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ABSTRACT In recent years, the internet of things (IoT) represents the main core of Industry 4.0 for
cyber-physic systems (CPS) in order to improve the industrial environment. Accordingly, the application
of IoT and CPS has been expanded in applied electrical systems and machines. However, cybersecurity
represents the main challenge of the implementation of IoT against cyber-attacks. In this regard, this paper
proposes a new IoT architecture based on utilizing machine learning techniques to suppress cyber-attacks
for providing reliable and secure online monitoring for the induction motor status. In particular, advanced
machine learning techniques are utilized here to detect cyber-attacks andmotor statuswith high accuracy. The
proposed infrastructure validates the motor status via communication channels and the internet connection
with economical cost and less effort on connecting various networks. For this purpose, the CONTACT
Element platform for IoT is adopted to visualize the processed data based on machine learning techniques
through a graphical dashboard. Once the cyber-attacks signal has been detected, the proposed IoT platform
based onmachine learning will be visualized automatically as fake data on the dashboard of the IoT platform.
Different experimental scenarios with data acquisition are carried out to emphasize the performance of
the suggested IoT topology. The results confirm that the proposed IoT architecture based on the machine
learning technique can effectively visualize all faults of the motor status as well as the cyber-attacks on
the networks. Moreover, all faults of the motor status and the fake data, due to the cyber-attacks, are
successfully recognized and visualized on the dashboard of the proposed IoT platform with high accuracy
and more clarified visualization, thereby contributing to enhancing the decision-making about the motor
status. Furthermore, the introduced IoT architecture with Random Forest algorithm provides an effective
detection for the faults on motor due to the vibration under industrial conditions with excellent accuracy of
99.03% that is significantly greater than the other machine learning algorithms. Besides, the proposed IoT
has low latency to recognize the motor faults and cyber-attacks to present them in the main dashboard of the
IoT platform.

INDEX TERMS Fault diagnosis, induction motor, machine learning, Internet of Things, industry 4.0.

The associate editor coordinating the review of this manuscript and

approving it for publication was Razi Iqbal .

I. INTRODUCTION
Worldwide, since the industrial revolution, rotary equipment
has been widely used in many areas. Among them, induction
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motors play an essential role in the industry due to their low
cost, easy maintenance, and unrestricted working environ-
ment [1]. However, if the production line is unpredictably
shut down because of sudden failures of motors, it causes
heavy damage over time. Therefore, fault detection and diag-
nosis for inductionmotors becomemuchmore important. The
motor failures would generate heat and vibration and increase
energy consumption [2]. As a result, the motor life would be
reduced. There are many kinds of motor failures which are
categorized into two major types of faults including electri-
cal faults and mechanical faults. Mechanical faults include
bearing faults, misalignment faults, and air-gap eccentricity
faults. While electrical faults are related to faults like stator
short-circuits, broken bar faults, and end ring faults [3], [4].
Bearings are among the most important components in induc-
tion machines. Their load capability, running accuracy, noise
levels, frictional heat, and useful life will directly affect the
induction machines [5]. It is about 40% - 90% of all motor
failures that come from bearing faults depending on the size
of the motors [6]. Therefore, the early detection and diag-
nosis of bearing faults could prevent sudden failure. This
research subject still attracts great attention from the research
community.

The diagnosis method can be divided into vibration and
current analysis. The approach based on the motor current
signature analysis (MCSA) is considered because of its low-
cost, non-intrusive, and fast installation [7], [8]. However,
the current signal diagnosis is difficult to detect abnor-
malities in the early stage of motor failures, this approach
is still an immature technology compared to the vibra-
tion signal diagnosis [9]. According to the specification
of ISO-10816 [10], it proposed a method for evaluating the
statuses of the motor based on the measured vibration sig-
nal. A threshold for vibration damage has been proposed
for motor condition monitoring. The method based on the
curve component analysis was proposed to analyze vibra-
tion characteristics and to establish nonlinear data for the
training dataset [11]. The individual frequency bands for
envelope spectrum analysis can be extracted by filtering
the vibration signal with the appropriate bandwidth. Then,
the characteristic frequencies of the vibration signals can be
observed in the initial stage of the bearing fault [12]. Statisti-
cal calculations were used to calculate the measured vibration
energy. The influence of bearing speed on statistical indica-
tors has been introduced, it showed that the kurtosis and skew-
ness factors can be effective parameters for bearing defect
identification [13].

