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Abstract—Today’s software developments are frequently struc-
tured into different components with well defined interfaces. IEC
61499 comes with well defined interface mechanisms such as
adapters that group data and event exchange between different
subsystems. Compliance with interface specifications can be
monitored at run-time. In this paper we present a design pattern
to monitor adapters thereby observing whether communication
specifications are fulfilled. We present an example demonstrating
monitoring of a handshaking mechanism used between control
application components.

Index Terms—Component automation architecture, IEC 61499,
standard interfaces, monitors.

I. INTRODUCTION

Software development in industrial automation increasingly
relies on software components such as communication stacks,
algorithms and specialized drivers. These components are
typically developed and maintained by different teams such
as specific vendors, or teams from different departments
within the same company. A control engineer relies on these
components to build an application. Public access to the source
code of these components is not always provided, e.g., due
to Intellectual Property Rights. For this reason it is hard,
sometimes impossible, to test and analyse the exact internal
behavior of these components (”black-box” components).
Nevertheless, an integrated application relies on specified
properties of these black-box components. Since a thorough
verification and exhaustive testing is not always possible before
deployment of an application, it can be advisable to monitor the
behavior of components during run-time. This is particularly
true in cases where components can be updated independently
of an application, such as the installation of a new driver
with a slightly different behavior. In particular communication
interfaces and in some cases resource consumption of black-box
components can be monitored.

In the industrial automation realm, IEC 61499 represents a
modern component-based architecture and is frequently used
for the specification of control applications. A core feature of
component-based architectures are their well defined interfaces
and their interactions. IEC 61499 defines for that the adapter
interface and adapter connection concept, which allows to
define the full interface in a single entity (i.e., events and
data) between two specific components. This overcomes the

separation of events and data used typically in IEC 61499
applications. Adapters simplify connections by structuring and
aggregating component interconnections. Thus, for studying
IEC 61499 component interactions, adapter connections are at
the core of the investigation. Therefore, in this paper, we are
focusing on interface monitors for IEC 61499-based software
components that communicate via adapters with each other. We
are particularly interested in introducing a design pattern for
the monitoring of IEC 61499 adapters. Our monitors are based
on formal specification mechanisms such as state machines
and are able to detect deviations from the expected behavior.
In that case the application is notified via an event and can
take countermeasures such as transitioning into a safe state.

Some design patterns have already been proposed in relation
to adapters (e.g. [1], [2]). Work on verification of white-
box components interaction is presented in [3]. Run-time
verification (e.g. [4], [5]) is a technology that allows for
checking specifications at run-time of a system. Our monitoring
patterns follow this idea. Observer-based verification for IEC
61499 has been proposed in [6]. Work on monitoring of IEC
61499 specifications using formal specifications is proposed
in [7]. Based on that [8] presents a remote monitoring
infrastructure, while [9] focuses on specification formalisms for
monitoring and an integration into the Eclipse environment. A
so-called sniffer pattern is introduced in [10]. An investigation
on the correctness of run-time monitors themselves has been
conducted in [11].

Monitoring as one technique to identify faults at runtime
for industrial systems is also listed in a survey [12]. The work
in [13] shows an example where complex communication
protocols (called channels) originally specified in a language
called SystemJ [14] were adopted and implemented in IEC
61499. While SystemJ software components are associated
with behaviors that naturally have underlying state machines,
mapping the SystemJ channel specifications into state machines
are challenging, especially due to the lack of software tool
to facilitate the mapping. Thus, there is no guarantee that the
current IEC 61499 channel implementation, which are defined
in state machines-based ECC, would behave according to the
original specifications. Here, monitors could be used, e.g.,
during the testing phase of the development or certifications,



that the implementation adheres to the specifications and to
detect any violations, incorrect behaviors.

The rest of this paper is structured as follows: Section II
describes the proposed monitoring pattern. Section III considers
implementation options for the proposed monitoring pattern in
IEC 61499. Section IV introduces an illustrative example to
which the proposed monitoring pattern is applied in Section V.
Section VI concludes the paper and presents potential next
steps.

II. THE MONITORING PATTERN

The general setting for this work is that we have a set
of interacting components as shown in Fig. 1. An arbitrary
number (n) of components are connected with components (m)
using adapter connections. We assume that we have at least
one consistency condition that involves all adapter connections.
The goal is to have a monitor which will observe all adapter
connections and determine whether this consistency condition
is fulfilled. If it is violated a notification to the application or
an higher level system shall be generated allowing to perform
certain countermeasures.

