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Topological analysis of interaction 
patterns in cancer‑specific gene 
regulatory network: persistent 
homology approach
Hosein Masoomy1,5, Behrouz Askari1,5, Samin Tajik2,5, Abbas K. Rizi3 & G. Reza Jafari1,4*

In this study, we investigated cancer cellular networks in the context of gene interactions and their 
associated patterns in order to recognize the structural features underlying this disease. We aim 
to propose that the quest of understanding cancer takes us beyond pairwise interactions between 
genes to a higher‑order construction. We characterize the most prominent network deviations in the 
gene interaction patterns between cancer and normal samples that contribute to the complexity of 
this disease. What we hope is that through understanding these interaction patterns we will notice a 
deeper structure in the cancer network. This study uncovers the significant deviations that topological 
features in cancerous cells show from the healthy one, where the last stage of filtration confirms the 
importance of one‑dimensional holes (topological loops) in cancerous cells and two‑dimensional holes 
(topological voids) in healthy cells. In the small threshold region, the drop in the number of connected 
components of the cancer network, along with the rise in the number of loops and voids, all occurring 
at some smaller weight values compared to the normal case, reveals the cancerous network tendency 
to certain pathways.

Cancer is one of the most common human genetic diseases characterized by cellular over-proliferation1–3. 
Through the gene expression process, genetic code modulates biological functions and associated molecular 
pathways. The subsequent cellular phenotype is modulated by a dynamic network of interactions among genes. 
Perturbations in these interactions affect the overall manifestation of genetically driven diseases such as cancer. 
Genes and their dynamic interactions can be modeled by complex networks represented by nodes and  links4. In 
network systems, each node is considered as a dynamic entity, evolving under the influence of  others5–9. Systems 
of interacting units consist of links having positive, negative, or zero weight and they together develop a weighted 
signed network, called Gene Regulatory Network (GRN)10–14. GRNs can be constructed by maximum entropy 
models, analyzed by balance theory  approaches15 and topological  methods16. Moreover, responses to driving 
forces on the structure formation of these networks cause the development of new features and subsequently 
lead to the identification of unique patterns in the observational data. These patterns can arise from non-trivial 
connections that go beyond classical pairwise interactions, leading to a higher-order  construction16. These con-
structions can be described by simplices of different dimensions and hence, can be studied in the framework of 
Balance Theory and Topological Data Analysis (TDA). From TDA, we employ the Persistent Homology (PH) 
analysis tool, which is based on algebraic topology and has been applied to problems in a variety of fields such as 
network science, physics, chemistry, biology, and  medicine17–31. PH has been previously used to study protein-
protein interaction networks to inform cancer therapy by determining the correlation between Betti numbers 
and the survival of cancer  patients32.

In order to study states of balanced and imbalanced cancer networks, we previously modeled GRNs by groups 
of three interacting genes, forming triangles (triads) of  interactions15. The resulting signed weighted network 
analysis in the context of Balance Theory showed significant differences between cancer and healthy cases of 
GRNs in the number of characteristics such as energy, number, and distribution of imbalanced triangles. This 
paper aims to study the higher-order representation of gene regularity interaction networks derived from cancer 
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and normal samples. Using PH, we address theoretical concepts using empirical data and report network features 
of cancer samples compared to normal counterparts. Finally, we propose PH as unsupervised network analysis 
to study human diseases such as cancer.

Network construction from real data and the result of balance theory analysis 
of the interaction network
Gene expression is the process by which information from a gene is used in the synthesis of a functional gene 
product which leads to the production of protein as the final functional product. Cells go through a wide range 
of mechanisms known as Gene regulation to increase or decrease the production of specific gene products. Gene 
expression data is large-scale measurements of the degrees of freedom of a biological system such as a cell. In the 
language of statistical physics, these describe the micro-states of a cell. A gene regulatory network is a complex 
 network33 which its nodes represent the genes, and its links between them represent the interactive couplings 
between genes which can be used to predict the global properties of the cells.

We used mRNA (expression level) data of 20532 genes in the case of Breast Cancer (BRCA: Breast invasive 
carcinoma) from The Cancer Genome Atlas (TCGA)34,35. Since RPKM (Reads Per Kilobase transcript per Mil-
lion reads) puts together the ideas of normalizing by sample and by gene, we used the RPKM normalized data 
to find the correlation between the expression levels of the genes. The Reads Per Kilobase transcript per Million 
reads (RPKM) normalized data was used in order to put together the ideas of normalizing by sample and by the 
gene. When we calculate RPKM, we are normalizing for both the library size (the sum of each column) and the 
gene length. Due to computational purposes, we only kept the top 483 most variable genes for all analyses by 
calculating for each gene the variance of its expression level over its samples. For each gene, we have calculated 
the variance of its expression level over its samples, and accordingly stored the first 483 genes with the highest 
variance, which is due to more different activity patterns these genes show. This cohort consisted of two sets of 
114 healthy and 764 cancer samples.