Signal analysis approaches have been widely used to
study motor signal vibration for bearing fault diagnosis.
An improved fast Fourier transform for vibration signal anal-
ysis was introduced for both simulation and practical appli-
cations [14]. Several time-frequency analysis approaches
were utilized for fault diagnoses such as the short-time
Fourier Transform (STFT), Wavelet Transform (WT), and
the Hilbert-Huang Transform (HHT). The WT could provide
a good resolution for both time and frequency domain that

overcome the limitation of the STFT, thus the method is
widely used for fault diagnosis [15], [16]. In addition to
Fourier transform and WT, the HHT is also an effective
approach for motor vibration signal analysis, it can detect
malfunctioning by revealing the instantaneous amplitude and
nonlinear and nonstationary characteristics in the frequency
content [17]. Furthermore, the vibration signal contaminated
by signal noise could be filtered by using the wavelet packet
decomposition (WPD), the energy of the WPD coefficients
could be utilized to detect the rolling bearing failures effec-
tively [18]. TheWPD and statistical methods were developed
to successfully extract the significant features of bearing
faults using time-frequency analysis [19].

Recently, fault diagnosis and detection based on artificial
machine learning techniques have been performed effec-
tively [20]. These methods usually involve intelligent signal
analysis and it requires data collection to do signal processing
and feature extraction. Various classifiers including artificial
neural networks, k-nearest neighbors (kNN), and support vec-
tor machines (SVM) have been applied to fuse the vibration
and current signal for multi-faults classification of induction
motor [9]. Yang et al. [21] proposed a method based on a
random forest (RF) algorithm that can achieve satisfactory
accuracy for machine fault diagnosis with fast execution
speed. The performance of the proposed method is much
better compared to the other classifiers such as kNN, SVM,
and decision tree. The machine learning ensemble classifier
includingRF and extreme gradient boosting (XGBoost) could
be a promising model in terms of accuracy for bearing fault
diagnosis [22], [23]. However, it is still difficult to determine
features that are the most sensitive to the fault of the induction
machine, because the performance of machine learning tech-
niques is reflected by choosing suitable fault features. Deep
learning can extract and learn the representative patterns
of the signals effectively compared to conventional feature
extraction and selection methods. For example, the convolu-
tional neural network method shows excellent performance
for pattern recognition that was also applied for fault
diagnosis [24], [25]. Janssens et al. developed an architecture
of the CNN model for detecting rotary machinery faults with
vibration spectrum features [26]. However, the computational
time is one of the most challenging to apply deep learning for
online condition monitoring. Thus, an appropriate machine
learning approach still needs to investigate to enhance the
performance of the model with high accuracy and short com-
putational time. The authors of [27] have investigated the
cloud-based malware detection game, where mobile devices
divest their application traces to security servers through base
stations or access points.

Nowadays, the development of Industry 4.0 and the rise
of the Internet of things (IoT) have become a solution for
advanced predictive maintenance applications, in which the
status of the motor is constantly monitored and recorded [28].
The concept of industrial IoT has been considered in many
industrial fields and is expected to drive industry growth.
The industrial IoT concept involves smart machines that are
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FIGURE 1. Industrial IoT architecture for condition monitoring of induction motors.

equipped with different sensors, connectivity, data manage-
ment, and application layer as shown in Fig. 1 [29]. The
sensor data analytics and management of big data are both
challenging tasks of IoT, particularly for online condition
monitoring of the IoT system [30]. IoT system allows the user
able to monitor the machine status in real-time and it can give
quick feedback with proper adjustments [31]. Thus, it can
help to accelerate the operation of the factories that involve
diverse electrical machines, mostly induction motors.

