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A Bayesian network approach for 
geotechnical risk assessment in 
underground mines
R. Mishra1, L. Uotinen2, and M. Rinne2

Synopsis
Underground mining gives rise to geotechnical hazards. A formal geotechnical risk assessment can 
help to forecast and mitigate these hazards. Frequentist probability methods can be used when the 
hazard does not have many variables and a lot of data is available. However, often there is not enough 
data for probability distributions, such as in the case of new projects. The risk assessment is often 
subjective and qualitative, based on expert judgement. The purpose of this research is to present the 
use of Bayesian networks (BNs) as an alternative to existing risk assessment methods in underground 
mines by combining expert knowledge with data as it becomes available. Roof fall frequency forecasting 
using parameter learning is demonstrated with 1141 sets of roof fall data across 12 coal mines in the 
USA. The prediction is nearly identical for individual mines, but when multiple mines are evaluated 
it is difficult to find a single best fit distribution for annual roof fall frequency. The BN approach with 
TNormal distribution was twice as likely to fit the observed data compared to the Poisson distribution 
assumed in the past. A hybrid approach using BN combining multiple probability distribution curves 
from historical data to predict annual roof fall is proposed. The BN models can account for variability for 
multiple parameters without increasing the complexity of the calculation. BNs can work with varying 
amounts of data, which makes them a good tool for real-time risk assessment in mines. 

Keywords
Bayesian network; expert opinion models; geotechnical risk; incident forecasting; parameter learning; 
roof fall risk.

Introduction
Geotechnical risks increase as mines progress deeper, and these risks are commonly managed using 
probability-based risk assessment (Dershowitz and Einstein, 1984; Galvin, Hebblewhite, and Salmon, 
1999; Baecher and Christian, 2003; Mishra et al., 2017). The challenge with this approach is the lack of 
suitable data. Often there is not enough data for probability distributions, and historical data cannot be 
used for new projects in areas with no prior mining activities. The risk assessment is often subjective 
and qualitative, based on expert judgement. This paper aims to present the use of Bayesian networks 
(BNs) as an alternative method for risk assessment in underground mines. Spalling depth and roof 
collapse predictions are used as examples.

While qualitative assessment helps to carry out a quick risk assessment in the absence of data, 
it can be very broad and vague and can be highly influenced by personal opinion and bias. The 
variability of the condition of the rock mass compounds the problem as operations can run into 
previously unknown geological structures. Mining at great depth also means that collecting geotechnical 
information through conventional methods such as core drilling is very expensive. Non-intrusive 
geophysical methods involve limitations of coverage, range, and accuracy. Because of the uncertainty 
of geotechnical conditions with increased depth (e.g. geological contacts, rock properties), a formal 
geotechnical risk assessment outlining the scope, methodology, and resource requirement is preferable 
(Mishra and Rinne, 2014). The risk management framework should have a feature that enables it to 
learn from the data gained as mining progresses deeper.

Where historical frequencies of incidents are available, appropriate probability distributions can 
be used to forecast future failures. Duzgun and Einstein (2004) demonstrated the use of the Poisson 
distribution to forecast roof collapses in coal mines. Given the variability in mining conditions 
associated with each roof failure, it is often difficult to select one distribution which best describes all 
roof collapses. This paper extends their work by performing parameter learning on roof fall data across 
12 mines and 1141 roof fall incidents to create probability distributions.

When extensive data is available, analytical design methods can be used to calculate the factor 
of safety. Significant variability in data can lead to conservative and expensive reinforcement design. 
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Probabilistic analyses (PoF) account for the variability in 
data and are often used today, as opposed to deterministic 
analyses. This paper combines the factor of the safety method 
for reinforcement design against roof collapse in underground 
mines with a Bayesian network to address the variability of the 
underlying data. 

