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Abstract

Across machine learning, the use of curricula has shown strong empirical potential to im-
prove learning from data by avoiding local optima of training objectives. For reinforcement
learning (RL), curricula are especially interesting, as the underlying optimization has a
strong tendency to get stuck in local optima due to the exploration-exploitation trade-off.
Recently, a number of approaches for an automatic generation of curricula for RL have
been shown to increase performance while requiring less expert knowledge compared to
manually designed curricula. However, these approaches are seldomly investigated from
a theoretical perspective, preventing a deeper understanding of their mechanics. In this
paper, we present an approach for automated curriculum generation in RL with a clear
theoretical underpinning. More precisely, we formalize the well-known self-paced learning
paradigm as inducing a distribution over training tasks, which trades off between task
complexity and the objective to match a desired task distribution. Experiments show that
training on this induced distribution helps to avoid poor local optima across RL algorithms
in different tasks with uninformative rewards and challenging exploration requirements.

Keywords: curriculum learning, reinforcement learning, self-paced learning, tempered
inference, rl-as-inference

1. Introduction

Research on reinforcement learning (RL) (Sutton and Barto, 1998) has led to recent suc-
cesses in long-horizon planning (Mnih et al., 2015; Silver et al., 2017) and robot control
(Kober and Peters, 2009; Levine et al., 2016). A driving factor of these successes has been
the combination of RL paradigms with powerful function approximators, commonly referred
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to as deep RL (DRL). While DRL has considerably pushed the boundary w.r.t. the type
and size of tasks that can be tackled, its algorithms suffer from high sample complexity.
This can lead to poor performance in scenarios where the demand for samples is not sat-
isfied. Furthermore, crucial challenges such as poor exploratory behavior of RL agents are
still far from being solved, resulting in a large body of research that aims to reduce sample
complexity by improving this exploratory behavior of RL agents (Machado et al., 2020;
Tang et al., 2017; Bellemare et al., 2016; Houthooft et al., 2016; Schultheis et al., 2020).
Another approach to making more efficient use of samples is to leverage similarities between
learning environments and tasks in the framework of contextual- or multi-task RL. In these
frameworks, a shared task structure permits simultaneous optimization of a policy for mul-
tiple tasks via inter- and extrapolation (Kupcsik et al., 2013; Schaul et al., 2015; Jaderberg
et al., 2017), resulting in tangible speed ups in learning across tasks. Such approaches ex-
pose the agent to tasks drawn from a distribution under which the agent should optimize
its behavior. Training on such a fixed distribution, however, does not fully leverage the
contextual RL setting in case there is a difference in difficulty among tasks. In such a sce-
nario, first training on “easier” tasks and exploiting the generalizing behavior of the agent
to gradually progress to “harder” ones promises to make more efficient use of environment
interaction. This idea is at the heart of curriculum learning (CL), a term introduced by
Bengio et al. (2009) for supervised learning problems. By now, applications of CL have
increasingly expanded to RL problems, where the aim is to design task sequences that max-
imally benefit the learning progress of an RL agent (Narvekar et al., 2020).
Recently, an increasing number of algorithms for an automated generation of curricula have
been proposed (Baranes and Oudeyer, 2010; Florensa et al., 2017; Andrychowicz et al., 2017;
Riedmiller et al., 2018). While empirically demonstrating their beneficial effect on the learn-
ing performance of RL agents, the heuristics that guide the generation of the curriculum
are, as of now, theoretically not well understood. In contrast, in supervised learning, self-
paced learning (Kumar et al., 2010) is an approach to curriculum generation that enjoys
wide adaptation in practice (Supancic and Ramanan, 2013; Fan et al., 2018; Jiang et al.,
2014a) and has a firm theoretical interpretation as a majorize-minimize algorithm applied
to a regularized objective (Meng et al., 2017). In this paper, we develop an interpretation
of self-paced learning as the process of generating a sequence of distributions over samples.
We use this interpretation to transfer the concept of self-paced learning to RL problems,
where the resulting approach generates a curriculum based on two quantities: the value
function of the agent (reflecting the task complexity) and the KL divergence to a target
distribution of tasks (reflecting the incorporation of desired tasks).
Contribution We propose an interpretation of the self-paced learning algorithm from a
probabilistic perspective, in which the weighting of training samples corresponds to a sam-
pling distribution (Section 4). Based on this interpretation, we apply self-paced learning to
the contextual RL setting, obtaining a curriculum over RL tasks that trades-off agent per-
formance and matching a target distribution of tasks (Section 5). We connect the approach
to the RL-as-inference paradigm (Toussaint and Storkey, 2006; Levine, 2018), recovering
well-known regularization techniques in the inference literature (Section 9). We experimen-
tally evaluate algorithmic realizations of the curriculum in both episodic- (Section 6) and
step-based RL settings (Section 7). Empirical evidence suggests that the scheme can match
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and surpass state-of-the-art CL methods for RL in environments of different complexity and
with sparse and dense rewards.

2. Related Work

Simultaneously evolving the learning task with the learner has been investigated in a variety
of fields ranging from behavioral psychology (Skinner, 1938) to evolutionary robotics (Bon-
gard and Lipson, 2004) and RL (Asada et al., 1996; Erez and Smart, 2008; Wang et al.,
2019). For supervised learning, this principle was given the name curriculum learning by
Bengio et al. (2009). The name has by now also been established in the reinforcement
learning (RL) community, where a variety of algorithms aiming to generate curricula that
maximally benefit the learner have been proposed.
A driving principle behind curriculum reinforcement learning (CRL) is the idea of transfer-
ring successful behavior from one task to another, deeply connecting it to the problem of
transfer learning (Pan and Yang, 2009; Taylor and Stone, 2009; Lazaric, 2012). In general,
transferring knowledge is—depending on the scenario—a challenging problem on its own,
requiring a careful definition of what is to be transferred and what are the assumptions
about the tasks between which to transfer. Aside from this problem, Narvekar and Stone
(2019) showed that learning to create an optimal curriculum can be computationally harder
than learning the solution for a task from scratch. Both of these factors motivate research
on tractable approximations to the problem of transfer and curriculum generation.
To ease the problem of transferring behavior between RL tasks, a shared state-action space
between tasks as well as an additional variable encoding the task to be solved are commonly
assumed. This variable is usually called a goal (Schaul et al., 2015) or a context (Modi et al.,
2018; Kupcsik et al., 2013). In this paper, we will adapt the second name, also treating the
word “context” and “task” interchangeably, i.e. treating the additional variable and the
task that it represents as the same entity.
It has been shown that function approximators can leverage the shared state-action space
and the additional task information to generalize important quantities, such as value func-
tions, across tasks (Schaul et al., 2015). This approach circumvents the complicated problem
of transfer in its generality, does however impose assumptions on the set of Markov decision
processes (MDPs) as well as the contextual variable that describes them. Results from
Modi et al. (2018) suggest that one such assumption may be a gradual change in reward
and dynamics of the MDP w.r.t. the context, although this requirement would need to be
empirically verified. For the remainder of this document, we will disregard this important
problem and focus on RL problems with similar characteristics as the ones investigated
by Modi et al. (2018), as often done for other CRL algorithms. A detailed study of these
assumptions and their impact on CRL algorithms is not known to us but is an interesting
endeavor. We now continue to highlight some CRL algorithms and refer to the survey by
Narvekar et al. (2020) for an extensive overview.
The majority of CRL methods can be divided into three categories w.r.t. the underlying
concept. On the one hand, in tasks with binary rewards or success indicators, the idea of
keeping the agent’s success rate within a certain range has resulted in algorithms with dras-
tically improved sample efficiency (Florensa et al., 2018, 2017; Andrychowicz et al., 2017).
On the other hand, many CRL methods (Schmidhuber, 1991; Baranes and Oudeyer, 2010;
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Portelas et al., 2019; Fournier et al., 2018) are inspired by the idea of ‘curiosity’ or ‘intrinsic
motivation’ (Oudeyer et al., 2007; Blank et al., 2005)—terms that refer to the way humans
organize autonomous learning even in the absence of a task to be accomplished. The third
category includes algorithms that use the value function to guide the curriculum. While
similar to methods based on success indicators in sparse reward settings, these methods can
allow to incorporate the richer feedback available in dense rewards settings. To the best of
our knowledge, only our work and that of Wöhlke et al. (2020) fall into this category. The
work of Wöhlke et al. (2020) defines a curriculum over starting states using the gradient
of the value function w.r.t. the starting state. The proposed curriculum prefers starting
states with a large gradient norm of the value function, creating similarities to metrics used
in intrinsic motivation. In our method, the value function is used as a competence measure
to trade-off between easy tasks and tasks that are likely under a target distribution.
Our approach to curriculum generation builds upon the idea of self-paced learning (SPL),
initially proposed by Kumar et al. (2010) for supervised learning tasks and extended by
Jiang et al. (2014b, 2015) to allow for user-chosen penalty functions and constraints. SPL
generates a curriculum by trading-off between exposing the learner to all available training
samples and selecting samples in which the learner performs well. The approach has been
employed in a variety of supervised learning problems (Supancic and Ramanan, 2013; Fan
et al., 2018; Jiang et al., 2014a). Furthermore, Meng et al. (2017) proposed a theoretical
interpretation of SPL, identifying it as a majorize-minimize algorithm applied to a regu-
larized objective function. Despite its well-understood theoretical standing and empirical
success in supervised learning tasks, SPL has only been applied in a limited way to RL
problems, restricting its use to the prioritization of replay data from an experience buffer
in deep Q-networks (Ren et al., 2018). Orthogonal to this approach, we will make use of
SPL to adaptively select training tasks during learning of the agent.
Furthermore, we will connect the resulting algorithms to the RL-as-inference perspective
during the course of this paper. Therefore, we wish to briefly point to several works em-
ploying this perspective (Dayan and Hinton, 1997; Toussaint and Storkey, 2006; Deisenroth
et al., 2013; Rawlik et al., 2013; Levine, 2018). Taking an inference perspective is benefi-
cial when dealing with inverse problems or problems that require tractable approximations
(Hennig et al., 2015; Prince, 2012). Viewing RL as an inference problem naturally moti-
vates regularization methods such as maximum- or relative entropy (Ziebart et al., 2008;
Peters et al., 2010; Haarnoja et al., 2018) that have proven highly beneficial in practice.
Further, this view allows to rigorously reason about the problem of optimal exploration
in RL (Ghavamzadeh et al., 2015). Finally, it stimulates the development of new, and in-
terpretation of existing, algorithms as different approximations to the intractable integrals
that need to be computed in probabilistic inference problems (Abdolmaleki et al., 2018; Fel-
lows et al., 2019). This results in a highly principled approach to tackling the challenging
problem of RL.

3. Preliminaries

This section introduces the necessary notation for both self-paced and reinforcement learn-
ing. Furthermore, the end of Section 3.2 details the intuition of curriculum learning for RL
and in particular our approach.
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3.1 Self-Paced Learning

The concept of self-paced learning (SPL), as introduced by Kumar et al. (2010) and ex-
tended by Jiang et al. (2015), is defined for supervised learning settings, in which a function
approximator y = m(x,ω) with parameters ω ∈ Rdω is trained w.r.t. a given data set
D =

{
(xi, yi) | xi ∈ Rdx , yi ∈ R, i ∈ [1, N ]

}
. In this setting, SPL generates a curriculum

over the data set D by introducing a vector ν = [ν1 ν2 . . . νN ] ∈ [0, 1]N of weights νi for the
entries (xi, yi) in the data set. These weights are automatically adjusted during learning
via a ‘self-paced regularizer’ f(α, νi) in the SPL objective

ν∗,ω∗ = arg min
ν,ω

r(ω) +
N∑
i=1

(νil(xi, yi,ω) + f(α, νi)) , α > 0. (1)

The term r(ω) represents potentially employed regularization of the model and l(xi, yi,ω)
represents the error in the model prediction ỹi=m(xi,ω) for sample (xi, yi). The motivation
for this principle as well as its name are best explained by investigating the solution ν∗(α,ω)
of optimization problem (1) when only optimizing it w.r.t. ν while keeping α and ω fixed.
Introducing the notation ν∗(α, l) = arg minν νl + f(α, ν), we can define the optimal ν for
given α and ω as

ν∗(α,ω) = [ν∗(α, l(x1, y1,ω)) ν∗(α, l(x2, y2,ω)) . . . ν∗(α, l(xN , yN ,ω))].

For the self-paced function fBin(α, νi)=− ανi initially proposed by Kumar et al. (2010), it
holds that

ν∗Bin(α, l) =

{
1, if l < α

0, else.
(2)

We see that the optimal weights ν∗Bin(α,ω) focus on examples on which the model under the
current parameters ω performs better than a chosen threshold α. By continuously increasing
α and updating ν and ω in a block-coordinate manner, SPL creates a curriculum consisting
of increasingly “hard” training examples w.r.t. the current model. A highly interesting
connection between SPL and well-known regularization terms for machine learning has been
established by Meng et al. (2017). Based on certain axioms on the self-paced regularizer
f(α, νi) (see appendix), Meng et al. (2017) showed that the SPL scheme of alternatingly
optimizing (1) w.r.t. ω and ν implicitly optimizes the regularized objective

min
ω
r(ω) +

N∑
i=1

Fα(l(xi, yi,ω)), Fα(l(xi, yi,ω)) =

∫ l(xi,yi,ω)

0
ν∗(α, ι) dι. (3)

Using the Leibniz integral rule on Fα, we can see that ∇lFα(l) = ν∗(α, l). Put differently,
the weight ν∗i (α,ω) encodes how much a decrease in the prediction error l(xi, yi,ω) for
the training example (xi, yi) decreases the regularized objective (3). In combination with
the previously mentioned axioms on the self-paced regularizer f(α, νi), this allowed Meng
et al. (2017) to prove the connection between (1) and (3). Furthermore, they showed that,
depending on the chosen self-paced regularizer, the resulting regularizer Fα(l(xi, yi,ω))
corresponds exactly to non-convex regularization terms used in machine learning to e.g.
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guide feature selection (Zhang, 2008, 2010). Opposed to feature selection, SPL makes use
of these regularizers to attenuate the influence of training examples which the model cannot
explain under the current parameters ω. This is done by reducing their contribution to the
gradient w.r.t. ω via the function Fα (see Figure 1). This naturally explains tendencies of
SPL to improve learning e.g. in the presence of extreme noise, as empirically demonstrated
by Jiang et al. (2015).
To summarize, we have seen that SPL formulates a curriculum over a set of training data as
an alternating optimization of weights for the training data ν given the current model and
the model parameters ω given the current weights. This alternating optimization performs
an implicit regularization of the learning objective, suppressing the gradient contribution of
samples that the model cannot explain under the current parameters. Empirically, this has
been shown to reduce the likelihood of converging to poor local optima. In the subsequent
sections, we apply SPL to the problem of reinforcement learning, for which we now introduce
the necessary notation.

