondence between the MP quasiparticle model and the
OCD simulations, see Ref. [5].

In illustrating the excess mass density ρ
(L)
MDW = ρ (L)

a − ρ
(L)
a0

in Ref. [5], we used an approximative formula ρ
(L)
MDW ≈

ρ
(L)
a0 v(L)

a /v(L)
g , which is not a fair local approximation of ρ

(L)
MDW

for dispersive media, even if the volume integrals of densities
are closely equal. For a nondispersive medium, the approx-
imation above is extremely accurate also locally when the
kinetic energy of the atoms in the L frame is negligible [2].

Figure 1(b) depicts the atomic velocity as a function of the
position, corresponding to the MDW in Fig. 1(a). The atomic
velocity follows the Gaussian form of the pulse as the mass
density of the atomic MDW in Fig. 1(a). However, in contrast
to the total mass density of the MDW, the atomic velocity be-
comes zero at the nodes of the electromagnetic field, in which
the optical force is also zero. The momentum of atoms in the
MDW is obtained in the L frame by volume integrating the
classical momentum density component of T(L)

mat in Eq. (35) at
an arbitrary time.

Figure 1(c) shows the atomic displacements corresponding
to the MDW in Fig. 1(a), again, as a function of the position.
On the left of the light pulse, the atomic displacement has sat-
urated to a constant value of ra,max = 4.0 × 10−19 m. Within
the relative error of 10−4, we obtain ra,max = δM/(ρ (L)

a0 A). The
leading edge of the optical pulse is propagating to the right
approximately at the position z = 2.5 μm. Therefore, to the
right of z = 2.5 μm, the atomic displacement is zero. The
optoelastically driven MDW is manifested by the fact that
the atoms are more densely spaced at the position of the light
pulse as the atoms on the left of the pulse have been displaced
forward and the atoms on the right of the pulse are still at their
equilibrium positions.

E. Local energy velocity of light

The energy density and momentum density components of
the SEM tensor of the field in Eq. (29) have different position
and time dependencies in a dispersive medium. Therefore,
it is interesting to study their ratio, which is the local prop-
agation velocity of the energy density of the field v(L)

field =
c2G(L)

field/W (L)
field. It can be shown that this velocity is in the

L frame very accurately equal to the corresponding quantity
v(L)

MDW of the MDW SEM tensor in Eq. (37). The differ-
ent time and position dependencies of the local energy and
momentum densities are a direct consequence of the inter-
ference of different frequency components. The energies of
forward and backward propagating frequency components are
added up to obtain the total energy, while the magnitudes
of the corresponding momenta must be subtracted to obtain
the total momentum. The unequal propagation velocities of
different frequency components in a dispersive medium then
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FIG. 2. Local energy velocity of light in the L frame as a function
of the position in units of the wavelength of light in the medium for
phase refractive indices n(L)

p = 1.2, 1.5, 1.9, 1.99, when the group
refractive index is fixed to n(L)

g = 2. The solid curves depict the local
velocities for each refractive index, and the dashed lines with the
same colors are the corresponding phase velocities. The horizontal
black solid line presents the group velocity. Note that the horizontal
scaling of each graph depends on the refractive index of the medium
through the central wavelength of light in the medium, given by λ =
λ(L) = λ

(L)
0 /n(L)

p , where λ
(L)
0 is the central wavelength in vacuum.

lead to different time and position dependencies of the energy
and momentum densities in the real space.

Figure 2 illustrates the local energy velocity of light as a
function of the position in units of the wavelength of light in
the medium for phase refractive indices n(L)

p = 1.2, 1.5, 1.9,

1.99, when the group refractive index is fixed to n(L)
g = 2. The

illustration is made for the total distance of two wavelengths.
It is seen that the local energy velocity becomes zero at the
field nodes and obtains its maximum values in the middle
between the nodes. In the limit of a nondispersive medium,
where the phase refractive index becomes equal to the group
refractive index, the local energy velocity becomes equal to
the group velocity apart from the single points of the field
nodes. Therefore, the local energy velocity in Fig. 2 is an
obvious generalization of the local propagation velocity of
light, which is constant in a nondispersive medium.

VII. ENERGY AND MOMENTUM OF LIGHT MEASURED
BY A GENERAL INERTIAL OBSERVER

In this section, we study the energy and momentum of
light measured by a general inertial observer moving in the
L frame. The energy and momentum of light and their field
and MDW parts are obtained as volume integrals of the
corresponding densities for a Gaussian light pulse whose elec-
tric field is given in Eq. (90). The resulting analytic formulas
are given in Appendix H. In the illustrations of this section,
the phase and group refractive indices of the medium in the L
frame are assumed to be n(L)

p = 1.2 and n(L)
g = 2.

Figure 3(a) presents the energies of the electromagnetic
field, the MDW, and the coupled MP state of light as a func-
tion of the velocity of an inertial observer moving in the L
frame parallel to the light. It also shows the total exploitable
energy of light, calculated using Eq. (14). It is seen that
the total energy of the coupled MP state of light obtains its
minimum value for an observer moving at the group velocity,
i.e., in the rest frame of light. The energy of the field is a
monotonically increasing function and its energy obtains the
minimum value in the L frame, corresponding to the observer

FIG. 3. (a) The MDW energy, the field energy, the total MP energy, and the total exploitable energy and (b) the field momentum, the MDW
momentum, and the total MP momentum as a function of the velocity of an inertial observer moving in the L frame parallel to the propagation
velocity of light. The energies and momenta in this figure are volume integrals of the corresponding densities. The energy is given in units
of E0 = E (L)

ex , which is the exploitable energy of light in the L frame corresponding to observer velocity v = 0. The momentum is given in
units of p0 = E0/c. The phase refractive index is n(L)

p = 1.2 and the group refractive index is n(L)
g = 2 in the L frame, for which v = 0. The

vertical dashed line corresponds to the group velocity and the vertical dash-dotted line corresponds to the phase velocity. From this figure, we
conclude that the total MP energy obtains its minimum value and the MP momentum becomes zero at the group velocity. Thus, the inertial
frame propagating with the group velocity of light is the rest frame of light in accordance with the definition of the rest frame in the special
theory of relativity.
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velocity equal to zero. The energy of the MDW is a monoton-
ically decreasing function and it asymptotically becomes zero
when the observer velocity approaches the vacuum velocity of
light. The total exploitable energy of light is a monotonically
decreasing function and it becomes zero at the phase velocity
in agreement with the well-known Doppler shift. That the
total exploitable energy of light becomes negative above the
phase velocity is expected to be related to the fact that, for
particles propagating faster than the phase velocity of light
in the medium, it becomes energetically favorable to emit
Cherenkov or Askaryan radiation.