Risk assessment methodologies and approaches for the 
underground mining industry have been discussed extensively 
in the past (Brown, 2012; Mishra and Rinne, 2014; Eskesen et 
al., 2004; Paté-Cornell and Dillon, 2006; Paté-Cornell, 2007). 
Einstein and Baecher (1983) proposed that mining projects 
should be evaluated for their geotechnical risk levels through 
Geotechnical Risk Classification (GRC) from as early as the 
pre-feasibility study, and these values should be updated as the 
project progresses and more data becomes available. Kelly and 
Smith (2009) discussed the current state of the art of Bayesian 
inference in probabilistic risk assessment. Work has been done in 
the past using Bayesian networks to model major accidents using 
near misses (Khakzad, Khan, and Paltrinieri, 2014). Bayesian 
networks have also been used in dam risk assessment (Smith, 
2006; Li, Yan, and Shao, 2007), tunnel risk assessment (Sousa 
and Einstein, 2007; Spackova and Straub, 2011), modelling 
uncertainties in rockfall hazards (Sousa and Einstein, 2012), 
safety assessment in construction projects (Zhang et al., 2014), 
and dynamic failure assessment in process plants (Meel and 
Seider, 2006). This paper discusses the use of BNs to convert 
probabilistic risk assessment from a frequentist approach to a 
Bayesian approach. It demonstrates how BNs can be used as an 
alternative to test the goodness of fit of competing probability 
distributions. 

Methodology
Geotechnical risk is defined as a product of the likelihood of the 
geotechnical hazard and the severity of the consequence if the 
hazard were to be realized. Bayesian networks can be used to 
carry out both the likelihood and consequence assessment for a 
given hazard. In this paper, a BN has been used only to evaluate 
the likelihood of a roof or block collapse.

Bayesian networks or Bayesian belief networks are based 
on Bayes’ theorem (Bayes and Price, 1763). They describe the 
conditional relationship between two or more variables using 
probability as defined in Equation [1].

                            [1]

where H and E represent a hypothesis (H) being tested and 
corresponding evidence (E) to support this hypothesis. P(H|E) 
is called the posterior probability, which is the probability of the 
hypothesis (H) being true given particular evidence (E). P(E|H) 
is called the likelihood, which is the probability of observing 
evidence (E) if the hypothesis were true. P(H) is called the 
priori, which is the prior belief in the hypothesis. P(E) is called 
the marginal likelihood, which represents the prevalence of 
the evidence in the base population. For instance, in a mining 
context, it is assumed that large angular discontinuities cause 
roof collapse. This assumption can be treated as one of several 
hypotheses in BNs that lead to roof collapse. P(H|E) for this 
hypothesis can be written as P(large angular discontinuity / roof 
collapse). P(large angular discontinuity), or the priori, would be 
the frequency rate of large angular discontinuities in the mine, 
such as an ‘average of 10 discontinuities per mine’. P(roof 
collapse), or the marginal likelihood, would be the frequency rate 

of the roof collapses, such as ‘two roof collapses per year’. P(roof 
collapse / large angular discontinuity), or the likelihood, would 
be the number of times a large angular discontinuity caused a 
roof collapse, such as ‘one out of two roof collapses was caused 
by large discontinuities’. 

Figure 1 shows the structure of a BN which has been 
modified from work by Smith (2006) to split the model into a 
causal model, a BN, and a decision-making model. H_1 and H_2 
are examples of two hypothesis nodes leading to the evidence 
node E. The hypothesis and evidence nodes, along with the solid 
directional arrows, form the causal model. The circular nodes and 
solid arrows form the BN causal model, while the dotted arrows 
represent the flow of information in a BN. The circular nodes at 
the origin of the solid arrows are called ‘parent’ nodes (P(H_1), 
P(H_2)), while the nodes at the end of the solid arrows are called 
‘child’ nodes. 

