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Abstract 

The performance of a direct methanol alkaline anion-exchange membrane (Fumatech FAA3) fuel cell 

with Pt-free nitrogen-doped few-walled carbon nanotubes (N-FWCNT) as the cathode catalyst is 

compared with a commercial supported Pt catalyst. The ionomer content of the N-FWCNT cathode 

catalyst layer is therefore optimized and it is shown to be 40 wt% of FAA3. Scanning electron 

microscopy images of the catalyst layer show that the ionomer forms aggregates with N-FWCNTs 

probably due to their charged nature and that the catalyst layer structure is remarkably open even with 

high ionomer contents facilitating the mass transfer of reactants and products to the active sites. With 
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oxygen as the oxidant, the maximum power density obtained with our Pt-free N-FWCNTs (0.78 mW 

cm-2) is slightly higher than with the Pt catalyst (0.72 mW cm-2). However, when more practical air is 

used as the oxidant, the N-FWCNTs (0.73 mW cm-2) show clearly superior performance compared to 

the Pt catalyst (0.18 mW cm-2). The lower performance with the Pt catalyst is attributed to the denser 

electrode layer structure resulting in higher mass transport resistance and to the presence of methanol in 

the cathode, which poisons the Pt but not the N-FWCNTs. 

 

Keywords: oxygen reduction; direct methanol fuel cell (DMFC); alkaline membrane electrolyte; 

nitrogen-doping; carbon nanotube 

 

1. Introduction 

Liquid-fed fuel cells, like the direct methanol fuel cell (DMFC), are very promising candidates for 

power sources of low-power electronic devices. However, large-scale commercialization requires 

improvements in the performance, durability and cost of the catalysts [1] and membranes [2]. Many 

activities are concentrated on the anode where complex and relatively slow methanol oxidation occurs, 

but the oxygen reduction reaction (ORR) taking place at the cathode is also under active research, 

especially since all typical fuel cells employ an oxygen reducing cathode. Although ORR is catalyzed 

relatively well by platinum, large loadings are required (0.4 mg cm-2) due to the complexity of the 

reaction compared with for example hydrogen oxidation (0.05 mg cm-2) [3]. This contributes greatly to 

the total cost of the whole system. Platinum nanoparticles used as catalysts also agglomerate during 

fuel cell use further reducing their activity [4]. In addition with DMFCs, methanol crossover from the 
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anode to the cathode due to unideal membrane materials causes a mixed potential and poisons the 

catalyst in the cathode with the intermediate product CO [5]. 

To solve these problems, alternative catalyst materials for ORR have been researched [6-9]. Recently, 

nitrogen-modified carbon materials have been shown to have inherent oxygen reduction activity that 

can reach or even exceed the activity of Pt-catalysts, while being immune to CO and methanol 

poisoning, and catalyst nanoparticle agglomeration [10-12]. These catalysts show moderate activity 

towards oxygen reaction in acidic and neutral conditions, and excellent activity in alkaline conditions 

[13-17]. Generally, they have been synthesized with the help of metal catalysts (e.g Co or Fe), which 

had raised the concern that the ORR activity was attributable to the metal-nitrogen complexes as in the 

well-known case of metal-porphyrins [9]. However, synthesis methods that do not use any metal 

precursors or catalysts have been recently developed and ORR activity of the catalyst has been 

preserved [15,18-22]. 

The exact mechanism of the ORR on nitrogen-modified carbon is not entirely clear at the moment, but 

the active sites are generally thought to be quaternary nitrogen atoms bonded to three carbons and 

pyridinic ones bonded to two carbons, or the highly active defect and edge sites present near the 

nitrogens functionalities [6]. Also, the more electronegative nature of nitrogen compared to carbon 

causes a negative charge on the nitrogen atom and positive charges on the surrounding carbon atoms, 

which should facilitate the adsorption of O2 on the catalyst surface [11]. 

