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a b s t r a c t

This paper introduces a novel application area for multivariate copulas in electric vehicle charging event
simulation and dependency analysis. We propose a multivariate copula procedure that can be used to
generate new synthetic charging events, which retain the complex dependency and correlation struc-
tures present in real-world charging events. The paper compares the most popular multivariate copula
functions to discover the most reliable one to be used with electric vehicle charging event data. Accurate
EV charging event simulation and analysis is crucial in multiple theoretical and practical applications
such as charging load and demand response aggregation modelling. Based on multiple goodness-of-fit
tests and charging load profiles of simulated charging events, the Student-t copula was found to be
the most reliable multivariate copula to be used with EV charging data. Overall, the multivariate copula
procedure is effective in analysis and simulation of EV charging events as it retains the inherent vari-
ability and complex dependencies of real charging events.
© 2021 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY license

(http://creativecommons.org/licenses/by/4.0/).

1. Introduction

Electrification of transport was the key trend of the transport
sector in 2010s. During the decade, the global number of electric
vehicles (EVs) rose from 17,000 in 2010 to 7.2 million in 2019 [1].
This trend is expected to continue, and the IEA estimates that the
global EV stock reaches 50 million by 2025, and close to 140 million
by 2030 [1]. The electrification of transport reduces oil demand and
greenhouse gas emissions but increases electricity demand. Ac-
cording to IEAs Sustainable Development Scenario, the global EV
electricity demand could rise to almost 1000 TWh in 2030, an
almost elevenfold increase from 2019 levels [1].

The electrification of transport, happening simultaneously with
large-scale penetration of variable renewable energy sources,
causes major technical challenges for power grid balancing [2,3].
Electricity demand modelling and prediction are crucial in order to
ascertain that electricity production equals electricity demand at
every given moment [4]. Analysis, modelling and prediction of EV
charging behavior is becoming an ever more important part of this
demand modelling, especially as uncoordinated EV charging loads

tend to coincide with peak demand, which causes stress to the
electrical infrastructure on multiple levels [2,5e8]. Additionally,
simulation of EV charging behavior is important for charge sched-
uling, congestionmanagement and estimation of utilizable demand
response loads [2,7,9e12].

The importance of EV charging behavior modelling is recog-
nized in multiple previous studies. However, the majority of pre-
vious research approach EV charging behavior based on driving
pattern and travel survey datasets of internal combustion vehicles
[12e19] and EV trials [20e22]. Even though estimation of EV fleet
electricity demand is possible based on travel surveys and driving
pattern datasets [7], these vehicle usage-based modelling ap-
proaches require multiple assumptions and are largely theoretical
[23]. These approaches might lead to substantial oversights espe-
cially when the focus is on EV charging in a specific location,
charging point or charging point network. Event-based simulation
approaches, which utilize real-life charging events as a basis for the
model, and thus approach the problem from the charging point
perspective, are significantly less common. Previous studies that
utilize real EV charging event data and cover intervariable de-
pendencies are covered in section 2.2.

Accurate EV charging event simulation is difficult with tradi-
tional methods that assume independent parameters as there ex-
ists non-normal multivariate dependencies between EV charging* Corresponding author.
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event variables [24]. The modelling of stochastic dependence is
important for obtaining accurate results in problems dealing with
this kind of dependent non-normal data [25]. However, so far very
little attention has been paid to methods that retain these complex
dependency structures in charging event simulation. If these de-
pendency structures are not retained, various problems and inac-
curacies can arise especially when the simulationmethod is used to
generate synthetic data to be utilized in follow-up applications,
such as in large-scale power system optimization and prediction
models.

The novelty of this study is justified by bridging these gaps
through novel application of multivariate copulas in event-based
EV charging event simulation. In this work, we propose a multi-
variate copula procedure that retains the inherent variability and
complex dependencies of real EV charging events in event simu-
lation. Copulas are an increasingly popular modelling tool for sto-
chastic data with non-normal multivariate dependencies [26].
Traditionally copulas have been used mostly in financial modelling;
more recently, copula applications have spread to the field of en-
ergy engineering and have been utilized, for instance, in power
system modelling and planning [25,27,28], residential heating de-
mand prediction [29], wind and photovoltaic power generation
prediction [30] and energy management uncertainty modelling
[31]. However, to our knowledge, only a few studies to date have
addressed the utilization of copulas with EV charging data [32,33].
There currently exist no scientific studies where dependencies
between all variables are retained in EV charging event simulation,
or where multivariate copulas from multiple families are used and
compared with EV charging event data.

There are three primary aims for this study: 1. To investigate
whether multivariate copulas can be used to retain real-life de-
pendency structures in EV charging event simulation 2. To ascertain
which multivariate copula family has the best fit with real EV
charging event data 3. To determine whether the proposed multi-
variate copula procedure can be used to model EV charging load
profiles accurately. The findings make an important novel contri-
bution to the field of EV charging behavior and load simulation.