Relationships between the nodes are defined with the use 
of priors and conditional probability tables or cause-effect 
relationship tables. This model can now be used to evaluate the 
likelihood of the evidence if the hypothesis is true. This form 
of inferencing from hypothesis to evidence is called forward 
inferencing. Observed data can be fed into the same model to 
back-calculate the likelihood of the hypothesis being true through 
backward inferencing. This process of forward and backward 
inferencing creates a decision-making model. The process helps 
to evaluate and update our prior beliefs in the light of new 
evidence and thus improve predictions. 

The network shown in Figure 1 can now be converted to 
carry out risk assessment by defining the risk being assessed 
as the evidence and the contributing factors as hypotheses. The 
same model can also be used to carry out backward inferencing 
and parameter learning (Fenton and Neil, 2012). To carry 
out parameter learning, the unknown parameter is defined 
as the evidence, such as the mean and variance for a normal 
distribution. The available data is entered into the hypothesis 
nodes, and the model is solved using Equation [1] to arrive at 
the likely value for the unknown parameter. All the BNs in this 
paper are created and solved using Agena Risk version 7 (Agena, 
2017). Several Bayesian network modelling software packages 
are available to carry out the modelling. Agena Risk was chosen 
over the others because of its ability to deal with continuous 

Figure 1—Decision-making model using a Bayesian network. Circular nodes 
and solid arrows show the causal model, and dotted arrows show the flow 
of information (after Smith, 2006)
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variables along with non-numeric nodes. Comprehensive 
literature on the use of Agena Risk (Fenton, Neil, and Caballero, 
2007; Fenton and Neil, 2012) across multiple cases was 
available, which assisted in the modelling of incidents.

Spalling depth forecasting using BN and analytical  
methods
This section discusses the concept of combining analytical 
methods for estimating the potential for spalling depth in 
tunnels with BNs. The usage of BNs allows the variability in the 
collected data to be taken into account better. To enable a direct 
comparison with existing frequentist methods, we have chosen a 
case example where a lot of data is available. To demonstrate the 
use of a BN in conjunction with the analytical method, we have 
used the spalling estimation method as described by Martin and 
Christiansson (2009) and the Olkiluoto case data from Siren et al. 
(2011). The Olkiluoto case describes a high-level spent nuclear 
fuel repository at a depth of 420 m in hard crystalline rock in 
Finland.  

The failure mechanism that is studied is the formation of 
thin slabs. Progressively, these slabs form a continuous wedge 
of spalled material. To establish the size of the wedge to be 
supported with tunnel reinforcement, the analytical method 
requires the uniaxial compressive strength (UCS) of the rock and 
local principal stresses to be known. The factor of safety (FoS) for 
the roof reinforcement can then be calculated using Equation [2]:

[2]

where σsm is the rock spalling strength and σθθ is the tangential 
stress at the rock surface. The spalling strength is extracted from 
the UCS of the rock by multiplying by a scaling factor, k. For 
Olkiluoto, UCS is represented by a normal distribution with a 
mean of 115 MPa and a standard deviation of 23 MPa (Siren et 
al., 2011), and k = 0.57±0.02 has been used for crystalline rock 
(Martin and Christiansson, 2009). At a depth of 400 m, the major 
horizontal stress and minor vertical stresses were taken as in 
Posiva (2009), and to account for data variability both of these 
were represented by triangular distributions with corners in the 
lower 10% fractile, the mean, and the upper 90% fractile (Table 
I). Using the Kirsch (1898) equations (Equation [3]), these 
values can be used to calculate the resulting tangential stress 
at the rock surface. The shape factor A = 2.60 was obtained as 
a median value calculated from the profiles listed in Siren et al. 
(2011). The uncertainty of the stress direction is omitted for the 
sake of simplicity.

[3]

The FoS (Equation [2]) can now be calculated (Equation [4]). 
Using the mean values the FoS becomes

   [4]

indicating a small risk of spalling damage at Olkiluoto, according 
to Siren et al. (2011). The damage depth can be calculated with 
Equation [5] modified after Martin and Christiansson (2009):

[5]

Assuming the nominal tunnel radius to be a = 5 m, the 
corresponding mean damage depth (Sd) is zero (–0.46 m) and the 
extreme value using the +0.1 upper limit would, at a maximum, 
be 0.037 m.