As aforementioned in the literature, effective monitoring
bearing faults are considered themain challenges of the rotary
equipment to enhance the efficiency of the operation and
lifetime of the induction machines. This study was inspired
by the development of IoT and machine learning approaches
that towards intelligence industrial machine. To the best of
the authors’ knowledge, this is the first study to experimen-
tally apply IoT and CPS concepts to effectively diagnose
induction motor faults with data acquisition. Specifically,
an intelligence IoT platform integrating an improvedmachine
learning algorithm is developed to detect the bearing fault of
the induction motor. Besides, the powerful learning ability of
the machine learning model enables the proposed system to
detect fake data considered as cyber-attack accurately.

The contributions of this paper are summarized in the
following points,
• Developing a cheap and easy implementation IoT archi-
tecture with machine learning techniques for motor
faults detection instead of the traditional fault’s detection
schemes for induction machines.

• The introduced IoT architecture with machine learning
algorithms can also detect the cyber-attack and present
it as fake data in the main dashboard of the IoT platform
to provide secure online monitoring.

• The proposed infrastructure can detect the normal, inner
bearing defect, outer bearing defect in order to maintain
a healthy state and increase the lifetime of the induction
machines.

• The proposed IoT has low latency to recognize themotor
faults and cyber-attacks to present them in the main
dashboard of the IoT platform.

• The experimental results indicate the superiority of the
proposed IoT system integrating machine learning for
condition monitoring of the induction machines.

The remainder of the paper is organized as follows. The
proposed industrial IoT architecture and machine learning
algorithms are described in Sections II and III. Simulation
results are presented in Section IV. The conclusions drawn
from the result section are summarized in Section V.

II. PROPOSED INDUSTRIAL IoT ARCHITECTURE
A. ARCHITECTURE OVERVIEW
The extension of the IoT in industrial applications is namely
industrial internet of things (IIoT) which refers to the commu-
nication of machine-to-machine (M2M), data analysis, and
machine learning. Recently, Industrial IoT has been consid-
ered in many applications towards smart factories to get high
performance, more efficiency, and reliability in their opera-
tions [32]. An architecture of IIoT for condition monitoring
of induction motors is proposed in Fig. 2. The induction
machines are equipped with sensors to continuously collect
the data. Then, the sensor data is transmitted on the cloud
layer through the connectivity layer with the IoT gateway.
To manage the sensor data, the software part is required, then
the large volumes of sensor data can be stored and analyzed in
real-time. Finally, the decision-making is carried out before
any necessary actions feedback to the machine. Cloud com-
puting to process the data can be accelerated by artificial
intelligence and machine learning that allow to improve the
performance and reduce the computational time of the sys-
tem. In the application layer, a user interface is designed to
visualize data analytics and remote data monitoring in real-
time. In this paper, the CONTACT Elements for IoT using the
standard MQTT protocol is proposed to visualize such infor-
mation through a graphical dashboard [33]. The proposed
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FIGURE 2. Proposed IoT architecture for online monitoring of the induction motor.

IIoT is integrated with a machine learning approach for con-
dition monitoring of induction motor. Furthermore, the fake
data due to the cyber-attack is usually the main challenge
against the visualization of the real data. The cyber-attack
needs to be detected in order to provide the user with real data
that allows reliable decision-making and keeps the operation
of the motor in a healthy condition.

B. EXPERIMENTAL SETUP AND DATA ACQUISITION
In this section, the experimental setup and data acquisition for
the induction motor is presented. Figure 3 shows the motor-
driven rotary system that includes a TECO AEHF 3-phase
induction, a TECO A510 series variable frequency drive, and
a Chain Tail ZKB010AAmagnetic particle brake. The Torque
values applied on the motor were controlled using a torque
meter with the type of Lorenz Dr-2477-P. The vibration
signal was measured by the Wilcoxon 786A accelerometers
with a sampling rate of 25,600 samples/sec. Several bearing
conditions including healthy condition, outer ring fault, and
inner ring fault were conducted in the experiment. Addition-
ally, fake data is also considered in this study as a cyber-
attack. Figure 4 describes the outer ring and inner ring defects
with 0.2 mm depth and 0.2 mm width were created by
making a groove in each ring using wire electrical discharge
machining.