2. Background

2.1. EV charging modes

The international standard IEC 16851e1:2017 categorizes
different EV charging methods into four Modes based on connec-
tion method and characteristics of power supply input and output.
In Modes 1 and 2, the charging is conducted from a standard
household socket-outlet of an AC supply network. In these Modes,
the charging is conducted with a separate cable, and there is no
external electric vehicle supply equipment (EVSE). Mode 1 is rated
up to 16 A (250 V single-phase, 480 V three-phase), and the
charging cable is not fitted with any auxiliary or pilot contacts. Due
to some safety concerns, Mode 1 charging is prohibited in a few
countries, for instance in the US and UK. The utilized charging cable
is the main difference between Modes 1 and 2. In Mode 2, a
separate EV charging cable with control pilot and electric shock
protection systems is used. Mode 2 current must not exceed 32 A
(250 V single-phase, 480 V three-phase). Some countries, such as
the US, have limitations on maximum voltage or current of Mode 2,
and in Italy Mode 2 charging is prohibited in public areas [34].

In contrary to charging Modes 1 and 2, Modes 3 and 4 require
the utilization of dedicated stationary EV supply equipment [34].
Mode 3, sometimes referred to as primary EV charging, utilizes
EVSE connected to AC supply network [34,35]. Mode 3 EVSE's have
an integrated control pilot function that extends to the EV [34].
Mode 4 EVSE can supply considerably higher charging powers than

the other charging modes, and it is commonly referred to as EV fast
charging [34]. In Mode 4, the EV charging is conducted with DC
from an EVSE connected either to AC or to DC supply network [34].
Like inMode 3, control pilot and protection functions are integrated
into the EVSE [34]. Typical Mode 4 EVSE have a maximum output
power of 50 kW, but currently models also exist with rating powers
up to 350 kW [35].

Communication between the EVSE and the EV is crucial when
considering customer-friendly remote control of charging events.
However, this kind of communication is a requisite only in Mode 4
charging [34]. Without real-time information of the charging event
parameters, for instance, demand-side management of EV charging
has to be based on historical behavior and thus there exists sig-
nificant uncertainty when assessing the total controllable load. This
study concentrates on EV chargingModes 3& 4, as they are the only
charging modes easily controllable by external demand response
aggregators due to the presence of dedicated external charging
equipment. These are also the only charging modes recommended
for long term usage [34].

2.2. Dependencies in EV charging event data

An EV charging event is defined by multiple different interde-
pendent variables. The plug-in time and EVSE maximum power of a
charging event are determined when the EV is connected to an
EVSE. The charged energy, realized charging power, and event dura-
tion are determined during the charging event. The charging time of
an EV depends on its initial and final state of charge, and the
realized charging power. These parameters however do not give
insight on the possible idling time, i.e., duration the EV remains
connected to the EVSE after the charging is finished [36,37]. Anal-
ysis, prediction, and measurement of EV idling time is a crucial part
of, for instance, EV demand response modelling and EVSE conges-
tion management.

There exist only a few scientific articles addressing EV idling
time estimation. In Ref. [38], the authors compared multiple ma-
chine learning algorithms in idling time prediction based on a
Dutch public EV charging dataset. The main variables found to
impact EV idling time were the plug-in hour and the total energy
charged during the event [38]. The average idling time, assessed in
Ref. [38], represented around 62.3 % of event duration. In Ref. [39], a
study conducted by the same authors as [38], this ratio between
idling time and event duration was around 62.1 %.

EV charging event variables have complicated correlation
structures. According to analysis done in Ref. [24], EV charging
event durations are highly non-normal and are impacted mostly by
plug-in time and the EVSE type. The authors found that, especially
in events conducted on low power public Mode 3 EVSEs, the event
duration is heavily alignedwith parking preferences. That is, people
tend to leave their EVs parked at these charging stations for
extended periods while they might be at work or sleeping [24].
Similar results were gained in Ref. [40], where the authors noted
that longest idling times were registered on EVSE located in resi-
dential areas. According to Ref. [40], there existed only a weak
correlation between EV charging and idling time.

According to Ref. [38], the highest correlations in their dataset
were between the total charged energy and the EVSE maximum
power, and between the total charged energy and charging event
duration. Both of these relations were positive, and the variables
were found to be moderately correlated. Other notable correlations
were found between EVSE maximum power and event duration,
and between plug-in time and the charged energy. The authors
managed to predict idling times based on other variables most
successfully with the XGBoost algorithm, reaching an R2 of 60.32 %,
RMSE of 1.51 and mean absolute error of 1.11 h [38].
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As stated previously, there exists only limited number of sci-
entific publications where copulas are used to model the de-
pendencies in EV charging data. Authors of [32] utilized bivariate
copulas to model the pairwise correlation between variables of
Chinese EV charging data. They found that there exists a negative
correlation between charging event start time and duration, and a
positive correlation between duration and charged energy [32].
However, bivariate copulas can only capture dependence structures
between two randomvariables, whichmakes their applicationwith
multivariate EV charging data inherently ineffective. In Ref. [33] a
ternary symmetric KDE model was proposed to better take into
account the multivariate dependencies in EV charging data. Based
on bivariate frequency matrix similarities and histograms, the au-
thors found the model to have a higher fitting level than a joint
estimation method based on edge KDE and elliptical copulas [33].