The empirical factor 0.52±0.1  describing the observed 
damage depth in Martin and Christiansson (2009) was modelled 
using a triangular distribution with a lower limit of 0.42, mode 
of 0.52, and upper limit of 0.62. The empirical factor is based 
on nine published case histories (Andersson, 2005; Martin et 
al., 2001) in a wide range of rock mass conditions and major 
in-situ stresses ranging from 10 MPa to 140 MPa. The rock 
types consisted of limestone (UCS 80 MPa), andesite (UCS 100 
MPa), granite (UCS 220 MPa), and quartzite (UCS 350 MPa). The 
variability of σ1, σ3, and k means that there will be combinations 
that exhibit spalling despite the FoS being greater than unity.

For spalling strength, the factor k was modelled using a 
triangular distribution with a lower limit of 0.55, mode of 0.57, 
and upper limit of 0.59, as suggested in Martin and Christiansson 
(2009) for crystalline rocks. It should be noted that the factor 
k is defined for the mean UCS and the UCS is not entered as a 
distribution. The model allows for any combination of strength 
and stress, while in reality high stresses are more likely in strong 
rock and low stresses in weak rock. For weak rocks, the model 
may result in conservative results. The model may incorrectly 
predict the spalling phenomenon occurring in weak rocks or the 
occurrence of high stresses in weak rocks. The analytical method 
does not reveal what the spatial extent or probability of such 
damage is. The site-specific acceptance criteria as a function of 
FoS can be selected based on site-specific observations of FoS 
when there is no spalling, very minor spalling, or extensive 
spalling, as suggested in Martin and Christiansson (2009).

For a true deterministic example, the FoS will need to be 
calculated individually for all combinations of variables. This 
method requires extensive data collection. In reality, frequentist 
probability methods are used in conjunction with random 
sampling (e.g. Monte Carlo) or structured sampling (e.g. Latin 
hypercube sampling). The disadvantage of the frequentist 
probabilistic method is that the complexity of the model grows 
exponentially as the number of uncertain variables increases 
beyond two (Matarawi and Harrison, 2017). Additionally, the 
FoS values do not directly give the probability of failure (PoF), 
but prescribed tables can be used to compare FoS and PoF 
(Galvin, Hebblewhite, and Salmon, 1999).  

Bayesian networks can be used to take the variability into 
account directly. Accounting for variability eliminates any need 
to use FoS and establishes the PoF directly. Figure 2 shows the 
PoF calculation using the BN. The σ1 and σ3 nodes were used 
to calculate σθθ using Equation [3]. The σsm node was obtained 
by multiplying the empirical factor k by the mean UCS of 115 
Mpa. Factor of safety and spalling depth nodes were obtained 
using Equations [2] and [5] respectively. The BN model predicts 
a 92.3% chance that the FoS will be greater than unity, while 

   Table I

  �Major horizontal stress and minor vertical stress at 
Olkiluoto at a depth of 400 m. (Posiva, 2009) 

   Variable parameter	 Lower bound	 Upper bound	 Mean 
	 10%	 90%

   Major horizontal stress, s1 [MPa]	 19.6	 31.6	 25.6
   Minor vertical stress, s3 [MPa]	 9.6	 11.7	 10.6
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deterministic calculation using Equation [2] would have resulted 
in a single FoS value of 1.17. BNs can thus take into account 
the variability of multiple variables in analytical assessment to 
make failure predictions. In the presented example, the analysis 
was carried out in the least favourable direction. If the actual 
tunnel direction is known, the BN can be expanded to include the 
variability of the stress orientations. The current approach with 
the empirical factor k requires the usage of the mean UCS value. 
If the distribution of UCS is known, the crack initiation strength 
can be taken as a lower bound estimate for the spalling initiation 
strength as formation of cracks precedes the onset of spalling. 