Although a large number of metal-free N-modified materials have been synthesized and studied for 

ORR (e.g. graphene [10,23-33], carbon nanotubes [11,20,21,34-43], carbon nanofibers [12,44-47], 

mesoporous carbon [15,22], graphitic carbon [48,49], carbon spheres [19,50-53], carbon nanocages 
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[54], flower-like carbon [55], carbon aerogel [56,57], vesicular carbon [58], nanodiamonds [59]) 

relatively few have been tested in actual fuel cell conditions [58,60-69]. 

The most popular application target is the acidic polymer electrolyte membrane fuel cell (PEMFC) 

using hydrogen fuel. Nallathambi et al. [60] showed that metal-free synthesis of N-functional groups 

containing carbon black improved its ORR activity compared to as-received carbon material. Pyrolysis 

of the catalyst with a Co-Fe(1:1) chelate complex followed by acid-leaching to remove the metals 

further improved its performance, while the voltage loss for the catalyst over a 480 h test was 80 µV h-

1. Wu et al. [61] found similar results with N-doped graphene nanoplatelets, which contained very little 

Fe (0.6 a%) and no Co residues on the surface of the catalyst. The catalyst showed somewhat poorer 

performance than a Pt catalyst (80 mV lower potential at 0.1 A cm-2) and good stability over 400 h 

(voltage loss of 100 µV h-1). Mo et al. [58] synthesized N-doped metal-free vesicular carbon with a Fe 

catalyst and showed maximum power density of 200 mW cm-2, while commercial Pt-catalyst produced 

550 mW cm-2 in the same conditions. Onodera et al. [62] synthesized N-doped carbon on KetjenBlack 

support, which showed moderate performance in a PEMFC. Oh et al. [63] modified carbon black, 

carbon nanotubes and carbon nanofibers with nitrogen and showed that the nanofibers performed best 

in a H2/O2 fuel cell due to their high nitrogen content and edge plane exposure. The performance 

decrease of the fuel cell was 215 µA cm-2 h-1 over a 120 h test at 0.4 V. Liu et al. [64] studied the 

nitrogen structure of a N-modified carbon before and after a H2/O2 fuel cell test of 100 h and they 

linked the stability of the catalyst to the quarternary nitrogens, while pyridinic nitrogens protonate 

under the acidic conditions and become inactive. Similar conclusion about durability was made by 

Dorjgotov et al. [65] and they also showed performance equivalent of Pt catalyst in H2/O2 fuel cell 

(0.52 A cm-2 at 0.6 V). 
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Recently, alkaline anion-exchange membrane fuel cells (AAMFC) have been studied to replace the 

expensive Nafion membrane, reduce the corrosion in the fuel cell system and facilitate the catalysis of 

the electrode reactions [70,71]. Because of the higher ORR activity and stability of the N-modified 

carbon materials in alkaline conditions [13-17], they have recently been investigated as AAMFC 

cathodes. 

Rao and Ishikawa [66] fabricated N-doped carbon nanotubes with an aluminum template and studied 

them in an H2/O2 AAMFC. The performance of their catalyst was approximately 60% of a Pt catalyst 

in terms of maximum power density and it was stable for a 30-h test at a constant current. Higgings and 

Chen [67] synthesized self-standing, acid-washed N-doped carbon nanotube thin films with an Fe 

catalyst. The catalyst was tested in a H2/O2 AAMFC and showed 34% higher maximum power density 

than carbon supported Pt catalyst. 

Although N-modified carbon materials could be highly beneficial for the DMFC due to their tolerance 

to methanol and CO poisoning [72], there have been only two tests in an actual DMFC. Kim et al. [68] 

studied nitrogen-doped carbon nanofibers in an acidic DMFC cathode and could generate moderate 

electrical current. Sun et al. [69] co-doped cheap carbon black materials with nitrogen and fluorine and 

used them as ORR catalysts in a direct methanol AAMFC. They demonstrated better performance than 

commercially Pt/C at same catalyst loading (15 vs 13 mW cm-2) and stable performance for 24 h. In 

another similar study, Mazin et al. [73] used Co and Fe supported on nitrogen-modified carbons in a 

direct ethanol AAMFCs. They did not report on the performance of the catalyst after acid-leaching to 

remove the Co and Fe particles. 