3.2 Reinforcement Learning

Reinforcement learning (RL) is defined as an optimization problem on a Markov decision
process (MDP), a tuple M = 〈S,A, p, r, p0〉 that defines an environment with states s ∈ S,
actions a ∈ A, transition probabilities p(s′|s,a), reward function r : S × A 7→ R and
initial state distribution p0(s). Typically S and A are discrete spaces or subsets of Rn. RL
encompasses approaches that maximize a γ-discounted performance measure

max
ω

J(ω) = max
ω

Ep0(s0),p(si+1|si,ai),π(ai|si,ω)

[ ∞∑
i=0

γir(si,ai)

]
(4)

by finding optimal parameters ω for the policy π(a|s,ω) through interaction with the en-
vironment. A key ingredient to many RL algorithms is the value function

Vω(s) = Eπ(a|s,ω)
[
r(s,a) + γEp(s′|s,a)

[
Vω(s′)

]]
, (5)

which encodes the long-term expected discounted reward of following policy π(·|·,ω) from
state s. The value function (or an estimate of it) is related to the RL objective by
J(ω) = Ep0(s) [Vω(s)]. In order to exploit learning in multiple MDPs, we need to give
the agent ways of generalizing behavior over them. A common approach to accomplish this
is to assume a shared state-action space for the MDPs and parameterize the MDP by a
contextual parameter c ∈ C ⊆ Rm, i.e. M(c) = 〈S,A, pc, rc, p0,c〉. By conditioning the
agent’s behavior on this context, i.e. π(a|s, c,ω), and introducing a distribution µ(c) over
the contextual parameter, we end up with a contextual RL objective

max
ω

J(ω, µ) = max
ω

Eµ(c) [J(ω, c)] = max
ω

Eµ(c),p0,c(s) [Vω(s, c)] . (6)

The value function Vω(s, c) now encodes the expected discounted reward of being in states
s in context c and following the conditioned policy π(a|s, c,ω), i.e.

Vω(s, c) = Eπ(a|s,c,ω)
[
rc(s,a) + γEpc(s′|s,a)

[
Vω(s′, c)

]]
. (7)

6



Self-Paced Learning in RL

This formulation has been investigated by multiple works from different perspectives (Neu-
mann, 2011; Schaul et al., 2015; Modi et al., 2018). Despite the generality of the RL
paradigm and its power in formulating the problem of inferring optimal behavior from
experience as a stochastic optimization, the practical realization of sophisticated RL algo-
rithms poses many challenges in itself. For example, the extensive function approximations
that need to be performed often result in the particular RL algorithm converging to a local
optimum of the typically non-convex objectives (4) and (6), which may or may not encode
behavior that is able to solve the task (or the distribution of tasks). In the single-task RL
objective (4), the only way to avoid such problems is to improve approximations, e.g. by
increasing the number of samples, or develop algorithms with strong exploratory behavior.
In the contextual case (6), however, there is an appealing different approach.
Assume a task M(c), in which learning can robustly take place despite aforementioned
approximations, e.g. since objective (4) is convex for M(c) and hence only one optimum
exists. Furthermore, consider a second task M(c′) which now admits multiple optima with
different expected rewards. If the solution to M(c) lies within the basin of attraction of
the optimal solution to M(c′), first learning in c and afterward in c′ promises to stabilize
learning towards the optimal solution for c′. This intuition is at the core of curriculum
learning for RL. Looking at (6), a suitable formulation of a curriculum is as a sequence of
context distributions pi(c). This sequence should converge to a desired target distribution
µ(c), i.e. limi→∞ pi(c) = µ(c).
Before we show that self-paced learning induces such a sequence of distributions, we first
want to note an important property that is exploited by contextual- and curriculum rein-
forcement learning (CRL) algorithms especially in continuous domains: A small distance
‖c − c′‖ implies a certain similarity between the tasks M(c) and M(c′). Note that the
imprecision of this formulation is not by accident but is rather an acknowledgment that the
question of similarity between MDPs is a complicated topic on its own. Nonetheless, if in
a curriculum, a new training task c′ is generated via additive noise on a task c in which
the agent demonstrates good performance, the property is clearly exploited. Furthermore,
policy representations π(a|s, c,ω) such as e.g. (deep) neural networks also tend to encode
continuity w.r.t. c. We wanted to highlight these observations, as they allow to judge
whether a given CRL algorithm, as well as ours, is applicable to a given problem.

4. A Probabilistic Interpretation of Self-Paced Learning

At this point, we have discussed RL and highlighted the problem of policy optimization
converging to a local optimum or only converging slowly. Ensuring to learn globally op-
timal policies with optimal sample complexity in its whole generality is an open problem.
However, in Section 3.1 we discussed that for supervised learning, the use of regularizing
functions Fα that transform the loss can smooth out local optima created e.g. by noisy
training data. Motivated by this insight, we now apply the aforementioned functions to
regularize the contextual RL objective, obtaining

max
ω

Eµ(c) [Fα(J(ω, c))] . (8)

This objective has two slight differences to objective (3). First, it misses the regularization
term r(ω) from (3). Second, objective (8) is defined as an expectation of the regularized
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performance Fα(J(ω, c)) w.r.t. to the context distribution µ(c) instead of a sum over the
regularized performances. This can be seen as a generalization of (3), in which we allow to
chose µ(c) differently from a uniform distribution over a discrete set of values. Regardless of
these technical differences, one could readily optimize objective (8) in a supervised learning
scenario e.g. via a form of stochastic gradient descent. As argued in Section 3.1, this results
in an SPL optimization scheme (1) since the regularizer Fα performs an implicit weighting
of the gradients ∇ωJ(ω, c). In an RL setting, the problem with such a straightforward
optimization is that each evaluation of J(ω, c) and its gradient is typically expensive. If
now for given parameters ω and context c, the regularizer Fα leads to a negligible influence
of J(ω, c) to the gradient of the objective (see Figure 1), evaluating J(ω, c) wastes the
precious resources that the learning agent should carefully utilize. In an RL setting, it is
hence crucial to make use of a sampling distribution p(c) that avoids the described wasteful
evaluations. At this point, the insight that an SPL weight is equal to the gradient of the reg-
ularizing function Fα for the corresponding context, i.e. ν∗(α, J(c,ω)) = ∇lFα(l)|l=J(c,ω),
directly yields a method for efficiently evaluating objective (8)—that is by sampling a con-
text c according to its SPL weight ν∗(α, J(c,ω)). To make this intuition rigorous, we now
introduce a probabilistic view on self-paced learning that views the weights ν in the SPL
objective (1) as probabilities of a distribution over samples. More precisely, we define the
categorical probability distribution p(c=i|ν) = νi for i ∈ [1, N ]. Note that we restrict our-
selves to discrete distributions p(c=i|ν) in this section to both ease the exposition and more
easily establish connections to the SPL objective introduced in Section 3.1, although the
results can be generalized to continuous distributions µ(c). For p(c=i|ν) = νi to be a valid
probability distribution, we only need to introduce the constraint

∑N
i=1 νi = 1, as νi ≥ 0

per definition of SPL. Hence, we rewrite the SPL objective (1) as

ν∗,ω∗ = arg min
ν,ω

r(ω) + Ep(c|ν) [l(xc, yc,ω)] +
N∑
i=1

f(α, p(c=i|ν)), α > 0

s.t.

N∑
i=1

νi = 1. (9)

Apart from changes in notation, the only difference w.r.t. (1) is the constraint that
forces the variables νi to sum to 1. Interestingly, depending on the self-paced regular-
izer f(α, p(c=i|ν)), this constraint does not just lead to a normalization of the SPL weights
obtained by optimizing objective (1). This is because the previously independent SPL
weights ν∗(α, l(xi, yi,ω)) are now coupled via the introduced normalization constraint. An
example of such a “problematic” regularizer is the seminal one fBin(α, νi) = −ανi explored
by Kumar et al. (2010). With the additional constraint, the optimal solution ν∗Bin to (9)
simply puts all weight on the sample with the minimum loss instead of sampling uniformly
among samples with a loss smaller than α. Although there seems to be no general connec-
tion between objective (1) and (9) that holds for arbitrary self-paced regularizers, we can
show that for the self-paced regularizer

fKL,i(α, νi) = ανi (log(νi)− log(µ(c=i)))− ανi, (10)

the value of ν∗KL,i(α,ω) obtained by optimizing (1) and (9) w.r.t. ν is identical up to a
normalization constant. The user-chosen distribution µ(c) in (10) represents the likelihood
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Figure 1: A visualization of the effect of FKL,α (see Equation 11) for different values of
α and a single data-point (x, y). The left plot shows the transformation of the
model error l(x, y,ω) by FKL,α. The right plot shows the gradient of FKL,α w.r.t.
l(x, y,ω), i.e. the corresponding weight ν∗KL(α,ω).

of (xc, yc) occurring and has the same interpretation as in objective (8). The corresponding
function FKL,α,i is given by

FKL,α,i(l(xi, yi,ω))=

∫ l(xi,yi,ω)

0
ν∗KL,i(α, ι) dι = µ(c=i)α

(
1− exp

(
−1

a
l(xi, yi,ω)

))
(11)

and is visualized in Figure 1. Note the additional subscript i in both fKL,i and FKL,α,i.
This extra subscript arises due to the appearance of the likelihood term µ(c=i) in both
formulas, resulting in an individual regularizer for each sample (xi, yi). As can be seen,
FKL,α,i(l) exhibits a squashing effect to limit the attained loss l to a maximum value of
α. The closer the non-regularized loss l attains this maximum value of α, the more it is
treated as a constant value by FKL,α,i(l). For l increasingly smaller than α, a change in the
non-regularized loss l leads to an increasingly linear change in the regularized loss FKL,α,i(l).
More interestingly, using fKL,i(α, νi) in objective (9) results in a KL-Divergence penalty to
µ(c). Theorem 1 summarizes these findings. The proof can be found in the appendix.

Theorem 1 Alternatingly solving

min
ω,ν

Ep(c|ν) [l(xc, yc,ω)] + αDKL (p(c|ν) ‖ µ(c))

w.r.t. ω and ν is a majorize-minimize scheme applied to the regularized objective

min
ω

Eµ(c)
[
α

(
1− exp

(
− 1

α
l(xc, yc,ω)

))]
.

In the following section, we make use of the insights summarized in Theorem 1 to motivate a
curriculum as an effective evaluation of the regularized RL objective (8) under the particular
choice Fα = FKL,α,i.

9
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5. Self-Paced Learning for Reinforcement Learning

Obtaining an efficient way of optimizing objective (8) with Fα = FKL,α,i is as easy as
exploiting Theorem 1 to define the alternative objective

max
ω,ν

Ep(c|ν) [J(ω, c)]− αDKL (p(c|ν) ‖ µ(c)) .

As discussed in the previous section, this formulation introduces a way of computing the
desired sampling distribution that efficiently evaluates objective (8) given the current agent
parameters ω by optimizing the above optimization problem w.r.t. ν. As discussed in
Section 3.1, p(c|ν) will assign probability mass to a context c based on its contribution
to the gradient of objective (8). Before we look at the application to RL problems, we
will introduce a regularization that is an important ingredient to achieve practicality. More
precisely, we introduce a KL divergence constraint between subsequent context distributions
p(c|ν) and p(c|ν ′), yielding

max
ω,ν

Ep(c|ν) [J(ω, c)]− αDKL (p(c|ν) ‖ µ(c))

s.t. DKL

(
p(c|ν)

∥∥ p(c|ν ′)) ≤ ε, (12)

with ν ′ being the parameters of the previously computed context distribution. In a practi-
cal algorithm, this secondary regularization is important because the expected performance
J(ω, c) is approximated by a learned value function, which may not predict accurate values
for contexts not likely under p(c|ν ′). The KL divergence constraint helps to avoid exploiting
these false estimates too greedily. Furthermore, it forces the distribution over contextual
variables, and hence tasks, to gradually change, which we argued to be beneficial for RL
algorithms at the end of Section 3.2. From a theoretical perspective on SPL, the constraint
changes the form of ν∗ making it not only dependent on α and ω, but also on the previous
parameter ν ′. Although it may be possible to relate this modification to a novel regularizer
Fα,i, we do not pursue this idea here but rather connect (12) to the RL-as-inference per-
spective in Section 9, where we can show highly interesting similarities to the well-known
concept of tempering in inference. To facilitate the intuition of the proposed curriculum and
its usage, we, however, first present applications and evaluations in the following sections.
An important design decision for such applications is the schedule for α, i.e. the parameter
of the regularizing function Fα. As can be seen in (12), α corresponds to the trade-off
between reward maximization and progression to µ(c). In a supervised learning scenario, it
is preferable to increase α as slowly as possible to gradually transform the objective from an
easy version towards the target one. In an RL setting, each algorithm iteration requires the
collection of data from the (real) system. Since the required amount of system interaction
should be minimized, we cannot simply choose very small step sizes for α, as this would lead
to a slower than necessary progression towards µ(c). In the implementations in sections 6
and 7, the parameter α is chosen such that the KL divergence penalty w.r.t. the current
context distribution p(c|νk) is in constant proportion ζ to the expected reward under this
current context distribution and current policy parameters ωk

αk = B(νk,ωk) = ζ
Ep(c|νk) [J(ωk, c)]

DKL (p(c|νk) ‖ µ(c))
. (13)
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For the first Kα iterations, we set α to zero, i.e. only focus on maximizing the reward
under p(c|ν). In combination with an initial context distribution p(c|ν0) covering large
parts of the context space, this allows to tailor the context distribution to the learner in the
first iterations by focusing on tasks in which it performs best under the initial parameters.
Note that this schedule is a naive choice, that nonetheless worked sufficiently well in our
experiments. In Section 8, we revisit this design choice and investigate it more carefully.