Roof collapse forecasting using BN with roof fall  
frequency data

Parameter learning on roof fall frequency data for roof 
fall forecasting
This section discusses the use of parameter learning in a BN 
to learn distributions from historical roof collapse data in coal 
mines. It considers the example of roof fall risk estimation 
using roof fall frequency data collected by the Mine Safety 
and Health Administration (MSHA) in coal mines situated in 
the USA. The data is from the period between 1979 and 1997 
across 12 anonymized underground mines in the Appalachian 
region (Duzgun and Einstein, 2004;  Mine Safety and Health 
Administration, 2000). This data has been analysed in the 
past by curve fitting the accident frequency to an appropriate 
probabilistic distribution to forecast failure (Duzgun and Einstein, 
2004; Einstein, 1997). Mine ID 4601816 was considered for the 
parameter learning demonstration as it had the largest sample 
size, with 108 roof fall incidents. Figure 3 shows the annual 
frequency of the number of roof falls (NoF) in Mine ID 4601816.

Duzgun and Einstein (2004) used an exponential distribution 
for the time between failures and a Poisson distribution for 

the annual roof fall frequency (NoF) to fit the roof fall data for 
roof fall prediction. The Poisson distribution is a one-parameter 
probability distribution as shown in Equation [6] for annual roof 
fall frequency. 

[6]

The Poisson parameter lambda (λ) is the mean roof fall 
frequency per year and NoF is the annual roof fall frequency 
whose probability of occurrence (P(NoF)) is being evaluated. 
Parameter λ for the roof fall frequency for the abovementioned 
mine is 5.68, using data from Figure 3. In the frequentist 
approach to risk assessment one value of λ is used to plot the 
probability distribution. Any frequentist interpretation of a 
statistical parameter is referred as the ‘classical approach’ in this 
paper. 

The Bayesian approach to solving this problem considers 
the λ parameter of the Poisson distribution as a variable itself. 
The parameter learning capabilities of the BN can then be used 
to learn the lambda parameters from the population. Figure 4 
shows the BN used to learn the probability distribution of λ. The 
parent node lambda (λ) was assumed to have a uniform prior 
probability between 0 and 20. Uniform prior probability implies 
that all values between 0 and 20 had the same probability of 
being equal to λ. The child nodes to this parent are the number 
of roof failures occurring in different years, with the annual 
roof fall frequency on the x-axis and probability distribution 
(PD) on the y-axis. The conditional probability between lambda 
and roof fall node is defined by the Poisson equation as shown 
in Equation [6]. Nineteen child nodes were added to the BN to 
enter roof fall frequency data available for 19 years, as shown in 
Figure 4 from Y1 to Y19. An additional node named ’forecasted 
NOF’ was added to show the results of the parameter learning 
to give the revised roof fall frequency. The BN was solved using 
the parameter learning to revise the λ distribution from the prior 
uniform distribution. The revised distribution, in turn, provided 
the ‘predicted roof fall frequency’. As the evidence for year 20 
becomes available, it can then be added as an additional child 
node, which will then revise both the λ and predicted roof fall 
frequency distribution in the light of the additional evidence.

When the Bayesian prediction of annual roof fall frequency 
(NoF) probability distribution (PD) is compared with the classical 
Poisson distribution obtained from Equation [6], the Bayesian 
prediction is nearly identical, as shown in Figure 5. Despite being 
almost identical in probability distribution, both the classical 

Figure 2—Bayesian network model to forecast spalling and spalling depth 
using Equations [2], [3], and [4]. Equations [2] and [3] are solved to give 
‘factor of safety’ nodes. Equation [5] is solved using the ‘factor of safety’ 
and ‘empirical factor’ nodes to provide the spalling depth

Figure 3—Annual roof fall frequency in Mine 4601816. Number of roof falls 
(NoF)
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and Bayesian curves are a poor fit to the observed data when a 
Poisson distribution is assumed. A mathematical comparison of 
goodness of fit of competing distributions is discussed later in the 
paper.  