The presence of complicated correlation structures in EV
charging event data complicates reliable charging event modelling
and simulation. Oneway to take these joint multivariate correlation
structures into account is to utilize multivariate copula functions.
Resampling methods could be used to consider underlying distri-
butions and dependencies in EV charging data, but this could lead
to imprecision as it can't be assumed that observations are from
independent and identically distributed populations. Additionally,
utilizing traditional bivariate copulas leads to inaccurate results
when dealing with multivariate data such as EV charging events, as
they can only be used to describe the dependence between two
variables at once. Thus, higher dimensional dependencies present
in multivariate data are lost if bivariate copulas are used without
any combination method. Separate bivariate copulas can be com-
bined into a higher dimensional copula with, for instance, a pair-
copula decomposition method [41].

2.3. Multivariate Copula functions

Copulas are multivariate cumulative distribution functions with
uniform one-dimensional marginal distributions that can be used
to describe dependencies between randomvariables. In simulation,
copulas can be used to generate synthetic samples from a specified
joint distribution. The resulting sample population can be used to
model real-world systems, such as EV charging networks, while
preserving the variable nature of separate instances. The name
“copula” emphasizes the manner copulas “couple” joint distribu-
tion functions to their univariate margins. There exist multiple
slightly different copula families, of which the elliptical and
Archimedean families are most commonly used [42].

Gaussian and Student-t copulas belong to the family of so-called
elliptical copulas. Elliptical copulas are widely used especially in
statistics and econometrics, due to their easy implementation and
multiple useful properties [26]. Elliptical copulas can for instance
be easily adapted for use in simulation of multivariate cases.
Multivariate Gaussian (or normal) distribution can even be seen as
the basis of classical multivariate statistics [43]. Multivariate
Gaussian and Student-t copulas are frequently applied especially in
financial data modelling [44]. Gaussian copula is usually used as the
first tentative model for covariate data, as it canmodel awide range
of different dependencies. If results gained with the Gaussian
copula show large deviations compared to original data, alternative
copula models should be tested [43]. For instance, the Student-t
copulas are able to capture tail dependence among extreme
values and are thus generally superior to the Gaussian copulas in
certain applications, such as when modelling multivariate financial
return data [45].

Archimedean copula family is the second most popular copula
family. Archimedean copulas are popular due to their simple forms,
ease of construction and multiple properties [42]. The most

commonly used Archimedean copulas are the Clayton, Frank and
Gumbel copulas. In basic form, Archimedean copulas with more
than two dimensions only allow positive dependencies [26]. There
however exist different multivariate extensions for these copulas
that allow negative dependencies through different trans-
formations [43].

Theoretical foundation for the application of copulas is heavily
based on work of Abe Sklar, and especially on Sklar's theorem [46].
The multivariate Sklar's theorem [42] states that if H is an n-
dimensional distribution function with margins F1, F2, …, Fn, then

there exists an n-copula C so that for all x in R
n
,

Hðx1; x2;…; xnÞ¼CðF1ðx1Þ; F2ðx2Þ;…; FnðxnÞÞ (1)

The n-copula, C, is unique if all F1,F2, …,Fn are continuous,
otherwise C is uniquely determined on Ran F1 � Ran F2 � $$$ � Ran
Fn. When F�1

1 ;…; F�1
n are quasi-inverses of F1,F2,…,Fn, then for any

u in In,

Cðu1;u2;…;unÞ¼H
�
F�1
1 ðu1Þ; F�1

2 ðu2Þ;…; F�1
n ðunÞ

�
(2)

If X1, X2, …,Xn are random variables with distribution functions
F1,F2, …,Fn, and a joint distribution function H, then there exists an
n-copula C so that (1) holds [42]. In order to generate synthetic
observations xi from original random variables Xi, we need only to
generate uniform observations ui of the uniform random variables
Ui, with a joint distribution function C, and transform these uniform
observations back to the original scale. More extensive theory,
definitions and mathematical formulation of the random variate
generation andmultivariate copulas can be found for instance from
Refs. [42,43].

The key steps of data generation from a real data sample with
the multivariate copula procedure are summarized in Fig. 1. The
resulting artificial observations (output dataset) have similar vari-
able dependence structure as the original data.

The utilized multivariate copula influences the joint distribution
function used in the sampling, and thus the resulting observations
differ between different copulas. For instance, the copula functions
describe the tail dependencies of variables in different ways [42].
Scatter plots of typical dependency behavior of the most popular
copula functions are presented in Fig. 2. These scatter plots illus-
trate the differing tail dependency behavior of different copulas
that share the same margins and the same Kendall's tau. Due to
these differences, multiple copula functions should be considered
before choosing the one that has the best fit to the data under
analysis. In this study, all five copula functions of Fig. 2 are
compared to find the best fitting copula for EV charging event data.