Other type of fuel cells where metal-free N-modified catalysts have been used as cathodes are 

microbial fuel cells in neutral conditions resulting in better performance than with Pt [74,75] and 
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intermediate temperature (75-250°C) fuel cells based on metal oxide electrolytes in both acid and 

alkaline mode [76]. 

In this study, we have fabricated MEAs for a direct methanol AAMFC with Pt-free, nitrogen-doped 

few-walled carbon nanotubes (N-FWCNTs) that have been proven to be very active for ORR in 

rotating disc electrode measurements [77] as the cathode catalyst and have optimized the ionomer 

content of the cathode electrode layer. After optimization, we demonstrate that our AAMFC with the 

N-FWCNT cathode catalyst shows superior performance compared to a commercial carbon supported 

Pt, both with oxygen and air as the oxidant. 

 

2. Experimental 

2.1 Catalyst preparation 

A detailed description of the synthesis is given in [77]. Briefly, few-walled carbon nanotubes 

(FWCNT) were synthesized via decomposition of CH4 diluted with H2 at 950 °C on CoMo-MgO 

catalyst [78]. The FWCNTs were purified by washing in HCl followed by rinsing with deionized water.  

Nitrogen doping of the FWCNTs was accomplished by first coating them with a layer of polyaniline 

(PANI) deposited by in-situ chemical polymerization of aniline in acidic media and subsequent 

carbonization of the PANI-coated FWCNTs at 900 ºC for 1 h in Ar gas flow, according to a method 

previously reported for carbon black [79], producing the nitrogen-doped FWCNTs (N-FWCNTs).  

High-resolution transmission electron microscopy (HRTEM) was performed on the N-FWCNTs using 

a double-aberration corrected JEOL-2200FS microscope equipped with a field emission gun operated 

at 200 kV. 
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2.2 MEA preparation 

FAA3 membrane (Fumatech) was ion-exchanged in 0.5 M NaOH with stirring for 1 h and washed in 

deionized water. Before assembling the fuel cell, the membrane was soaked in 1 M methanol. The 

cathode catalyst inks were prepared by mixing the synthesized N-FWCNTs with isopropanol and 12 

wt% solution of FAA3 ionomer in N-methyl-2-pyrrolidone (NMP). The amount of FAA3 was varied 

so that its weight percentage of the total cathode mass (ionomer + N-FWCNT) was 21.7, 30.6, 42.0, 

51.1 and 60.5 wt% in each case. The MEAs fabricated from the above inks were labeled as MEA20, 

MEA30, MEA40, MEA50 and MEA60, respectively. The components were first mixed by a magnetic 

stirrer for 45 minutes, then subjected to 10 minutes of sonication and finally mixed by a magnetic 

stirrer overnight. Isopropanol (400-600 µl) was added to the ink during mixing until the viscosity of the 

ink was suitable for air brush painting: the more FAA3 solution in the ink, the less isopropanol was 

needed for good viscosity. The resulting slurry was painted on a pre-weighted gas diffusion layer 

(GDL) with a microporous layer (FuelCellEtc GDL-CT) by an air brush and dried in a vacuum oven at 

40 °C for 1 hour. The GDL was then weighed to determine the weight of the dry catalyst layer. The N-

FWCNT loadings of the cathodes were 2.2±0.3 mg cm-2. The same procedure was used to fabricate a 

reference MEA with Pt supported on a high surface area carbon (Alfa Aesar, 60 wt% Pt). The FAA3 

content in this case was 30 wt% according to the optimized value reported by Carmo et al. [80] and the 

Pt loading was 0.5 mg cm-2.  

The anode electrodes for the MEAs were fabricated from PtRu supported on high surface area carbon 

(Alfa Aesar, 40 wt% Pt, 20 wt% Ru) with similar method as the cathodes. The FAA3 ionomer content 

in this case was 30 wt% [80] and the PtRu loading was 3.0±0.2 mg cm-2. A higher PtRu loading and 

lower N-FWCNT loading was used to ensure that the catalytic activity of the fuel cell would be limited 
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by the cathode only. The MEAs were not hot-pressed due to the sensitivity of the FAA3 membrane to 

pressure and temperature [80]. 