The data for Mine 460186 was then assumed to follow a 
normal distribution with mean and variance replacing λ as the 
parent node. The normal distribution was limited to a lower 
tolerance of zero annual roof falls and an upper tolerance of 20 
annual roof falls, resulting in a truncated normal or TNormal 
distribution (Thompson, 1950). In order to avoid unreal results 
of non-integer annual roof falls, the TNormal distribution was 
constructed using integer intervals in Agena Risk (Agena, 
2017). The mean and variance parameters were assumed to 
have uniform priors. The mean and variance parameters for the 
normal distribution were learned using parameter learning from 
the observed data for 19 years, similarly to that carried out in 
Figure 4. The resulting Bayesian network is shown in Figure 6, 
while a comparison of the classical Poisson distribution, Bayesian 
TNormal distribution, and the actual observed data is shown in 
Figure 7.  

The relative error of the forecast value was carried out using 
Equation [7] for both the Poisson and normal distribution (ISO, 
1993).

[7]

where E is the relative error in the forecast data, Pn is the forecast 
probability of n roof falls in a year, and RFn is the relative 
frequency of n roof falls. Using Equation [7], the average relative 

error in the forecast using classical Poisson distribution was 
55%, which was reduced to 37% when the Bayesian TNormal 
distribution was used. 

Using ‘goodness of fit’ results from multiple distributions 
for roof fall forecasting
There are mathematical tests, such as Kolmogorov-Smirnov test 
and the chi-square goodness of fit test, that can be carried out 
to evaluate how well a proposed distribution fits the data (Ang 
and Tang, 1984). These tests use statistical parameters such as 
the mean, which is not directly observed in the population but 
is inferred from a sample population. An alternative method 
using BN is to evaluate the frequency with which the historical 
data (evidence) occurs in the assumed probability distribution 
(hypothesis) (Fenton and Neil, 2012). This can be modelled 
using a BN where several probability distributions, in this case 
truncated normal and Poisson distribution, form the node states 
for a parent node (Figure 8).  

The child nodes are values observed in each of the 19 years 
for Mine 4601816. The prior probability of the parent node 
‘Competing distributions’ is considered to be 50% for each, 
meaning that both the distributions are equally likely to be 
correct. The conditional probability table for the child node is 
conditional on the parent nodes as shown in Table II for the node 
‘Roof fall Y_1’. 

Figure 4—Parameter learning BN to learn lambda (λ = mean roof falls per 
year) from observed roof falls. The y-axis shows the probability distribution, 
while the x-axis shows the different values of lambda and forecast annual 
roof falls for the left and right nodes

Figure 5—Classical Poisson vs Bayesian Poisson comparison for annual 
roof fall (NoF) probability for Mine 4601816

Figure 6—Parameter learning BN to learn normal distribution parameters 
from observed roof falls

Figure 7—Classical Poisson vs Bayesian normal comparison for roof fall 
probability in Mine 4601816. Summary statistics of the two graphs are 
shown in Table II
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The values in parentheses for TNormal represent the mean, 
variance, lower bound, and upper bound respectively, while 
the values in parentheses for Poisson show the λ. These are 
statistical summary parameters of the Poisson and normal 
distributions shown in Figure 7. This BN is solved by entering 
roof fall values from year 1 to year 19, resulting in a posterior 
probability of 70% for the Bayesian TNormal distribution 
and 30% for the classical Poisson distribution. The posterior 
probabilities imply that there is a 70% probability of observing 
the given data under the Bayesian normal distribution, compared 
to 30% under the classical Poisson distribution. In other words, 
the observed data is more than twice as likely under the Bayesian 
TNormal distribution compared to the Poisson distribution. 
Therefore, Bayesian TNormal is a better model for forecasting 
the roof fall frequency in Mine 4601816. This goodness of fit test 
using the observed parameters was carried out for all 12 mines, 
and the Bayesian TNormal distribution was found to be a better 
fit compared to classical Poisson distribution in seven of the 12 
mines. The results of this analysis are shown in Table III. 