6. Application to Episodic Reinforcement Learning

In this section, we implement and evaluate our formulation of SPL for RL in a slightly
different way than the “full” RL setting, which has been described in Section 3.2 and will
be evaluated in the next section. Instead, we frame RL as a black-box optimization problem
(Conn et al., 2009; Hansen et al., 2010). This setting is interesting for two reasons: Firstly,
it has been and still is a core approach to perform RL on real (robotic) systems (Kupcsik
et al., 2013; Parisi et al., 2015; Ploeger et al., 2020), where “low-level” policies such as
Dynamic- and Probabilistic Movement Primitives (Schaal, 2006; Paraschos et al., 2013)
or PD-control laws (Berkenkamp et al., 2016) are commonly used to ensure smooth and
stable trajectories while keeping the dimensionality of the search space reasonably small.
Secondly, the different mechanics of the employed episodic RL algorithm and the resulting
different implementation of objective (12) serve as another validation of our SPL approach
to CRL apart from the deep RL experiments in the next section. Readers not interested in
or familiar with the topic of black-box optimization (and episodic RL) can skip this section
and continue to the experiments with deep RL algorithms in Section 7.
The episodic RL setting arises if we introduce an additional “low-level” policy π(a|s,θ) with
parameters θ ∈ Rdθ and change the policy introduced in Section 3.2 to not generate actions
given the current state and context, but only generate a parameter θ for the low-level policy
given the current context, i.e. π(θ|c,ω). Defining the expected reward for a parameter θ
in context c as

r(θ, c) = Ep0,c(s)
[
Vπ(a|s,θ)(s, c)

]
, (14)

we see that we can simply interpret r(θ, c) as a function that, due to its complicated nature,
does only allow for noisy observations of its function value without any gradient information.
The noise in function observations arises from the fact that a rollout of policy π(a|s,θ) in
a context c corresponds to approximating the expectations in r(θ, c) with a single sample.
As a black-box optimizer for the experiments, we choose the contextual relative entropy
policy search (C-REPS) algorithm (Neumann, 2011; Kupcsik et al., 2013; Parisi et al.,
2015), which frames the maximization of (14) over a task distribution µ(c) as a repeated
entropy-regularized optimization

max
q(θ,c)

Eq(θ,c) [r(θ, c)] s.t. DKL (q(θ, c) ‖ p(θ, c)) ≤ ε
∫
q(θ, c) dθ = µ(c) ∀c ∈ C,

where p(θ, c) = p(θ|c)µ(c) is the distribution obtained in the previous iteration. Note
that the constraint in the above optimization problem implies that only the policy q(θ|c)
is optimized since the constraint requires that q(θ, c) = q(θ|c)µ(c). This notation is com-
mon for this algorithm as it eases the derivations of the solution via the concept of La-
grangian multipliers. Furthermore, this particular form of the C-REPS algorithm allows for
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Algorithm 1 Self-Paced Episodic Reinforcement Learning (SPRL)

Input: Initial context distribution- and policy parameters ν0 and ω0, Target context
distribution µ(c), KL penalty proportion ζ, Offset Kα, Number of iterations K, Rollouts
per policy update M , Relative entropy bound ε
for k = 1 to K do

Collect Data:
Sample contexts: ci ∼ p(c|νk−1), i ∈ [1,M ]
Sample parameters: θi ∼ p(θ|ci,ωk−1)
Execute π(·|s,θi) in ci and observe reward: ri = r (θi, ci)
Create sample set: Dk = {(θi, ci, ri)|i ∈ [1,M ]}
Update Policy and Context Distributions:
Update schedule: αk = 0, if k ≤ Kα, else B(νk−1,ωk−1) (13)

Optimize dual function:
[
η∗q , η

∗
q̃ , V

∗
]
← arg minG(ηq, ηq̃, V ) (18)

Calculate sample weights: [wi, w̃i]←
[
exp

(
A(θi,ci)
η∗q

)
, exp

(
β(ci)
αk+η

∗
q̃

)]
(16), (17)

Infer new parameters: [ωk,νk]← {(wi, w̃i,θi, ci)|i ∈ [1,M ]}
end for

a straightforward incorporation of SPL, simply replacing the constraint
∫
q(θ, c)dθ = µ(c)

by a penalty term on the KL divergence between q(c) =
∫
q(θ, c)dθ and µ(c)

max
q(θ,c)

Eq(θ,c) [r(θ, c)]− αDKL (q(c) ‖ µ(c))

s.t. DKL (q(θ, c) ‖ p(θ, c)) ≤ ε. (15)

The above objective does not yet include the parameters ω or ν of the policy or the context
distribution to be optimized. This is because both C-REPS and also our implementation
of SPL for episodic RL solve the above optimization problem analytically to obtain a re-
weighting scheme for samples (θi, ci) ∼ p(θ|c,ωk)p(c|νk) based on the observed rewards
r(θi, ci). The next parameters ωk+1 and νk+1 are then found by a maximum-likelihood
fit to the set of weighted samples. The following section will detail some of the practical
considerations necessary for this.

6.1 Algorithmic Implementation

Solving (15) analytically using the technique of Lagrangian multipliers, we obtain the fol-
lowing form for the variational distributions

q(θ, c)∝p(θ, c|ωk,νk) exp

(
r(θ, c)− V (c)

ηq

)
= p(θ, c|ωk,νk) exp

(
A(θ, c)

ηq

)
, (16)

q(c)∝p(c|νk) exp

(
V (c) + α(log(µ(c))− log(p(c|νk)))

α+ ηq̃

)
= p(c|νk) exp

(
β(c)

α+ ηq̃

)
, (17)
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with ηq, ηq̃ as well as V (c) being Lagrangian multipliers that are found by solving the dual
objective

G = (ηq + ηq̃)ε+ ηq log

(
Ep
[
exp

(
A(θ, c)

ηq

)])
+ (α+ ηq̃) log

(
Ep
[
exp

(
β(c)

α+ ηq̃

)])
.

(18)

The derivation of the dual objective, as well as the solution to objective (15), are shown in
the appendix. As previously mentioned, in practice the algorithm has only access to a set
of samples D = {(θi, ci, ri)|i ∈ [1,M ]} and hence the analytic solutions (16) and (17) are
approximated by re-weighting the samples via weights wi. To compute the optimal weights
wi, the multipliers V ∗, η∗q and η∗q̃ need to be obtained by minimizing the dual (18), to which
two approximations are introduced: First, the expectations w.r.t. p(θ, c|ω,ν) (abbreviated
as p in Equation 18) are replaced by a sample-estimate from the collected samples in D.
Second, we introduce a parametric form for the value function V (c) = χTφ(c) with a user-
chosen feature function φ(c), such that we can optimize (18) w.r.t. χ instead of V .
After finding the minimizers χ∗, η∗q and η∗q̃ of (18), the weights wi are then given by the
exponential terms in (16) and (17). The new policy- and context distribution parameters
are fitted via maximum likelihood to the set of weighted samples. In our implementation,
we use Gaussian context distributions and policies. To account for the error that orig-
inates from the sample-based approximation of the expectations in (18), we enforce the
KL divergence constraint DKL (p(θ, c|ωk,νk) ‖ q(θ, c|ωk+1,νk+1)) ≤ ε when updating the
policy and context distribution. Again, details on this maximum likelihood step can be
found in the appendix. To compute the schedule for α according to (13), we approximate
the expected reward under the current policy with the mean of the observed rewards, i.e.
Ep(c|νk) [J(ωk, c)] ≈ 1

M

∑M
i=1 ri. The overall procedure is summarized in Algorithm 1.

6.2 Experiments

We now evaluate the benefit of the SPL paradigm in the episodic RL scenario (SPRL).
Besides facilitating learning on a diverse set of tasks, we are also interested in the idea
of facilitating the learning of a hard target task via a curriculum. This modulation can
be achieved by choosing µ(c) to be a narrow probability distribution focusing nearly all
probability density on the particular target task. To judge the benefit of our SPL adaptation
for these endeavors, we compared our implementation to C-REPS, CMA-ES (Hansen et al.,
2003), GoalGAN (Florensa et al., 2018) and SAGG-RIAC (Baranes and Oudeyer, 2010).
With CMA-ES being a non-contextual algorithm, we only use it in experiments with narrow
target distributions, where we then train and evaluate only on the mean of the target context
distributions. We will start with a simple point-mass problem, where we evaluate the benefit
of our algorithm for broad and narrow target distributions. We then turn towards more
challenging tasks, such as a modified version of the reaching task implemented in the OpenAI
Gym simulation environment (Brockman et al., 2016) and a sparse ball-in-a-cup task. Given
that GoalGAN and SAGG-RIAC are algorithm agnostic curriculum generation approaches,
we combine them with C-REPS to make the results as comparable as possible.
In all experiments, we use radial basis function (RBF) features to approximate the value
function V (c), while the policy p(θ|c,ω) = N (θ|Aωφ(c),Σω) uses linear features φ(c).
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SPRL and C-REPS always use the same number of RBF features for a given environment.
SPRL always starts with a wide initial sampling distribution p (c|ν0) that, in combination
with setting α = 0 for the first Kα iterations, allows the algorithm to automatically choose
the initial tasks on which learning should take place. After the first Kα iterations, we then
choose α following the scheme outlined in the previous section. Experimental details that
are not mentioned here to keep the section short can be found in the appendix. 1

6.2.1 Point-Mass Environment

In the first environment, the agent needs to steer a point-mass in a two-dimensional space
from the starting position [0 5] to the goal position at the origin. The dynamics of the
point-mass are described by a simple linear system subject to a small amount of Gaussian
noise. Complexity is introduced by a wall at height y = 2.5, which can only be traversed
through a gate. The x-position and width of the gate together define a task c. If the
point-mass crashes into the wall, the experiment is stopped and the reward is computed
based on the current position. The reward function is the exponentiated negative distance
to the goal position with additional L2-Regularization on the generated actions. The point-
mass is controlled by two linear controllers, whose parameters need to be tuned by the
agent. The controllers are switched as soon as the point-mass reaches the height of the
gate, which is why the desired y-position of the controllers are fixed to 2.5 (the height of

1. Code is publicly available under https://github.com/psclklnk/self-paced-rl.
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Figure 2: Left: Reward in the “precision” (top row) and “global” setting (bottom row) on
the target context distributions in the gate environment. Thick lines represent
the 50%-quantiles and shaded areas the intervals from 10%- to 90%-quantile of
40 algorithm executions. Middle: Evolution of the sampling distribution p (c|ν)
(colored areas) of one SPRL run together with the target distribution µ (c) (black
line). Right: Task visualizations for different gate positions and widths. The
boxes mark the corresponding positions in the context space.
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Figure 3: Success rates in the “precision” (left) and “global” setting (right) of the gate
environment. Thick lines represent the 50%-quantiles and shaded areas show the
intervals from 10%- to 90%-quantile. Quantiles are computed using 40 algorithm
executions.

the gate) and 0, while all other parameters are controlled by the policy π, making θ a
14-dimensional vector. We evaluate two setups in this gate environment, which differ in
their target context distribution µ(c): In the first one, the agent needs to be able to steer
through a very narrow gate far from the origin (“precision”) and in the second it is required
to steer through gates with a variety of positions and widths (“global”). The two target
context distributions are shown in Figure 2. Figure 2 further visualizes the obtained rewards
for the investigated algorithms, the evolution of the sampling distribution p (c|ν) as well
as tasks from the environment. In the “global” setting, we can see that SPRL converges
significantly faster to the optimum than the other algorithms while in the “precision” setting,
SPRL avoids a local optimum to which C-REPS and CMA-ES converge and which, as can
be seen in Figure 3, does not encode desirable behavior. Furthermore, both curriculum
learning algorithms SAGG-RIAC and GoalGAN only slowly escape this local optimum in
the “precision” setting. We hypothesize that this slow convergence to the optimum is caused
by SAGG-RIAC and GoalGAN not having a notion of a target distribution. Hence, these
algorithms cannot guide the sampling of contexts to sample relevant tasks according to
µ(c). This is especially problematic if µ(c) covers only a small fraction of the context space
with a non-negligible probability density. The visualized sampling distributions in Figure 2
indicate that tasks with wide gates positioned at the origin seem to be easier to solve
starting from the initially zero-mean Gaussian policy, as in both settings SPRL first focuses
on these kinds of tasks and then subsequently changes the sampling distributions to match
the target distribution. Interestingly, the search distribution of CMA-ES did not always
converge in the “precision” setting, as can be seen in Figure 2. This behavior persisted
across various hyperparameters and population sizes.

6.2.2 Reacher Environment

For the next evaluation, we modify the three-dimensional reacher environment of the OpenAI
Gym toolkit. In our version, the goal is to move the end-effector along the surface of a table
towards the goal position while avoiding obstacles that are placed on the table. With the
obstacles becoming larger, the robot needs to introduce a more pronounced curve movement
to reach the goal without collisions. To simplify the visualization of the task distribution,
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Figure 4: Left: 50%-quantiles (thick lines) and intervals from 10%- to 90%-quantile (shaded
areas) of the reward in the reacher environment. Quantiles are computed over 40
algorithm runs. Middle: The sampling distribution p (c|ν) at different iterations
(colored areas) of one SPRL run together with the target distribution (black line).
Right: Task visualizations for different contexts with black crosses marking the
corresponding positions in context space.

we only allow two of the four obstacles to vary in size. The sizes of those two obstacles
make up a task c in this environment. Just as in the first environment, the robot should
not crash into the obstacles, and hence the movement is stopped if one of the four obstacles
is touched. The policy π encodes a ProMP (Paraschos et al., 2013), from which movements
are sampled during training. In this task, θ is a 40-dimensional vector.
Looking at Figure 4, we can see that C-REPS and CMA-ES find a worse optimum com-
pared to SPRL. This local optimum does—just as in the previous experiment—not encode
optimal behavior, as we can see in Figure 5. GoalGAN and SAGG-RIAC tend to find the
same optimum as SPRL, however with slower convergence. This is nonetheless surprising
given that—just as for the “precision” setting of the previous experiment—the algorithm
deals with a narrow target context distribution. Although the 10%-90% quantile of SAGG-
RIAC and GoalGAN contain policies that do not manage to solve the task (i.e. are below
the performance of C-REPS), the performance is in stark contrast to the performance in

SPRL C-REPS GoalGAN CMA-ES PPO SAGG-RIAC

Figure 5: Trajectories generated by final policies learned with different algorithms in the
reacher environment. The trajectories should reach the red dot while avoiding
the cyan boxes. Please note that the visualization is not completely accurate, as
we did not account for the viewpoint of the simulation camera when plotting the
trajectories.
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the previously discussed “precision” setting, in which the majority of runs did not solve
the task. Nonetheless, the 10%-50% quantile of the performance displayed in Figure 4 still
indicates the expected effect that SPRL leverages the knowledge of the target distribution
to yield faster convergence to the optimal policy in the median case.
Another interesting artifact is the initial decrease in performance of SPRL between iter-
ations 50 − 200. This can be accounted to the fact that in this phase, the intermediate
distribution p(c|ν) only assigns negligible probability density on areas covered by µ(c) (see
Figure 4). Hence the agent performance on µ(c) during this stage is completely dependent
on the extrapolation behavior of the agent, which seems to be rather poor in this setting.
This once more illustrates the importance of appropriate transfer of behavior between tasks,
which is, however, out of the scope of this paper.
The sampling distributions visualized in Figure 4 indicate that SPRL focuses on easier tasks
with smaller obstacle sizes first and then moves on to the harder, desired tasks. Figure 5
also shows that PPO (Schulman et al., 2017), a step-based reinforcement learning algorithm,
is not able to solve the task after the same amount of interaction with the environment,
emphasizing the complexity of the learning task.