Figure 3(b) illustrates the momenta of the field, the MDW,
and the coupled MP state of light as a function of the ve-
locity of the observer in the L frame. All momenta decrease
monotonically; their values become smaller or more negative
when the observer is moving faster. The momentum of the
field changes its sign well before the group velocity. The mo-
mentum of the MDW is always positive and it asymptotically
approaches zero when the observer velocity approaches the
vacuum velocity of light. This result for the momentum of the
MDW is intuitive since it must necessarily stay positive as the
atomic velocities resulting from the optical force are larger
in the forward direction compared to the atomic velocities in
the equilibrium state of the medium. The momentum of the
coupled MP state is seen to become zero at the group velocity.
The zero total momentum of light at the group velocity agrees
with the results of the MP quasiparticle model presented in
Ref. [5].

In summary, from Figs. 3(a) and 3(b), we conclude that
the total MP energy obtains its minimum value and the MP
momentum becomes zero at the group velocity. Thus, the
inertial frame propagating with the group velocity of light is
the rest frame of light in accordance with the definition of the
rest frame in the special theory of relativity.

One can also conclude, on the basis of Fig. 3, that
the total energy, momentum, and the total transferred
mass δM (L) = ∫

ρ
(L)
MDW d3r fulfill the single MP quasiparti-

cle theory as defined in Ref. [5]. Transforming the total
energy of the coupled MP state from the L frame, E (L)

MP =
E (L)

ex + δM (L)c2, to the frame moving with the phase ve-
locity of light (F frame) using Eq. (68), we obtain E (F)

MP =
γ (L)

p (E (L)
ex − v(L)

p p(L)
MP) + γ (L)

p δM (L)c2. Comparing this with
Fig. 3(a) we conclude that, in the inertial frame moving with
v(L)

p , the first term on the right-hand side representing the total
exploitable energy in the F frame becomes zero, thus giving
p(L)

MP = n(L)
p E (L)

ex /c. Second, from Fig. 3, we conclude that the
total momentum of the MP state of light is zero in the frame
moving with the group velocity (R frame). From Eq. (69),
we obtain p(R)

MP = γ (L)
vg

(p(L)
MP − v(L)

g E (L)
ex /c2 − v(L)

g δM (L)). Set-

ting p(R)
MP to zero and using the value of p(L)

MP obtained above,
gives δM (L) = (n(L)

p n(L)
g − 1)E (L)

ex /c2, again in agreement with
the MP quasiparticle model of Ref. [5].

VIII. DISCUSSION

A. SEM tensors for nondispersive media

The SEM tensors for a nondispersive medium are obtained
from the SEM tensors of the present work by setting the phase
and group refractive indices equal. In distinction to previous

work in Ref. [3], we have accounted for the kinetic energy
of the medium through the power-conversion density in the
dynamical equations of the field and the medium. Therefore,
there is a difference between the definitions of the SEM ten-
sors in the present work and in Ref. [3]. This difference in the
definitions, which is small in the L frame and essential in the
G frame, is discussed in more detail in Appendix I.

B. Experimental evidence

A previous experiment that is accurate enough for ob-
serving a difference between the phase and group refractive
indices in the measurement of optical forces was reported by
Jones et al. [21]. In this experiment, the radiation force of
light reflected from a mirror immersed in various liquids was
found to be n(L)

p times the force of the same light on a mirror in
vacuum. Therefore, there is full agreement between the force
measured in the experiment by Jones et al. [21] and the change
of the total momentum of the MP state per unit time when the
light is reflected from a mirror in a liquid. Another experi-
ment, which is capable of studying the momentum of light
in dispersive media is that by Campbell et al. [25]. This ex-
periment studied the recoil of atoms in a dilute Bose-Einstein
condensate gas and showed the same n(L)

p proportionality of
the momentum of light as the experiment by Jones et al. [21].
So far, there are no reported experiments on the transferred
mass of the MDW. However, possible experimental setups for
the measurement of the displacement of atoms by a light pulse
have been suggested [5,6,73,74].

C. Energy density of light in dispersive media

There are very few theoretical studies of the energy density
of the field in a dispersive medium describing both the time
and position dependence of the energy density [29,75–78].
The theoretical challenge is partly related to the description
of losses, but the enigma is present also for lossless media.
Typically, textbooks of electromagnetism [43,44] present the
energy density of a dispersive medium in a form averaged
over the harmonic cycle, which corresponds to Eq. (32) of
the present work, where the averaged energy exchange den-
sity 〈W (L)

φ 〉 is typically neglected. This time-averaged form
cannot be used in the local conservation laws in Eqs. (5)
and (6), which are crucial for the covariant description of the
field-medium interaction. From this perspective, the chosen
approach of defining the local energy density of the field using
the conservation law of energy with the well-known Poynting
vector is the most natural, and it was previously used, e.g., by
Philbin [29]. This approach leads to additional energy density
terms related to the interference of partial waves, as expected.
If Philbin had used the generalized optical force density and
the associated power-conversion density, he would have ended
up to the present theory.