A series of six-type experiment was conducted with three
different bearing conditions, in which two different rotational
speed, three electricity modes, and three resistance conditions
were applied to the induction motor operations. The details
of each condition are listed in Table 1. A LabVIEW program
was developed to capture the vibration signals under different
bearing conditions including normal condition, inner ring

TABLE 1. Parameters of the experimental setup.

fault, and outer ring fault. The vibration signal was measured
once the motor speed reached a steady state. Each bearing
condition was recorded for a span of 20 s and it was repeated
three times for each experiment condition.

The characteristic frequencies of the bearing faults can be
described by Eqs. (1) and (2).

fORF =
NB
2
fR

(
1−

DBcos(θ )
DP

)
(1)

fIRF =
NB
2
fR

(
1+

DBcos(θ )
DP

)
(2)

where fORF and fORF are the characteristic frequencies of the
outer bearing fault and inner bearing fault. NB is the number
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FIGURE 3. Experimental motor-driven rotary system setup.

FIGURE 4. Motor defects; (a) Outer ring defect, and (b) Inner ring defect.

of balls, DP is the pitch diameter, DB is the ball diameter,
θ is the contact angle, and fR is the rotation speed. The
6204-T1 bearing was used in this experiment, the parameters
and dimensions of the roller bearing are described in [19]. The
vibration signal of each experiment was collected and labeled
for each bearing condition. The time-domain spectrum of
measured vibration signals under different bearing conditions
is presented in Fig. 5. It shows that when the bearing failures
occur, the vibration amplitudes are significantly increased
in the time response compared to the response of healthy
bearing. Moreover, different periods of shockwave are also
observed in the cases of the inner ring and outer ring defects
owing to the collision of the balls and the defect on the rings,
as shown in Figs. 5 (b) and (c).

III. MACHINE LEARNING ALGORITHMS
Recently, machine learning approaches have been applied
to different engineering applications [34]–[37], which in
turn have been widely used for bearing diagnosis of induc-
tion machines. These methods can reduce the memory
computation while remaining high classification accuracy.
It shows advantages comparing to linear models [38]–[41].
There are several different machine learning algorithms
for classification problems. In this study, three effective
ensemble methods machine learning techniques including

FIGURE 5. Measurement of vibration signal under different conditions
(a) healthy bearing, (b) inner ring fault, and (c) outer ring fault.

decision tree (DT), random forest (RF), and extreme gradient
boosting (XGBoost) algorithms are used to distinguish differ-
ent bearing conditions. Those algorithms can perform very
well on the respective data, particularly on the time series.
They have shown effectiveness in terms of high accuracy at
fast speed. Moreover, three approaches can reduce overfitting
issues that make them more suitable when applying for fault
detection problems compared to other machine learning algo-
rithms such as the SVM algorithm [42].

A. DECISION TREE
The DT method is one of the supervised learning algorithms,
inwhich a trainingmodel is created to estimate the target from
unseen samples by learning simple decision rules [43], [44].
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The DT algorithm has a fast training process with low mem-
ory requirements. In the training process, to estimate the class
of the given dataset, first, the values of the root attribute are
compared to the real dataset attribute. The algorithm contin-
ues to compare the attribute value with the other sub-nodes in
the next node and moves further. Finally, the process reaches
the leaf node of the tree. Figure 6 presents the structure of the
decision tree algorithm.

FIGURE 6. Structure of decision tree.

Suppose the training set is S and the attribute of target
possesses n different values, the entropy of the training set S
is described in Eq. (3).

