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Predicting and following T1 events in dry foams from geometric features

Oskar Tainio, Leevi Viitanen, Jonatan R. Mac Intyre, Mehmet Aydin, Juha Koivisto, Antti Puisto, and Mikko Alava
Aalto University, School of Science, Department of Applied Physics, P.O.B 11100, 00076 Aalto, Finland

(Dated: June 24, 2021)

Machine learning techniques have been recently applied in predicting deformation in amorphous
materials. In this study, we extract structural features around liquid film vertices from images of
flowing 2D foam and apply a multilayer perceptron to predict local yielding. We evaluate their
importance in the description of the T1 events and show that a high level of predictability may
be achieved using well-chosen combinations of features as the prediction data. The most relevant
features are extracted by performing the predictions separately for isolated sets of features, and
these findings are verified using principal component analysis. Using this approach, we determine
which properties of the images are most important with regards to the physics of the processes. Our
findings indicate that film lengths and angles between the liquid films joining at the vertex are the
most important features that predict the local yield events. These two features describe 83% of the
yield events. As an application, we extract the statistics of event waiting times from the experiment.

I. INTRODUCTION

A mixture of gas bubbles and liquid constitutes a liq-
uid foam at bubble volume fractions surpassing a critical
one at the jamming point [1]. Both the surface tension
at the liquid-gas interfaces as well as the volume conser-
vation of the gas inside the bubbles create a rigid struc-
ture with elastic responses to finite deformation stresses,
making foam a yield stress fluid [2, 3]. When sheared
beyond the yield stress, foams begin to flow, exhibiting
shear thinning behaviour; their constitutive steady be-
haviour is often described by the Herschel-Bulkley rela-
tion [4]. When the foam deformation exhibits plastic-
ity, the shear enforces topological changes to the bubble
structure, known as T1 events shown in Fig. 1 [5]. The
continuum of mechanical properties would correspond to
meso/macroscopic elastoplastic models that are widely
used to study amorphous solids [6].

In reality, however, the first plastic activity is observed
in the form of T1 or yield events already well below the
macroscopic yielding [7–9]. The relevance of plastic shear
transformation zones, analogous to T1 events, on defor-
mation was originally suggested based on molecular dy-
namics simulations of metallic glasses [10]. These plastic
events have been found to determine the global flow of
amorphous materials by forming shear bands, which may
be nucleated by single events [11] that subsequently dom-
inate the flow [12, 13]. Similarly, in foams, the local dissi-
pation rate has been related to the T1 event activity [14],
which would explain the velocity profiles of foams under
simple shear deformation [15]. Indeed, observations of
foam deformation reveal the effect of single T1 events on
the shape of the surrounding bubbles [16]. Another way
of interpreting the same non-local changes is via redis-
tribution of stress when a droplet cluster relaxes in a T1
event in emulsions [17, 18]. As the structure relaxes in a
T1 event, new events may be triggered nearby, resulting
in avalanches of T1 events with power law size distribu-
tions [19, 20].

Due to the crucial role of the yield events in the defor-
mation of foams and other amorphous materials, the abil-

FIG. 1. Schematic of a T1 event. The initial configuration (a)
evolves to an unstable fourfold configuration (b). From this
unstable state, a new film is created, and a new metastable
configuration (c) is reached.

ity to predict where and when the yield events occur is
critical for anticipating the behavior of foams under me-
chanical load. Solving complex problems, such as finding
structural features that indicate yielding from amorphous
materials, is well suited for machine learning tools, which
continue to gain popularity in science [21–23].

The present paper builds off our earlier work in
Ref. [24], where we identified vertices and bubbles about
to yield in T1 events in flowing 2D foam using Convolu-
tional Neural Networks (CNN) [24]. Although this tech-
nique successfully focused on unstable states (Fig. 1b) in
a snapshot of the foam flow, the complexity of the CNN
has hidden the physics behind the T1 events. Here we fo-
cus solely on unstable vertices (Fig. 1b) that connect four
liquid films setting aside the stable vertices with three liq-
uid films. Hence, instead of using a snapshot of the foam
flow, we use various structural features extracted from
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snapshots of the foam as prediction data. We first de-
tect potential T1 events by inspecting tens of thousands
of fourfold vertex formations within the foam bubble raft
flow. Dynamical data is created by inspecting each frame
of a video and extracting explicit T1 event-related fea-
tures. Next, we feed these fourfold structure variables
to Multilayer Perceptron (MLP) and successfully pre-
dict the occurrence of T1 events. A recent study used
a similar approach to explore the correlation of differ-
ent structural features with future plastic deformations
in two-dimensional glasses [25]. However, we measure
the correlation indirectly by using prediction metrics of
the MLP rather than correlation of physical quantities.
By choosing essential features, we can steadily increase
the accuracy of the model. Henceforth, such a tool can
be used to explore T1 dynamics and their effect on the
overall transformation of the foam. To showcase this ap-
plication, we study the waiting times between subsequent
T1 events. Our findings indicate that characterizing the
ranges of film angles and curvatures represents a major
factor for the successful prediction of T1 events.