3. Methodology

3.1. Description of the EV charging dataset

The dataset used in this study was gathered from Finland's
largest charging point operator (CPO). During initial data process-
ing and cleaning, clearly erroneous, short trial connections lasting
less than 1 min and events lasting more than a week were dis-
carded from the dataset. Similar data cleaning decisions weremade
for instance in Ref. [38]. After data cleaning, the resulting final
dataset contains almost 150,000 realistic charging events con-
ducted on CPO operated private EVSEs between January 2018 and
June 2019. These private EVSEs contain Mode 3 and Mode 4 char-
gers installed to private properties not accessible for everyone, e.g.,
to parking lots of apartment and office buildings.

The dataset can be considered to portray the Finnish private EV
charging situation quite well, although it lacks the majority of
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charging events conducted at households. Slow home charging is
the most popular EV charging method in most countries, for
instance according to US Department of Energy, more than 80 % of
EV charging in the US is done at home from household sockets
without separate EV chargers [48]. These charging events cannot be
remotely controlled and are not monitored by any external party as
there is no CPO.

The most important variables of the dataset are: station id, en-
ergy, duration, the start and end times of the charging event, and
the maximum charging power of the EVSE. Like in Ref. [37], the
realized charging powers of charging events are not recorded by
the CPO and are thus not a part of the dataset. However, from the
grid-perspective the realized charging power is perhaps the most
important variable, as it can be used, for instance, to assess the grid
impact of EV charging. As the charging powers are not recorded,
they have to be assessed based on known variables, as presented in
the following subsection. Of these variables, a charging event can
be characterized with only charged energy, duration, start time and
charging power variables. However, as the charging powers have to
be assessed based on other variables, only the three remaining
variables are to be used in the copula procedure.

3.2. Estimation of realized EV charging powers

The charging powers have to be estimated based on the
maximum charging power of the charging equipment, the charged
energy amount, duration of the charging event, and for AC-
chargers, based on the average power of onboard chargers. Based
on the maximum charging powers of charging stations in the
dataset, the charging network contains Mode 3 AC-EVSEs and
Mode 4 DC-EVSEs.

The maximum charging power, Pmax, of an EV charging from a
DC charger can be stated equal to the chargers maximum power as
the onboard vehicle charger is bypassed in Mode 4 fast charging
[34]. However, most plug-in hybrid EV's (PHEV), and some full EV's
(FEV), are unable to use fast DC chargers and are limited to slower
AC chargers [49]. Mode 3 AC chargers require the use of an onboard
charger to convert AC to DC used to charge the EV battery. Due to

weight, space and cost-constraints, these onboard chargers typi-
cally set a limit for the maximum power EV's can accept from AC-
chargers [50]. For instance, the 2019 model of Nissan Leaf Acenta
has a 6.6 kW onboard charger, and thus the maximum charging
power from a Mode 3 AC-charger is 6.6 kW [51]. The output power
of the on-board charger is even lower than the stated power rating,
as the average efficiency of onboard chargers is around 90 % [52]. By
taking into consideration the restrictions posed by EV onboard
chargers, it is possible to get more reliable results than by simply
calculating the power based on meter readings as done for instance
in Ref. [38].

The weighted average onboard charger power rating of the 20
most popular EV-models in the Finnish EV-fleet is used as the first
guess in charging power estimation for events conducted on AC-
EVSE. Based on Finnish Transport and Communications Agency
Traficoms statistics, the 20 most popular FEV & PHEV-models of
Finland cover over 80 % of all EV's in Finland [53]. The weighted
average power rating of these onboard chargers is calculated to be
5.5 kW. If this weighted average power is unable to fill the charging
need, it means that the EV has a higher rated onboard charger, and
the realized charging power is calculated by dividing the charged
energy with event duration. If the calculated charging power ex-
ceeds the maximum charging power of the EVSE, the charging
event is discarded as erroneous. When generalizing the method-
ology to other areas, the onboard charger average power should be
calculated based on local EV fleet. It is also possible that in the
future the communication transfer between the EV and the EVSE is
extended to record either the true charging power, or the model of
the EV, which makes the utilized fleet average redundant and im-
proves overall accuracy.

3.3. Multivariate Copula fitting and comparison

This study assesses the performance of five different multivar-
iate copulas with EV charging event data. The compared copulas are
the Gaussian (Normal) and Student-t copulas from the elliptical
copula family; and Clayton, Frank and Gumbel copulas from the
Archimedean copula family. Mathematical formulations of these

Fig. 1. Key steps of synthetic data generation with multivariate copulas.

Fig. 2. Most popular copula functions and their dependency behavior (sample size n ¼ 10,000, bivariate distribution) [based on 42,43].
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copulas can be found for instance from Refs. [42,43]. The copula
fitting, synthetic data generation and goodness-of-fit tests were
conducted with the R programming language [26,54e56].