D. Momentum of light in previous theories

In the literature, the two most widely used momentum
densities of light are the Minkowski and Abraham momentum
densities. The Minkowski momentum density is commonly
defined as G(L)

M = D(L) × B(L) and the Abraham momen-
tum density as G(L)

A = E(L) × H(L)/c2 [9]. For nondispersive
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media with n(L)
p = n(L)

g = n(L), these momentum densities
correspond to single-photon expectation values in the L
frame, given by p(L)

M = n(L)h̄ω
(L)
0 /c and p(L)

A = h̄ω
(L)
0 /(n(L)c).

For dispersive media, Garrison et al. [79] have calculated
the single-photon expectation value of the volume integral
of G(L)

M , and obtained p(L)
M = (n(L)

p )2h̄ω
(L)
0 /(n(L)

g c). Corre-

spondingly, the Abraham momentum density G(L)
A gives for

dispersive media p(L)
A = h̄ω

(L)
0 /(n(L)

g c). Neither of these val-
ues is equal to the single-photon momentum value p(L) =
n(L)

p h̄ω
(L)
0 /c following from the de Broglie hypothesis, from

the measurements of Jones et al. [21] and Campbell et al. [25],
or from the present theory. In the present theory, the MP mo-
mentum p(L)

MP = n(L)
p h̄ω

(L)
0 /c is obtained for the single-photon

expectation value calculated using the total MP momentum
density G(L)

MP = ρ (L)
a v(L)

a + E(L) × H(L)/c2. A more detailed
comparison with previous theories is left to another context.

IX. CONCLUSIONS

Starting from the generalized optical force density and
the momentum density of the field, we have formulated the
covariant theory of light in a dispersive medium using the
conservation laws and the dynamical equations of the field and
the medium. The present work extends the previously devel-
oped stress-energy-momentum (SEM) tensor formalism of the
mass-polariton (MP) theory of light [3,4] to include the effects
of dispersion. The MP theory is also made fundamentally
more complete by including the energy exchange between the
field and the medium through the power-conversion density.
The integrals of the energy and momentum densities of the
present work reproduce the results of the previously intro-
duced MP quasiparticle model of a dispersive medium [5].
Since the kinetic energy of the medium is in the present work
included in the energy density of the medium, there is also a
related correction in the energy density of the field. Therefore,
the field and medium SEM tensors of the present work are not
identical to the corresponding SEM tensors of previous works
on the MP theory in the G frame, where the kinetic energy
density of the medium is not small.

Since both of the energy and momentum conversion source
terms are accounted for in the energy and momentum con-
servation laws, all SEM tensors of the present work are
symmetric and correspond to the most fundamental defini-
tion of the SEM tensor. Consequently, even for the field and
medium subsystems, we have found no need to introduce
asymmetric SEM tensors, such as the Minkowski SEM tensor,
which have been studied in previous literature [12,32,36]. Us-
ing asymmetric SEM tensors in previous works can be seen to
be partly related to the negligence of the optical-force-driven
atomic rest energy transfer associated with the atomic MDW.

In addition to being symmetric, all SEM tensors of the
present work also satisfy the Lorentz transformation of
second-rank tensors. Since the four-divergence of the SEM
tensor of the coupled MP state of light is zero, the volume
integrals of the energy and momentum density components
of the MP SEM tensor form a four-vector, which is the four-
momentum of light in agreement with the special theory of
relativity. The four-divergences of the SEM tensors of the field
and medium subsystems are within the sign difference equal

to the generalized optical four-force density introduced in the
present work.

The final outcome of the theoretical derivation is more
sophisticated than in the MP theory for nondispersive media,
as anticipated from the feature-rich interference patterns of
partial waves propagating at different phase velocities. One of
the most prominent features of this interference in dispersive
media is the appearance of fluctuational terms in the key phys-
ical quantities. In addition to the constant phase and group
velocities, which do not depend on the position and time, the
theory also includes local velocities of the field and the MDW.
The energy-density-weighted averages of these position- and
time-dependent velocities are equal to the group velocity of
light. Our theoretical work has also produced a number of
other side results, from which we want to mention the inter-
pretation of the integral of the MP SEM tensor contraction
normalized by the photon number as the Lagrangian of the
MP quasiparticle.

For negative-index metamaterials, the present theory has
been applied in a preprint [80]. The derivation of the MP
theory in a dispersive medium from the Lagrangian densities
of the field and the medium is left as a topic of a future
work. This would be a generalization of the corresponding
derivation for a nondispersive medium presented in an earlier
work [3]. The detailed description of the MP theory of light
in the presence of free electric charges, free electric currents,
and losses is also left as a topic of a future work. The present
theory enables detailed study of the optical effects at material
interfaces by including to it the well-known term originating
from the gradient of the refractive index. However, this term
must be generalized for a dispersive medium first. The present
classical theory must also be extended to the quantum domain
to treat the quantum mechanical spin of light.
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APPENDIX A: SUMMARY OF THE MP QUASIPARTICLE
MODEL FOR DISPERSIVE MEDIA

The present SEM tensor analysis of light in dispersive
media is based on the key properties of the MP quasipar-
ticle analysis and OCD simulations of light in dispersive
media presented in Ref. [5]. The MP quasiparticle model is
a kinematic relativistic model, which one can use to study
the Lorentz transformations of the energy and momentum of
the field and the medium between different inertial frames.
This model has two key properties: First, the total exploitable
energy of light vanishes in the F frame propagating at the
phase velocity. This is in accordance with the experimentally
accurately verified Doppler shift of light in dispersive me-
dia [68]. Second, the total momentum of the coupled MP state
of light becomes zero in the R frame propagating at the group
velocity. This inertial frame is then the rest frame of light as
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TABLE IV. The relations of the energies E (L)
MP, E (L)

field, and E (L)
MDW and the momenta p(L)

MP, p(L)
field, and p(L)

MDW of the MP state, the field, and the
MDW in the L frame calculated using the OCD simulations and the MP quasiparticle model of Ref. [5]. In contrast to the present work, the
extremely small energy exchange density W (L)

φ and energy E (L)
φ in the L frame have been set to zero in Ref. [5]. The integrands of E (L)

MP and

E (L)
field in this table are not the actual time- and position-dependent energy densities, but, to simplify comparison with Ref. [5], they are written

in terms of the Brillouin form of Eq. (32) with time average over the harmonic cycle removed as in Ref. [5]. This gives the same value for
E (L)

field as the integral of the actual energy density of the field described in the present work. With defining the photon number N0 = E (L)
ex /h̄ω

(L)
0 ,

the values in the OCD and MP columns are pairwise equal when in the L frame very small energy exchange between the field and the kinetic
energy of the medium is set to zero.