We first introduce our methods detailing the exper-
imental procedure and how the features are extracted
and MLP implemented to allow prediction of T1 events
in each frame. Next, we present the main results of
the novel machine learning pipeline model, along with
the weight of each feature, Principal Component Analy-
sis (PCA) component adjusted probability density map,
and detection, extraction and calculation of several fea-
tures in the foam with PCA 2-dimensional point clouds.
Once the 65 dimensional feature space is reduced to 8,
we interpret the black-box AI results as a tangible phys-
ical model. Finally, we describe the waiting time dis-
tributions and conclude with the discussion and future
prospects.

II. METHODS

A. Experimental procedure

The experiments were performed in a circular Hele-
Shaw cell, as illustrated in Fig. 2. The same data set has
been analyzed previously in Ref. [24] using a convolu-
tional neural network, where we also report the detailed
experimental setup. Briefly, the foam enters the cell from
an inlet located at the center of the cell and expands to-
wards the edges. The setup is one of the various flow
schemes where the edges or obstacles in the flow channel
cause shear and T1 events due to that [26–28]. In our ge-
ometry, the lack of side edges causes the T1 events to be
distributed rather arbitrarily all over the cell, unlike in
channels where clear yield zones are detected by bubble
ordering caused by the cell walls [29].

FIG. 2. A two-dimensional circular Hele-Shaw cell creates a
radially symmetric expanding flow field. (a) Schematic side
view illustrates the experimental setup and how the foam is
injected. The foam flow is recorded using a camera placed
perpendicular to the cell. (b) A photograph of the Hele-Shaw
cell shows a dry foam with typically hexagonal bubbles. The
15-mm inlet pipe is located at the bottom center of the device.

B. Feature extraction

The flowing foam is filmed and the resulting video is in-
terpolated to 13 000 images. Since the background light
passes freely through the bubbles, they appear as lighter
areas compared to the darker films. Hence, threshold-
ing the grey levels of all the video frames separates the
images into black and white pixels representing liquid
and gas, respectively (Fig. 3). Skeletonization is used
to reduce the widths of the liquid films between bub-
bles to one pixel. Therefore, each bubble is identified as
a region of white pixels in the frames and in the skele-
tonized image, the nearest neighbors of a bubble are ex-
actly one pixel apart. For each frame, two lists are gen-
erated (Fig. 3a): one contains all the bubbles (blue dots)
and the other contains all the neighbors for each bub-
ble (red dashed lines). Comparing the lists between two
consecutive frames allows us to detect the T1 events over
space and time.

Films are identified as black pixels in the frames. Ver-
tex points are extracted from the film net as the points
where three or more films meet (Fig. 3b). We focus on
vertices with four films and label each vertex by coordi-
nates (xv, yv) as a possible T1 event location. If the point
is going to have a T1 event, it is tagged with a number
1 (called positive sample); otherwise, it is tagged with a
0 (negative sample). Once a 4-fold vertex is located, we
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extract the end point (xe, ye) and middle point (xm, ym)
from each associated film , as indicated in Fig. 3b by the
purple and red dots, respectively. Based on these three
points, we calculate a series of geometrical features to
evaluate their respective weights each one of them has in
the T1 event.

To determine the vertex angles, we define an arbitrary
rectangular coordinate system centered at the vertex un-
der consideration (xv, yv). We then calculate the angles α
between the position vector of the other vertices and the
positive x-axis of the coordinate system with the formal
definition

α = arctan

(
y − yv
x− xv

)
, (1)

(x, y) being the coordinates of an end or middle point.
Figure 3c shows the four vectors defined using the film
end points (red lines) and one of the four angles (green
arc). The length of each vector is called `. In total,
eight α angles and eight ` lengths (four angles and four
lengths both for end and middle points) are defined for
each vertex.

Film curvature κ is calculated by determining the os-
culating circle at the middle point (xm, ym). To calculate
this, we use the vertex, end and middle points as shown
in Fig. 3d. The center of the osculating circle allows us
to first calculate the central angle θ and then define the
film extension as s = θ/κ. As a consequence, four curva-
tures κ, four angles θ, and eight arc lengths s are linked
to each vertex point.