Component	1

Component 2

Component n

...

Component	n	+1

Component	n	+	2

Component n + m

...

Fig. 1: Generic component interaction scenario which shall be
monitored.

In previous work [7], [8] we investigated such monitors by
enhancing the IEC 61499 execution environment provided by
the Eclipse 4diac project1. While it showed great potential,
it required a deep change in the execution environment.
Furthermore this approach did not allow an easy interaction
between monitor and the IEC 61499 application and monitoring
results where invisible to the application developer. Ref. [10]
presented an approach for extracting common error handling
code by introducing a design pattern which allowed to intercept
adapter connections feedback free. To overcome the limitations
of the previous monitoring approaches we propose to expand
the adapter interception concept from [10] and to explicitly add
the monitor components as part of the IEC 61499 application.

Fig. 2 shows the same situation after adding the proposed ex-
plicit monitor concept. The adapter connections to be monitored
are split into two parts with the monitor in the middle. The
monitor shall only observe the data and events that are being
transferred over the split up adapter connections and may not
alter it. The monitor can create an event “Monitoring Violation”.
This can be used to inform the IEC 61499 application about
monitoring violations and based on that handle error recovery.

14diac FORTE: https://www.eclipse.org/4diac/en rte.php

... ...

Monitor

Monitoring
violation

event

Component	1

Component 2

Component n

Component	n	+1
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Fig. 2: A generic IEC 61499-based design pattern for monitor-
ing component interactions at IEC 61499 application level.

For example, by potentially invoking other parts of the IEC
61499 application.

III. IMPLEMENTATION OPTIONS

In the IEC 61499 architecture, the interacting components,
mentioned in the previous section, can be implemented using
such design artefacts as function blocks (FBs) or subapplica-
tions. The monitor can also be implemented using the same
kind of artefacts.

Fig. 3 presents an example of implementation of the proposed
monitor pattern by means of IEC 61499 architecture, using
adapter connections between FBs.
• The monitor FB/subapplication is “inserted” in the adapter

connections between the interacting components (cf.
Figs. 1 & 2).

• The monitor FB/subapplication has event and data outputs
for informing on monitoring results (e.g., MonitoringVio-
lation).

• Event and data inputs may allow the application to interact
with the monitor, e.g., triggering modes switches, handle
error conditions (not shown in Fig. 3).

A. Monitor Specification Options

The consistency condition to be monitored can be specified
by means of various specification languages. Dependent on
the type of the condition, such options as state machines,
Petri nets, process algebras, etc., can be explored. While

Fig. 3: IEC 61499 implementation of the proposed design
pattern for monitoring multiple adapter connections.



Fig. 4: Example system.

these specification means have the required expressiveness,
most of them are not directly implemented as a part of
IEC 61499 standard. In this first investigation we therefore
want to investigate which IEC 61499 means are suitable
for implementing monitoring functionality in the monitoring
FB/subapplication (cf. Fig. 3). However the below presented
approaches can always be wrapped in subapplications for
encapsulation if needed.

The IEC 61499 option with the most efficiency would be
to use Service Interface FBs (SIFBs). A SIFB defines only its
interface to interact with the application via events, data, and
adapter connections. Its internals, however, are defined with
means outside of the scope of IEC 61499 and are vendor/run-
time environment specific. This has the great advantage that the
specification/implementation means best suited for monitoring
could be utilized, while at the same time allow tight interaction
with the monitored application. However, this is only a small
improvement to the previous approaches [7], [8] as the results
are very specific to a certain run-time environment.

The second IEC 61499 FB suitable would be the Basic
FB (BFB). A BFB contains a state chart mechanism called
Execution Control Charts (ECC). The ECC is very well suited
for specifying the consistency conditions of a monitor. The
drawback of BFBs is that the event and data flow which the
monitoring FB is intercepting (cf. Fig. 3) has to be manually
maintained so that the interaction between the components
is not disturbed. That means in addition to the monitoring
states and transitions dedicated states and transitions have to
be added to the ECC which will ensure the event and data
flow. This could result in very big and hard to maintain ECCs,
and therefore this solution seems not appropriate.