We constructed a pairwise correlation  matrix36,37 from our data-set based on pairwise gene expressions in 
the obtained data-set. To find the regulatory connections between genes, we needed a statistical description 
of the data in terms of suitable observables and  infer38,39 the underlying regulatory connections. Therefore, we 
restricted ourselves to an undirected pairwise maximum-entropy probability model with terms up to second 
 order40–42, which we derive for continuous, real-valued variables. This can be considered as a problem in inverse 
Statistical  Physics43,44 where we want to infer parameters of a model based on observations, instead of calculating 
observables on the basis of model parameters. We applied the following model with pairwise couplings

where Si represents the expression level of gene i as a continuous real-valued variable, and interaction matrix Jij , 
describes the strength of the net interaction between two genes. Z is the so-called partition function, for normal-
izing the model. The corresponding Hamiltonian (energy function) for this Boltzmann distribution function is 
then H = −

∑

i<j Jij Si Sj.
Model parameters can be found by satisfying these conditions through the use of Lagrange multipliers; (i) 

Our model should give the same first and second moments as we measure from the data and (ii) it must maxi-
mize the Gibbs-Shannon entropy function defined as S[P] = −

∑

P({Si}) ln(P({Si})) . The obtained model is a 
multivariate Gaussian distribution of the form:

where L is the number of genes in the distribution and the couplings can be inferred simply by inverting the 
matrix of variances and covariances of expression levels Jij = −C−1

ij  . This approach is also linked to the concept 
of partial correlations in  statistics45,46 such that the inverse of the covariance matrix, C−1 , also known as precision 
matrix, offers information about the partial correlations of variables.

By assuming a maximum entropy pairwise model, we were looking for the interaction matrix J, whose every 
element Jij is the strength of the net interaction between gene i and gene j. In other words, the strength and the 
sign of the interaction represents the mutual influence of a pair of genes’ expression levels on one another. In real 
data samples, we considered genes that are either expressed or not expressed together, and defined them as being 
correlated when they are expressed (or not expressed) mutually. Subsequently, one can construct correlation 
matrices. However, concerning the interaction matrix construction, we need a model Hamiltonian, producing 
coefficients. Hence, from the experimental data, we reconstruct the gene-gene interactions computationally 
based on a model, following the practice that collective behaviors in such systems are described quantitatively 
by models that capture the observed pairwise correlations. Elements of the proposed interaction matrix J, rep-
resent pairwise interaction between genes in the proposed model, where the weight of the link i − j , represented 
by Jij denote the strength of the interaction between gene i and gene j. Furthermore, genetic interaction (GI) 
between two genes can be inferred from the sign of their interactions, indicating the way they may affect each 
other’s functions. Positive and negative interactions on the foundation of the constructed network imply gene 
expression modulation within the network. Therefore, we expect J to be a sparse matrix since each gene inter-
acts only with a couple of other genes. Inverting a large covariance matrix computationally, however, yields to a 
matrix which almost none of its elements are zero. To keep this at bay, the inverse of the covariance matrix has 
been obtained by means of the Graphical Lasso (GLasso)  algorithm47. GLasso is generally a sparse penalized 

(1)P({Si}) =
1

Z
exp

∑

i<j

Jij Si Sj

(2)P(S; �S�,C) =
exp

[

− 1
2 (S − �S�)TC−1(S − �S�)

]

(2π)L/2 det(C)
1/2

,
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maximum likelihood estimator for the concentration or inverse of covariance matrix of a multivariate elliptical 
distribution. When dealing with a multivariate Gaussian distribution with limited observations (lack of enough 
samples)48,49, GLasso yields a sparse network ( −C−1 ) while preserving the global features of the  network50. In a 
network analysis, simple thresholding methods can be misleading because removing weak ties may results in the 
fragmentation of the network; A pair of genes may be weakly connected, while that tie plays a significant role in 
the structure of the network. On the other hand, removing a strong connection between insignificant or isolated 
pair of nodes may not destroy the global features of the network, G-Lasso is wary of such issues.

According to structural balance theory, dyadic links holding positive and negative interactions yields four dif-
ferent types of triads, triangles of interactions, in the  network51–55. Balance and imbalanced states of triangles are 
consequently determined based on the sign of the product of the links; balanced when positive ( JijJjkJki > 0 ), and 
imbalanced or frustrated otherwise ( JijJjkJki < 0 ), and their corresponding energy of a triangle, being defined as 
Eijk = JijJjkJki , constructs an “Energy landscape” for the network. The stability of imbalanced triangles in the GRN 
has been studied in previous reports and complex structures and collective behavior of genes has been examined. 
Previous results confirmed that cancerous cells posses a fewer number of imbalanced triangles compared to the 
normal samples. In addition, imbalanced triangles in the healthy network appear to be more isolated from the 
main part of the network. It was shown how the distributions of triangles in the network and their absolute cor-
responding energy can be used as means to compare normal and cancer  networks15.