Entropy (S) =
∑n

i=1
pilog

pi
2 , (3)

where pi represents the proportion of the ith attribute value.
The information gain of an attribute that describes the

decrease of expected entropy is defined in Eq. (4).

Gain (S,V) = Entropy (S)−
∑

a∈A(V )

|Sa|
|S|

Entropy(Sa),

(4)

where A(V) shows the range of the attribute A and
Sa describes the sample set, in which the attribute V has the
value of a.

In this work, a time series data set is used as an attribute or
feature vector, which represents the vibration data points of
a period of time. The proposed decision tree model uses the
information gain, as shown in Eq. (4) to define an attribute
from the attribute vector that gives maximum information
about a bearing condition. The attribute with the largest infor-
mation gain is selected to be the decision attribute for the
node. Therefore, the level of entropy can be decreased from
the root node to the leaf node.

B. RANDOM FOREST
The random forest (RF) is also known as an effective method
for fault diagnosis problems. The RF is an ensemble approach
that uses tree-type classifiers. This method can enhance the
performance of the model by using bagging to suppress over-
fitting [45]. The decisions of RF are based on the total votes
of component predictors from each target. Figure 7 illustrates

FIGURE 7. Structure of random forest for ensemble decision making.

the structure of the random forest algorithm for ensemble
decision-making.

Random forest algorithm combines many decision trees.
However, an individual decision tree is now built in the
forest using a random subset of attributes, and each one
is trained on a random set of the training data set. Then,
the prediction of the random forest model is made by average
voting from every individual decision tree. Thus, the RF
algorithm can reduce overfitting in decision trees. Figure 7
illustrates the structure of the random forest algorithm for
ensemble decision-making. The procedure of RF starts with
the selection of random samples from a training dataset of
vibration signals, then the random attribute vector consists of
the limited number of attributes, which is randomly generated
within the subset of data to constitute the collection. The
decision tree is constructed corresponding to the elements
in the collection. Each decision tree has its own decision.
Finally, a majority voting process is applied to determine the
optimal classification result, the prediction target with the
highest score is considered to be the output.

C. EXTREME GRADIENT BOOSTING
Extreme Gradient Boosting (XGBoost) is a scalable end-
to-end tree boosting system introduced by Chen and
Guestrin [46]. It has been widely used for fault classification
problems with great performance [42], [47]. In the Gradient
boosting algorithm, new models are generated to estimate
the errors of previous models. Both models are combined
to make the final decision, in which the stochastic gradient
descent (SGD) algorithm is utilized to minimize the loss.
The SGD is a very popular algorithm for optimizing an
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objective function using an iterative process [48]. Because
the XGBoost can push the limit of computations resources
for boosted tree algorithms, the number of calculations can be
reduced, and the classification speed can be improved. Espe-
cially, the XGBoost classifier can suppress the overfitting
problem by simplifying the objective functions. The iteration
of the XGBoost algorithm starts with the first learner which
is fitted to the entire data. Then, the error of the first learner
will be fitted by the second learner. This process will continue
the learning process and complete if a stopping condition is
met. The workflow of the XGBoost classifier for motor fault
diagnosis is described in Fig. 8.

FIGURE 8. Scheme of extreme gradient boosting classifier.

IV. RESULTS AND DISCUSSIONS
In this study, DT, RF, and XGBoost classifiers are proposed
to identify four conditions of the bearing including normal,
inner bearing fault, outer bearing fault, and cyber-attack case.
The measured experimental data was used to generate the
dataset for training and testing processes. The sample data
was generated using a window size of 2000 data points for
each time series, it was labeled corresponding to each bearing
condition. In this study, the experimental dataset consists
of 3079 samples with multiple attributes. It includes 770 sam-
ples of normal condition, 768 samples of inner ring fault,
771 samples of outer ring fault, and 770 samples of fake data.
The entire dataset is split into 70% training dataset and 30%
testing dataset. Note that the dataset of 770 samples is created
by a randomly distributed function within the range of the
motor vibration signal to represent the fake data then it is
combined with the other dataset. All data were normalized
using the Min-Max Scaler, which changes all features to
be between 0 and 1. Then, the data was pushed into the
different training models. The training and testing models
were processed using a PC computer with an Intel R© CoreTM