As final option IEC 61499 offers Composite FBs (CFBs).
CFBs encapsulate a FB network consisting of one or more
FB instances and connections between contained FBs and the
interface of the CFB. Adapter interfaces (i.e plugs and sockets)
are represented as FBs in the internal FB network of a CFB.
This has the great advantage that for maintaining the event and
data flow of the intercepted adapter connection only the IOs

of the plug and its according socket need to be connected. The
monitoring functionality of a CFB need to be implemented by
means of interaction of its constituent parts. An appropriate
solution can be to use one or several BFBs as discussed in the
previous paragraph. But the BFBs would not directly feature
the plug and sockets of the intercepted connections but would
be connected via event and data connections to the plug and
socket representations in the CFB. With that a best of both
worlds approach can be achieved: the BFB with its ECC is used
for the monitor specification, the discrete representation of the
plugs and sockets in the CFB is used for an easy maintenance
of the event and data flow and for extracting the events and data
for the monitoring BFB. This promising approach is further
investigated in the rest of this paper.

B. Deployment Options

A further aspect of monitoring component interactions is
where to perform the analysis. This can be either local or
remote. Local has the advantage of fast and direct interaction
with the application. Remote monitoring has the advantage that
the data processing can be performed an a separate computing
device (i.e. cloud or edge). This can reduce the impact of
monitoring on the application execution especially when the
monitoring checks get more complex or when data from any
parts of the application shall be checked (e.g. [8]).

In our proposed approach both options can be implemented.
In the local approach, the implementation options, discussed
in the previous section, would just be deployed as a part of the
monitor FB/subapplication. For remote deployments, the moni-
tor FB/subapplication would contain a set of communication
FBs which would forward all monitored data in an appropriate
form to the computing device performing the analysis. Any
feedback generated by the remote monitoring algorithm would
be received again with communication FBs. Although both
options are hidden within the monitoring FB/subapplication,
they can be transparent for the application engineer. For the
first investigation of our proposed monitoring approach we will
focus on the local monitoring.
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Fig. 5: Overview on the function block application with the component interactions to be monitored.

IV. EXAMPLE

This section presents an example to demonstrate the feasibil-
ity of our monitoring pattern. As a case study, we use a single
tank reactor system that consists of a vessel with a heating
element, connected with pipelines to the source and sink of
the liquid. The piping and instrumentation diagram of this tank
reactor example is shown in Fig. 4 (left). The tank is supplied
with liquid via two inlet pipes, referred to as slow inlet and
fast inlet. The solution entering the inlet pipes is regulated
by a pump installed at the incoming pipe. There is one outlet
pipe which drains the tank as needed. The liquid in the tank is
heated by a heating coil connected at the bottom of the tank
and the temperatures can be seen on the indicator to the left
of the tank.

The setup consists of various sensors to measure the level and
temperature in the tank as seen in Fig. 4 and the communication
between the level and temperature sensors with their respective
controllers is being monitored using the presented design
pattern and idea for monitors. Monitors used are shown in
Fig. 5 and will be explained in the subsections below.

A. The Handshake Mechanism

A handshake mechanism has been developed to confirm the
transmission of sensor values from the smart sensor to the
controller. The mechanism has been developed as a part of the
smart sensor and is a part of the duplex communication channel
implemented using the IEC 61499 adapter technology. With the
help of the handshake mechanism the smart sensor can send
messages along with the values it is sending to the controller
and then awaits a confirmation from the controller. Only upon
receiving the confirmation via the handshake protocol does
the smart sensor send the next or updated value. Sequence
diagram in Fig. 6 depicts the desired operation of the handshake
mechanism for two scenarios.

Scenario 1 ‘Full operation’ of the sequence diagram depicts
the desired or ideal mechanism of the handshake protocol
wherein the sensor sends ‘value XX’, along with that ‘Sent,1’
string is appended. Once the controller successfully receives
the value it sends out a string ‘Rec,1’ indicating to the smart

10ms time-out period

10ms time-out period

10ms time-out period

10ms time-out period

SmartSensor Controller

SmartSensor Controller

Full Operation

Value = XX, 'Sent,1'

'Rec,1'

Value = YY, 'Sent,1'

Authentication Timeout Condition

Value = AA, 'Sent,1'

Value = AA, 'Sent,2'Confirmation not
received within
timeout period.
Resend value

Value == AA, 'Sent,3'

'Rec,3'Correct Confirmation
Received within
timeout period

Value == BB, 'Sent,1'

10ms time-out period

10ms time-out period

10ms time-out period

10ms time-out period

Fig. 6: Handshake Mechanism.

sensor that it received the value sent, after which the sensor
sends the updated value. Scenario 2 ‘Time out condition’ on
the contrary explains the requirements when the confirmation
is not received by the smart sensor within the set waiting time
period. As shown in the sequence diagram the sensor sends
‘value AA along’ with the appended message ‘Sent,1’ but does
not get a confirmation within the 10ms time-out period and
hence resends ‘value AA’ but with an updated message ‘Sent,2’
indicating that it is sending the same value the second time.
This cycle continues until the sensor receives a confirmation
within the 10ms time-out period. Once the correct confirmation
is received it sends the updated value.