Next, we use two consecutive films to define a series
of features. Figure 3e re-plots the vectors from vertex to
end points in Fig. 3c. Here, instead of a reference co-
ordinate system, we compute the angle ζ between two
consecutive vectors. Note that ζ, unlike α, is indepen-
dent of the 4-fold vertex orientation, thus allowing us to
compute angles ζ based on angles α, but not vice versa.
Additionally, we define the polygon side d as the distance
between two end points, as shown in Fig. 3f. Similarly,
we obtain another characteristic for two consecutive mid-
dle points. The area A and perimeter P of the polygon
are also computed (Fig. 3g). Finally, the area a that is
formed between the film and the chord is calculated.

To finalize the features calculation, we determine the
velocity field ~v of the foam flow using the bubble position
and average over the 13 000 frames. Figure 3h shows the
velocity field in black arrows within a smaller area on
the frame. For groups of four bubbles involved in possi-
ble T1 events, we calculate two vectors between opposite
bubbles defined as the vector difference between the cen-
troids. We then take the larger vector ~t and define the T1
orientation β with respect to the foam flow. Figure 3h
shows the larger vector for 4-fold vertices (red arrow) and
the bubble centroids (blue dot). The orientation β with
respect to the velocity field is then defined as

β = arccos

(
~v · ~t
||~v|| ||~t||

)
. (2)

We then analyze and predict T1 events combining mul-
tiple features. Table I summarizes the features used as
input to the MLP algorithm. In what follows, if the
feature is calculated using middle points instead of end
points, a subscript m is added on the feature symbol.
Note that for each vertex point detected, 65 features are
linked to it. The following subsection explains the artifi-
cial intelligence method used here.

TABLE I. List of features computed and defined in Fig. 3.

Feature Symbol
Angle α
Chord of circle `
Curvature κ
Film Extension θ
Arc length s
Internal angle ζ
Orientation β
Polygon side d
Polygon Area A
Perimeter P
Area film and chord a

C. Machine Learning Pipeline

Supervised learning is applied to study the binary clas-
sification problem of predicting T1 events from the local
structure of a sample foam. First, we detect all 4-fold
vertices (the possibly unstable vertices, Fig. 1b) from
the 13 000 video frames showing foam flowing in the Hele-
Shaw cell. In total, 172 000 4-fold samples were detected,
all of which are labeled with binary values (1,0) indicat-
ing whether the cross section precedes a T1 event (1) or
not (0). Of the 172 000 detected cases, 15 000 samples
are real T1 events, i.e. they are tagged with a number
1. 30 000 samples were chosen for training and testing
purposes, half of which represented true T1 events. To
optimize the parameters of the MLP, 24 000 of these sam-
ples are used as a training set and the remaining 6 000
samples are reserved for testing the predictions. In both
the training and test sets, an equal amount of positive
and negative samples are used. Finally, in order to verify
the wider generalisation, the model was tested with all
extracted cases.

The resulting data was first duplicated into two sepa-
rate data frames. One half was normalized to zero mean
and unit variance. This normalization process was con-
ducted due to the sensitive nature of the latter pipeline
estimators. Our tests showed that using the scaled input
data improves the prediction scores by a few percent.
The cross-validation results shown in Table II show that
without scaling, the prediction results display possible
overfitting. However, the cross-validation tests confirm
that overfitting is not present when scaling is applied.
Scaling is further justified since the average values of dif-
ferent features vary by over three orders of magnitude.
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FIG. 3. Detection, extraction and calculation of several features in the foam flow (note the division into subplots indicated
by the dashed lines). (a) Identification of bubbles (blue dots) and neighbors (red dashed lines). The difference between two
consecutive frames allows T1 events to be detected. (b) Detection of 4-fold vertices of coordinates (xv, yv) (green dot). Eight
points are selected from each of the four films: four middle points (red dots) and four end points (purple dots) of coordinates
(xm, ym) and (xe, ye), respectively. (c) α is the angle between the red vector and an arbitrary coordinate system placed at
the vertex point (line y = yv). The vector length is equal to `. (d) The curvature is defined as the osculating circle of three
points on the film: vertex (green dot), middle (red dot), and end (purple dot) points. The film length is given by the arc length
s = θ/κ. (e) Angle ζ between two consecutive films (red lines). (f) Polygon of side d formed using two consecutive end points.
(g) The area A of the polygon is marked in red; the perimeter of the polygon is P . (h) The orientation of the T1 event (red
arrow) with respect to the velocity field direction (black arrows) is represented by the angle β.