These results indicate that it is unlikely to have one 
distribution that is the best fit for roof fall data across different 
mines. Bayesian networks can overcome this problem by creating 
a hybrid distribution curve weighted according to the goodness 
of fit test results. The percentage probability values indicate 
which of the two distributions is more likely to fit the data 
better when they are compared. For example, if both truncated 
normal and Poisson distributions are used to forecast a roof 
fall in Mine 4601816, the forecast is weighted 70% in favour of 
normal distribution and 30% in favour of Poisson distribution as 
obtained from the goodness of fit test. Hybrid distributions can 
be useful in early stages of data collection, where limited data 
makes it difficult to identify a unique distribution that correctly 
represents the population. The number of distribution should 
be limited to two or three as the intention of the hybrid model is 
to evaluate potential distributions that are expected to describe 
the population. As additional information becomes available 
over time, the one distribution that best describes the population 
should be chosen from the hybrid distribution.

Discussion
Bayesian networks for real-time risk assessment
Geotechnical incidents in deep mines can have severe 
consequences due to both unfavourable mining conditions 
and the difficulty of rescue and recovery operations following 
an incident. Real-time risk assessment can help mitigate both 
the hazard and the consequences through advance warning. 
Bayesian networks can work with varying amounts of data, 
which makes them a good tool to carry out a real-time risk 
assessment at mine sites. Bayesian networks can either be 
integrated with the existing on-site information management 
system or strategic instrumentation and monitoring can be 
implemented once the Bayesian model has been defined. 

The process of incorporating real-time risk assessment 
using BNs is shown in Figure 9. The first step in the process 
is to define a causal model for a failure such as stope collapse 
using nodes and probability tables. The contributing nodes can 
be numeric nodes with continuous values such as stress around 
the stope, the number of discontinuities, roof convergence, etc. 
Alternatively, these nodes can be non-numeric, with subjective 
states such as the quality of the filling in of the discontinuities. 
If the nodes are non-numeric, the prior probability of each of 
the nodes will have to be defined. Numeric nodes can consist 

Figure 8—Goodness of fit test for competing distributions using BN. Roof 
fall data from 19 years is used to determine the goodness of fit of the  
competing distribution. Goodness of fit results are used to provide a  
weighted roof fall forecast

   Table II

  �Node probability table showing the relation between 
competing distributions and roof fall frequency 

   Competing distribution	 Probability distribution

   Truncated normal	 TNormal (5.75, 16.4, 0, 20)
   Poisson	 Poisson (5.68)

   Table III

  Goodness of fit test results for classical Poisson and Bayesian TNormal distribution for roof fall frequency 
   Mine ID	 Poisson parameter	                                      Bayesian TNormal parameter		                                          Probability of observed data 
	 λ	 Mean	 Variance	 Classical Poisson	 Bayesian TNormal

   4601816	 5.68	 5.75	 16.40	 30%	 70%
   1502709	 3.26	 3.42	 5.06	 62%	 38%
   1503178	 3.00	 6.19	 20.83	 10%	 90%
   0100758	 5.36	 5.39	 5.84	 58%	 42%
   1502132	 1.89	 2.35	 4.20	 68%	 32%
   1502502	 3.80	 3.85	 5.31	 27%	 73%
   1504020	 1.81	 2.51	 5.25	 81%	 19%
   1512941	 2.43	 3.10	 7.12	 52%	 48%
   1513920	 4.75	 5.97	 20.71	 18%	 82%
   1514492	 7.15	 8.21	 30.41	 1%	 99%
   3600958	 3.53	 4.02	 10.00	 19%	 81%
   4605978	 2.70	 2.25	 4.21	 29%	 71%
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of information which is collected, in real time, such as roof 
convergence measurement using an extensometer, or seismicity 
using geophones. For these nodes, appropriate site-wide 
instrumentation needs to be planned in such a way that sufficient 
data is collected, and their prior probabilities are defined using 
probability distribution. Numeric nodes can also consist of data, 
which is collected intermittently through inspection and is not 
continuous. Joint set numbers, joint roughness, blast vibrations, 
etc. fall into the category of non-continuous numeric nodes. 
Either these nodes can be defined using a probability distribution 
or the distribution can be learnt using parameter learning.