i7-8700 @3.20 GHz central processing unit and 6G RAM.
Generally, machine learning models have two types of

parameters: model parameters and hyperparameters. While
the model parameters are is generated automatically by the
models based on the dataset. The hyperparameters can be

adjusted to setup models to improve their performance such
as the learning rate parameter. Thus, the hyperparameter tun-
ing preprocess is required to define those parameters to obtain
the highest accuracy and the minimum error when construct-
ing machine learning models. There are several optimization
algorithms are used for the tuning process such as grid search
and random search. The grid search is known as a great
approach for hyperparameter optimization that can overcome
the limitation of the manual search [49]. Therefore, the grid
search algorithm is utilized to find the set of optimal hyperpa-
rameters for the RF and XGBoost models in this study. As the
result of the tuning process, the hyperparameter for each
model is optimized and defined. For the XGBoost model,
the maximum number of iterations was optimized with ‘‘n
estimators’’ of 400, the learning rate value is 0.1 which allows
the learning speed is fast while remaining good performance
of the model. The maximum depth of the tree is 4 that can
control overfitting. The value of ‘‘min child weight’’ is 5. The
learning process can be optimized using the objective func-
tion ‘‘multi: softprob’’. For the RFmodel, themaximumnum-
ber of iterations was optimized with ‘‘n estimators’’ of 800,
an entropy criterion was selected to minimize the probabil-
ity of misclassification, and the number of features to con-
sider as looking for the best split is log2. The performances
of all machine learning techniques are evaluated by the
following Eq. (5).

accuracy =
TP+ TN

TP+ FP+ TN + FN
(5)

(TP= true positive; TN= true negative; FP= false positive;
FN = false negative).
The classification results from different proposed machine

learning approaches are shown in Figs. (9-11) and summa-
rized in Table 2. The corresponding confusion matrices of the
testing dataset demonstrate that the classifiers are very suc-
cessfully identifying the bearing faults and even cyber-attack
presented by fake data. Moreover, Fig. 12 shows the total
accuracy of each machine learning algorithm by bar chart as
a clarified way for comparison. It shows that the proposed
RF algorithm can provide an excellent classification accuracy
of 99.03%, in which the false positive and the false negative
numbers are very small. The DT approach has the worst
performance with 83.33% classification accuracy. Whereas,

FIGURE 9. Classification result from proposed DT; (a) Confusion matrix
without normalization, and (b) Confusion matrix with normalization.
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TABLE 2. Accuracy and corresponding class of each proposed method.

FIGURE 10. Classification result from proposed XGBoost classifier;
(a) Confusion matrix without normalization, and (b) with normalization.

FIGURE 11. Classification result from proposed RF classifier;
(a) Confusion matrix without normalization, and (b) with normalization.

FIGURE 12. The total accuracy of each machine learning algorithm.

the XGBoost algorithm can achieve higher classification
accuracy, approximately 96.43%.

The receiver operating characteristic (ROC) curve and the
area under the curve (AUC) are also carried to evaluate
the performance of the three models, as shown in Fig. 13.

The ROC curves present the performance of classification
models with respect to classification thresholds, in which the
true positive rate (TPR) and the false positive rate (FPR)
are defined in Eq. (6). Whereas the AUC measures the
area under the entire ROC curve. Therefore, the better clas-
sification model has a higher AUC, which can success-
fully distinguish between motor statuses at the AUC value
of 1.0.