To predict T1 events from the features, we use an MLP
algorithm. The analysis is done using scikit-learn Python
library [30]. The MLP model is constructed using three
hidden layers with the composition of 14×11×8 neural
nodes [31]. The results were confirmed to be robust for
the number of nodes per layer and even for the number of
layers, however the chosen values resulted in the highest
accuracy (see Appendix A). A rectified linear unit was
used as the activation function for the model.During the
training, the parameters of the neural network are op-
timized according to batches of data points. The train-
ing requires multiple epochs, where each sample is used
once during an epoch. The training was continued until
the cross-entropy loss function between the subsequent
epochs fell below the threshold of 10−4, usually resulting
between 100 and 200 epochs depending on the number
of features used as input data. The weights and biases
were initialized with random numbers. The weight opti-
mization procedure was conducted using the Adam opti-
mization method [32]. In addition to this MLP analysis,
we performed PCA for all the 65 extracted structural
features using scikit-learn library [30] to reduce the di-
mensionality of the feature space to only two orthonormal
components. The two resulting features were also tested
with the MLP.

The performance of the individual models was eval-
uated by examining the ratio of true positives and true
negatives to false positives and false negatives with model

training and test accuracies. The final model evaluation
was conducted using cross-validation with five separate
iterations and F1 scores. To check for possible overfitting
or bias in the data, we also performed cross-validation
tests.

III. RESULTS

A. Evaluating Single Features

As a reference control experiment, the model was run
with a mixture of both 3-fold and 4-fold vertex samples.
A static value of -1 was used in the place of the fourth
feature column values, representing the fourth film for
each 3-fold feature. The model achieved a training score
of 1.0 and a test score of 0.997, similar to the results
where T1 events were predicted from images [24]. This
high degree of predictability was achieved with only small
training and test sets containing 500 and 350 samples,
respectively. Thus, the MLP model has the capability
of distinguishing a 4-fold cross section of bubbles repre-
senting a potential T1 event from a core foam structure.
This result was achieved with both unmodified and scaled
data. Since special cases of 3-fold and 5-fold cross joints
can be clearly classified, they were neglected in order to
focus on the complex 4-fold data. Further performance
results can be seen in the Appendix A.
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The dimensionality of the scaled training data was re-
duced using PCA resulting in a transformation matrix
which contains the weights of each physical feature. Ac-
cording to these vector component significance values,
the following features contribute the most to the values of
the two principal components shown in Figure 4: angles
α, chord length `, arc lengths s, and angles between two
films ζ. By utilizing principal component-derived val-
ues, it is possible to visualize differences of T1 event and
non-T1 event samples, even within environments contain-
ing only 4-fold liquid films. The probability densities
of principle components for positive (T1) and negative
(no T1) samples are represented as heat maps in Fig. 4a
and 4b, where the axis represent the value of the princi-
ple components obtained from the PCA transformation.
Fig. 4c shows that the clouds of true T1 events are con-
centrated in separate areas compared to the cloud of false
T1 events.

FIG. 4. Probability density for each binary class according
to the PCA components. (a) Probability density for posi-
tive samples, T1 events. (b) Probability density for negative
samples, no T1 event. (c) The separation density (i.e. the
difference between the PDFs of panels a and b) reveals the
values of component 1 and 2 that separate the positive sam-
ples from the negative ones. The x and y axis are the values
of first and second PCA components. The axis and their val-
ues are the two principle components produced by the PCA
method.

The importance of each feature to the T1 predictabil-
ity was measured by fitting and testing the MLP model
with reduced input data sets. Here, the input contained
only data associated to each individual feature as listed
in Table I. Training and test scores are shown in Fig. 5,
where every derived feature has been ranked from worst
to best based on the obtained MLP model scores. It is
clearly seen that features dropped out by utilizing PCA
performed the worst. These include variables of both end
and middle point types. Model performance was poor for
polygon perimeter P and area A, and T1 orientation β
with test score close to 0.5 comparable to a coin toss. The
best scores were obtained by utilizing angles αm, angles
between consecutive films ζm and polygon side dm using
middle points. The model having only 36 of the 65 in-
put variables (see Cm and Ce in Fig. 5) performs nearly
as well as the model with all possible parameters. As a
result, an efficient T1 prediction model can be achieved
by implementing a fraction of all possible descriptive fea-

tures within the foam network. This result is supported
by comparison with the weight coefficients of the PCA
components.

Finally, according to the PCA analysis and single fea-
ture model performance, we combined all features to-
gether into an input matrix using two components and
fed this to the MLP model. In this case, the performance
of the MLP decreases by 25% compared to the best case
with all features, as shown in Fig. 5 bar labeled as PCA.
This implies that the number of input features for the
MLP can be reduced dramatically without significantly
compromising the predictability of T1 events. With this
in mind, we next start to explore the model performance
with restricted input data.