 

2.3 Fuel cell measurements 

The fuel cell was assembled with a FAA3 membrane, painted electrodes and Teflon® gaskets. The cell 

was then clamped together with eight screws and tightened to a torque of 5 Nm. The active area of the 

fuel cell was 5.29 cm2. Cell voltage and current were controlled by a Metrohm Autolab PGSTAT20 

potentiostat with a BSTR10A booster. Prior to the measurement, the cell was first allowed to activate 

overnight at 50°C, with a 0.2 ml min-1 flow of  1 M methanol solution in deionized water at the anode 

and 100 ml min-1 flow dry O2 (5.0, Aga) at the cathode, while constant current of 0.5 mA cm-2 was 

applied.  

The next day, the flow rates of methanol and O2 were increased to 2.0 ml min-2 and 200 ml min-2, 

respectively. Once the open circuit voltage (OCV) stabilized, polarization curves were measured with a 

voltage sweep from the OCV to 0.05 V at a rate of 2 mV s-1. Then synthetic air (80% N2, 20% O2) was 

changed to the cathode, the cell was let to stabilize for 30 minutes and a new set of polarization curves 

were recorded. 

Next, impedance measurements were performed. The methanol solution at the anode was replaced with 

humidified H2 (5.0, Aga) to minimize the anode overpotential and O2 humidified at 50°C was fed to the 

cathode. The impedance spectrum of the whole cell was then measured at OCV from 100 kHz to 10 

mHz using a 0.25 mA sinusoidal signal. Polarization curves were also measured with H2 fuel with O2 

and synthetic air at the cathode. 
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Finally, a chronoamperometric measurement for 6 hours was made. Methanol solution was fed to the 

anode at 0.4 ml min-1 and oxygen to the cathode at 100 ml min-1 for 1 hour. One polarization curve was 

measured to ensure that all the H2 at the anode was oxidized and then a constant voltage measurement 

at 0.2 V was started. 

After the fuel cell was dismantled, two samples for scanning electron microscopy (SEM) were cut from 

the cathode catalyst layer: one from the center of the MEA and one close to the edge of the MEA. A 

JEOL JSM-7500FA field emission scanning electron microscope was used for the measurements. 

 

3. Results and discussion 

3.1 N-FWCNT properties 

Morphology of the N-FWCNTs was analyzed by HR-TEM (Fig. 1). The pristine samples (Fig. 1a) 

consist of 2-5 walls up to 6 nm diameter and about 1 μm length attached together in bundles and the 

morphology of N-FWCNTs does not differ significantly from that of the undoped ones. The nitrogen 

content determined by X-ray photoelectron spectroscopy (XPS) was found to be relatively low, 0.56 

at%, which implies that doping has not considerably altered the bulk properties of the pristine material. 

A full characterization of N-FWCNTs can be found in our paper  [77]. After the fuel cell testing, no 

significant differences in the N-FWCNT structure can be seen in the TEM images (Fig. 1b). Small 

clusters of amorphous material are attached to the N-FWCNTs, which is most likely the FAA3 ionomer 

that was not separated from the nanotubes during the sample preparation. 
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Fig. 1. TEM images of the A) pristine and B) used N-FWCNTs. 

 

3.2 Cathode catalyst layer optimization 

The optimum cathode catalyst layer structure was studied by fabricating MEAs with different FAA3 

contents and measuring their performance in an alkaline anion-exchange membrane fuel cell using 

methanol as the fuel and oxygen and synthetic air as the oxidant. Previous studies have shown that 

catalysts supported by high aspect ratio carbon materials require high amounts of ionomer in the 

catalyst layer (>50 wt%)  for optimal performance [81-83] and that for a H2-fueled, FAA3-based fuel 

cell with a commercial carbon-supported catalyst the optimum ionomer content is around 25 wt% [80]. 