After the nodes and their prior probabilities have been 
defined, the BN is solved for the current risk level on the basis 
of the available information. As data is fed from real-time 
instrumentation, the risks are updated in real time to inform the 
relevant stakeholders. The same network can also be used to 
feed information on incidents and near misses that occur in the 
mine to carry out backward inferencing and revise all the prior 
probabilities. This method also assists with incident investigation 
to identify the most likely cause of the incident and improve the 
accuracy of the forecasting model. 

Advantages and limitations of Bayesian network-based 
risk assessment
Bayesian networks offer the flexibility of working in the absence 
of historical data by replacing it with expert opinion-based prior 
probabilities. In conventional frequentist risk assessment, a 
summary of statistical parameters such as the mean and median 
is often used to carry out the risk assessment. Even when the full 
probability distribution is used, the computational requirements 
increase significantly as the number of parameters increases. 
BNs, however, can work with complex causal models where 
each node uses a probability distribution instead of summary 
statistics. Expert opinion-based risk assessment implies that a 
BN can quickly adapt to an existing subjective risk assessment 
practice in the mine. This improves the repeatability of the risk 
assessment process when performed by different personnel for 

the same mine. Its ability to perform backward inferencing on 
a risk assessment model allows the BN to be used for incident 
investigation. This iterative process of risk forecasting and 
incident investigation improves the reliability of the model by 
updating the assumed prior probabilities. Backward inferencing 
also encourages improved collection of data and rigorous 
incident investigations. The ability of BNs to work with site 
instrumentation opens up the possibility of creating a real-time 
risk assessment and warning system in a mine.

The use of expert opinions in the absence of data is also one 
of the main disadvantages of BN-based risk assessment. Incorrect 
prior probabilities lead to incorrect incident forecasts, which need 
to be validated through incident investigations in the future. The 
additional poor understanding of incident causation and failure 
mechanism also results in incorrect forecasts. Given the reliance 
on experts, it is prone to human error and expert biases. Real-
time risk assessment using BNs can be challenging if a large part 
of the mine needs to be monitored for risk, as this would require 
extensive instrumentation, which can be expensive. Additionally, 
BNs can only work on the basis of an underlying causal model. 
Modelling error or the omission of key influencing factors can 
lead to incidents not predicted by the warning system. However, 
after every incident, backward inferencing should be carried out 
to test whether the causal model explains the incident. If not, 
additional investigation and instrumentation are necessary in 
order to improve the warning system.

Conclusions
Bayesian networks provide a flexible framework for carrying 
out risk assessment from zero to scarce to an abundant amount 
of measured data available. They can take into account the full 
variability of source data by the use of probability distributions. 
Spalling depth and the risk of roof fall were analysed using the 
Bayesian approach as an alternative to the analytical method. 
This approach was also used to convert the factor of safety 
calculation for spalling into a probability of whether spalling 
will happen. If spalling takes place, what are the probabilities of 

Figure 9—Real-time risk management process flow using BN
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various spalling depths? 
Parameter learning using BNs was demonstrated using roof 

fall data across 12 mines over 19 years. The results show the 
weakness in applying a single type of probability distribution that 
provides the best fit for roof fall frequency in all the mines that 
were studied. A methodology of combining multiple distributions 
to produce a weighted forecast was proposed to overcome the 
challenge of a best fit from a single probability distribution in 
the presence of limited data. This study indicates that BNs may 
present a good platform for a real-time risk assessment tool by 
combining expert knowledge with available data, including online 
measurements from the field.
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