6.2.3 Sparse Ball-in-a-Cup

We conclude this experimental evaluation with a ball-in-a-cup task, in which the reward
function exhibits a significant amount of sparsity by only returning a reward of 1 minus an
L2 regularization term on the policy parameters, if the ball is in the cup after the policy ex-
ecution, and 0 otherwise. The robotic platform is a Barrett WAM, which we simulate using
the MuJoCo physics engine (Todorov et al., 2012). The policy represents again a ProMP
encoding the desired position of the first, third and fifth joint of the robot. Achieving the
desired task with a poor initial policy is an unlikely event, leading to mostly uninformative
rewards and hence poor learning progress. However, as can be seen in Figure 6, giving
the learning agent control over the diameter of the cup significantly improves the learning
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Figure 6: Left: 50%-quantiles (thick lines) and intervals from 10%- to 90%-quantile (shaded
areas) of the success rates for the sparse ball-in-a-cup task. Quantiles are com-
puted from the 10 best runs out of 20. Middle: The sampling distribution p (c|ν)
at different iterations (colored areas) of one SPRL run together with the target
distribution µ(c) (black line). Right: Task visualization on the real robot (upper)
and in simulation with a scale of 2.5 (lower).
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Algorithm 2 Self-Paced Deep Reinforcement Learning (SPDL)

Input: Initial context distribution- and policy parameters ν0 and ω0, Target context dis-
tribution µ(c), KL penalty proportion ζ and offset Kα, Number of iterations K, Rollouts
per policy update M , Relative entropy bound ε
for k = 1 to K do

Agent Improvement:
Sample contexts: ci ∼ p(c|νk), i ∈ [1,M ]
Rollout trajectories: τ i ∼ p(τ |ci,ωk), i ∈ [1,M ]
Obtain ωk+1 from RL algorithm of choice using Dk = {(ci, τ i)|i ∈ [1,M ]}
Estimate Ṽωk+1

(si,0, ci) (or use estimate of RL agent) for contexts ci
Context Distribution Update:
IF k ≤ Kα: Obtain νk+1 from (19) with αk = 0
ELSE: Obtain νk+1 optimizing (19), using αk = B(νk,Dk) (13)

end for

progress by first training with larger cups and only progressively increasing the precision of
the movement to work with smaller cups. Having access to only 16 samples per iteration,
the algorithms did not always learn to achieve the task. However, the final policies learned
by SPRL outperform the ones learned by C-REPS, CMA-ES, GoalGAN and SAGG-RIAC.
The movements learned in simulation were finally applied to the robot with a small amount
of fine-tuning.

7. Application to Step-Based Reinforcement Learning

The experiments in the previous section demonstrate that the self-paced learning paradigm
can indeed be beneficial in the episodic RL —or black-box optimization— setting, so that as
a next step we want to investigate its application when using a stochastic policy of the form
π(a|s, c,ω). In this setting, we derive an implementation of SPL that is agnostic to the RL
algorithm of choice by using the possibility of updating the SPL objective (12) in a block-
coordinate manner w.r.t. ω and ν. The resulting approximate implementation allows to
create learning agents following the SPL paradigm using arbitrary RL algorithms by making
use of the value functions that the RL algorithms estimate during policy optimization.

7.1 Algorithmic Implementation

When optimizing (12) w.r.t. the policy parameters ω under the current context distribution
p(c|νk) using an RL algorithm of choice, a data set Dk of trajectories is generated

Dk= {(ci, τ i) | ci ∼ p(c|νk), τ i ∼ p(τ |ci,ωk), i ∈ [1,M ]} .
τ i = {(si,j ,ai,j , ri,j)|ai,j∼p(a|si,j , ci,ωk), si,j+1∼pci(s|si,j ,ai,j), si,0∼p0,ci(s), j=1, . . .}.

One unifying property of many RL algorithms is their reliance on estimating the state-
value function Vω(s0, c), each in their respective way, as a proxy to optimizing the policy.
We make use of this approximated value function Ṽω(s0, c) (note the ∼ indicating the
approximation) to compute an estimate of the expected performance J(ω, c) in context c.
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Since J(ω, c) = Ep0,c(s0) [Vω(s0, c)], we can coarsely approximate the expectation w.r.t.
p0,c(s0) for a given context ci with the initial state si,0 contained in the set of trajectories
Dk. This yields an approximate form of (12) given by

max
νk+1

1

M

M∑
i=1

p (ci|νk+1)

p (ci|νk)
Ṽω (si,0, ci)− αkDKL (p(c|νk+1) ‖ µ(c))

s.t. DKL (p(c|νk+1) ‖ p(c|νk))≤ε. (19)

The first term in objective (19) is an approximation to Ep(c|νk+1) [J(ω, c)] via importance-
weights. The above objective can be solved using any constrained optimization algorithm.
In our implementation, we use the trust-region algorithm implemented in the SciPy library
(Virtanen et al., 2020). The two KL divergences in (19) can be computed in closed form
since µ(c) and p(c|ν) are Gaussians in our implementations. However, for more compli-
cated distributions, the divergences can also be computed using samples from the respective
distributions and the corresponding (unnormalized) log-likelihoods. The resulting approach
(SPDL) is summarized in Algorithm 2.

7.2 Experiments

We evaluate SPDL in three different environments (Figure 7) with different deep RL
(DRL) algorithms: TRPO (Schulman et al., 2015), PPO (Schulman et al., 2017) and SAC
(Haarnoja et al., 2018). For all DRL algorithms, we use the implementations from the
Stable Baselines library (Hill et al., 2018). 2

(a) Point-Mass (b) Ant (c) Ball-Catching

Figure 7: Environments used for experimental
evaluation. For the point-mass envi-
ronment (a), the upper plot shows the
target task. The shaded areas in pic-
ture (c) visualize the target distribution
of ball positions (green) as well as the
ball positions for which the initial pol-
icy succeeds (blue).

The first environment for testing SPDL
is again a point-mass environment but
with an additional parameter to the
context space, as we will detail in the
corresponding section. The second en-
vironment extends the point-mass ex-
periment by replacing the point-mass
with a torque-controlled quadruped
‘ant’, thus increasing the complexity of
the underlying control problem and re-
quiring the capacity of deep neural net-
work function approximators used in
DRL algorithms. Both of the men-
tioned environments will focus on learn-
ing a specific hard target task. The final
environment is a robotic ball-catching
environment. This environment con-
stitutes a shift in curriculum paradigm
as well as reward function. Instead of
guiding learning towards a specific tar-

2. Code for running the experiments can be found at https://github.com/psclklnk/spdl.

19

https://github.com/psclklnk/spdl


Klink, Abdulsamad, Belousov, D’Eramo, Peters and Pajarinen

get task, this third environment requires to learn a ball-catching policy over a wide range
of initial states (ball position and velocity). The reward function is sparse compared to the
dense ones employed in the first two environments. To judge the performance of SPDL,
we compare the obtained results to state-of-the-art CRL algorithms ALP-GMM (Portelas
et al., 2019), which is based on the concept of Intrinsic Motivation, and GoalGAN (Florensa
et al., 2018), which relies on the notion of a success indicator to define a curriculum. Fur-
ther, we also compare to curricula consisting of tasks uniformly sampled from the context
space (referred to as ‘Random’ in the plots) and learning without a curriculum (referred
to as ‘Default’). Additional details on the experiments as well as qualitative evaluations of
them can be found in the appendix.

7.2.1 Point-Mass Environment

As previously mentioned, we again focus on a point-mass environment, where now the
control policy is a neural network. Furthermore, the contextual variable c ∈ R3 now changes
the width and position of the gate as well as the dynamic friction coefficient of the ground
on which the point-mass slides. The target context distribution µ(c) is a narrow Gaussian
with a negligible variance that encodes a small gate at a specific position and a dynamic
friction coefficient of 0. Figure 7 shows two different instances of the environment, one of
them being the target task.
Figure 8 shows the results of two different experiments in this environment, one where
the curriculum is generated over the full three-dimensional context space and one in which
the friction parameter is fixed to its target value of 0 so that the curriculum is generated
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Figure 8: Reward of different curricula in the point-mass (2D and 3D) environment for
TRPO. Mean (thick line) and two times standard error (shaded area) is com-
puted from 20 algorithm runs. The lower plots show samples from the context
distributions p(c|ν) in the point-mass 2D environment at iterations 0, 20, 30,
50, 65 and 120 (from left to right). Different colors and shapes of samples in-
dicate different algorithm runs. The black cross marks the mean of the target
distribution µ(c).
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only in a two-dimensional subspace. As Figure 8 and Table 1 indicate, SPDL significantly
increases the asymptotic reward on the target task compared to other methods. Increasing
the dimension of the context space harms the performance of the other CRL algorithms. For
SPDL, there is no statistically significant difference in performance across the two settings.
This observation is in line with the hypothesis posed in Section 6.2.1, that SPDL leverages
the notion of µ(c) compared to other CRL algorithms that are not aware of it. As the
context dimension increases, the volume of those parts in context space that carry non-
negligible probability density according to µ(c) become smaller and smaller compared to
the volume of the whole context space. Hence curricula that always target the whole context
space tend to spend less time training on tasks that are relevant under µ(c). By having a
notion of a target distribution, SPDL ultimately samples contexts that are likely according
to µ(c), regardless of the dimension. The context distributions p(c|ν) visualized in Figure
8 show that the agent focuses on wide gates in a variety of positions in early iterations.
Subsequently, the size of the gate is decreased and the position of the gate is shifted to
match the target one. This process is carried out at different paces and in different ways,
sometimes preferring to first shrink the width of the gate before moving its position while
sometimes doing both simultaneously. More interestingly, the behavior of the curriculum is
consistent with the one observed in Section 6.2.1. We further see that the episodic version
(SPRL), which we applied by defining the episodic RL policy p(θ|c,ω) to choose the weights
θ of a policy network for a given context c, learns much slower compared to its step-based
counterpart, requiring up to 800 iterations to reach an average reward of 5 (only the first
400 are shown in Figure 8). To keep the dimension of the context space moderate, the
policy network for SPRL consisted of one layer of 21 tanh-activated hidden units, leading
to 168 and 189 parameter dimensions in the two 2D and 3D context space instances. To
make sure that the performance difference is not caused by different policy architectures, we
also evaluated SPDL with this policy architecture, still significantly outperforming SPRL
with an average reward of around 8 after 800 iterations.

7.2.2 Ant Environment

We replace the point-mass in the previous environment with a four-legged ant similar to
the one in the OpenAI Gym simulation environment (Brockman et al., 2016). 3 The goal
is to reach the other side of a wall by passing through a gate, whose width and position are
determined by the contextual variable c ∈ R2 (see Figure 7). In this environment, we were
only able to evaluate the CRL algorithms using PPO. This is because the implementations
of TRPO and SAC in the Stable-Baselines library do not allow to make use of the
parallelization capabilities of the Isaac Gym simulator, leading to prohibitive running times
(details in the appendix).
Looking at Figure 9, we see that SPDL allows the learning agent to escape the local optimum
which results from the agent not finding the gate to pass through. ALP-GMM and a random
curriculum do not improve the reward over directly learning on the target task. However, as
we show in the appendix, both ALP-GMM and a random curriculum improve the qualitative
performance, as they sometimes allow the ant to move through the gate. Nonetheless, this
behavior is less efficient than the one learned by GoalGAN and SPDL, causing the action

3. We use the Nvidia Isaac Gym simulator (Nvidia, 2019) for this experiment.
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Figure 9: Mean (thick line) and two times standard error (shaded area) of the reward
achieved with different curricula in the ant environment for PPO and in the
ball-catching environment for SAC (upper plots). The statistics are computed
from 20 seeds. For ball-catching, runs of SPDL/GoalGAN with an initialized
context distribution and runs of Default learning without policy initialization are
indicated by asterisks. The lower plots show ball positions in the ‘catching’ plane
sampled from the context distributions p(c|ν) in the ball-catching environment at
iterations 0, 50, 80, 110, 150 and 200 (from left to right). Different sample colors
and shapes indicate different algorithm runs. Given that p(c|ν) is initialized with
µ(c), the samples in iteration 0 visualize the target distribution.

penalties in combination with the discount factor to prevent this better behavior from being
reflected in the reward.