Thus, it was decided to study the performance of the DMFC in a wide ionomer content range from 20 

wt% to 60 wt% of the cathode catalyst layer. Polarization curves and power density curves of the 

MEAs with oxygen at the cathode are presented in Fig. 2 and Table 1. It can be seen that 40 wt% of 

FAA3 in the cathode catalyst layer (MEA40) resulted in the best performance: both the current density 

at 0.05 V (9.1 mA cm-2) and maximum power density (0.78 mW cm-2) are higher than with the other 
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MEAs. The trend of the maximum power density against the FAA3 content exhibits a clear maximum 

at 40 wt% (Fig. 3). 

 
Fig. 2. The DMFC performance with the different FAA3 ionomer contents in the N-FWCNT 

cathode catalyst layer. The oxidant is O2. A) voltage and B) power density curves. 
 
 

 
Fig. 3. DMFC maximum power density of the MEAs plotted against the FAA3 ionomer content 

in the cathode. The lines are for visual aid. 
 

When the oxidant is changed to air, the absolute performances of the different MEAs decrease 

approximately 6% overall (Fig. 3), while the order of MEA performance remains the same as with O2. 

The small decrease in performance is surprising as it is expected to be 20-35% with a supported Pt 

catalyst [84-86]. The SEM images of catalyst layer show a very open structure, which can facilitate the 
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mass transfer and suppress the effect of decreased O2 concentration (see Section 3.4). It could also be 

that the relatively large area of the N-FWCNTs compared to the scattered Pt-nanoparticles on an 

inactive carbon support allows for better access of O2 to the active sites and thus the decrease in the O2 

concentration does not affect the N-FWCNT system as significantly. Finally, the sensitivity of Pt 

towards methanol crossover may be enhanced when the O2 concentration is reduced and so the 

methanol tolerant N-FWCNTs [77] do not show such a large decrease in performance.  

Table 1. The properties and perfomances of the investigated MEAs. 
MEA Pmax (O2)

a I0.05V (O2)
b Pmax (air)a I0.05V (air)b Stabilityc Resistanced Thicknesse 

 mW cm-2 mA cm-2 mW cm-2 mA cm-2 µA cm-2 h-1 cm2 µm 

MEA20 0.55 6.3 0.53 5.5 49 1.309 N/A 

MEA30 0.68 8.0 0.64 6.8 42 0.612 80±17 

MEA40 0.78 9.1 0.73 7.8 45 0.671 116±17 

MEA50 0.70 7.9 0.65 6.7 41 0.753 97±11 

MEA60 0.60 6.8 0.56 5.8 43 0.773 127±14 

MEA-Pt 0.72 8.9 0.18 2.7 N/A 0.830 19±4 

a DMFC maximum power density 
b DMFC current density at cell voltage of 0.05 V  
c DMFC current decrease over 6 hours at cell voltage 0.2 V 
d total cell resistance determined from high frequency impedance at 9.5 mA cm-2. 
e average cathode catalyst layer thickness and standard deviation determined from the SEM images (6  
measurement points per MEA) 
 

For easier comparison, the polarization curves of the optimum MEA40 with oxygen and air are shown 

in the same plot in Fig. 4. It can be seen that the performance of the air-DMFC decreases little more 

than that of O2-DMFC at the high current density region, where mass transport losses are in a more 

significant role. The same can be seen with all the MEAs (not shown) indicating that the mass transfer 

limitations are due to the reduced oxygen content of the oxidant and cannot be improved by changing 

the FAA3 content in the cathode. 
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Fig. 4. Comparison between the DMFC polarization curves of MEA40 with O2 and air as 

oxidants. The full symbols refer to voltage curves and open symbols to power curves. 
 

The total ohmic resistance of the fuel cell was determined from the high frequency end of the 

impedance spectrum of each MEA (Table 1). Clearly, the resistance increased linearly from MEA30 to 

MEA60, while MEA20 showed the highest resistance. Since the thickness (Table 1) and therefore the 

resistance of the cathode should increase with the ionomer content, this indicates that the amount of 

FAA3 in MEA20 is not enough to make a good contact between the catalyst layer and the membrane, 

thus increasing the ionic contact resistance between them. This is especially important in this case as 

heat-pressing could not be used to improve the contact between the components due to the sensitivity 

of FAA3. Similar effect has been observed for Nafion-based DMFC anodes and cathodes with 

commercial unsupported [87] or carbon supported [88,89] PtRu catalysts. When the fuel cells were 

dismantled, it was noticed that the GDLs in MEA40, MEA50 and MEA60 were attached to the 

membrane during testing due to the compression from the end plates, while GDLs in MEA20 and 