Quantity OCD MP

E (L)
MP = E (L)

field + E (L)
MDW

∫ {
1
2

[
d (ω(L)

0 ε(L) )

dω
(L)
0

|E(L)|2 + d (ω(L)
0 μ(L) )

dω
(L)
0

|H(L)|2
]

− W (L)
φ + ρ

(L)
MDWc2

}
d3r n(L)

p n(L)
g N0 h̄ω

(L)
0

E (L)
field

∫ {
1
2

[
d (ω(L)

0 ε(L) )

dω
(L)
0

|E(L)|2 + d (ω(L)
0 μ(L) )

dω
(L)
0

|H(L)|2
]

− W (L)
φ

}
d3r N0 h̄ω

(L)
0

E (L)
MDW

∫
ρ

(L)
MDWc2 d3r (n(L)

p n(L)
g − 1)N0 h̄ω

(L)
0

p(L)
MP

∫ (
E(L)×H(L)

c2 + ρ (L)
a v(L)

a

)
d3r

n(L)
p N0 h̄ω

(L)
0

c v̂p

p(L)
field

∫
E(L)×H(L)

c2 d3r
N0 h̄ω

(L)
0

n(L)
g c

v̂p

p(L)
MDW

∫
ρ (L)

a v(L)
a d3r

(
n(L)

p − 1
n(L)

g

)
N0 h̄ω

(L)
0

c v̂p

δM (L) = E (L)
MDW,rest/c2

∫
ρ

(L)
MDW,rest d3r (n(L)

p n(L)
g − 1)

N0 h̄ω
(L)
0

c2

defined in the special theory of relativity. The results of the
MP quasiparticle model for dispersive media are given for the
L frame in the last column of Table IV. The relation of the
MP model to the generalized optical force density in Eq. (1)
is briefly discussed below.

In Ref. [5], we furthermore compared the MP quasiparticle
model results with the OCD simulations of the momentum
density and the nonequilibrium mass density of the medium,
moving under the influence of the optical force. These numeri-
cal simulations were carried out by solving Newton’s equation
of the medium for a given generalized expression of the
optical force [5]. The results of the OCD simulations are sum-
marized in the middle column of Table IV. For nondispersive
media, all integrands in Table IV present as such the densities
of the integrated physical quantities. For dispersive media,
discussed in the present work, the densities are generally more
complicated as one should expect from the anticipated com-
plicated interference of partial waves propagating at different
phase velocities.

The MP quasiparticle model of Ref. [5] gives in Eq. (27)
of Ref. [5] the field part of the MP quasiparticle mo-
mentum p(L)

field = h̄ω
(L)
0 /(n(L)

g c) and the MDW part p(L)
MDW =

(n(L)
p − 1/n(L)

g )h̄ω
(L)
0 /c. This gives the quasiparticle momen-

tum ratio p(L)
MDW/p(L)

field = n(L)
p n(L)

g − 1. If this same momentum
ratio is assumed to apply for the momentum densities, i.e.,
G(L)

MDW/G(L)
field = n(L)

p n(L)
g − 1, we can write the momentum

density of the MDW in the L frame as

G(L)
MDW = (

n(L)
p n(L)

g − 1
)
G(L)

field = n(L)
p n(L)

g − 1

c2
E(L) × H(L).

(A1)
In the second equality, we have used Eq. (2). Newton’s equa-
tion of motion relates the force density experienced by the
nonrelativistic medium atoms in Eq. (A1) to the time deriva-
tive of the momentum density of atoms. From this condition,
we then obtain the expression of the generalized optical force

density given in Eq. (1). Note that, in the case of nondispersive
media with n(L)

p = n(L)
g , the optical force density correspond-

ing to Eq. (1) has also been derived directly from the principle
of least action as detailed in Ref. [4]. Such a derivation is also
expected to be possible in the present case of dispersive media.
Together with the derivation of the expression of the gener-
alized optical force in Eq. (1) from the known interactions
between the optical field and the induced dipoles, accounting
also for the dipole-dipole interactions, this is an interesting
topic for a future work.

APPENDIX B: SOLUTION OF NEWTON’S EQUATION
OF MOTION IN THE L FRAME

In this Appendix, we present an approximate solution
to Newton’s equation of motion of the medium under the
influence of the generalized optical force. In the L frame,
the magnitude of the left-hand side of Newton’s equation in
Eq. (11) can be written as

n(L)
a

d
(
γ (L)

va
m0

∣∣v(L)
a

∣∣)
dt

= n(L)
a

(
∂
(
γ (L)

va
m0

∣∣v(L)
a

∣∣)
∂t

+ ∣∣v(L)
a

∣∣∂(γ (L)
va

m0

∣∣v(L)
a

∣∣)
∂s

)

= n(L)
a,min

∂
(
γ (L)

va
m0

∣∣v(L)
a

∣∣)
∂t

. (B1)