7.2.3 Ball-Catching Environment

Due to a sparse reward function and a broad target task distribution, this final environment
is drastically different from the previous ones. In this environment, the agent needs to con-
trol a Barrett WAM robot to catch a ball thrown towards it. The reward function is sparse,
only rewarding the robot when it catches the ball and penalizing excessive movements. In
the simulated environment, the ball is considered caught if it is in contact with the end
effector. The context c ∈ R3 parameterizes the distance to the robot from which the ball is
thrown as well as its target position in a plane that intersects the base of the robot. Figure
7 shows the robot as well as the target distribution over the ball positions in the aforemen-
tioned ‘catching’ plane. The context c is not visible to the policy, as it only changes the
initial state distribution p(s0) via the encoded target position and initial distance to the
robot. Given that the initial state is already observed by the policy, observing the context
is superfluous. To tackle this learning task with a curriculum, we initialize the policy of the
RL algorithms to hold the robot’s initial position. This creates a subspace in the context
space in which the policy already performs well, i.e. where the target position of the ball
coincides with the initial end effector position. This can be leveraged by CRL algorithms.
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PPO (P3D) SAC (P3D) PPO (P2D) SAC (P2D) TRPO (BC) PPO (BC)

ALP-GMM 2.43± 0.3 4.68± 0.8 5.23± 0.4 5.11± 0.7 39.8± 1.1 46.5± 0.7
GoalGAN 0.66± 0.1 2.14± 0.6 1.63± 0.5 1.34± 0.4 42.5± 1.6 42.6± 2.7
GoalGAN* - - - - 45.8± 1.0 45.9± 1.0
SPDL 8.45± 0.4 6.85± 0.8 8.94± 0.1 5.67± 0.8 47.0± 2.0 53.9± 0.4
SPDL* - - - - 43.3± 2.0 49.3± 1.4
Random 0.67± 0.1 2.70± 0.7 2.49± 0.3 4.99± 0.8 - -
Default 2.40± 0.0 2.47± 0.0 2.37± 0.0 2.40± 0.0 21.0± 0.3 22.1± 0.3
Default* - - - - 21.2± 0.3 23.0± 0.7

Table 1: Average final reward and standard error of different curricula and RL algorithms
in the two point-mass environments with three (P3D) and two (P2D) context
dimensions as well as the ball-catching environment (BC). The data is computed
from 20 algorithm runs. Significantly better results according to Welch’s t-test
with p < 1% are highlighted in bold. The asterisks mark runs of SPDL/GoalGAN
with an initialized context distribution and runs of default learning without policy
initialization.

Since SPDL and GoalGAN support to specify the initial context distribution, we investigate
whether this feature can be exploited by choosing the initial context distribution to encode
the aforementioned tasks in which the initial policy performs well. When directly learning
on the target context distribution without a curriculum, it is not clear whether the policy
initialization benefits learning. Hence, we evaluate the performance both with and without
a pre-trained policy when not using a curriculum.
Figure 9 and Table 1 show the performance of the investigated curriculum learning ap-
proaches. We see that sampling tasks directly from the target distribution does not allow
the agent to learn a meaningful policy, regardless of the initial one. Further, all curricula
enable learning in this environment and achieve a similar reward. The results also highlight
that initialization of the context distribution slightly improves performance for GoalGAN
while slightly reducing performance for SPDL. The context distributions p(c|ν) visualized
in Figure 9 indicate that SPDL shrinks the initially wide context distribution in early iter-
ations to recover the subspace of ball target positions, in which the initial policy performs
well. From there, the context distribution then gradually matches the target one. As in the
point-mass experiment, this progress takes place at a differing pace, as can be seen in the
visualizations of p(c|ν) in Figure 9 for iteration 200: Two of the three distributions fully
match the target distribution while the third only covers half of it.
The similar performance across curriculum learning methods is indeed interesting. Clearly,
the wide target context distribution µ(c) better matches the implicit assumptions made by
both ALP-GMM and GoalGAN that learning should aim to accomplish tasks in the whole
context space. However, both ALP-GMM and GoalGAN are built around the idea to sam-
ple tasks that promise a maximum amount of learning progress. This typically leads to a
sampling scheme that avoids re-sampling tasks that the agent can already solve. However,
SPDL achieves the same performance by simply growing the sampling distribution over
time, not at all avoiding to sample tasks that the agent has mastered long ago. Hence, a
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Figure 10: Final performance (blue) of SPDL on the point mass (3D) environment for
different values of Kα and ζ as well as the average number of iterations required
to reach a reward larger or equal to 5 on tasks sampled from µ(c) (orange). The
results are computed from 20 environment runs. The error bars indicate the
standard error. When varying ζ, Kα was fixed to a value of 20. When varying
Kα, ζ was fixed to a value of 1.6.

promising direction for further improving the performance of CRL methods is to combine
ideas of SPDL and methods such as ALP-GMM and GoalGAN.

8. Improved α-Schedule

The evaluation in the previous settings showed that choosing the trade-off parameter αk in
each iteration according to (13) was sufficient to improve the performance of the learner in
the investigated experiments. However, the introduced schedule requires an offset parameter
Kα as well as a penalty proportion ζ to be specified. Both these parameters need to be
chosen adequately. If Kα is chosen too small, the agent may not have enough time to find
a subspace of the context space containing tasks of adequate difficulty. If Kα is chosen
too large, the learner wastes iterations focusing on tasks of small difficulty, not making
progress towards the tasks likely under µ(c). The parameter ζ exhibits a similar trade-off
behavior. Too small values will lead to an unnecessarily slow progression towards µ(c) while
too large values lead to ignoring the competence of the learner on the tasks under p(c|ν),
resulting in a poor final agent behavior because of a too speedy progression towards µ(c).
This trade-off is visualized in Figure 10 for the point mass environment. Despite the clear
interpretation of the two parameters Kα and ζ, which allows for a fairly straightforward
tuning, we additionally explore another approach of choosing αk in this section. This
approach only requires to specify an expected level of performance VLB that the agent
should maintain under the chosen context distribution p(c|ν). Assuming the decoupled
optimization of the policy π and the context distribution p(c|ν) investigated in the last
section, this can be easily realized by rewriting (12) as

min
ν

DKL (p(c|ν) ‖ µ(c))

s.t. Ep(c|ν) [J(ω, c)] ≥ VLB
DKL

(
p(c|ν)

∥∥ p(c|ν ′)) ≤ ε. (20)
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The main modification is to avoid the explicit trade-off between expected agent performance
and KL divergence by minimizing the KL divergence w.r.t. µ(c) subject to a constraint on
the expected agent performance. Investigating the Lagrangian of (20)

L(ν, α, η) = DKL (p(c|ν) ‖ µ(c)) + α(VLB − Ep(c|ν) [J(ω, c)])

+ η(DKL

(
p(c|ν)

∥∥ p(c|ν ′))− ε), α, η ≥ 0

we see that the constraint reintroduces a scalar α that trades-off the expected agent perfor-
mance and KL divergence to µ(c). The value of this scalar is, however, now automatically
chosen to fulfill the imposed constraint on the expected agent performance. For an imple-
mentation of (20), we again replace J(ω, c) by an importance-sampled Monte Carlo estimate
as done in (19). At this point, we have replaced the parameter ζ with VLB. The benefit is
a more intuitive choice of this hyperparameter since it is directly related to the expected
performance, i.e. the quantity being optimized. Furthermore, we can easily remove the
need for the offset parameter Kα by setting αk=0 in (19) until we first reach VLB. Con-
sequently, this new schedule only requires one hyperparameter VLB to be specified. From
then on, we compute the new context distribution by optimizing (20). If during learning,
the performance of the agent falls below VLB again, we simply do not change the context
distribution until the performance exceeds VLB again. We now compare this new schedule
with the schedule for α that is based on Kα and ζ. The corresponding experiment data
is shown in Table 2. We can see that the final rewards achieved with the two heuristics

SPDL(Kα, ζ) SPDL(VLB)
Performance Iterations to Threshold Performance Iterations to Threshold

TRPO (P3D) 8.04± 0.25 198± 18 7.79± 0.28 220± 19
PPO (P3D) 8.45± 0.42 165± 14 8.66± 0.07 120± 10
SAC (P3D) 6.85± 0.77 94± 8 7.13± 0.71 67± 4
TRPO (P2D) 7.47± 0.33 201± 20 7.67± 0.2 198± 19
PPO (P2D) 8.94± 0.10 132± 5 9.01± 0.07 119± 3
SAC (P2D) 5.67± 0.77 134± 30 6.56± 0.82 59± 3
PPO (ANT) 1371± 23 131± 3 1305± 38 131± 2
TRPO (BC) 47.0± 2.0 379± 21 50.0± 1.5 320± 20
PPO (BC) 53.9± 0.4 285± 19 51.6± 1.7 234± 12
SAC (BC) 34.1± 2.3 205± 12 34.1± 1.3 139± 8
TRPO (BC*) 43.3± 2.0 354± 18 46.0± 1.5 285± 20
PPO (BC*) 49.3± 1.4 224± 7 51.8± 0.5 212± 17
SAC (BC*) 36.9± 1.0 235± 23 37.1± 1.2 173± 20

Table 2: Comparison between the two SPDL heuristics on the point-mass (P3D and P2D),
ant and ball-catching (BC) environments computed using 20 runs. The asterisks
mark runs of SPDL with an initialized context distribution. We compare both the
final average reward ± standard error (Performance) as well as the average number
of iterations required to reach 80% of the lower of the two rewards (Iterations to
Threshold). Statistically significant differences according to Welch’s t-test are
highlighted in bold for p<1% and brown for p<5%.
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are not significantly different according to Welch’s t-test. This indicates that the simpler
heuristic performs just as well in the investigated environments in terms of final reward.
However, the often significantly smaller average number of iterations required to reach a
certain average performance on µ(c) shows that the schedule based on VLB tends to lead
to a faster progression towards µ(c). In a sense, this is not surprising, given that the ex-
plicit minimization of the KL divergence w.r.t. µ(c) under a constraint on the expected
performance optimizes the trade-off between agent performance and KL divergence to µ(c)
in each iteration. With the schedule based on Kα and ζ, this trade-off was compressed into
the parameter ζ that stayed constant for all iterations. Furthermore, the lower bound VLB
on the achieved average reward under p(c|ν) exhibits certain similarities to the GoalGAN
algorithm in which the context distribution resulted from a constraint of encoding only
tasks of intermediate difficulty. In a sense, GoalGAN uses an upper and lower bound on
the task difficulty. However, it enforces this constraint per context while our formulation
enforces the lower bound in expectation.

9. An Inference Perspective on Self-Paced Reinforcement Learning

As noted in Section 5, the KL divergence regularization w.r.t. ν in (12) was done to
stabilize the overall learning procedure. In this final section, we show that the resulting
learning scheme can be connected to a modified version of the expectation-maximization
algorithm, a well-known majorize-minimize algorithm for inference problems. Before we
conclude this paper, we want to briefly point out this connection, especially highlighting
a connection between self-paced learning and the concept of tempering (Kirkpatrick et al.,
1983; Van Laarhoven and Aarts, 1987).

9.1 RL as Inference

To establish the aforementioned connection, we need to introduce a probabilistic interpre-
tation of the contextual RL problem as being an inference task (Dayan and Hinton, 1997;
Toussaint and Storkey, 2006; Levine, 2018). In this formulation, the goal is to maximize
the probability of an optimality event O ∈ {0, 1} that depends on the sum of rewards along
a trajectory of states and actions τ = {(st,at)|t = 0, 1, . . .}

p(O|τ , c) ∝ exp (r(τ , c)) = exp

( ∞∑
t=0

rc(st,at)

)
. (21)

Together with the probability for a trajectory τ given the policy parameters ω

p(τ |c,ω) = p0,c(s0)
∏
t≥0

p̄c(st+1|st,at)π(st|at, c,ω) (22)

we can marginalize over the trajectories τ generated by p(τ |c,ω), i.e. generated by the
agent. This results in a probabilistic equivalent of the expected performance J(ω, c) in
context c under policy parameters ω. This probabilistic equivalent is given by the marginal
likelihood of event O in an MDP M(c)

J(ω, c) = p(O|c,ω) =

∫
p(O|τ , c)p(τ |c,ω) dτ . (23)
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The transition probabilities p̄c in (22) are a modified version of the original transition
probabilities pc that introduce a “termination” probability in each step that can occur with
a probability of 1 − γ (see Levine, 2018). This introduces the concept of a discounting
factor γ into the probabilistic model. Introducing a context distribution p(c|ν) then yields
a probabilistic interpretation of the contextual RL objective

J(ω, p(c|ν)) = p(O|ω,ν) =

∫
p(O|τ , c)p(τ |c,ω)p(c|ν) dc dτ . (24)

When not making use of a curriculum, we would simply set p(c|ν) = µ(c). The above
model is called a latent variable model (LVM), as the trajectories τ , as well as the contexts
c are marginalized out to form the likelihood of the event O. These marginalizations make
the direct optimization w.r.t. ω and ν challenging. The so-called expectation-maximization
algorithm is commonly applied to split this complicated optimization into two simpler steps:
The E- and M-Step

E-Step : qk(τ , c) = arg min
q(τ ,c)

DKL

(
q(τ , c)

∥∥∥ p(τ , c|O,ωk,νk)) (25)

M-Step : ωk+1,νk+1 = arg max
ω,ν

Eqk(τ ,c) [log(p(O, τ , c|ω,ν))] . (26)

Iterating between these two steps is guaranteed to find a local optimum of the marginal
likelihood p(O|ω,ν).

9.2 Connection to Self-Paced Reinforcement Learning

At this point, two simple reformulations are required to establish the connection between
the KL-regularized objective (12) and the expectation-maximization algorithm on LVM
(24). First, we can reformulate the M-Step as an M-projection (i.e. a maximum-likelihood
fit of the parametric model q(τ , c|ω,ν) to qk(τ , c))

arg max
ω,ν

Eqk(τ ,c) [log(p(O, τ , c|ω,ν))] = arg min
ω,ν

DKL

(
qk(τ , c)

∥∥∥ q(τ , c|ω,ν)
)
.

Second, the E-Step can, for this particular model, be shown to be equivalent to a KL-
regularized RL objective

arg min
q(τ ,c)

DKL

(
q(τ , c)

∥∥∥ p(τ , c|O,ωk,νk))
= arg max

q(τ ,c)
Eq(τ ,c) [R (τ , c)]−DKL (q(τ , c) ‖ p(τ , c|ω,ν)) ,

in which we penalize a deviation of the policy and context distribution from the current
parametric distribution p(τ , c|ω,ν). Adding a term −αDKL (q(c) ‖ µ(c)) and optimizing
this modified E-Step only w.r.t. the context distribution q(c) while keeping q(τ |c) fixed at
p(τ |c,ωk), we obtain

arg max
q(c)

Eq(c)
[
Ep(τ |c,ωk) [R (τ , c)]

]
− αDKL (q(c) ‖ µ(c))−DKL

(
q(c)

∥∥∥ p(c|νk)) . (27)
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This result resembles (12), where however the optimization is carried out w.r.t. q(c) instead
of ν and the KL divergence w.r.t. p(c|νk) is treated as a penalty term instead of a constraint.
Not fitting the parameters νk+1 directly but in a separate (M-)step is also done by C-
REPS and our episodic RL implementation of SPL. Hence, in the light of these results, the
step-based implementation can be interpreted as skipping an explicit M-Step and directly
optimizing the E-Step w.r.t. to the parametric policy. Such a procedure can be found in
popular RL algorithms, as detailed by Abdolmaleki et al. (2018).