V. DESIGNED MONITORS

A. Monitor 1: Handshake Mechanism Monitor

A monitor, as shown in Fig. 7a, has been developed to verify
the handshake mechanism. The monitor FB is placed in between
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(b)

Fig. 7: Monitor 1 a) Interface and b) Connections.

the plug and socket of the handshake mechanism as depicted
in Fig. 7b and works on top of the communication channel
between the sensor and the controller, if the monitor finds an
error with the protocol of the handshake mechanism it raises
an alarm on the HMI notifying the issue in the implementation.

The monitor FB has been designed as a CFB in a pattern
shown in Fig. 8, to not disturb the communication between
the channel rather just take information from the channel and
check it based on the state machine inside the MonitorFB1
basic FB. The adapter plug and sockets are directly connected
i.e. enabling direct communication from the sensor to the
controller and vice-versa.

Represented in Fig. 9 is the state machine designed for
the monitor 1 operations. The monitor can be enabled using a
button in the HMI which will take the state machine to the wait
state, once the monitor receives a value from the smart sensor
it will first check if the value is an old value or an new value,
after which it moves to the corresponding state and checks if
the appended string for the handshake mechanism is according
to the desired specifications. If the incoming messages are
correct the system then proceeds to check for the confirmation
message sent by the receiver. This state machine runs in a
continuous loop until a received message does not correspond
to the expected message, in which case the state machine
progresses to the error state and stays there until manual event
is not generated. Along with that the monitor also raises an
error flag on the HMI and informs where the error is and what
the error is.

Fig. 8: Monitor 1 Architecture

START

INIT

Event Output

  INITO

RESET
oldValue := FALSE;
newValue := FALSE;
error := FALSE;
SendCorrect := FALSE;
RecCorrect := FALSE;
k := '';
ExpectedMessage := '';
ReceivedMessage := '';
ErrorSide := '';
Event Output

  CNF_WrongInfo

IF ValueIN = PrevValue THEN

  oldValue := TRUE;
  newValue := FALSE;
ELSIF ValueIN <> PrevValue THEN

  oldValue := FALSE;
  newValue := TRUE;
END_IF;

IncomingMessageCheck2

i := STRING_TO_REAL(j);
i := i + 1;
j := REAL_TO_STRING(i);
IF DataRec = CONCAT('Sent,',j) THEN

  SendCorrect := TRUE;
  error := FALSE;
ELSIF DataRec <> CONCAT('Sent,',j) THEN

  error := TRUE;
  SendCorrect := FALSE;
END_IF;
j := (RIGHT (DataRec, 1));
PrevValue := ValueIN;
PrevSent := DataRec;

ReceivingMessageCheckErrorSend

ErrorRec

ExpectedMessage := CONCAT('Rec,',j);
ReceivedMessage := HandshakeConf_IN;
ErrorSide := 'Receiver';
Event Output

  CNF_WrongInfo

INIT 1

E_MonitorSwitch & MonitorSwitch E_MonitorSwitch & MonitorSwitch

oldValue

SendCorrect & E_HandshakeConferror

NOT (MonitorSwitch)

E_MonitorSwitch & NOT (MonitorSwitch) 

Wait

ValueCheck

IncomingMessageCheck

IF DataRec = 'Sent,1' THEN

  SendCorrect := TRUE;
  error := FALSE;
  i := 1;
ELSIF DataRec <> 'Sent,1' THEN

  error := TRUE;
  SendCorrect := FALSE;
END_IF;
j := (RIGHT (DataRec, 1));
PrevValue := ValueIN;
PrevSent := DataRec;

IF HandshakeConf_IN = CONCAT ('Rec,',j) THEN

  RecCorrect := TRUE;
  error := FALSE;
ELSIF HandshakeConf_IN <> CONCAT ('Rec,',j) THEN

  RecCorrect := FALSE;
  error := TRUE;
END_IF;

k := REAL_TO_STRING(i);
ExpectedMessage := CONCAT('Sent,',k);
ReceivedMessage := DataRec;
ErrorSide := 'Sender';
Event Output

  CNF_WrongInfo

MonitorReset

oldValue := FALSE;
newValue := FALSE;
error := FALSE;
SendCorrect := FALSE;
RecCorrect := FALSE;
k := '';
ExpectedMessage := '';
ReceivedMessage := '';
ErrorSide := '';

REQ

newValue

SendCorrect & E_HandshakeConf

error

error

RecCorrect

1

Fig. 9: Monitor 1 State Machine.