As the charging behavior typically differs between DC fast-
chargers and slower AC-chargers, it can be assumed that the
dependence structures between variables also differ between these
charger types. Charging behavior typically also differs between
weekdays and weekends or holidays, and this might affect the
variable dependence structures. In order to retain the impact of
these features, they could be treated as additional variables for the
copula. However, copula functions do not perform well with data
containing both continuous and discrete or binary variables.
Because of this, and in order to minimize the computational
complexity of copula modelling, the dataset is divided into four
subsets based on the type of EVSE used, and on day type (weekday/
holiday) of the charging event. The data subsets used in copula
fitting are AC-weekday, AC-holiday, DC-weekday and DC-holiday,
where the holiday datasets contain all events conducted during
weekends or public holidays.

The goodness-of-fits of the five different copulas for the dataset
are assessed by four mathematical methods. First, the fit of the
copulas is tested based on Kendall's process with the Cramer-von-
Mises test statistic [57e59]. This process returns an approximate p-
value with a parametric bootstrap under null hypothesis, which can
be used to reject copulas with clearly a poor fit to the data [47]. The
approximate p-values gained with different data subsets of this
study are combined with the Fisher's combined probability test
[60]. The resulting p-values of the copulas are used to assess
whether the null hypothesis can be rejected on a 95 % confidence
level.

The second method for the copula selection is based on k-fold
cross-validation of the hypothesized copula families using
maximum pseudo-likelihood estimation [59,61]. The resulting
criterion is an approximation of the leave-one-out cross-validated
log likelihood [59]. These criteria can be used to compare how well
the different copula families fit with the dataset. The preferred
copula is the one with the largest cross-validation criterion [47].

The final computational methods for assessing the goodness-of-
fit of the copula families are the Akaike information criterion (AIC)
and the Bayesian information criterion (BIC) [62,63]. Both AIC and
BIC are commonly used to estimate the relative quality of statistical
models for given data. Both of these criteria attempt to resolve the
overfitting issue which might be caused by model selection based
on (log)likelihoods with the introduction of penalty terms. The
Akaike information criterion formulated by Hirotugu Akaike in
Ref. [62] can be calculated as

AIC¼ � 2LLþ 2k (3)

where LL is the log-likelihood of the model and k is the number of
model parameters. There exists only one parameter, q, in the
assessed Archimedean copula families. For trivariate data used in
this study, the Gaussian copula has three and the Student-t copula
four parameters. When comparing the quality of a model relative to
the quality of another model, the preferred model is the one with
minimum AIC value.

The Bayesian information criterion introduced in Ref. [63] is
quite similar to AIC but has a larger penalty term. BIC can be
calculated with (4), where LL and k are the same as in (3), and n is
the sample size. Inmodel selection, themodel with the smallest BIC
value is again the preferred option.

BIC¼ � 2LLþ logðnÞk (4)

The cross-validation criteria, AIC and BIC of different data

subsets can be combined by summing up the values gained with
different subsets.

The results from the previous goodness-of-fit tests are used to
eliminate copulas with a poor fit to the data from further analysis.
The best performing copulas are used to sample new charging
events that should retain the dependence structures present in the
input datasets. The best fitting copula is chosen based on the pre-
vious goodness-of-fit methods and on how well the averaged daily
power profile of the sampled datasets follows the profile of the
original dataset. This averaged power profile encapsulates the
distributions and dependencies of charging event datasets quite
well and is thus a way to verify the proper function of the copula
sampling methodology and usability of sampled charging events in
different applications. EVSE load profile prediction is important, for
instance, in power grid planning and balancing.

4. Results

4.1. Dependencies in EV charging event data

According to existing literature, as described in section 2.2, there
exist complicated dependency structures between variables of EV
charging events. Themajority of previous dependency research has,
however, focused on charging events conducted on public charging
points. In this study, the dependencies between themost important
charging event variables are examined via the parametric Pearson's
product moment correlation coefficient and nonparametric Ken-
dall's and Spearman's correlation coefficients. Kendall's correlation
matrix for the original dataset is presented in Fig. 3.

Based on all evaluated correlation coefficients, the most signif-
icant correlation exists between the event duration and the
charged energy amount. The correlations can be verified from
Kendall's correlation matrix (Fig. 3). The red stars in the figure
represent two-sided p-values, with tree stars meaning the p-value
being equal or less than 0.001. The null hypothesis of the hypothesis
test is the absence of association between variables. As the p-values
between all variables are equal or less than 0.001, the null hy-
pothesis can be rejected in favor of the alternative hypothesis that
there exists an association between variables on a 99.9 % confi-
dence level.