B. Evaluating Features in Pairs

Until this point, the T1 events were predicted either
using all of the structural features or only one type of
feature. However, the MLP can take any kind of set of
data as an input. Next, we pass the input features to the
MLP by pairs of features listed in Table I and predict the
yielding. It could be expected that the pairs of features
with the highest individual scores in Fig. 5 yield the best
combined scores. This is not the case, however, as shown
in Fig. 6a (blue square). A combination of the angles
between films ζm and film length `m achieves the best
prediction score of 0.83. Interesting, although angles ζm
result in the highest predictability alone, the feature `m
alone has a prediction score of 58%. Another notable
example from prediction scores are the angle orientations
α and αm which do not improve each others’ score at all.

The non-trivial prediction performance can be at-
tributed to the dependence of different features on each
other. For example, the angles α and αm contain almost
the same information, so using both as MLP input does
not add any useful information compared to only using
one. On the contrary, the features ζm and `m are com-
pletely independent, that is the angles between films do
not give any information about film length. This indi-
cates that the predictability based on `m (8 percentage
points better than a coin toss) can be simply added to the
score of predictions with ζm when the two are combined.

Next, we take the two best performing features, the
angles ζm and `m for the four adjoint films in a vertex
(8 features total) and preform a dimensionality reduc-
tion using PCA visualized in Fig. 6b. The coloured areas
represent the decision boundary given by the Support
Vector Classification, with blue areas indicating samples
preceding a T1 event. The division presented in Fig. 6b
achieves a 76% prediction score, which is lower than the
score in Fig. 6a for ζm and `m because of the coarse
grained decision boundary. The evaluation of features
in pairs suggests that the MLP can learn the important
local mechanical properties at the vertex from the given
data and deduce the stability of the vertex. The me-
chanical information of the foam structure - such as local
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FIG. 5. Bar chart depicting MLP training (solid) and test (pattern) scores for each extracted feature. Features obtaining the
best scores have been placed on the right, whereas the worst-scoring features are placed on the left. Subscript m stands for
middle point used for feature extraction. The combination of all features extracted using end and middle points is shown with
Ce and Cm, respectively, and all features together with C. The score using the PCA components is labeled as PCA.

FIG. 6. (a) The images show matrix representation of T1 prediction scores using features as input pairs (Vertical axis is
identical to horizontal axis). Diagonal values are scores of each single feature and labels follow the color code as in Fig. 5. The
best score (0.83) is marked with a blue frame for the combination ζm and `m. (b) To visualize the prediction data, we reduce
the dimensionality of input data with features ζm and `m from 8 to 2 using PCA, and plot the samples that precede a T1 event
(blue) and those that do not precede a T1 event (red). We also divide the space using the Support Vector Classification in two
areas where we predict T1 to occur (blue) or not (red). This division achieves 76% prediction score.

stresses - is encoded in the geometry descriptors and their
correlations.

C. Converting black-box AI to physics

A closer inspection of the essential data produced by
our automated data collection and processing algorithms
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described above reveals that: i) From the 65 dimensional
feature space, the two best descriptors are ζm,i and `m,i,
i = 1...4, and ii) the T1 events can form tilted elliptic-
like clusters seen with blue color in Figure 6b. Hence, we
create two elliptical decision boundaries to classify the

nodes as ones that produce T1 events, and those that do
not. The nodes that produce the T1 event reside within
either of the ellipses, while the nodes that do not pro-
duce the T1 event fall outside of both ellipses. For this,
the two-variable system produced by the PCA-algorithm
(similar to Fig. 6b) is needed

x = 0.40(ζ ′m,1 + ζ ′m,3)− 0.43(ζ ′m,2 + ζ ′m,4)− 0.28(`′m,1 + `′m,2 + `′m,3 + `′m,4) (3)

y = 0.17(ζ ′m,1 + 2ζ ′m,3)− 0.29(ζ ′m,2 + ζ ′m,4) + 0.43`′m,1 − 0.36`′m,2 + 0.33`′m,3 − 0.51`′m,4, (4)

where ζ ′m,1 is the largest angle between neighbouring
films normalized to zero mean and unit variance. A sim-
ilar normalization process is repeated for other angles
between films ζ ′m,i and chord (film) lengths `′m,i. The
values of constants are rounded to two decimals for con-
venience. Grouping even and odd ζ ′m,i together indicates
that the opposite angles between films should be alike, in
a ’squeezed x’ -like geometry. The asymmetry in chord
lengths in `′m,i indicates that the ’x’ is sheared. This typ-
ical asymmetry in the vertex geometry is also visible in
Figures 8 and 9.