The first equality in Eq. (B1) expresses the total time deriva-
tive in terms of partial derivatives with respect to time and
position, i.e., it is known as the material derivative. The second
equality is specific to the MP theory of light relating the
local minimum number density n(L)

a,min to the disturbed number

density n(L)
a [4]. The local minimum number density n(L)

a,min is
defined as an envelope function formed from the minimum
values of n(L)

a in a harmonic cycle, i.e., n(L)
a at points where

the field vectors and the resulting optical force are zero. In a
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nondispersive medium, n(L)
a,min is equal to the equilibrium num-

ber density n(L)
a0 , but in a dispersive medium it deviates from

n(L)
a0 as described below. This deviation unambiguously fol-

lows from the optical force, and thus, it also directly emerges
from the OCD simulations of Sec. VI. Using the last equality
of Eq. (B1), we can express the disturbed number density of
the medium as

n(L)
a = n(L)

a,min
∂

(
γ

(L)
va m0

∣∣v(L)
a

∣∣)
∂t

∂

(
γ

(L)
va m0

∣∣v(L)
a

∣∣)
∂t + ∣∣v(L)

a

∣∣ ∂

(
γ

(L)
va m0

∣∣v(L)
a

∣∣)
∂s

= n(L)
a,min

1 − n(L)
p

∣∣v(L)
a

∣∣
c

. (B2)

In the second equality of Eq. (B2), we have used
∂
∂s (γ (L)

va
m0|v(L)

a |)/ ∂
∂t (γ (L)

va
m0|v(L)

a |) = ∂
∂s |v(L)

a |/ ∂
∂t |v(L)

a | =
−n(L)

p /c, which applies in the assumed monochromatic
field limit. The right-hand side of Eq. (B2) is equal to the
right-hand side of Eq. (16).

In the L frame, the atoms at equilibrium are not moving,
and thus, all atomic velocities are entirely determined by
the generalized optical force density in Eq. (1). Using this
expression for the force density, writing the left-hand side of
Newton’s equation in Eq. (11) using the last form of Eq. (B1),
integrating both sides of Newton’s equation over time, and
setting the integration constant to zero, it follows that

γ (L)
va

v(L)
a = n(L)

p n(L)
g − 1

n(L)
a,minm0c2

E(L) × H(L)

− 1

n(L)
a,min

∫ t

−∞
γ (L)

va

∣∣v(L)
a

∣∣∂n(L)
a,min

∂t ′ dt ′. (B3)

Equation (B3) can be solved for v(L)
a by setting the second

term on the right-hand side of this equation to zero. This
approximation can be later justified using the solutions of the
atomic number densities and velocities to compare the mutual
magnitudes of the two terms of Eq. (B3). The condition at
which the relative error of our approximations becomes zero is
describe in more detail below. Then, using Eq. (19), we obtain
v(L)

a , corresponding to Eq. (17) as

v(L)
a =

(n(L)
p n(L)

g −1)W (L)
ex,nd

n(L)
a,minm0c2 v(L)

p√
1 +

[
(n(L)

p n(L)
g −1)W (L)

ex,nd

n(L)
p n(L)

a,minm0c2

]2
. (B4)

The expression of n(L)
a,min appearing in the expression of

n(L)
a in Eq. (B2) and v(L)

a in Eq. (B4) is yet to be determined.
Setting the last form of Eq. (B2) equal to Eq. (15) provides a
partial differential equation from which it is complicated to
find a solution for n(L)

a,min. However, we can obtain a solution

for n(L)
a,min using the last form of Eq. (B2) and approximating

Eq. (15) by writing ∇ · r(L)
a ≈ ∫ t

−∞ ∇ · v(L)
a dt ′ ≈ ∫ t

−∞ ∇ ·
(γ (L)

va
v(L)

a ) dt ′ ≈ n(L)
p n(L)

g −1

n(L)
a,minm0c2

∫ t
−∞ ∇ · (E(L) × H(L)) dt ′ =

− n(L)
p n(L)

g −1

n(L)
a,minm0c2 [W (L)

ex,nd + (n(L)
g /n(L)

p − 1)〈W (L)
ex,nd〉]. Here we have

used v(L)
a ≈ γ (L)

va
v(L)

a , for which we then apply Eq. (B3) and

take n(L)
a,min outside the integration and differentiation. For the

resulting integral, we have used Eq. (E1) below. Substituting
the final result of this calculation to the right-hand side of
Eq. (15), which is set equal to the right-hand side of Eq. (B2)
at a position where the fields and consequently W (L)

ex,nd and v(L)
a

are zero at a given time, and solving for n(L)
a,min gives

n(L)
a,min = n(L)

a0 + (
n(L)

p n(L)
g − 1

)(n(L)
g

n(L)
p

− 1

)〈
W (L)

ex,nd

〉
m0c2

. (B5)

This corresponds to Eq. (20). Thus, we have now derived the
approximative solution of Newton’s equation of motion of the
medium in the L frame, presented in Sec. III. The accuracy of
the approximations is discussed below.

When n(L)
a and v(L)

a from Eqs. (16) and (17) are substituted
into Newton’s equation in Eq. (11), in the conservation law of
the number of atoms in Eq. (9), or in the conservation laws of
energy and momentum in Eqs. (10) and (12), it is numerically
found that these equations are satisfied exactly at all positions
and times in the monochromatic field limit independently of
the used field strength and the equilibrium number density
of the medium. However, even if the approximations are lo-
cally very accurate, their global justification deserves a second
thought. In the derivations above, we have set the second term
of Eq. (B3) to zero. When n(L)

a,min and va are used inside this
integral, the relative error of this approximation is found to
become negligible when the following condition is satisfied:∣∣n(L)

a,min − n(L)
a0

∣∣
n(L)

a0

=
∣∣∣∣∣(n(L)

p n(L)
g − 1

)(n(L)
g

n(L)
p

− 1

) 〈
W (L)

ex,nd

〉
n(L)

a0 m0c2

∣∣∣∣∣ � 1.

(B6)

We see that the left-hand side of Eq. (B6) is zero for
nondispersive media, and accordingly, Eq. (B6) is necessarily
satisfied. For dispersive media, the rest energy density of the
medium, ρ

(L)
a0 c2 = n(L)

a0 m0c2, is several orders of magnitude
larger than 〈W (L)

ex,nd〉 for any realistic light field propagating in
any realistic condensed material. Thus, the left-hand side of
Eq. (B6) is extremely small and the approximate solution of
Newton’s equation derived above is highly accurate also for
light propagating in dispersive condensed media. In the case
of low-density media, the phase and group refractive indices
are close to unity, which makes the left-hand side of Eq. (B6)
still small. Therefore, we can conclude that the present theory
is applicable to a broad range of solids, liquids, and gases.