9.3 Self-Paced Learning as Tempering

The previously derived E-Step has a highly interesting connection to a concept in the
inference literature called tempering (Kirkpatrick et al., 1983; Van Laarhoven and Aarts,
1987). This connection is revealed by showing that the penalty term αDKL (q(c) ‖ µ(c)) in
the modified E-Step (27) results in an E-Step to a modified target distribution. That is

arg min
q(c)

DKL

(
q(c)

∥∥∥ p(c|O,ωk,νk))+ αDKL (q(c) ‖ µ(c))

= arg min
q(c)

DKL

(
q(c)

∥∥∥∥ 1

Z
p(c|O,ωk,νk) 1

1+αµ(c)
α

1+α

)
. (28)

The modified target distribution in (28) is performing an interpolation between µ(c) and
p(c|O,ωk,νk) based on the parameter α. Looking back at the sampling distribution induced
by the probabilistic SPL objective (9) for the regularizer fKL,i (see Equation 30 in the
appendix)

p(c|α,ω) ∝ ν∗KL,c(α,ω) = µ(c) exp (−J(ω, c))
1
α , (29)

we can see that, similarly to the modified E-Step, the distribution encoded by ν∗KL,c, i.e. the
optimizers of (9), interpolates between µ(c) and the distribution p(c|ω) ∝ exp (−J(ω, c)).
Both of these distributions would be referred to as tempered distributions in the inference
literature.
The concept of tempering has been explored in the inference literature as a tool to improve
inference methods when sampling from or finding modes of a distribution µ(c) with many
isolated modes of density (Kirkpatrick et al., 1983; Marinari and Parisi, 1992; Ueda and
Nakano, 1995). The main idea is to not directly apply inference methods to µ(c) but to
make use of a tempered distribution pα(c) which interpolates between µ(c) and a user-
chosen reference distribution ρ(c) from which samples can be easily drawn by the employed
inference method (e.g. a Gaussian distribution). Doing repeated inference for varying val-
ues of α allows to explore the isolated modes more efficiently and with that yielding more
accurate samples from µ(c). Intuitively, initially sampling from ρ(c), chosen to be free from
isolated modes, and gradually progressing towards µ(c) while using the previous inferences
as initializations avoids getting stuck in isolated modes of µ(c) that encode comparatively
low density. This technique makes the inference algorithm less dependent on a good initial-
ization.
We can easily identify both (28) and (29) to be particular tempered distributions pα(c).
There, however, seems to be a striking difference to the aforementioned tempering scheme:
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The target density µ(c) is typically trivial, not requiring any advanced inference machin-
ery. However, although µ(c) may be trivial from an inference perspective, the density
p(ω|O) ∝ p(ω)

∫
p(O|c,ω)µ(c) dc, i.e. the posterior over policy parameters, is highly chal-

lenging for contexts c distributed according to µ(c). This is because it may contain many,
highly isolated modes, many of which only encode suboptimal behavior. In these cases, tem-
pering helps to achieve better performance when employed in combination with RL. For low
values of α, it is easier to find high-density modes of pα(ω|O) ∝ p(ω)

∫
p(O|c,ω)pα(c)dc.

These modes can then be “tracked” by the RL algorithm while increasing the value of α.
The connection between SPL and the concept of tempering yields interesting insights into
the problem of choosing both a good schedule for α and also the general design of pα(c).
As introduced in Section 3.1, the particular choice of the self-paced regularizer f(α,ν), and
hence the regularizer Fα(l), is closely related to the particular form of pα(c). A ubiqui-
tous decision is the choice of the particular regularizer or tempered distribution for a given
problem. Gelman and Meng (1998) show that the particular choice of pα has a tremendous
effect on the error of Monte Carlo estimates of ratios between normalization constants. Fur-
thermore, they compute the optimal form of pα for a Gaussian special case that reduces the
variance of the Monte Carlo estimator. It may be possible to draw inspiration from their
techniques to design regularizers specialized for problems that fulfill particular properties.
For the application of SPL to RL, another important design decision is the schedule of α.
The value of α should be increased as fast as possible while ensuring the stability of the RL
agent. We proposed two schedules that accomplished this task sufficiently well. However,
there may be a tremendous margin for improvement. In the inference literature, people
readily investigated the problem of choosing α, as they face a similar trade-off problem
between required computation time of inference methods and the usefulness of their results
(Mandt et al., 2016; Graham and Storkey, 2017; Luo et al., 2018). Again, it may be possible
to draw inspiration from these works to design better schedules for α in RL problems.

10. Conclusion and Discussion

We have presented an interpretation of self-paced learning as inducing a sampling distri-
bution over tasks in a reinforcement learning setting when using the KL divergence w.r.t.
a target distribution µ(c) as a self-paced regularizer. This view renders the induced cur-
riculum as an approximate implementation of a regularized contextual RL objective that
samples training tasks based on their contribution to the overall gradient of the objective.
Furthermore, we identified our approximate implementations to be a modified version of the
expectation-maximization algorithm applied to the common latent variable model for RL.
These, in turn, revealed connections to the concept of tempering in the inference literature.
These observations motivate further theoretical investigations, such as identifying the par-
ticular regularized objective that is related to our approximate implementation (6). Fur-
thermore, we only explored the KL divergence as a self-paced regularizer. Although we
showed that the probabilistic interpretation of SPL does not hold for arbitrary regularizers,
it may be possible to derive the presented results for a wider class of regularizers, such as
f-divergences.
From an experimental point of view, we focused particularly on RL tasks with a continu-
ous context space in this work. In the future, we want to conduct experiments in discrete
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context spaces, where we do not need to restrict the distribution to some tractable analytic
form since we can exactly represent discrete probability distributions.
Our implementations of the SPL scheme for RL demonstrated remarkable performance
across RL algorithms and tasks. The presented algorithms are, however, by far no perfect
realizations of the theoretical concept. The proposed ways of choosing α in each iteration
are just ad-hoc choices. At this point, insights gained through the inference perspective
into our curriculum generation scheme presented in Section 9 may be particularly useful.
Furthermore, the use of Gaussian context distributions is a major limitation that restricts
the flexibility of the context distribution. Specifically in higher-dimensional context spaces,
such a restriction could lead to poor performance. Here, it may be possible to use advanced
inference methods (Liu et al., 2019; Wibisono, 2018) to sample from the distribution (28)
without approximations even in continuous spaces.
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Appendix A. Proof of Theorem 1

We begin by restating the theorem from the main text

Theorem 1 Alternatingly solving

min
ω,ν

Ep(c|ν) [l(xc, yc,ω)] + αDKL (p(c|ν) ‖ µ(c))

w.r.t. ω and ν is a majorize-minimize scheme applied to the regularized objective

min
ω

Eµ(c)
[
α

(
1− exp

(
− 1

α
l(xc, yc,ω)

))]
.

Proof To prove the theorem, we make use of the result established by Meng et al. (2017)
that optimizing the SPL objective alternatingly w.r.t. ν and ω

ν∗,ω∗ = arg min
ν,ω

r(ω) +
N∑
i=1

(νil(xi, yi,ω) + f(α, νi)) , α > 0. (1)

is a majorize-minimize scheme applied to the objective

min
ω
r(ω) +

N∑
i=1

Fα(l(xi, yi,ω)), Fα(l(xi, yi,ω)) =

∫ l(xi,yi,ω)

0
ν∗(α, ι) dι. (3)

Based on this result, the proof of Theorem 1 requires three steps: First, we need to show
that the function

fKL,i(α, ν) = αν (log(ν)− log(µ(c=i)))− αν, (10)
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is a valid self-paced regularizer for objective (1) and that the corresponding objective (3) has
the form of the second objective in Theorem 1. Second, we need to show the equivalence
between the SPL objective (1) and the probabilistic objective (9) for the regularizer fKL,i.
Finally, we need to show that objective (9) corresponds to the first objective in Theorem
1 when using fKL,i. We begin by restating the axioms of self-paced regularizers defined by
Jiang et al. (2015) to prove the first of the three points. Again making use of the notation
ν∗(α, l) = arg minν νl + f(α, ν), these axioms are

1. f(α, ν) is convex w.r.t. ν

2. ν∗(α, l) is monotonically decreasing w.r.t. l and it holds that liml→0 ν
∗(α, l) = 1 as

well as liml→∞ ν∗(α, l) = 0

3. ν∗(α, l) is monotonically decreasing w.r.t. α and it holds that limα→∞ ν∗(α, l) ≤ 1 as
well as limα→0 ν

∗(α, l) = 0.

It is important to note that, due to the term µ(c=i) in (10), there is now an individual
regularizer fKL,i for each sample. This formulation is in line with the theory established by
Meng et al. (2017) and simply corresponds to an individual regularizer Fα,i for each sample
in (3). Inspecting the second derivative of fKL,i w.r.t. ν, we see that fKL,i(α, ν) is convex
w.r.t. ν. Furthermore, the solution to the SPL objective (1)

ν∗KL,i(α, l) = µ(c=i) exp

(
− 1

α
l

)
(30)

fulfills above axioms except for liml→0 ν
∗
KL,i(α, l) = 1, since liml→0 ν

∗
KL,i(α, l) = µ(c=i).

However, we could simply remove the log-likelihood term log(µ(c=i)) from fKL,i(α, νi) and
pre-weight each sample with µ(c=i), which would yield exactly the same curriculum while
fulfilling all axioms. We stick to the introduced form, as it eases the connection of fKL,i

to the KL divergence between p(c|ν) and µ(c). Given that we have ensured that fKL,i is
a valid self-paced regularizer, we know that optimizing the SPL objective (1) under fKL,i

corresponds to employing the non-convex regularizer

FKL,α,i(l(xi, yi,ω)) =

∫ l(xi,yi,ω)

0
ν∗KL,i(α, ι) dι = µ(c=i)α

(
1− exp

(
−1

a
l(xi, yi,ω)

))
.

(31)

Put differently, optimizing the SPL objective (1) with r(ω) = 0 under fKL,i corresponds to
optimizing

min
ω

N∑
i=1

FKL,α,i(l(xi, yi,ω)) = min
ω

Eµ(c)
[
α

(
1− exp

(
−1

a
l(xc, yc,ω)

))]
,

as stated in Theorem 1. As a next step, we notice that entries in the optimal ν for a given
ω and α in the probabilistic SPL objective (9) are proportional to ν∗KL,i(α, l) in (30), where
the factor of proportionality Z simply rescales the variables ν∗KL,i so that they fulfill the
normalization constraint of objective (9). Since

Ep(c|ν) [f(xc, yc,ω)] =
N∑
i=1

νif(xi, yi,ω)
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by definition of p(c|ν) introduced in Section 4, we see that consequently the only difference
between (1) and (9) for this particular regularizer is a different weighting of the regulariza-
tion term r(ω) throughout the iterations of SPL. More precisely, r(ω) is weighted by the
aforementioned factor of proportionality Z. Since r(ω) = 0 in Theorem 1, SPL (1) and
the probabilistic interpretation introduced in this paper (9) are exactly equivalent, since a
constant scaling does not change the location of the optima w.r.t ω in both (1) and (9).
Consequently, we are left with proving that the PSPL objective (9) under fKL,i and r(ω) = 0

is equal to the first objective in Theorem 1. This reduces to proving that
∑N

i=1 fKL,i(α, νi)
is equal to the KL divergence between p(c|ν) and µ(c). Remembering p(c=i|ν) = νi, it
follows that

N∑
i=1

fKL,i(α, νi) = α

N∑
i=1

p(c=i|ν) (log(p(c=i|ν))− log(µ(c=i)))− α
N∑
i=1

p(c=i|ν)

= αDKL (p(c=i|ν) ‖ µ(c=i))− α.

The removal of the sum in the second term is possible because
∑N

i=1 p(c=i|ν) = 1 per
definition of a probability distribution. Since the constant value α does not change the
optimization w.r.t. ν, this proves the desired equivalence and with that Theorem 1.

Appendix B. Self-Paced Episodic Reinforcement Learning Derivations

This appendix serves to highlight some important details regarding the derivation of the
weights (16) and (17) as well as the dual objective (18). The most notable detail is the
introduction of an additional distribution q(c) that takes the role of the marginal

∫
q(θ, c) dθ

as well as the regularization of this additional distribution via a KL divergence constraint
w.r.t. to the previous marginal p(c) =

∫
p(θ, c) dθ. This yields the following objective

max
q(θ,c),q(c)

Eq(θ,c) [r (θ, c)]− αDKL (q(c) ‖ µ(c))

s.t. DKL (q(θ, c) ‖ p(θ, c)) ≤ ε
∫
q(θ, c) dc dθ = 1

DKL (q(c) ‖ p(c)) ≤ ε
∫
q(c) dc = 1∫

q(θ, c) dθ = q(c) ∀c ∈ C.

However, these changes are purely of technical nature as they allow to derive numerically
stable weights and duals. It is straightforward to verify that DKL (q(θ, c) ‖ p(θ, c))≤ε
implies DKL (q(c) ‖ p(c))≤ε. Hence, the constraint

∫
q(θ, c) dθ = q(c) guarantees that a

solution q(θ, c) to above optimization problem is also a solution to (15). The dual as well
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as the weighted updates now follow from the Lagrangian

L(q, V, ηq, ηq̃, λq, λq̃) = Eq(θ,c) [r (θ, c)]− αDKL (q(c) ‖ µ(c))

+ ηq (ε−DKL (q(θ, c) ‖ p(θ, c))) + λq

(
1−

∫
q(θ, c) dc dθ

)
+ ηq̃ (ε−DKL (q(c) ‖ p(c))) + λq̃

(
1−

∫
q(c) dc

)
+

∫
V (c)

(∫
q(θ, c) dθ − q(c)

)
dc. (32)

Note that we slightly abuse notation and overload the argument q in the definition of the
Lagrangian. The update equations (16) and (17) follow from the two conditions ∂L

∂q(θ,c) = 0

and ∂L
∂q(c)L = 0. Inserting (16) and (17) into equation (32) then allows to derive the dual

(18). We refer to Van Hoof et al. (2017) for detailed descriptions on the derivations in the
non-contextual setting, which however generalize to the one investigated here.