MEA30 were still loose further demonstrating the requirement of a higher amount of FAA3 for a 

proper contact between the components. 
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Long term stability of the catalyst was studied by a 6-hour chronoamperometric measurement at 0.2 V 

with oxygen as the oxidant (Fig. 5 and Table 1). It is evident that the FAA3 content has little effect on 

the stability of the fuel cell even though the absolute current values vary between the catalysts. This is 

unlike what was seen with Nafion and carbon nanofiber supported PtRu as DMFC anode, where the 

stability of the fuel cell increased until 70 wt% ionomer content [83]. The current decrease is slightly 

larger for MEA20 (49 µA cm-2 h-1) than for the other MEAs (43±2 µA cm-2 h-1), which could indicate 

that 20 wt% of FAA3 is not enough to bind the catalyst layer properly together resulting in quicker 

erosion and delamination during fuel cell use. The current decreases were calculated between the 

current at 0.5 h and at 6 h to eliminate the large and reversible drop at the start of the measurement 

[90]. 

 
Fig. 5. 6-hour constant voltage measurements at 0.2 V in DMFC. 

 

3.3 Comparison between N-FWCNT and Pt cathode 

After the optimization of N-FWCNT cathode catalyst layer, the performance of the best performing 

MEA40 was compared to a commercial carbon supported platinum (60 wt% Pt) catalyst (MEA-Pt). For 
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the commercial cathode, 30 wt% of FAA3 was used according to the results of Carmo et al. [80] The 

polarization and power density curves of MEA40 and MEA-Pt are presented in Fig. 6. 

 

 
Fig. 6. The DMFC performance of the N-FWCNT cathode (MEA40, 2.3 mg(N-FWCNT) cm-2) and 
Pt/C cathode (MEA-Pt, 0.5 mg(Pt) cm-2). A) O2, B) air as oxidant. The full symbols refer to voltage 
curves and open symbols to power curves. 
 

When O2 is the oxidant, the performance of the catalysts is quite similar in the high current density 

region. However, at low current density MEA40 shows superior performance due to its considerably 

higher open circuit voltage (OCV): 0.50 V and 0.44 V for MEA40 and MEA-Pt, respectively. This 

indicates that the N-FWCNTs are more tolerant to methanol [77] than the Pt-based catalyst, since the 

methanol crossing over the membrane from the anode causes a mixed potential at DMFC cathodes 

based on Pt and lowers the OCV strongly [5]. The maximum power density of MEA-Pt is 0.72 mW cm-

2, which is 92% that of MEA40 (0.78 mW cm-2). The power and current densities are relatively low 

compared to the results of Sun et al. [69] but this is due to the higher fuel cell temperature (60°C) and 

the addition of KOH into their methanol fuel solution that radically improves the performance of an 

AAMFC [91]. We purposefully avoided using KOH solution as it negates the advantage of a solid 
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electrolyte by introducing free cations into the system that can precipitate with carbonate ions produced 

from the anode reaction. They also used self-synthesized membrane from poly(arylene ether ketone) 

containing pendant quaternary ammonium groups and acidic Nafion as the ionomer in the catalyst 

layer, both of which will affect the performance. However, the DMFC power densities obtained here 

are 2.5 times higher compared to previous measurements with Fumatech FAA2 membrane at 30 °C 

with commercial carbon supported Pt-catalyst and PtRu-catalyst on the cathode and anode, 

respectively. [92] 

When the oxidant is changed to air, MEA40 performs remarkably better than MEA-Pt. The maximum 

power density of MEA-Pt is now 0.18 mW cm-2, which is only 25% that of MEA40 (0.73 mW cm-2). 