APPENDIX C: CALCULATION OF THE ENERGY
EXCHANGE DENSITY IN THE L FRAME

The energy exchange density in the L frame, W (L)
φ , is de-

fined in Eq. (21) as the time integral of the power conversion
density φ

(L)
opt . This time integral can be calculated as

W (L)
φ =

∫ t

−∞
f (L)
opt · v(L)

a dt ′

=
∫ t

−∞
n(L)

a,min

∂
(
γ (L)

va
m0

∣∣v(L)
a

∣∣)
∂t

∣∣v(L)
a

∣∣ dt ′
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=
∫ t

−∞

∂
[(

γ (L)
va

− 1
)
m0n(L)

a,minc2
]

∂t
dt ′

−
∫ t

−∞

(
γ (L)

va
− 1

)
m0c2

∂n(L)
a,min

∂t
dt ′

= (
γ (L)

va
− 1

)
ρ

(L)
a,minc2−

∫ t

−∞

(
γ (L)

va
− 1

)
m0c2

∂n(L)
a,min

∂t
dt ′

≈ (
γ (L)

va
− 1

)
ρ

(L)
a,minc2. (C1)

In the first equality, we have used Eq. (7), in the second equal-
ity, we have used Eq. (B1), and in the third equality we have
used the chain rule of differentiation. In the fourth equality, in
the calculation of the first term, we have used the boundary
condition that v(L)

a becomes zero at the negative infinity. In
the last step, we have set the second term on the fourth line of
Eq. (C1) to zero. For the condition at which the relative error
of this approximation becomes zero, see Appendix B.

APPENDIX D: DEFINITIONS OF THE SEM TENSOR IN
PREVIOUS LITERATURE

The SEM tensor of the present work in Eq. (22) is based on
the classical definition of the energy and momentum densities
and stresses [48]. Here we briefly review selected other SEM
tensor definitions existing in previous literature with the goal
to put the used definition into a wider perspective.

1. Hilbert SEM tensor

The Hilbert SEM tensor appears naturally in the general
theory of relativity. It is obtained from the action principle
by varying the action S = ∫

L√−gd4x with respect to the
components of the metric tensor gμν . Here L is the Lagrangian
density of the field and the medium and g = Det(gμν ) is the
determinant of the matrix representation of the metric tensor.
The resulting expression for the Hilbert SEM tensor is given
by [46,48]

(TH)μν = 2√−g

δ(
√−gL)

δgμν
= 2

δL
δgμν

− gμνL. (D1)

The Hilbert SEM tensor in Eq. (D1) is both symmetric and
gauge-invariant. In the general theory of relativity, the sym-
metry of the Hilbert SEM tensor follows naturally from the
unavoidable symmetry of the metric tensor. At least for the
total isolated system of the field and the medium, it can be
expected that the Hilbert SEM tensor is equivalent to the clas-
sical definition of the SEM tensor when all forms of energy
and momentum densities and stresses are included.

2. Canonical SEM tensor

The SEM tensor reviewed in this section has been given
the name canonical SEM tensor because it is obtained from
an appropriate Lagrangian density via Noether’s theorem. In
the pertinent Lagrangian density, the electromagnetic field is
presented using the components of the electromagnetic four-
potential Aα as generalized coordinates. Then, the variation
of the action with respect to the four-potential components
results in the expression of the canonical SEM tensor, given

by [48]

(TC)μν = ∂L
∂ (∂μAα )

∂νAα − gμνL. (D2)

This canonical SEM tensor is generally neither symmetric nor
gauge independent. The gauge dependence emerges from the
well-known gauge dependence of the electromagnetic four-
potential. The derivation of the canonical SEM tensor ensures
that this tensor is divergenceless in the absence of free charges
and currents as ∂ν (TC)μν = 0, but the asymmetry of (TC)μν

leads to the known violation of the classical conservation law
of angular momentum in the form discussed in Sec. V B with
the definition of the angular momentum tensor in Sec. V A.
In previous literature [54,55], it has been considered that the
spin of light is related to the asymmetry of the canonical SEM
tensor, so that when the spin-related terms are added to it, one
ends up to the symmetric Belinfante-Rosenfeld SEM tensor
described below.

3. Belinfante-Rosenfeld SEM tensor

The Belinfante-Rosenfeld symmetrization [50,53,81,82]
aims to generate a symmetric SEM tensor from the generally
asymmetric canonical SEM tensor in Eq. (D2). This proce-
dure is based on the observation that adding to any tensor a
tensor of the form ∂λ�

μνλ, where �μνλ is antisymmetric with
respect to its last two indices, does not change the value of
the four-divergence of the tensor since it satisfies an identity
∂ν∂λ�

μνλ = 0 [48]. Accordingly, the Belinfante-Rosenfeld
SEM tensor is given by

(TBR)μν = (TC)μν + ∂λ�
μνλ, �μνλ = −�μλν. (D3)

To find the tensor �μνλ to be added to (TC)μν , in the
Belinfante-Rosenfeld symmetrization procedure, one first de-
fines the spin-current tensor Sλνμ and then uses it to write
�μνλ as follows [54,81]

∂λSμνλ = (TC)μν − (TC)νμ,

�μνλ = 1

2
(Sνλν + Sμλν − Sμνλ). (D4)

At first sight, this symmetrization procedure is far from be-
ing obvious. However, Belinfante and Rosenfeld showed that
the resulting SEM tensor (TBR)μν is indeed equivalent to
the Hilbert SEM tensor in Eq. (D1). From this perspective,
the Belinfante-Rosenfeld SEM tensor is not a separate SEM
tensor alternative, but the two commonly used SEM tensors
are the Hilbert SEM tensor and the canonical SEM tensor
above, and the Belinfante-Rosenfeld symmetrization proce-
dure presents a connection between these two tensors.