Appendix C. Regularized Policy Updates

In order to enforce a gradual change in policy and context distribution not only during
the computation of the weights via equations (16) and (17) but also during the actual
inference of the new policy and context distribution, the default weighted linear regression
and weighted maximum likelihood objectives need to be regularized. Given a data set of N
weighted samples

D =
{

(wx
i , w

y
i ,xi,yi)|i = 1, . . . , N

}
,

with xi ∈ Rdx ,yi ∈ Rdy , the task of fitting a joint-distribution

q(x,y) = qy(y|x)qx(x) = N (y|Aφ(x),Σy)N (x|µx,Σx)

to D while limiting the change with regards to a reference distribution

p(x,y) = py(y|x)px(x) = N (y|Ãφ(x), Σ̃y)N (x|µ̃x, Σ̃x),

with feature function φ : Rdx 7→ Ro, can be expressed as a constrained optimization problem

max
A,Σy,µx,Σx

N∑
i=1

(wx
i log(qx(xi)) + wy

i log(qy(yi|xi)))

s.t. DKL (p ‖ q) ≈ 1

N

N∑
i=1

DKL (py(·|xi) ‖ qy(·|xi)) +DKL (px ‖ qx) ≤ ε.

Note that we employ the reverse KL divergence in the constraint as this is the only form
that allows for a closed form solution w.r.t. the parameters of the Gaussian distribution.
Due to the unimodal nature of Gaussian distributions as well as the typically small value of ε
this is a reasonable approximation. Since the distributions px, py, qx and qy are Gaussians,
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the KL divergences can be expressed analytically. Setting the derivative of the Lagrangian
with respect to the optimization variables to zero yields to following expressions of the
optimization variables in terms of the multiplier η and the samples from D

A =

[
N∑
i=1

(
wiyi +

η

N
Ãφ(xi)

)
φ(xi)

T

][
N∑
i=1

(
wi +

η

N

)
φ(xi)φ(xi)

T

]−1
,

Σy =

∑N
i=1wi∆yi∆yTi + ηΣ̃y + η

N∆A
∑N

i=1 φ(xi)φ(xi)
T∆AT∑N

i=1wi + η
,

µx =

∑N
i=1wixi + ηµ̃x∑N

i=1wi + η
,

Σx =

∑N
i=1wi(xi − µx)(xi − µx)T + η

(
Σ̃x + (µx − µ̃x)(µx − µ̃x)T

)
∑N

i=1wi + η
,

with ∆yi = yi−Aφ(xi) and ∆A = A−Ã. Above equations yield a simple way of enforcing
the KL bound on the joint distribution: Since η is zero if the constraint on the allowed KL
divergence is not active, A, Σy, µx and Σx can be first computed with η = 0 and only if
the allowed KL divergence is exceeded, η needs to be found by searching the root of

f(η) = ε− 1

N

N∑
i=1

DKL (py(·|xi) ‖ qy(·|xi)) +DKL (px ‖ qx) ,

where qy and qx are expressed as given by above formulas and hence implicitly depend on
η. As this is a one-dimensional root finding problem, simple algorithms can be used for this
task.

Appendix D. Experimental Details

This section is composed of further details on the experiments in sections 6 and 7, which
were left out in the main paper to improve readability. The details are split between the
episodic- and step-based scenarios as well as the individual experiments conducted in them.
To conduct the experiments, we use the implementation of ALP-GMM, GoalGAN and
SAGG-RIAC provided in the repositories accompanying the papers from Florensa et al.
(2018) and Portelas et al. (2019) as well as the CMA-ES implementation from Hansen et al.
(2019). The employed hyperparameters are discussed in the corresponding sections.
Conducting the experiments with SPRL and SPDL, we found that restricting the standard
deviation of the context distribution p(c|ν) to stay above a certain lower bound σLB helps to
stabilize learning when generating curricula for narrow target distributions. This is because
the Gaussian distributions have a tendency to quickly reduce the variance of the sampling
distribution in this case. In combination with the KL divergence constraint on subsequent
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context distributions, this slows down progression towards the target distribution. Although
we could enforce aforementioned lower bound via constraints on the distribution p(c|ν), we
simply clip the standard deviation until the KL divergence w.r.t. the target distribution µ(c)
falls below a certain threshold DKLLB

. This threshold was chosen such that the distribution
with the clipped standard deviation roughly “contains” the mean of target distribution
within its standard deviation interval. The specific values of DKLLB

and σLB are listed for
the individual experiments.

D.1 Episodic Setting

For the visualization of the success rate as well as the computation of the success indicator
for the GoalGAN algorithm, the following definition is used: An experiment is considered
successful, if the distance between final- and desired state (sf and sg) is less than a given
threshold τ

Success (θ, c) =

{
1, if ‖sf (θ)− sg (c)‖2 < τ,

0, else.

For the Gate and reacher environment, the threshold is fixed to 0.05, while for the ball-in-
a-cup environment, the threshold depends on the scale of the cup and the goal is set to be
the center of the bottom plate of the cup.
The policies are chosen to be conditional Gaussian distributions N (θ|Aφ(c),Σθ), where
φ(c) is a feature function. SPRL and C-REPS both use linear policy features in all envi-
ronments.
In the reacher and the ball-in-a-cup environment, the parameters θ encode a feed-forward
policy by weighting several Gaussian basis functions over time

ui (θ) = θTψ (ti) , ψj (ti) =
bj (ti)∑L
l=1 bl (ti)

, bj (ti) = exp

(
(ti − cj)2

2L

)
,

where the centers cj and length L of the basis functions are chosen individually for the ex-
periments. With that, the policy represents a Probabilistic Movement Primitive (Paraschos
et al., 2013), whose mean and covariance matrix are progressively shaped by the learning
algorithm to encode movements with high reward.

ε nsamples Buffer Size ζ Kα σLB DKLLB

Gate “Global” 0.25 100 10 0.002 140 - -
Gate “Precision” 0.4 100 10 0.02 140 - -
Reacher 0.5 50 10 0.15 90 [0.005 0.005] 20
Ball-in-a-cup 0.35 16 5 3.0 15 0.1 200

Table 3: Important parameters of SPRL and C-REPS in the conducted experiments. The
meaning of the symbols correspond to those presented in the algorithm from the
main text and introduced in this appendix.
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δNOISE nROLLOUTGG
nGOALS nHIST

Gate “Global” 0.05 5 100 500
Gate “Precision” 0.05 5 100 200
Reacher 0.1 5 80 300
Ball-in-a-cup 0.05 3 50 120

Table 4: Important parameters of GoalGAN and SAGG-RIAC in the conducted experi-
ments. The meaning of the symbols correspond to those introduced in this ap-
pendix.

In order to increase the robustness of SPRL and C-REPS while reducing the sample com-
plexity, an experience buffer storing samples of recent iterations is used. The size of this
buffer dictates the number of past iterations, whose samples are kept. Hence, in every
iteration, C-REPS and SPRL work with NSAMPLES ×BUFFER SIZE samples, from which
only NSAMPLES are generated by the policy of the current iteration.
As the employed CMA-ES implementation only allows to specify one initial variance for all
dimensions of the search distribution, this variance is set to the maximum of the variances
contained in the initial covariance matrices used by SPRL and C-REPS.
For the GoalGAN algorithm, the percentage of samples that are drawn from the buffer
containing already solved tasks is fixed to 20%. The noise added to the samples of the
GAN δNOISE and the number of iterations that pass between the training of the GAN
nROLLOUTGG

are chosen individually for the experiments.
The SAGG-RIAC algorithm requires, besides the probabilities for the sampling modes which
are kept as in the original paper, two hyperparameters to be chosen: The maximum number
of samples to keep in each region nGOALS as well as the maximum number of recent samples
for the competence computation nHIST.
Tables 3 and 4 show the aforementioned hyperparameters of C-REPS, SPRL, GoalGAN
and SAGG-RIAC for the different environments.

D.1.1 Point-Mass Experiment

The linear system that describes the behavior of the point-mass is given by[
ẋ
ẏ

]
=

[
5
−1

]
+ u+ δ, δ ∼ N

(
0, 2.5× 10−3I

)
.

The point-mass is controlled by two linear controllers

Ci (x, y) = Ki

[
xi − x
yi − y

]
+ ki, i ∈ [1, 2] , Ki ∈ R2×2, ki ∈ R2, xi, yi ∈ R,

where x is the x-position of the point-mass and y its position on the y-axis. The episode
reward exponentially decays with the final distance to the goal. In initial iterations of the
algorithm, the sampled controller parameters sometimes make the control law unstable,
leading to very large penalties due to large actions and hence to numerical instabilities in
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Figure 11: The columns show visualizations of the point-mass trajectories (upper plots)
as well as the obtained rewards (lower plots) in the point-mass task, when the
desired position of the first controller is varied while all other parameters are
kept fixed such that a stable control law is obtained. In every column, the gate
is positioned at x = 4.0 while the size of it varies from 20 (left), over 3 (middle)
to 0.1 (right).

SPRL and C-REPS because of very large negative rewards. Because of this, the reward is
clipped to always be above 0.
Table 3 shows that a large number of samples per iteration for both the “global” and
“precision” setting are used. This is purposefully done to keep the influence of the sample
size on the algorithm performance as low as possible, as both of these settings serve as a
first conceptual benchmark of our algorithm.
Figure 11 helps in understanding, why SPRL drastically improves upon C-REPS especially
in the “precision” setting, even with this large amount of samples. For narrow gates, the
reward function has a local maximum which tends to attract both C-REPS and CMA-ES,
as the chance of sampling a reward close to the true maximum is very unlikely. By first
training on contexts in which the global maximum is more likely to be observed and only
gradually moving towards the desired contexts, SPRL avoids this sub-optimal solution.

D.1.2 Reacher Experiment

In the reacher experiment, the ProMP encoded by the policy π has 20 basis functions of
width L = 0.03. The centers are evenly spread in the interval [−0.2, 1.2] and the time
interval of the movement is normalized to lie in the interval [0, 1] when computing the
activations of the basis functions. Since the robot can only move within the xy-plane,
θ is a 40-dimensional vector. As in the previous experiment, the episode reward decays
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exponentially with the final distance to the goal. As we can see in Table 3, the number
of samples in each iteration was decreased to 50, which in combination with the increased
dimensionality of θ makes the task more challenging.
As in the step-based setting, the PPO results are obtained using the version from the Stable
Baselines library (Hill et al., 2018). A step-based version of the reacher experiment is used,
in which the reward function is given by

r(s,a) = exp

(
−2.5

√
(x− xg)2 + (y − yg)2

)
,

where s = (x ẋ y ẏ) is the position and velocity of the end-effector, a = (ax ay) the desired
displacement of the end-effector (just as in the regular reacher task from the OpenAI Gym
simulation environment) and xg and yg is the x− and y− position of the goal. When an
obstacle is touched, the agent is reset to the initial position. This setup led to the best
performance of PPO, while resembling the structure of the episodic learning task used by
the other algorithms (a version in which the episode ends as soon as an obstacle is touched
led to a lower performance of PPO).
To ensure that the poor performance of PPO is not caused by an inadequate choice of
hyperparameters, PPO was run on an easy version of the task in which the two obstacle
sizes were set to 0.01, where it encountered no problems in solving the task.
Every iteration of PPO uses 3600 environment steps, which corresponds to 24 trajectory
executions in the episodic setting. PPO uses an entropy coefficient of 10−3, γ = 0.999 and
λ = 1. The neural network that learns the value function as well as the policy has two dense
hidden layers with 164 neurons and tanh activation functions. The number of minibatches
is set to 5 while the number of optimization epochs is set to 15. The standard deviation
in each action dimension is initialized to 1, giving the algorithm enough initial variance, as
the actions are clipped to the interval [−1, 1] before being applied to the robot.

D.1.3 Ball-in-a-Cup Experiment

For the ball-in-a-cup environment, the 9 basis functions of the ProMP are spread over the
interval [−0.01, 1.01] and have width L = 0.0035. Again, the time interval of the movement
is normalized to lie in the interval [0, 1] when computing the basis function activations. The
ProMP encodes the offset of the desired position from the initial position. By setting the
first and last two basis functions to 0 in each of the three dimensions, the movement always
starts in the initial position and returns to it after the movement execution. All in all, θ is
a 15-dimensional vector. The reward function is defined as

r(θ, c) =

{
1− 0.07θTθ , if successful

0 , else
.

This encodes a preference over movements that deviate as little as possible from the initial
position while still solving the task.
Looking back at Table 3, the value of ζ stands out, as it is significantly higher than in the
other experiments. We suppose that such a large value of ζ is needed because of the shape
of the reward function, which creates a large drop in reward if the policy is sub-optimal.
Because of this, the incentive required to encourage the algorithm to shift probability mass
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Kα ζ Koffset VLB nstep σLB DKLLB

Point-Mass (TRPO) 20 1.6 5 3.5 2048 [0.2 0.1875 0.1] 8000
Point-Mass (PPO) 10 1.6 5 3.5 2048 [0.2 0.1875 0.1] 8000
Point-Mass (SAC) 25 1.1 5 3.5 2048 [0.2 0.1875 0.1] 8000
Ant (PPO) 15 1.6 10 600 81920 [1 0.5] 11000
Ball-Catching (TRPO) 70 0.4 5 42.5 5000 - -
Ball-Catching* (TRPO) 0 0.425 5 42.5 5000 - -
Ball-Catching (PPO) 50 0.45 5 42.5 5000 - -
Ball-Catching* (PPO) 0 0.45 5 42.5 5000 - -
Ball-Catching (SAC) 60 0.6 5 25 5000 - -
Ball-Catching* (SAC) 0 0.6 5 25 5000 - -

Table 5: Hyperparameters for the SPDL algorithm per environment and RL algorithm.
The asterisks in the table mark the ball-catching experiments with an initialized
context distribution.

towards contexts in which the current policy is sub-optimal needs to be significantly higher
than in the other experiments.
After learning the movements in simulation, the successful runs were executed on the real
robot. Due to simulation bias, just replaying the trajectories did not work satisfyingly. At
this stage, we could have increased the variance of the movement primitive and re-trained
on the real robot. As sim-to-real transfer is, however, not the focus of this paper, we decided
to manually adjust the execution speed of the movement primitive by a few percent, which
yielded the desired result.