The two elliptical decision boundaries separating the
vertices that produce T1 and those that do not in the
coordinate system described by (3) and (4) are deter-
mined by using a brute force table seek algorithm with
the following constrictions: i) the probability of T1 events
inside the ellipses matches the probability of no-T1s out-
side the ellipses, i.e. equal probabilities for true positives
and true negatives, and the ii) tilt and iii) aspect ratio of
the ellipses are the same. This is motivated by the sym-
metry seen in Figure 6b. The result is two ellipses with
a tilt of α = −35 degrees, an aspect ratio dy/dx = 0.6
and center points located in (x1, y1) = (−2.0, 0.4) and
(x2, y2) = (4.0,−0.7) with radii r1 = 1.3 and r2 = 0.6.
With this information, the coordinate system can be ma-
nipulated to a simpler form

(
x′

y′

)
=

(
cosα − sinα
sinα cosα

)(
x

0.6y

)
(5)

1.32 = (x′ + 2.0)2 + (y′ − 0.4)2 (6)

0.62 = (x′ − 4.0)2 + (y′ + 0.7)2, (7)

where we have essentially two center points and a radius,
shown in Figure 7. Here, the circular decision bound-
ary divides the events such that both the true negatives
and true positives have 71% probability, i.e. 71% of blue
crosses are inside the green circles and 71% of the red
crosses are outside the circles. The physical interpreta-
tion of the black box AI is that the probability of finding
a T1 event increases as you move closer to the center
of either of the circles. With this information, we can
draw a typical T1 event-producing node shown in Figure
8 in the footsteps of Figure 1. Here, 1 000 vertices from

FIG. 7. The two elliptical decision boundaries (green), seen
as circular in this coordinate system, capture 71 % of the T1
events (blue, true positives) and exclude 71 % of the non-T1
events (red, true negatives).

the experimental data are drawn with opaque coloring,
where the intensity of color increases with the probabil-
ity of encountering a film in that location. The colors
indicate different films, where yellow is the closest to the
horizontal axis set by the camera, and the colors change
counter-clockwise for other films. The diagonal panels 8a
and 8d represent 71 % of the data (true positives and neg-
atives) while the off-diagonal panels 8b and 8c represent
29 % of the data (falsely categorized vertices). Thus, it is
meaningful to compare the diagonal panels 8a and 8d and
treat the off-diagonal elements as error of the method.

The dashed construction is the same for all panels,
highlighting the differences. One of the film orientations
(for green films) is missing in panels 8a and 8b; some
of the (blue) films are above the dashed line, indicating
that nodes with this kind of film structure produce a T1
event. On the other hand, if the (red) films are outside
the dashed ellipse, the node does not produce the T1
event. Hence, when a node with this film orientation
is encountered, it is stable and does not produce a T1
event with 71% probability. The asymmetry between the
green and blue sets of lines indicates that the ’squeezed x’
geometry preferred by the T1 events prefers one direction
over the other. This is most likely due to the camera
orientation (laboratory coordinates) relative to the flow
direction.

This demonstrates the possibility of creating an auto-
mated algorithm that highlights the main differences of a
high 65-dimensional data cube and provides the result in
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FIG. 8. The four color-coded films are drawn for each possible
case of the AI classifier: true (white background) or false (gray
background), positive (left) or negative (right). Each panel
contains 1 000 films drawn on top of each other. The repeating
dashed construction is a guide to visualize the differences.
The dark colored lines with x-symbol are the average location
and length of all the films. The labels inside and outside refers
whether the vertex at hand falls inside or outside the elliptical
decision bounadry.

a form that is easily interpreted, either as a graphical rep-
resentation or in the form of an equation. If the measured
film construction approaches the ’squeezed x’ construc-
tion visually (Figure 8) or the data falls within one of the
ellipses described in equations (3) - (7), there is a 71%
chance of a T1 event. In fact, the equations describe the
energy landscape of the system E = −(x−x1)2−(y−y1)2,
which maximizes the elastic energy of the system at the
center point of the ellipses. In such geometry, it is more
favorable to create a plastic yielding event than to fur-
ther deform the bubbles. For illustrative purposes, one
can simply use the angles without the lengths to obtain
a simple formula for energy landscape

E = −(ζm,1 − 112o)(ζm,2 − 68o) (8)

where the two constants are the angles (in degrees) be-
tween yellow and green and yellow and blue films illus-
trated in Figure 9. A more detailed energy landscape
could be obtained by expanding the equations (3) - (7)
leading to, for example, an energy landscape near the
first ellipse (6) as

E = −
∑

(ci`
′
m,i + diζ

′
m,i)

2 + (ei`
′
m,i + fiζ

′
m,i)

2 (9)

= −0.01(3.53 + `′m,1 − 2.78`′m,2 + 0.52`′m,3 − 3.50`′m,4 + 2.33ζ ′m,1 − 3.01ζ ′m,2 + 3.14ζ ′m,3 − 3.01ζ ′m,4)2 (10)