TPR =
TP

TP+ FN
; FPR =

FP
FP+ FP

(6)

The ROC curves the AUC values of the DT, XGboost,
and RF models for distinguishing four classes (0-normal,
1-inner ring fault, 2-outer ring fault, and 3-cyber-attack) are
presented in Figs. 13 (a), (b), and (c) respectively. It confirms
that the proposed RF model can successfully distinguish
among the classes, in which the AUC values reach 1.0 for
all classes, as shown in Fig. 13 (c). The DT model shows
the worst performance, which has smallest AUC values of
four classes are very small and ranging from 0.8 to 0.99,
as shown in Fig. 12(a). The performance of the XGBoost
model in terms ofAUC is between theDT andRF approaches,
as illustrated in Fig. 13 (b). In addition, micro-average and
macro-average ROC are used to evaluate the imbalance of
data. For macro-average, models are encouraged to focus on
every class correctly. Whereas, the models are highly relying
on themajority classes for micro-average. The ROC andAUC
results of three models show that both macro-average and
micro-average AUC values are the same in each model that
indicates the balance data for four classes. It is concluded that
the proposed RF approach is robust and stable for the fault
classification.

After training and testing, the created model of the pro-
posed RF classifier is encrypted with the IoT architecture
to categories the online reading of the motor status and
present it through an IoT dashboard as described in the
following test scenarios. The flowchart in Fig. 14 describes
the total operation of data acquisition, validation, and
visualization.

Moreover, the procedure of the cyber-attack’s detection
based on the proposed IoT architecture with the machine
learning technique is clarified in the following pseudo-code
in Algorithm 1.
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FIGURE 13. Receiver operating characteristic (ROC) curves of (a) DT
classifier, (b) XGBoost classifier, and (c) RF classifier: where (0-normal,
1-inner ring fault, 2-outer ring fault, and 3-cyber-attack).

A. SCENARIO 1: NORMAL STATE
This scenario demonstrates the online monitoring for the
bearing of the motor in the case of a normal state and

FIGURE 14. Flowchart of the proposed IoT topology with the various
proposed machine learning classifiers.

stable network. Figure 15 presents the current status of the
bearing and the reliability of the internet network on the dash-
board of the CONTACT Elements for IoT. This figure shows
that the motor status is normal which means the motor work
well and the bearing does not have any fault. Furthermore, the
light of the traffic indicator is green which means the system
in a healthy state. Besides, Figure 15 shows that the internet
network is stable, and the transmitted data is real. This test
validates the reliability of the proposed IoT architecture and
enhances the decision-making about the motor status.

B. SCENARIO 2: INNER RING FAULT
This scenario is created to confirm the capability of the
proposed machine learning method and the IoT architecture
to detect the inner ring fault in the bearing of the motor.
Figure 16 shows the bearing status in the case of inner ring
fault and stable network. The IoT dashboard clears that the
bearing has an inner ring fault and the transmitted data via IoT
is real. Besides, the traffic light changed to a yellow color that
means the motor has a fault. This test affirms the ability of the
proposed machine learning method and the IoT architecture
to recognize the inner ring fault of the motor bearing with-
out any error and clear visualization. Besides, the proposed
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Algorithm 1 The Procedure of Cyber-Attack and Motor
Faults Detection

1: Read vibration signal from the motor microcontroller
2: Send signals to the IoT broker
3: Input signals to RF model
4: Classify the motor status by RF model
5: Connect to MQTT server
6: if the output of RF model = 0
7: Publish that the motor status is ‘Normal’ and network

status is ‘Real data’.
8: else if the output of RF model = 1
9: Publish that the motor status is ‘Inner ring fault’ and

network status is ‘Real data’.
10: else if the output of RF model = 2
11: Publish that the motor status is ‘Outer ring fault’ and

network status is ‘Real data’.
12: else if the output of RF model = 3
13: Publish that the motor status is ‘Fake data’ and

network status is ‘Cyber-attacks’.
14: End

FIGURE 15. Motor status on the IoT dashboard in the case of the normal
state.

FIGURE 16. Motor status on the IoT dashboard in the case of inner ring
fault.

techniques check the transmitted data against any cyber-attacks
that increase the reliability of the IoT topology.