D.2 Step-Based Setting

The parameters of SPDL for different environments and RL algorithms are shown in Table
5. Opposed to the sketched algorithm in the main paper, we specify the number of steps
nSTEP in the environment between context distribution updates instead of the number of
trajectory rollouts. The additional parameter KOFFSET describes the number of RL algo-
rithm iterations that take place before SPDL is allowed the change the context distribution.
We used this in order to improve the estimate regarding task difficulty, as for completely
random policies, task difficulty is not as apparent as for slightly more structured ones. This
procedure corresponds to providing parameters of a minimally pre-trained policy as ω0 in
the algorithm sketched in the main paper. We selected the best ζ for every RL algorithm by
a simple grid-search in an interval around a reasonably working parameter that was found
by simple trial and error. For the point-mass environment, we only tuned the hyperparam-
eters for SPDL in the experiment with a three-dimensional context space and reused them
for the two-dimensional context space.
Since the step-based algorithm makes use of the value function estimated by the individual
RL algorithms, particular regularizations of RL algorithms can affect the curriculum. SAC,
for example, estimates a “biased” value function due to the employed entropy regularization.
This bias caused problems for our algorithm when working with the α-heuristic based on
VLB. Because of this, we simply replace the value estimates for the contexts by their sample
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return when working with SAC and VLB. This is an easy way to obtain an unbiased, yet
noisier estimate of the value of a context. Furthermore, the general advantage estimation
(GAE) employed by TRPO and PPO can introduce bias in the value function estimates as
well. For the ant environment, we realized that this bias is particularly large due to the
long time horizons. Consequently, we again made use of the sample returns to estimate the
value functions for the sampled contexts. In all other cases and environments, we used the
value functions estimated by the RL algorithms.
For ALP-GMM we tuned the percentage of random samples drawn from the context space
pRAND, the number of policy rollouts between the update of the context distribution
nROLLOUT as well as the maximum buffer size of past trajectories to keep sBUFFER. For
each environment and algorithm, we did a grid-search over

(pRAND, nROLLOUT, sBUFFER) ∈ {0.1, 0.2, 0.3} × {25, 50, 100, 200} × {500, 1000, 2000}.

For GoalGAN we tuned the amount of random noise that is added on top of each sam-
ple δNOISE, the number of policy rollouts between the update of the context distribution
nROLLOUT as well as the percentage of samples drawn from the success buffer pSUCCESS.
For each environment and algorithm, we did a grid-search over

(δNOISE, nROLLOUT, pSUCCESS) ∈ {0.025, 0.05, 0.1} × {25, 50, 100, 200} × {0.1, 0.2, 0.3}.

The results of the hyperparameter optimization for GoalGAN and ALP-GMM are shown
in Table 6.
Since for all environments, both initial- and target distribution are Gaussians with indepen-
dent noise in each dimension, we specify them in Table 7 by providing their mean µ and
the vector of standard deviations for each dimension δ. When sampling from a Gaussian,
the resulting context is clipped to stay in the defined context space.
The experiments were conducted on a computer with an AMD Ryzen 9 3900X 12-Core
Processor, an Nvidia RTX 2080 graphics card and 64GB of RAM.

D.2.1 Point-Mass Environment

The state of this environment is comprised of the position and velocity of the point-mass
s = [x ẋ y ẏ]. The actions correspond to the force applied in x- and y-dimension a = [Fx Fy].
The context encodes position and width of the gate as well as the dynamic friction coefficient
of the ground on which the point-mass slides c = [pg wg µk] ∈ [−4, 4]× [0.5, 8]× [0, 4] ⊂ R3.
The dynamics of the system are defined by

ẋ
ẍ
ẏ
ÿ

 =


0 1 0 0
0 −µk 0 0
0 0 0 1
0 0 0 −µk

 s+


0 0
1 0
0 0
0 1

a.
The x- and y- position of the point-mass is enforced to stay within the space [−4, 4]×[−4, 4].
The gate is located at position [pg 0]. If the agent crosses the line y = 0, we check whether
its x-position is within the interval [pg − 0.5wg, pg + 0.5wg]. If this is not the case, we stop
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pRAND nROLLOUTAG
sBUFFER δNOISE nROLLOUTGG

pSUCCESS

Point-Mass 3D (TRPO) 0.1 100 1000 0.05 200 0.2
Point-Mass 3D (PPO) 0.1 100 500 0.025 200 0.1
Point-Mass 3D (SAC) 0.1 200 1000 0.1 100 0.1
Point-Mass 2D (TRPO) 0.3 100 500 0.1 200 0.2
Point-Mass 2D (PPO) 0.2 100 500 0.1 200 0.3
Point-Mass 2D (SAC) 0.2 200 1000 0.025 50 0.2
Ant (PPO) 0.1 50 500 0.05 125 0.2
Ball-Catching (TRPO) 0.2 200 2000 0.1 200 0.3
Ball-Catching (PPO) 0.3 200 2000 0.1 200 0.3
Ball-Catching (SAC) 0.3 200 1000 0.1 200 0.3

Table 6: Hyperparameters for the ALP-GMM and GoalGAN algorithm per environment
and RL algorithm. The abbreviation AG is used for ALP-GMM, while GG stands
for GoalGAN.

µinit δinit µtarget δtarget

Point-Mass [0 4.25 2] [2 1.875 1] [2.5 0.5 0] [0.004 0.00375 0.002]
Ant [0 8] [3.2 1.6] [−8 3] [0.01 0.005]
Ball-Catching [0.68 0.9 0.85] [0.03 0.03 0.3] [1.06 0.85 2.375] [0.8 0.38 1]

Table 7: Mean and standard deviation of target and initial distributions per environment.

the episode as the agent has crashed into the wall. Each episode is terminated after a
maximum of 100 steps. The reward function is given by

r(s,a) = exp (−0.6‖o− [x y]‖2) ,

where o = [0 −3], ‖·‖2 is the L2-Norm. The agent is always initialized at state s0 = [0 0 3 0].
For all RL algorithms, we use a discount factor of γ = 0.95 and represent policy and value
function by networks using two hidden layers with 64 neurons and tanh activations. For
TRPO and PPO, we take 2048 steps in the environment between policy updates.
For TRPO we set the GAE parameter λ = 0.99, leaving all other parameters to their
implementation defaults.
For PPO we use GAE parameter λ = 0.99, an entropy coefficient of 0 and disable the
clipping of the value function objective. The number of optimization epochs is set to 8 and
we use 32 mini-batches. All other parameters are left to their implementation defaults.
For SAC, we use an experience-buffer of 10000 samples, starting learning after 500 steps.
We use the soft Q-Updates and update the policy every 5 environment steps. All other
parameters were left at their implementation defaults.
For SPRL, we use Kα = 40, KOFFSET = 0, ζ = 2.0 for the 3D- and ζ = 1.5 and 2D case.
We use the same values for σLB and DKLLB

as for SPDL (Table 5). Between updates of
the episodic policy, we do 25 policy rollouts and keep a buffer containing rollouts from the
past 10 iterations, resulting in 250 samples for policy- and context distribution update.
The linear policy over network weights is initialized to a zero-mean Gaussian with unit
variance. We use polynomial features up to degree two to approximate the value function.
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(a) Default (b) Random (c) ALP-GMM (d) GoalGAN (e) SPDL

(f) Default (g) Random (h) ALP-GMM (i) GoalGAN (j) SPDL

(k) Default (l) Random (m) ALP-GMM (n) GoalGAN (o) SPDL

Figure 12: Visualizations of policy rollouts in the point-mass environment (three context
dimensions) with policies learned using different curricula and RL algorithms.
Each rollout was generated using a policy learned with a different seed. The first
row shows results for TRPO, the second for PPO and the third shows results
for SAC.

For the allowed KL divergence, we observed best results when using ε = 0.5 for the weight
computation of the samples, but using a lower value of ε = 0.2 when fitting the parametric
policy to these samples. We suppose that the higher value of ε during weight computation
counteracts the effect of the buffer containing policy samples from earlier iterations.
Looking at Figure 12, we can see that depending on the learning algorithm, ALP-GMM,
GoalGAN and a random curriculum allowed to learn policies that sometimes are able to
pass the gate. However, in other cases, the policies crashed the point-mass into the wall.
Opposed to this, directly training on the target task led to policies that learned to steer
the point-mass very close to the wall without crashing (which is unfortunately hard to see
in the plot). Reinvestigating the above reward function, this explains the lower reward of
GoalGAN compared to directly learning on the target task, as a crash prevents the agent
from accumulating positive rewards over time. SPDL learned more reliable and directed
policies across all learning algorithms.
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D.2.2 Ant Environment

As mentioned in the main paper, we simulate the ant using the Isaac Gym simulator (Nvidia,
2019). This allows to speed up training time by parallelizing the simulation of policy rollouts
on the graphics card. Since the Stable-Baselines implementation of TRPO and SAC do not
support the use of vectorized environments, it is hard to combine Isaac Gym with these
algorithms. Because of this reason, we decided not to run experiments with TRPO and
SAC in the ant environment.
The state s ∈ R29 is defined to be the 3D-position of the ant’s body, its angular and linear
velocity as well as positions and velocities of the 8 joints of the ant. An action a ∈ R8 is
defined by the 8 torques that are applied to the ant’s joints.
The context c = [pg wg] ∈ [−10, 10] × [3, 13] ⊂ R2 defines, just as in the point-mass
environment, the position and width of the gate that the ant needs to pass.
The reward function of the environment is computed based on the x-position of the ant’s
center of mass cx in the following way

r(s,a) = 1 + 5 exp
(
−0.5 min(0, cx − 4.5)2

)
− 0.3‖a‖22.

The constant 1 term was taken from the OpenAI Gym implementation to encourage the
survival of the ant (Brockman et al., 2016). Compared to the OpenAI Gym environment,
we set the armature value of the joints from 1 to 0 and also decrease the maximum torque
from 150Nm to 20Nm, since the values from OpenAI Gym resulted in unrealistic movement
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Figure 13: Visualizations of the x-position during policy rollouts in the ant environment
with policies learned using different curricula. The blue lines correspond to
200 individual trajectories and the thick black line shows the median over these
individual trajectories. The trajectories were generated from 20 algorithms runs,
were each final policy was used to generate 10 trajectories.
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behavior in combination with Isaac Gym. Nonetheless, these changes did not result in a
qualitative change in the algorithm performances.
With the wall being located at position x=3, the agent needs to pass it in order to obtain
the full environment reward by ensuring that cx >= 4.5.
The policy and value function are represented by neural networks with two hidden layers
of 64 neurons each and tanh activation functions. We use a discount factor γ = 0.995 for
all algorithms, which can be explained due to the long time horizons of 750 steps. We take
81920 steps in the environment between a policy update. This was significantly sped-up by
the use of the Isaac Gym simulator, which allowed to simulate 40 environments in parallel
on a single GPU.
For PPO, we use an entropy coefficient of 0 and disable the clipping of the value function
objective. All other parameters are left to their implementation defaults. We disable the
entropy coefficient as we observed that for the ant environment, PPO still tends to keep
around 10− 15% of its initial additive noise even during late iterations.
Investigating Figure 13, we see that both SPDL and GoalGAN learn policies that allow to
pass the gate. However, the policies learned with SPDL seem to be more reliable compared
to the ones learned with GoalGAN. As mentioned in the main paper, ALP-GMM and a
random curriculum also learn policies that navigate the ant towards the goal in order to pass
it. However, the behavior is less directed and less reliable. Interestingly, directly learning on
the target task results in a policy that tends to not move in order to avoid action penalties.
Looking at the main paper, we see that this results in a similar reward compared to the
inefficient policies learned with ALP-GMM and a random curriculum.

D.2.3 Ball-Catching Environment

In the final environment, the robot is controlled in joint space via the desired position for 5
of the 7 joints. We only control a subspace of all available joints, since it is not necessary for
the robot to leave the ”catching” plane (defined by x = 0) that is intersected by each ball.
The actions a ∈ R5 are defined as the displacement of the current desired joint position.
The state s ∈ R21 consists of the positions and velocities of the controlled joints, their
current desired positions, the current three-dimensional ball position and its linear velocity.

As previously mentioned, the reward function is sparse,

r(s,a) = 0.275− 0.005‖a‖22 +

{
50 + 25(ns · vb)5, if ball catched

0, else
,

only giving a meaningful reward when catching the ball and otherwise just a slight penalty
on the actions to avoid unnecessary movements. In the above definition, ns is a normal
vector of the end effector surface and vb is the linear velocity of the ball. This additional
term is used to encourage the robot to align its end effector with the curve of the ball. If
the end effector is e.g. a net (as assumed for our experiment), the normal is chosen such
that aligning it with the ball maximizes the opening through which the ball can enter the
net.
The context c = [φ, r, dx] ∈ [0.125π, 0.5π]× [0.6, 1.1]× [0.75, 4] ⊂ R3 controls the target ball
position in the catching plane, i.e.

pdes = [0 −r cos(φ) 0.75 + r sin(φ)].
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Figure 14: Mean catching rate of the final policies learned with different curricula and RL
algorithms on the ball catching environment. The mean is computed from 20
algorithm runs with different seeds. For each run, the success rate is computed
from 200 ball-throws. The bars visualize the estimated standard error.

Furthermore, the context determines the distance in x-dimension from which the ball is
thrown

pinit = [dx dy dz],

where dy ∼ U(−0.75,−0.65) and dz ∼ U(0.8, 1.8) and U represents the uniform distribution.
The initial velocity is then computed using simple projectile motion formulas by requiring
the ball to reach pdes at time t = 0.5+0.05dx. As we can see, the context implicitly controls
the initial state of the environment.
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The policy and value function networks for the RL algorithms have three hidden layers with
64 neurons each and tanh activation functions. We use a discount factor of γ = 0.995. The
policy updates in TRPO and PPO are done after 5000 environment steps.
For SAC, a replay buffer size of 100, 000 is used. Due to the sparsity of the reward, we
increase the batch size to 512. Learning with SAC starts after 1000 environment steps. All
other parameters are left to their implementation defaults.
For TRPO we set the GAE parameter λ = 0.95, leaving all other parameters to their im-
plementation defaults.
For PPO we use a GAE parameter λ = 0.95, 10 optimization epochs, 25 mini-batches per
epoch, an entropy coefficient of 0 and disable the clipping of the value function objective.
The remaining parameters are left to their implementation defaults.
Figure 14 visualizes the catching success rates of the learned policies. As can be seen, the
performance of the policies learned with the different RL algorithms achieve comparable
catching performance. Interestingly, SAC performs comparable in terms of catching perfor-
mance, although the average reward of the final policies learned with SAC is lower. This
is to be credited to excessive movement and/or bad alignment of the end effector with the
velocity vector of the ball.
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