According to the values of the Kendall rank correlation coeffi-
cient (Kendall's tau); the observations have similar ranks between
variables when considering the charged energy and the duration of
the charging event. That is, there exists significant positive Kendall
correlation (0.32) between these variables. The Kendall correlation
between the start time of the charging event and other variables
are lower and negative, but still significant. However, as the start
time (within each day) is a cyclic quantity with zero set (arbitrarily)
at midnight, therefore, although statistically significant, correla-
tions with the start time might be seen as somewhat arbitrary.

Pearson's and Spearman's correlation coefficients give similar
results as Fig. 3, that is, the null hypothesis can be rejected and
there exists a correlation between all variables on a 99.9 % confi-
dence level. Pearson's correlation coefficients are however all
positive, whereas Kendall's and Spearman's correlation coefficients
are negative between start time and other variables.

Due to the presence of dependencies in the data, sampling each
variable independently would lead to inaccurate results. Addi-
tionally, the variables do not clearly follow any mutual standard
probability distribution function. Due to the evidence that the
variables are dependent and have nonstandard probability density
functions, it is important to model the dependence structure be-
tween the variables and preserve these dependencies when sam-
pling new observations based on the original data.

J. Einolander and R. Lahdelma Energy 238 (2022) 121718

5



4.2. Estimated charging powers and the daily charging load

The average calculated charging power of charging events in the
original dataset is 14.3 kW. If considering only the events con-
ducted on AC EVSE, where the onboard chargers act as a constraint,
the average charging power was calculated to be 6.2 kW. Most of
the AC charging events could be completed with the estimated fleet
average onboard charger power of 5.5 kW, only 14.8 % of these
events required a higher charging power in order to meet the en-
ergy transfer in the event duration.

The realized charging times of charging events were calculated
after the estimation of realized charging powers. Based on these
results, the total plug-in time of the dataset consists mostly of
idling (73.96 %) and only 26.04 % of total time is spent on actual
charging. For an average charging event, the idling time is around
51.51 % of total plug-in time. This implies that the majority of plug-
in time is spent idling and that some charging events in the dataset
have substantially longer idling times than other ones.

The averaged daily charging loads of the analyzed network for
the period from January 2018 to June 2019, are presented in Fig. 4.
The average daily load portrays the distribution of charging power

of the network during an average day; the load is further divided by
the number of utilized charging points in the network during the
analyzed timespan to get generalizable results. This averaged daily
charging load can, for instance, be used to estimate the magnitude
and temporal distribution of private EVSE charging power demand
if the number of EVSEs in a network is known. As the events con-
ducted on AC and DC EVSE have considerably different charging
powers, the load distributions of events carried out on these EVSE
types are also plotted separately.

As can been seen from Fig. 4, the majority of private EV charging
power demand happens between 7:00 and 22:00, with the power
demand starting to decrease after 18:00. The average load curves
differ from load curves normally used to describe private customer
charging due to charging points owned by companies intended for
use by their employees and possible visitors, which cause the peak
demand of 0.16 kW per EVSE around 9:00. If there were 1,000
similar private charging points, this peak demand would be around
160 kW. Due to higher charging powers of DC EVSE, their load
profile is higher and has more variance than with AC EVSE. How-
ever, as can be seen from the figure, the analyzed network consists
mostly of AC EVSEs and the impact DC EVSE have on the total
charging load profile is relatively small.

As the analyzed private EV charging event dataset contains both
domestic and office chargers, it is useful to analyze if there are
differences between charging loads of weekdays and weekends or
holidays. The averaged daily charging load of weekdays is pre-
sented in Fig. 5, and of weekends and holidays in Fig. 6.

The charging behavior between weekdays and weekends or
holidays differs based on these figures. For instance, the morning
peak does not appear during weekends or holidays, and overall, the
load distribution is smoother.

In order to retain the variability caused by the used EVSE type
(AC or DC) and day of charging (weekday or weekend/holiday), and
to minimize the parameters estimated with the copula, the copulas
are fitted separately with data from each of these combinations (AC
weekday, AC weekend/holiday, DC weekday, DC weekend/holiday).
This reduces the parameters from five to three and ensures that
differing behavior is captured by the copula procedure.

Fig. 3. Kendall's correlation matrix for the dataset (three stars represent p-value � 0.001).

Fig. 4. Averaged daily charging load of the analyzed private EV charging network per
EVSE.
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4.3. Multivariate Copula comparison

The five different multivariate copulas are compared with the
four mathematical goodness-of-fit methods and with the averaged
daily charging load curve of sampled charging events as described
in section 3.3. The approximate p-values gained with the Kendall's
process with the Cramer-von-Mises test statistic imply that none of
the compared copula families can be rejected on a 95 % confidence
level. The approximate p-values of all copula families were nearly
zero, so the null hypothesis could not be rejected even on a 99.9 %
confidence level.

The k-fold (k ¼ 10) cross-validated log-likelihoods of the
compared copula families are presented in Table 1.

Based on cross-validated log-likelihoods, the elliptical copulas
clearly outperform Archimedean copulas, and Student-t seems to
be the best copula family for this data. To confirm this, the calcu-
lated Akaike and Bayesian Information Criteria are presented in
Table 2.