−0.13(5.50 + `′m,1 + 0.44`′m,2 + 0.93`′m,3 + 0.34`′m,4 − 0.87ζ ′m,1 + 0.86ζ ′m,2 − 0.75ζ ′m,3 + 0.86ζ ′m,4)2, (11)

where the ci, di, ei and fi are obtained from the PCA
analysis. Here, the values and signs of the constants re-
veal the importance of the films. The values of angles
are understood as the violation of the Plateau principle,
i.e. energy minimum is achieved when the angle between
the films is 120 degrees. The novel observation here is
that if we include the film lengths, we can improve the
accuracy of the T1 prediction by 8 % (Fig. 5) and we
can say that the lengths of the films obey the same sym-
metry as the angles. The opposite films in the vertex
(`m,1 ≈ `m,3 and `m,2 ≈ `m,4) have similar weights, in-
dicating that their lengths are the same and the node is
sheared. This is also visible in Figure 9.

D. Waiting Time Distribution

Finally, we examine the inter-event arrival times and
the effect of the ROI size on the observed statistics. The
ROI is square shaped and its center is fixed halfway be-
tween the inlet and the cell edge. Vertices that yield a
T1 event inside the ROI form a time series where each
point represents a time instance when the T1 event was
detected inside the ROI. The waiting times τ are dif-
ferences in time between subsequent points of the time
series. Figure 10 shows the waiting time distribution
P (τ) for ROIs L × L from L = 1 cm to L = 5 cm.
The data fits to a power law with an exponential cutoff
P (τ) = Aτ−1exp(−λτ), where A and λ are fitting pa-
rameters and the exponent of the power law is fixed to
-1. The form of the gamma distribution P (τ) originates
from the interplay between event triggering avalanche
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FIG. 9. Angles between films that produce the T1 event with
highest probability.

dynamics and the system’s intrinsic background event
rate [33, 34]. The linear power law region indicates
event clustering, most evident for the smallest ROI (black
dots). As the ROI size increases, the power law region
narrows down due to the cutoff. This indicates that the
event waiting times result from observing non-interacting
Poisson processes in sub-areas of the larger ROI. A naive
scaling would thus scale with ROI area as λ = BL2. The
actual λ = BL3 (Inset of Fig. 10) results from another
scale L entering through radial slowing of the foam flow
- thus also T1 production - in the larger ROIs. Since
waiting times become uncorrelated with large ROI size,
there is a co-operativity length of a few bubble diameters,
comparable to that observed in particulate systems [35].

IV. CONCLUSIONS

The purpose of this study was to apply Machine Learn-
ing methods to image sets of flowing foams in order to
understand local yield events. To this end, we extracted
structural features and used machine learning methods
to try to predict such local yield events from the struc-
ture. We achieved a high level of prediction accuracy
by inputting all of our structural features in a Multilayer
Perceptron classifier, meaning that the most relevant fea-
tures have been found. The application of such ML tech-
niques proceeds by using the MLP classifier to selected
sets of the features. Using this approach, we find that the
most relevant features are the angles between the liquid
films joining at the vertex ζ at any location where this is
attempted. Likewise, we may conclude that the most ir-

FIG. 10. The waiting time distribution is a power law with a
ROI-scale dependent exponential cutoff, P (τ) = Aτ−1e−λτ .
The data for small ROIs exhibit a power law regime with
exponent -1, while data for the largest ones are dominated
by the exponential cutoff. The inset shows a scaling λ ∝ L3

indicating that in addition to a typical size dependence of L2

the radial expansion plays a role in the scaling.

relevant features include the orientation of cluster β and
the polygon area A.

It is reasonable that the angles between films are a
strong indicator of T1 events. In a stable state, the films
form 120 degree angles, but when two vertices become
close and form a 4-fold vertex, the angles decrease such
that the total sum of the four angles is 360 degrees. Many
of the other well-performing features, such as film orien-
tations and polygon side lengths, are highly correlated
with the angle between films, hence adding them leads
to no or modest improvements to the predictions.

The accuracy of prediction reached by this approach
is about 80%. The result leaves some space for further
development as around one fifth of the predictions are
incorrect. As a methodological approach to improve the
situation, one could test different Machine Learning al-
gorithms for the problem using the same input data. For
instance random forests could provide a potential alter-
native. A more physical approach would be to refine the
input data set. This could be done by determining new
features from the experiment not related to the struc-
ture or the affine motion of the foam, but instead on the
non-local effects [14], such as the stress redistribution oc-
curring after previous yield events [6, 17, 18]. However,
defining such features might emerge ambiguous and diffi-
cult to justify. It may also be such that the yielding - the
T1 events - are also affected by random, thermal noise,
rendering such improvement impossible.