For light propagating inside a medium, the optical-
force-mediated coupling between the field and the medium
complicates the situation in such a way that the Lagrangian
density of the field becomes generally dependent on the
four-velocity of the medium [4]. Thus, the variation of the
action with respect to the four-potential and keeping the four-
velocity of the medium constant does not, without further
considerations, produce such a canonical SEM tensor for the
field whose four-divergence would give the true optical force
density experienced by the medium. Thus, the Belinfante-
Rosenfeld-type symmetrization may require reconsideration
when it is used to describe SEM tensors of general interacting
subsystems. This is an interesting topic for a separate work.
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APPENDIX E: CALCULATION OF THE ENERGY
DENSITY OF THE FIELD IN THE L FRAME

Here we calculate the energy density of the field in the L
frame in Eq. (27). The second term of Eq. (27) is the opposite
of the energy exchange density calculated in Eq. (C1). The

first term of Eq. (27) can be calculated using the Gaussian
light pulse described in Sec. VI, for which the electric field
is given in Eqs. (89) and (90). For this term, using the electric
field in Eq. (90) and the monochromatic field limit approxima-
tion of the magnetic field described below Eq. (90), we obtain
by analytic integration

−
∫ t

−∞
∇ · (E(L) × H(L)) dt ′

= W (L)
ex,nd

n(L)
g

n(L)
p

+
√

π
(
ω

(L)
0

)3
n(L)

p (n(L)
g − n(L)

p )ε0E2

4c�k(L)
0

e−(k(L)
0 /�k(L)

0 )2

{
e2ik(L)

0 (n(L)
g −n(L)

p )zerfi

[
k(L)

0

�k(L)
0

− in(L)
g �k(L)

0

(
z − ct

n(L)
g

)]

+ e−2ik(L)
0 (n(L)

g −n(L)
p )zerfi

[
k(L)

0

�k(L)
0

+ in(L)
g �k(L)

0

(
z − ct

n(L)
g

)]}
�k(L)

0 →0−−−−→ W (L)
ex,nd

n(L)
g

n(L)
p

+ (〈
W (L)

ex,nd

〉 − W (L)
ex,nd

)(n(L)
g

n(L)
p

− 1

)
. (E1)

Here erfi(x) is the imaginary error function. The approximation used for the latter terms of Eq. (E1) is obtained in the
monochromatic field limit, �k(L)

0 → 0.

APPENDIX F: CALCULATION OF THE STRESS TENSOR OF THE FIELD IN THE L FRAME

Here we calculate the stress tensor of the field in the L frame in Eq. (28). By using the Gaussian light pulse described in
Sec. VI, the integral in Eq. (28) can be calculated analytically with the same approximations as in Appendix E, as

T (L)
field = −

∫ z

−∞

(
f (L)
opt + ∂G(L)

field

∂t

)
dz′ ⊗ v̂(L)

p = −n(L)
p n(L)

g

c2

∫ z

−∞

∂

∂t
(E(L) × H(L)) dz′ ⊗ v̂(L)

p

= n(L)
p

c
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p −
√
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(
ω

(L)
0

)3(
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)2(
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g �k(L)

0

− in(L)
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+ e−2iω(L)
0 (1−n(L)
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�k(L)
0 →0−−−−→ W (L)
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p − (〈
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v̂(L)

p ⊗ v̂(L)
p . (F1)

The approximation used for the latter terms of Eq. (F1)
is obtained in the monochromatic field limit, �k(L)

0 → 0.
For the term (E(L) × H(L)) ⊗ v̂(L)

p , we have used the relation

E(L) × H(L) = W (L)
ex,ndv(L)

p following from Eq. (19) and v(L)
p =

v̂(L)
p c/n(L)

p .

APPENDIX G: LORENTZ TRANSFORMATIONS OF THE
QUANTITIES IN THE SEM TENSOR COMPONENTS

The Lorentz transformations of the quantities used in the
present work from the G frame to the G′ frame are summa-
rized in Table V. The Lorentz transformations of the electric
and magnetic fields and flux densities are also directly related
to the Lorentz transformations of the second-rank electro-
magnetic field tensor in Eq. (42) and the electromagnetic
displacement tensor in Eq. (43) [43,48].

APPENDIX H: ENERGY AND MOMENTUM
OF LIGHT MEASURED BY A GENERAL

INERTIAL OBSERVER

The energies and momenta of the field, MDW, and the
coupled MP state of light as a function of the velocity of an
inertial observer moving in the L frame parallel to the propa-
gation velocity of light are obtained as volume integrals of the
corresponding densities. In the limit described in Eq. (B6), we
then obtain

EMP = γv

(
1 − v

n(L)
g c

)
n(L)

p n(L)
g E0,

pMP = γv

(
1 − n(L)

g v

c

)
n(L)

p p0, (H1)
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TABLE V. Summary of the Lorentz transformations of the scalar and three-dimensional vector quantities of the present work from the G
frame to the G′ frame. The G′ frame is moving in the G frame at a constant relative velocity v. The number current � corresponding to the
number density n moving with velocity u is defined as � = nu. Thus, the Lorentz transformation of the velocity u can be obtained by dividing
the Lorentz transformation of � side by side by the Lorentz transformation of n, resulting in u′ = −(v 	 u), where 	 denotes the relativistic
velocity subtraction, given in the caption of Table I. The velocities va, va0, vp, and vg satisfy this transformation. The quantities (φ/c, f ),
(ct, r), (ω/c, k), (nc, �), and (E/c, p) are four-vectors. The number currents corresponding to the number densities na, na0, and na,min of the
present work are �a = nava, �a0 = na0va0, and �a,min = na,minva0. The transformations of the mass densities ρa = naEa/c2, ρa0 = na0Ea0/c2,
and ρa,min = na,minEa0/c2 follow from the transformations of the number density and single-atom energy [36], using the nonequilibrium and
equilibrium single-atom energies Ea = γva m0c2 and Ea0 = γva0 m0c2 and momenta pa = γva m0va and pa0 = γva0 m0va0. The subscripts ‖ and
⊥ denote parallel and perpendicular components to the velocity v, defined for the generic vector F by F‖ = (F · v̂)v̂ and F⊥ = F − (F · v̂)v̂,
where v̂ is the unit vector parallel to v.