Taking into account the fact that there is more catalyst in MEA40, the mass specific power densities are 

360 mW g(Pt)-1 and 330 mW g(N-FWCNT)-1 indicating N-FWCNTs are an excellent candidate to 

replace Pt as they only contain cheap and abundant elements (C and N). The relative power density 

decrease from O2 is 75% for MEA-Pt, while it is only 6% for MEA40, which could be due to the 

catalyst layer structure and mass transfer differences between the MEAs (Section 3.4). In addition, the 

OCV drops radically for MEA-Pt from 0.44 to 0.30 V compared to O2 measurement, while the OCV of 

MEA40 remains at 0.50 V. The large decreases both in OCV and power density for MEA-Pt imply that 

the lower O2 concentration at the cathode allows the methanol crossover to disrupt the functioning of 

Pt-catalyst more significantly than when pure oxygen is used. In addition to the mixed potential and 

CO poisoning affecting the DMFC performance also with pure O2, the extent of the decrease in 

performance is likely due to the fact that the methanol oxidation at the cathode consumes O2, so the 

low 20% O2 concentration in air is further reduced leaving an O2 depleted and N2 enriched area around 

the Pt catalyst particles. When pure O2 is used, the relative drop in its concentration is not as large. On 

the other hand, when methanol tolerant N-FWCNTs [77] are used methanol simply diffuses out of the 
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catalyst layer without reacting. Also, the open structure of MEA40 can help O2 reach the active sites 

more easily, thus mitigating the effect of O2 concentration reduction (Section 3.4). 

The effect of methanol to the fuel cell performance was further examined by replacing the methanol 

solution with H2 as the fuel. In this case, when O2 was changed to air, the performance loss was 6% for 

MEA40 and 21% for MEA-Pt (measured at 0.3 V due to Ru oxidation at the anode coinciding with the 

maximum power density). For MEA40, this decrease is the same as with methanol but for MEA-Pt it is 

only less than a third indicating that methanol is an important factor in the surprisingly low 

performance of the MEA-Pt with methanol and air. Also, the OCV of MEA-Pt was higher than MEA40 

with the H2 fuel and both OCVs decreased about 30 mV when O2 was switched to air. However, 

MEA40 still shows better performance with O2 and clearly superior performance with air: the current 

for MEA-Pt at 0.3 V is 98% of MEA40 with O2 and 83% with air. The H2 fuel cell was not further 

studied due to the PtRu catalyst on the anode, which is not optimal for the H2 fuel. 

 

3.4 Cathode catalyst structure 

In order to further investigate the effect of FAA3 on the catalyst layer structure with N-FWCNTs and 

the Pt-catalyst, SEM images of the MEA cathodes were taken (Fig. 7a-f and 8a-b). In the case of 

MEA20, the whole catalyst layer peeled off in small pieces as it was removed from the fuel cell and cut 

for SEM imaging. Only small flakes of the catalyst can be seen on the microporous carbon layer of the 

GDL in the SEM image (Fig. 7a). Therefore, there is no structure or thickness data for MEA20. 
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Fig. 7. SEM images of the cross-sections of the cathode catalyst layers. A) MEA20, B) MEA30, C) 

MEA40, D) MEA50, E) MEA60, F) MEA-Pt 
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Fig. 8. Higher magnification (10000x) of the cathode catalyst layers of A) MEA30 (31 wt% FAA3) 

and B) MEA-Pt (29 wt% FAA3). 
 

Generally, the N-FWCNT based catalyst layers show large voids in their structure compared to the 

commercial catalyst with a Vulcan-like carbon support (Fig. 8), which also makes the catalyst layer 

relatively thick compared to MEA-Pt: the average cathode thickness of MEA-Pt is 19 µm, while it is 80 

µm thick in MEA30 with about the same FAA3 content. Mass-transfer should be facilitated in thinner 

catalyst layers as the traversed lengths are smaller but when MEA40 and MEA-Pt are compared, the 6 

times thicker catalyst layer in MEA40 results in better performance. Therefore it can be concluded that 

the thickness of the catalyst layer is not limiting factor with N-FWCNTs most likely due to the open 

structure. 