The Akaike & Bayesian information criteria calculated based on
maximized log-likelihoods of fitted multivariate copulas support
the results gained with the Kendall's process and k-fold cross-
validation. The elliptical copulas clearly outperform Archimedean

copula families, and the Student-t copula seems to be the best fit for
private EV charging data. The best performing Archimedean copula
is the Gumbel copula, but based on previous goodness-of-fit sta-
tistics its fit is considerably worse than with elliptical copulas.
These three copulas with the best goodness-of-fit results are cho-
sen for further scrutiny. The averaged daily charging load curves
gained with charging events sampled with each of these copulas
are compared to the baseline gained with the original data. This
way it is possible to ascertain that the simulated EV fleet charging
event load behaves similarly to the real world. The resulting aver-
aged load curves are plotted in Fig. 7.

The shapes of the load curves in Fig. 7 support the results of the
goodness-of-fit statistics. The load curve of the events simulated
with the Student-t copula has the best correlation with the aver-
aged load of the original data. Based on the root-mean-square error
(RMSE) and mean absolute percentage error (MAPE) of load curves,
the load curve constructedwith events simulatedwith the Student-
t copula has the smallest deviation from the original load curve.
RMSEs and MAPEs of load curves in Fig. 7 are presented in Table 3.

These results are supported also when considering only the
events conducted on weekdays (Fig. 8) or on weekends and holi-
days (Fig. 9). Again, the Student-t copula is the best performer
based on RMSE, MAPE and shape of these averaged daily charging
load curves.

In addition to outperforming other copula families based on
goodness-of-fit statistics and the averaged charging load curves,
the correlation coefficients of synthetic charging events sampled
with the Student-t copula are closest to coefficients of the original
dataset. For instance, the Kendall's correlation coefficients differ
only slightly with coefficients of the original dataset. The Kendall's
correlation matrix of data sampled with the Student-t copula is
presented in Fig. 10, and it is very similar to that of the original
dataset presented in Fig. 3.

Charging events simulated with the Student-t copula can be
used, e.g., to assess charging load distributions of EV charging
networks. For instance, in a private charging network with a total of
10,000 EVSEs, and AC/DC EVSE proportions identical to the input
data, the averaged daily charging load of the system would be as
presented in Fig. 11. In this hypothesized EV charging network, the

Fig. 5. Averaged daily charging load of weekdays.

Fig. 6. Averaged daily charging load of weekends and holidays.

Table 1
Cross-validated log-likelihoods of the evaluated copulas.

Elliptical copulas Archimedean copulas

Gaussian Student-t Clayton Frank Gumbel

Log-likelihood 33 246 39 077 5 598 5 673 6 651

Table 2
AIC & BIC of the evaluated copulas.

Elliptical copulas Archimedean copulas

Gaussian Student-t Clayton Frank Gumbel

AIC �67 044 �77 707 �11 612 �11 383 �13 319
BIC �67 015 �77 668 �11 602 �11 373 �13 309

Fig. 7. Averaged daily charging loads per charging point for simulated charging events.
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peak load of almost 1.6 MW would happen at 9 a.m. As the copula
fitting and event sampling were conducted separately for AC and
DC EVSE (and for weekdays and holidays), synthetic charging
events can be used in applications with any particular proportion of
AC/DC EVSE.

5. Discussion and conclusions

The aim of this study was to assess the performance of multi-
variate copulas in EV charging event simulation and analysis. Five
most common copula functions (Gaussian, Student-t, Clayton,
Frank, Gumbel) were compared based on multiple goodness-of-fit
statistics in order to find the best performing multivariate copula
for EV charging events. Based on the multivariate copula compar-
ison, the elliptical copulas (Gaussian & Student-t) outperform
Archimedean copulas (Clayton, Frank & Gumbel) in EV charging
event simulation. Overall, based on goodness-of-fit statistics and
generated averaged daily charging load profiles of the charging
network, the Student-t copula is the most reliable multivariate
copula to be used with EV charging event data.

The Student-t copula achieved the lowest AIC and BIC of all
evaluated copulas, and the generated averaged charging load

profile had the smallest deviation from the original averaged daily
load curve with RMSE of 0.005 kW and MAPE of 10.88 %. Addi-
tionally, the correlation coefficients of charging events generated
with the Student-t copula were found to differ only slightly from
coefficients of the original real-life EV charging event dataset.

The results of this study endorse the use of multivariate copulas
to capture the complex dependency structures that exist between
variables of EV charging event data. As the dataset used to train the
copula models was gathered from Finnish private EV charging
network, and consisted of real charging events, some uncertainties
might arise from the inevitable data cleaning. Additionally, as the
CPO does not record the realized charging powers of charging
events, these had to be estimated based on known variables and on
the average onboard charger power ratings of the Finnish EV fleet.
This estimation does not affect the reliability of charging event
simulation with multivariate copulas but has an influence on
averaged charging load power profiles used when comparing
simulated charging event populations. When generalizing the
methodology to other regions, the onboard charger average power
should be calculated based on local EV fleet. It can also be assumed
that in the future the communication transfer between the EV and
the EVSE is extended to record either the true charging power, or
the model of the EV, which makes the utilization of the average
fleet onboard charging power redundant, and improves overall
accuracy of the presented methodology.