Electric field and magnetic flux density Electric flux density and magnetic field

E′ = E‖ + γv(E⊥ + v × B) D′ = D‖ + γv

(
D⊥ + v×H

c2

)
B′ = B‖ + γv

(
B⊥ − v×E

c2

)
H′ = H‖ + γv(H⊥ − v × D)

Power-conversion and force densities Time and position Angular frequency and wave vector

φ′ = γv(φ − v · f ) t ′ = γv

(
t − v·r

c2

)
ω′ = γv(ω − v · k)

f ′ = f⊥ + γv

(
f‖ − vφ

c2

)
r′ = r⊥ + γv(r‖ − vt ) k′ = k⊥ + γv

(
k‖ − vω

c2

)
Number density and number current Energy and momentum Angular and boost momenta

n′ = γv

(
n − v·�

c2

)
E ′ = γv(E − v · p) J′ = J‖ + γv(J⊥ + v × N)

�′ = �⊥ + γv(�‖ − vn) p′ = p⊥ + γv

(
p‖ − vE

c2

)
N′ = N‖ + γv

(
N⊥ − v×J

c2

)

Efield = γv

1 − 2v

n(L)
g c

+ n(L)
p v2

n(L)
g c2

1 − v

n(L)
g c

E0,

pfield = γv

1
n(L)

g
− (n(L)

g +n(L)
p )v

n(L)
g c

+ v2

n(L)
g c2

1 − v

n(L)
g c

p0, (H2)

EMDW = γv

1 − 2v

n(L)
g c

1 − v

n(L)
g c

(
n(L)

p n(L)
g − 1

)
E0,

pMDW = γv

1
n(L)

g
− v

c + v2

n(L)
g c2

1 − v

n(L)
g c

(
n(L)

p n(L)
g − 1

)
p0. (H3)

Here E0 = E (L)
ex is the exploitable energy of light in the L

frame corresponding to observer velocity v = 0 and p0 =
E0/c. The exploitable energy of light is given by

Eex = γv

(
1 − n(L)

p v

c

)
E0. (H4)

APPENDIX I: COMPARISON TO SEM TENSORS OF
PREVIOUS WORKS ON THE MP THEORY OF LIGHT

To enable direct comparison of the SEM tensors between
the present work and the previous work in Ref. [3], it is
convenient to present the SEM tensor of the field Tfield,nd of
the present work for nondispersive media by writing it in a

form

Tfield,nd

=
[

1
2 (E·D+H·B) 1

c (E×H)T

1
c E×H 1

2 (E·D+H·B)I − E⊗D − H⊗B

]
− �T. (I1)

Here the first term on the right is the SEM tensor of the
field in Eq. (6) of Ref. [3] and the power-conversion-related
difference term �T is given by

�T = Wφ

c2

[
c2 cvT

a0

cva0
γva va−γva0 va0

γva −γva0
⊗ va0

]
. (I2)

In the L frame, where v(L)
a0 = 0, �T is equal to Tint in Eq. (31)

when we set n(L)
p = n(L)

g .
Correspondingly, the SEM tensor of the MDW of the

present work is obtained for nondispersive media from the
SEM tensor of the MDW in Eq. (7) of Ref. [3] by writing

TMDW,nd =
[

ρMDW,lc2 ρMDW,lcvT
l

ρMDW,lcvl ρMDW,lva ⊗ vl

]
+ �T. (I3)

The first term on the right in Eq. (I3) corresponds to the SEM
tensor of the MDW in the last form of Eq. (7) of Ref. [3]. In
Eq. (I3), we denote the MDW mass density used in Ref. [3] by
ρMDW,l. It is related to the MDW mass density of the present
work as

ρMDW,lc
2 = ρMDWc2 − Wφ = γva m0c2(na − na0). (I4)

This relation of ρMDW,l to the atomic number densities was
not explicitly given in Ref. [3]. To enable detailed comparison
of Eq. (I3) with the MDW SEM tensor in Eq. (50), one must
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express vl in Eq. (I3) in terms of the atomic velocities and
number densities as

vl = nava − na0va0

na − na0
. (I5)

One can show using Eqs. (16), (17), and (20) that vl is equal
to the phase and group velocities of light in a nondispersive
medium.

Since the term �T appears with different sign in Tfield,nd

and TMDW,nd in Eqs. (I1) and (I3), it cancels from the SEM
tensor of the coupled MP state of light, which is the sum
TMP,nd = Tfield,nd + TMDW,nd. Thus, TMP,nd is equal to the
MP SEM tensor in Eq. (14) of Ref. [3]. For facilitating the
comparison of the results of Ref. [3] and the present work, we
also point out that the Lorentz transformation of the modified
MDW mass density in Eq. (I4) above, used in Ref. [3], is
a special case of the Lorentz transformations of the number
densities and the atomic energy presented in Table V leading
to Eq. (36) of Ref. [3].

The MP SEM tensor satisfies the Lorentz transformation
of second-rank tensors in Eq. (39). The same applies to the
SEM tensors of the field and the MDW in the present work.
In contrast, due to the difference ±�T in the SEM tensor
definitions of the field and the MDW in the present work and
in Ref. [3], the SEM tensors of the field and the MDW given in
Ref. [3] did not separately satisfy the Lorentz transformation
of second-rank tensors in Eq. (39). The difference ±�T also
explains why the SEM tensors of the field and the MDW in
Ref. [3] were asymmetric in the G frame, while the corre-
sponding SEM tensors of the present work are symmetric in
all inertial frames.

In summary, the comparison of the present results with
Ref. [3] emphasizes the need to retain the strict definition of
the SEM tensor in Eq. (22) not only for the coupled state
of light but also separately for its field and medium parts.
Thereby, the symmetry of the SEM tensors of the total system
and subsystems can be preserved in all inertial frames.
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