B. Monitor 2

A monitor was designed to analyze various subsystems and
then based on the observations command a set of further sub-
systems to perform the desired operations. In our development
and test case, shown in Fig. 10a, we used 2 heat sensors in the
water process tank acting as the 2 subsystems to be monitored,
which was then commanding the average FB to use the values
from one of the sensor or both the sensors based on the received
data.

As shown in Fig. 10b, the monitor basic FB acts on top
of the communication channel between the sensors and the
controls and monitors the sensors for damage. The MonitorFB2
basic FB, is specified following the state machine in Fig. 10c,
which has 3 states of output i.e. use sensor 1, use sensor
2 or use the average of both sensors. Designed to monitor
the operation of various subsystems and the quality of the
channel, the monitor continuously assesses the functioning of
the individual subsystems i.e. their activity and functioning. If
any of the subsystem gets damaged or stops functioning, the
monitor is capable of raising an alarm regarding the same. To
monitor the channel quality, the MonitorFB2 uses the feature
of timestamps included in the design wherein it calculates the
delay in which it is receiving values and then the subsystem
with lower delay is recommended by the monitor.

VI. CONCLUSION AND OUTLOOK

In this paper we presented a design pattern for monitoring
of IEC 61499 adapter connections. Implementation options
for the proposed design patterns are discussed and example
implementations and applications are presented. Our pattern
does not only allow the detection of deviations from a
specification but provides a well defined way to communicate
this deviation to the application. This can be used in a similar
way as the well-known exception handling mechanism that is
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START

INIT

Event Output

  INITO

Mode3

t1temp := SUB_TOD_TOD(ValueS1.ToB,prevTS1);
t2temp := SUB_TOD_TOD(ValueS2.ToB,prevTS2);
IF ((t1temp > t2temp) & (prevValueS2 <> ValueS2.val)) OR 

     CalcMode := 2;
(ValueS1.ToB = prevTS1) THEN

ELSIF ((t1temp < t2temp) & (prevValueS1 <> ValueS1.val)) OR 

    CalcMode := 1;
(ValueS2.ToB = prevTS2) THEN

ELSE

    CalcMode := 3;
END_IF;
prevValueS1 := ValueS1.val;
prevTS1 := ValueS1.ToB;
prevValueS2 := ValueS2.val;
prevTS2 := ValueS2.ToB;

Event Output

   Mode

Mode2

ValueS2_out := ValueS2.val;
CalcMode := 2;
prevValueS2 := ValueS2.val;
prevTS2 := ValueS2.ToB;

Event Output

   Mode

Mode1

ValueS1_out := ValueS1.val;
CalcMode := 1;
prevValueS1 := ValueS1.val;
prevTS1 := ValueS1.ToB;

Event Output

   Mode
INIT

1

(NOT S1Error) & ( NOT S2Error)

1E_Sensor2 & S1Error & NOT S2Error1

E_Sensor1 & S2Error & NOT S1Error
1

(c)

Fig. 10: Monitor 2 a) Use Case, b) Connection, and c) State
Machine

available in many higher-programming languages such as Java.
Right now, the monitor specification and implementation relies
completely on existing IEC 61499 specification options. This
has the great advantage that the monitor is independent from
run-time systems and vendors.

For future work, two major areas can be identified. At
first, we are interested in investigating different specification
languages for the monitors. These comprise regular expressions,
Petri nets, automata, process algebras, temporal logic, and
other formalisms that come with a well defined semantics.

Automatic generation of monitors from these specifications
is closely connected to this. In addition, we are interested
in looking into distributed monitoring. When monitoring
different adapters that are deployed on distributed devices,
the communication overhead can be significant. Distributing a
monitor over different devices could be a solution to reduce
the communication overhead, especially if the properties to be
monitored only have sporadic interdependencies.
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