The results are verified with a PCA analysis, where
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the features are projected to two principal orthogonal
components. These components align with the success of
MLP predictions, and similarly imply that angles and
film lengths are the most relevant components. Such
tools allow information about the dynamics of T1s to be
extracted. We demonstrate this by considering the T1
waiting time distributions in varying ROIs as a function
of the ROI size. These distributions have a broad, power-
law character with an exponential cutoff. We note that
the waiting time exponent becomes clear with a small
enough ROI having a value close to unity. The cutoff
scales with the ROI scale as its third power, which likely
results from natural geometric considerations. The above
exponent value remains an empirical observation without
a theoretical explanation.

Although possibility of improvement remains, our
analysis shows that machine learning may be exploited
to detect the essential parameters related to plastic de-
formation from the structural features it receives as in-
put. This makes it an attractive tool to analyze foam
dynamics, analogous to amorphous materials plasticity.
This conclusion is thus in line with other applications
of machine learning techniques to extract predictions of
deformation from structure in amorphous glass simula-
tions [25]. A further line of research could be to search
for collective dynamics among T1 events, as a generaliza-
tion of our waiting time analysis. Likewise, more complex
foams such as particle-laden or Pickering foams present
another exciting avenue for this approach.
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Foundation via personal grants and Academy of Finland
(278367).

Appendix A: Machine Learning Performance

The Multilayer Perceptron (MLP) algorithm used was
extensively analyzed. The best performance was achieved
for a three-layer architecture 14×11×8. We used a cross-
validation with 5 groups and F1 score:

F1 =
TP

TP + (FN + FP )/2
, (A1)

where TP is true positives, FP false positives, and FN
false negative. We also randomize the T1 label to further

explore the accuracy in the prediction. Table II summa-
rizes our analysis. The scaled method corresponds to
zeroing the mean and scaling samples to unit variance,
i.e, (x−u)/s, where x is the data, its mean and standard
deviation are u and s, respectively.

FIG. 11. Learning curve for the architecture employed. As the
number of samples increases, the standard deviation decreases
(shadow). The small gap between both curves indicates that
the model is not overfitted. When the number of layers and
nodes increase, the score does not change significantly.

Figure 11 shows the learning curve, i.e., the training
and test scores for an increasing number of samples. The
scores are high for all the different architectures plotted,
but the one displayed here produces less variance and
better generalizes the model, as seen by the gap size be-
tween training and test scores.
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Hecke, Couette flow of two-dimensional foams, EPL (Eu-
rophysics Letters) 90, 54002 (2010).

[16] F. Elias, C. Flament, J. Glazier, F. Graneri, and Y. Jiang,
Foams out of stable equilibrium: cell elongation and side
swapping, Philosophical Magazine B 79, 729 (1999).

[17] K. W. Desmond and E. R. Weeks, Measurement of stress
redistribution in flowing emulsions, Physical review let-
ters 115, 098302 (2015).

[18] D. Chen, K. W. Desmond, and E. R. Weeks, Experimen-
tal observation of local rearrangements in dense quasi-
two-dimensional emulsion flow, Physical Review E 91,
062306 (2015).

[19] Y. Jiang, P. J. Swart, A. Saxena, M. Asipauskas,
and J. A. Glazier, Hysteresis and avalanches in two-
dimensional foam rheology simulations, Physical Review
E 59, 5819 (1999).

[20] S. Tewari, D. Schiemann, D. J. Durian, C. M. Knobler,
S. A. Langer, and A. J. Liu, Statistics of shear-induced
rearrangements in a two-dimensional model foam, Phys-
ical Review E 60, 4385 (1999).

[21] E. D. Cubuk, S. S. Schoenholz, J. M. Rieser, B. D. Mal-
one, J. Rottler, D. J. Durian, E. Kaxiras, and A. J. Liu,
Identifying structural flow defects in disordered solids
using machine-learning methods, Physical review letters
114, 108001 (2015).

[22] M. Harrington, A. J. Liu, and D. J. Durian, Machine
learning characterization of structural defects in amor-
phous packings of dimers and ellipses, Physical Review
E 99, 022903 (2019).

[23] V. Bapst, T. Keck, A. Grabska-Barwińska, C. Don-
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TABLE II. Performance of the architecture employed. RL: Randomly labeled.

Data set # Samples Scaled RL Train score Test score # True Positive # True Negative F1 Cross-Validation

3-fold+ 6000 Yes No 1 0.998 600 5880 0.967 0.985
4-fold 6000 Yes Yes 0.5 0.5 1500 1500 0.111 0.985

4-fold 6000 Yes No 0.853 0.840 2631 2407 0.845 0.82
172000 Yes No 0.860 0.832 0.487 0.918
6000 No No 0.814 0.812 2339 2532 0.806 0.59

172000 No No 0.865 0.817 0.471 0.916
6000 Yes Yes 0.555 0.508 1653 1395 0.528 0.5