Based on literature, multivariate copulas have not been previ-
ously used in EV charging event simulation and synthetic data
generation. However, multiple studies have addressed the
complicated correlation structures present between variables of
public EV charging event data and, for instance, predicted EV idling
times based on other variables. The correlations between variables
of the dataset used in this study are quite similar as those in
Ref. [38], that is the major correlation exists between the total
charged energy and the charging event duration. Other correlation
structures of the input data are also similar to findings of [24,38,40].

The correlation structures found in Ref. [32] by using bivariate
copulas to model the correlation of public EV charging variables
also support the findings of our study. According to both studies,
there exists a negative correlation between start time and duration
of charging events, and a positive correlation between duration and
charged energy variables [32]. However, according to our multi-
variate copula model, there also exists complicated non-linear de-
pendencies between the start time of the charging event and the
charged energy variables. The findings of [32] support also the
superiority of using the Student-t copula with EV charging data.
According to solely AIC-based goodness-of-fit tests conducted in
Ref. [32], the bivariate Student-t copula had the best fit in pairwise
assessment of intra-day start time and duration, and duration and
charged energy. In inter-day EV charging, Ref. [32] found that
Student-t had the best fit between start time and duration, but the
Clayton copula had a better fit between duration and charged en-
ergy variables mainly due to longer charging times. Comparison of
our results to results gained in Ref. [33] is impractical as their
models’ goodness of fit is assessed based on bivariate comparison of
frequency matrix similarities and histograms of the simulated and
original data. It would be beneficial, in the future, to compare the
performance of our procedure to the model of [33] with analogous
datasets.

The most important advantage of the proposed procedure is
that it can perform very well with data that inherently has
complicated multivariate dependencies. The multivariate copula
procedure for EV charging event simulation can be used to generate
synthetic electric vehicle charging events that retain the multi-
variate dependency structures of the charging event dataset used
as an input for the copula model. This indicates that even though

Table 3
RMSE & MAPE of averaged daily charging load curves.

Gaussian Student-t Gumbel

RMSE [kW] 0.0078 0.0050 0.0093
MAPE [%] 17.02 10.88 11.24

Fig. 8. Averaged daily charging loads per charging point for simulated charging events
on weekdays.

Fig. 9. Averaged daily charging loads per charging point for simulated charging events
on weekends and holidays.
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this study was conducted with Finnish private EVSE dataset, the
procedure and results of this study are de facto generalizable to EV
charging networks worldwide. The contributions made here have a
wide applicability in both academic and industry settings, and the
procedure is useful in multiple applications ranging from charging
point congestion planning to prediction of charging load caused by
EV charging. The copula procedure for EV charging event simula-
tion can also be utilized in power production, transmission, and
storage optimization models, such as [64,65]. As assed in this study,
the major charging loads caused by private EV charging coincide
strongly with the usual peak demand of electricity thus increasing
the peak load of the whole power grid. Large-scale grid optimiza-
tion becomes increasingly important as variable renewable elec-
tricity production is increasing simultaneously with the number of
EVs; these developments complicate the balancing of production
and consumption in power grids [64,65]. By utilizing EV charging
events in demand response schemes, it is possible to use the
available flexibility of EV idling as an additional method in grid
balancing. The multivariate copula method can also be used to
assess the demand response potential of EV charging networks and
how large an impact demand response of EV charging networks
could have on power grid stability. The procedure also helps to

address possible privacy concerns connected to data utilization as
the data generated with multivariate copulas is fully synthetic and
disconnected from real input data, while retaining all the de-
pendencies and other important characteristics of the original data.
As EV charging event data is typically the property of the charging
point operator, this additional data privacy of the synthetic data
could, for instance, alleviate concerns related to data sharing for
research purposes.

In the future, in addition to practical applications of the pro-
posed copula methodology, research should be conducted on
additional copula functions and simulation models in order to
determine whether there exists a method more suitable than the
multivariate Student-t for EV charging event data simulation.
Further, more extensive and diverse charging event datasets would
be beneficial to verify the results of this study, and to construct
generalized copula models that could be used in EV charging event
simulation without need for separate input datasets.

Overall, this study has shown that multivariate copulas are an
effective method to capture complex multivariate dependency
structures that exist in electric vehicle charging event data. The
proposed copula procedure can be used to generate novel charging
events that reliably retain the dependency structures of real
charging events. Generated synthetic charging events can be uti-
lized inmultiple practical and theoretical applications ranging from
demonstrated EV charging load and demand response aggregation
modelling to charging point congestion planning and large-scale
smart grid optimization.
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