It appears that due to the surface charge caused by nitrogen incorporation into the FWCNT structure 

[11], the charged ionomer is attracted around the N-FWCNT bundles and forms aggregates. The large 

voids are beneficial for facilitated mass transfer through the layer, not only for O2 to get to the active 

sites but also for water management of the cathode. Water produced at the cathode of acidic DMFCs 

and permeating from the anode is a significant factor causing flooding of the catalyst layer and 

blocking of the catalyst sites. Although there is no water produced at the cathode in the alkaline 
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DMFC, the water permeating from cathode can block catalyst sites of the cathode [93]. The large voids 

enhance the water removal as there is more space for the water to flow out and it also remains as vapor 

more easily in larger pores [94]. The voids appear to be slightly more blocked at the high FAA3 

contents and the aggregates are bigger, which can contribute to the lower performance due to the 

decreased mass transfer for MEA50 and MEA60. However, it is clear that FAA3 does not fill the voids 

evenly but attaches to the already present aggregates. Therefore, the structure of the catalyst layer 

remains remarkably open, which is an interesting feature enabling the use of high amounts of ionomer 

in the catalyst layer without hindering mass transfer completely. This effect should also be studied 

further with other membrane and ionomer materials; however, this is out of the scope of this 

investigation.  Finally, as more FAA3 gathers around the N-FWCNT bundles, they may become more 

blocked from O2 so that they become inactive for ORR reducing the efficiency of the fuel cell, as seen 

with MEA50 and MEA60. Similar aggregates can also be observed with undoped FWCNT-PtRu and 

Nafion ionomer [95], but the voids are smaller and more blocked even with low Nafion concentration 

(30 wt%) and especially so after DMFC testing. 

As the total resistance of the fuel cell with MEA-Pt is higher than with MEA30 to MEA60 despite the 

greatly reduced thickness (Table 1), it can be concluded that N-FWCNTs decrease the contact and/or 

catalyst layer resistances in the MEAs. 

The absolute determination of the catalyst layer thicknesses of each MEA is difficult, because part of 

the catalyst layer had attached to the membrane during the testing. This is reflected in the large error 

margins of the results (Table 1). However, the general trend shows increasing thickness with increasing 

FAA3 content: from MEA30 to MEA40 the thickness increases significantly, then a slight decrease 

was observed with MEA50 and finally the thickest catalyst layer was found in MEA60. Surprisingly, 

this suggests that even though the mass of the ionomer increases exponentially with its weight 



21 
 

percentage in the electrode layer, the thickness of the catalyst layer does not. Apparently, FAA3 partly 

fills the voids found in the catalyst layer as its amount is increased beyond 40 wt%. 

 

4. Conclusions 

In this work, alkaline anion-exchange membrane DMFC performance was investigated with a 

commercially available Fumatech FAA3 membrane and ionomer with Pt-free nitrogen-doped few-

walled carbon nanotubes as the cathode catalyst. The optimum ionomer content of the cathode catalyst 

layer was found to be 40 wt% in the range of 20-60 wt% in terms of power and current densities. The 

ionomer content did not have a significant effect on the DMFC stability for concentrations higher than 

30 wt%. 

The N-FWCNTs were compared to a commercial carbon supported Pt as the cathode catalyst and 

remarkably, they were found to perform 4 times better than the commercial catalyst while air was used 

as the oxidant. The performance differences were attributed to the methanol tolerance of the N-

FWCNTs and the more open electrode structure. 

The examination of the catalyst layer structure with scanning electron microscopy revealed that the 

FAA3 ionomer formed aggregates around the N-FWCNTs leaving the catalyst layer full of voids, 

which should facilitate the availability of O2 through the whole catalyst layer. In comparison, the Pt 

catalyst layer was dense with smaller voids, which are less likely to percolate through the whole layer. 

This study shows that N-FWCNTs are an excellent and cheap oxygen reduction catalyst in alkaline fuel 

cell conditions and they can clearly outperform an expensive, commercial Pt catalyst in the presence of 

methanol with air as the oxidant. The results are also significant compared to common investigations 
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on new fuel cell catalysts, which only focus on the catalytic activity, in that here we show that MEA 

fabrication and study of fuel cell catalyst layer structure from novel materials is important and can 

reveal additional advantageous features like the open layer structure formed with the N-FWCNTs.  
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