C. SCENARIO 3: OUTER RING FAULT
The outer ring fault of the motor bearing is created in this
scenario to demonstrates the performance of the proposed
machine learning method with IoT architecture to detect all
fault classes in the motor bearing. Figure 17 presents the
motor bearing and the network states in the case of the outer
ring fault and safe data transmission. It is clear in the IoT
dashboard that the proposed machine learning technique can
recognize the motor fault of the outer ring. Furthermore,
the traffic light changed from the green light of the normal

FIGURE 17. Motor status on the IoT dashboard in the case of outer ring
fault.

FIGURE 18. Network status on the IoT dashboard in the case of
cyber-attacks detection.

state to the yellow light to inform the user about the abnormal
state due to the outer ring fault of the motor bearing. Besides,
the dashboard shows that the network is stable, and the trans-
mitted data is real.

D. SCENARIO 4: CYBER-ATTACKS DETECTION
Cyber-attacks are the main challenge against the implemen-
tation of the IoT system. So, this scenario is carried out to
ensure the effectiveness of the proposedmachine to recognize
the cyber-attacks on the internet network. Figure 18 presents
the transmitted data status in case of cyber-attacks on the
internet network. It is clear from this figure that the pro-
posed machine learning technique can detect cyber-attacks
on internet networks and the proposed IoT architecture clears
that the transmitted data about the motor status is fake
data. Furthermore, the traffic light changed from the green
light of the normal state to the red light to inform the user
about the cyber-attacks on the network that enhance the
decision-making to maintain and stabilize the internet net-
work. This test confirms that the proposed machine learning
with the IoT architecture can provide reliable monitoring for
the motor status.

The results from the above scenarios can be concluded as
follows;
• The proposed IoT architecture can visualize the normal
status of themotor and the internet network status clearly
on the dashboard of the IoT platform as presented in
scenario 1 effectively without any errors.

• The inner ring fault of the motor can be detected
effectively by the proposed IoT topology based on the
machine learning technique as cleared in scenario 2.
In addition, the suggested IoT platform performs an
alarm and converted the color of the traffic light from

115438 VOLUME 9, 2021



M.-Q. Tran et al.: Experimental Setup for Online Fault Diagnosis of Induction Machines

FIGURE 19. The latency/overhead of the proposed fault and cyberattack detection process based on the proposed IoT platform.

the green color to the yellow color to remind the user
about the inner ring fault of the motor.

• The third test case shows the outer ring fault of the
motor and emphases the superiority of the suggested IoT
architecture based on the machine learning technique to
recognize and visualize the outer ring fault of the motor
effectively.

• The final scenario clears the superiority of the intro-
duced machine learning technique to recognize the
cyber-attacks on the network. Furthermore, the sug-
gested IoT platform presents the status of transmitted
data through the internet network if it is real or fake
to enhance the decision-making about the motor status.
Besides, the IoT platform converted the traffic light to
red color in order to remind the user to take care of the
network against cyber-attacks issue.

• The latency/overhead of the proposed fault and cyber-
attack detection process is analyzed by the proposed
IoT platform and presented in Fig. 19.

V. CONCLUSION
This paper introduces a new IoT architecture for online
monitoring of the faults of the induction motor instead of
the traditional methods. The proposed IoT architecture is
developed based on effective machine learning techniques
to recognize the fault classes of the motor. Besides, the
cyber-attacks issue is taken into the account and the attack
can be detected and suppressed by the proposed IoT topol-
ogy. Different experimental testing is performed to confirm
the effectiveness of the proposed IoT architecture based on
machine learning. The results emphases the superiority of
the prosed IoT architecture to recognize motor faults and
cyber-attacks with high accuracy. Furthermore, the results are
visualized on CONTACT Elements for IoT platform clearly

that enhance the decision making about the motor statues.
That allows the system to run for a long time in healthy condi-
tions and improve the industrial environment that represents
the main target of Industry 4.0. In addition, the proposed
IoT architecture provides a promising solution to apply to
different machines for future work.
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