Stability, in terms of Balance Theory corresponds to a lower energy level according to the proposed energy 
 equation56–59. It implies less possibility of changing the configuration of the triangles and therefore, less change 
in gene regulation within the network. The energy landscape of networks was previously proposed to examine 
the state of  balance60. Energy distributions of different types of triangles was significantly variable in cancer 
samples compared to normal counterparts. In addition, it was found that the cancer network has less tendency 
to change its state due to its lower energy level compared to normal  network15.

Examining the distribution of the triangles suggested the correlations between such triangles were also dif-
ferent between the two  networks15. Based on this observation, we asked how triads with different energies are 
connected to one another and how schematic diagrams of distribution of frustrated triangles in the normal and 
cancer network differ. To address this, the concept of exceeding the length of interaction from triplet interac-
tions towards higher-order interactions, quartic interactions or Energy-Energy Correlation between triangles 
can be proposed, allowing one to study the very influence of units of four entities on the final degree of  balance61. 
Considering a simple pairwise interaction term between triads with a common edge in previous reports, the 
model Hamiltonian to treat the states of balanced and imbalanced triads is defined

where �ijk represents a triad shaped by i, j, k nodes. In quartic balance theory now the number of squares, i.e., 
s(G), is an essential parameter for the specific graph configuration and according to structural balance, the cor-
responding energies can be compared. This formalism examines the probability distribution of the jammed states’ 
levels of energy, assuming that for the triads, the shift from balanced to imbalanced can be determined based 
on all triads that share a common  link61. As discussed, constructing 3rd and 4th order interaction networks and 
examining their corresponding energy for normal and cancer networks provide us with practical insights and 
can be used to compare stability, energy, and the tendency toward changing their states in cancer and normal 
samples. This concept motivated us to move forward to study higher-order interaction methods, so as to gain 
a thorough perspective of these interactions, the patterns of these interactions, by which we address further 
unsolved questions in this matter. In this paper, as an alternative to studying higher dimensional simplices, we 
employed a topological scheme to examine the interaction patterns of two networks. This method involves study-
ing cancer and normal gene networks using behaviours of defined k-dimensional holes as a general approach 
to study their higher-order interactions.

Method
By analogy, studying and comparing patterns of interactions in the networks as an alternative to transcending 
triads or quartic order can be considered as describing a building by its floors and bedrooms, and hallways rather 
than its building blocks. To study higher-order interactions in cancer networks, formed not only by nodes and 
links but also by triangles and cliques of higher dimensions, we employed algebraic topology strategy toward 
analyses that require the encapsulation of higher dimensionality as a substitute for simple pairwise interactions. 
We suggest that these representations are implemented to complement our previously employed network tech-
niques to distinguish the features of cancerous and normal networks. Here we preview some fundamentals of 
algebraic topology, and homology theory that is utilized in topological data  analysis62–65. A simplicial complex is 
represented by a set of a finite collection of k-dimensional simplices (k-simplices) σk = [v0, v1, . . . , vk] . In Fig. 1 
we show the configuration of low-dimensional simplices, their network representation, constructing the associ-
ated clique simplicial complex from an unweighted network of nodes and links, and their topological features. As 
it can be noted from the figure, a 0-simplex σ0 is regarded as vertex (node), a 1-simplex σ1 is defined as an edge 
(link), a 2-simplex σ2 is a triangle, and a 3-simplex σ3 is a tetrahedron, and so on, see Fig. 1a. For a given simplicial 
complex ψ , one can define a k-dimensional chain (k-chain) as a linear combination of k-simplices of ψ as follows:

(3)H = −
∑

i<j<k<l

�ijk �ijl = −s(G),

(4)ck =
∑

i

aiσ
(i)
k ,
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where the coefficient ai ∈ Z2 and the sum is over all k-simplices σk in ψ . It can be considered that a set of 
k-simplices forms an abstract vector space Ck , so-called k-dimensional chain group (k-chain group), where 
its dimension is the number of k-simplices of the complex. For any simplices in any dimension k, in order to 
measure the topological features and study the homology of the complex a k-dimensional boundary operator 
has to be defined as:

So ∂k is an operator, mapping σk to its boundary and consequently k-dimensional chain group Ck to (k − 1)
-dimensional chain group Ck−1:

One can define a k-dimensional cycle (k-cycle) zk as a k-chain ck that is mapped to empty set by boundary 
operator, ∂k(ck) = ∅ . This leads to create a subspace Zk , so-called k-dimensional cycle group (k-cycle group), 
of vector space Ck . On the other hand a k-chain ck that is the boundary of a (k + 1)-chain ck+1 can be define 
as a k-dimensional boundary (k-boundary) bk and consequently k-dimensional boundary group (k-boundary 
group) Bk as subspace of Ck . Since “boundaries have no boundary”, one can easily write Bk ⊆ Zk ⊆ Ck . The idea 
of homology theory is to discard k-cycles that are also k-boundary. To this end, we put an equivalence relation on 
Zk as follows. Two k-cycles z(i)k  and z(j)k  are homologous (equivalent), z(i)k ∼ z

(j)
k  , if z(i)k − z

(j)
k ∈ Bk . The equivalence 

relation ∼ partitions the subspace Zk into a union of disjoint subsets, called homology classes. The k-homology 
group of complex ψ is defined as Hk ≡ {[zk] | zk ∈ Zk} where [zk] is the homology class of zk ∈ Zk.

The kth Betti number of complex ψ , denoted by βk(ψ) , as a topological invariant of the complex, is the dimen-
sion of k-homology group of the complex ψ . Intuitively βk(ψ) indicates number of k-dimensional topological 

(5)∂k(σk) =

k
∑

i=0

(−1)i [v0, . . . , vi−1, vi+1, . . . , vk] ⊆ σk

...
∂k+2
−−→ Ck+1

∂k+1
−−→ Ck

∂k
−→ Ck−1

∂k−1
−−→ ... −→ C2

∂2
−→ C1

∂1
−→ C0

∂0
−→ ∅

(6)Hk = Zk/Bk

Figure 1.  (a) 0-,1-,2-, and 3-simplex from left to right (Up row), and their network representation (bottom 
row). (b) Example of some topological spaces with their associated Betti numbers (left column), and the 
equivalent spaces and their network representation (right column). (c) An example for constructing the 
associated clique simplicial complex (middle column) from an unweighted network of nodes and links (left 
column), and its network representation with its topological features(right column). In network representation, 
orange and blue subnetworks correspond to 1-holes (loops) and 2-holes (voids), respectively. The network has 
the Betti vector of �β = (1, 2, 1).
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holes (k-holes) of complex ψ . Thus β0 counts number of connected components of ψ , β1 counts number of 1-holes 
(loops) of ψ , β2 counts number of 2-holes (voids) of ψ and so on, see Fig. 1b. In the graph representation of Fig.1, 
the one-dimensional topological hole and the two-dimensional hole are illustrated with orange and blue colored 
lines respectively as our starting point to schematically define these topological features and identify them. It 
then follows that the Betti numbers are used as an algebraic tool in order to classify the topological spaces and 
study the homology of the  complex66. Due to studying complex networks in terms of homology theory, we use 
the persistent homology (PH) technique which is the main part of topological data analysis (TDA) as a modern 
mathematical tool in data science. Following persistent homology strategy, rather than working with the set of 
nodes (1-simplices) and links (2-simplices), and the statistical properties of the network defined in network 
 science67, we consider higher-order connections as high-dimensional simplices to map the network. In fact, 
a clique simplicial complex of a network is a simplicial complex in which any k-simplex σk corresponds to a 
(k + 1)-clique (a complete sub-network of order k + 1 ), Fig. 1c. In order to analyze the impact of weight in the 
structure of a complex network, PH considers the weight as the filtering parameter (threshold), so the filtration 
as an increasing sequence of complexes can be created, such that, all 1-simplexes (links) with weights higher than 
the threshold are removed from the weighted complex (network). Upon this development, various topological 
features such as 1-dimensional holes (loops), and 2-dimensional holes(voids) will appear (birth) by changing the 
threshold, where they may later disappear (death) in higher values. During a filtration, by varying the threshold 
of interaction w, a topological feature hk may appear w(hk)

b  , or disappear w(hk)
d  ; and the persistency (lifetime) 

l(hk) ≡ w
(hk)
d − w

(hk)
b  of these homological features can be used to analyze global features of the data-set, which 

in our case is to examine the differences between the two data-sets29,68. Persistence barcode (PB) or equivalently 
persistence diagram (PD) for each dimension, are representations of PH that summarize topological information 
of the data-set. For instance, in PD plot of kth dimension for weighted complex ψ(w) , any topological feature 
hk is represented by a point p(hk) = (w

(hk)
b ,w

(hk)
d ) , persistence pair, in a 2-dimensional Euclidean space. Figure 2 

elaborates the filtration process and the evolution of k-dimensional topological holes and their persistence upon 
increasing the threshold by the mean of persistence diagram and barcode for the filtration.By this approach, one 
can capture global features of the network at any threshold (weight) and monitor the persistence and the robust-
ness of the topological features. Hence, adopting a simplicial modeling, a gene is defined as a 0-simplex σ0 , and 
the interactions between genes are regarded as a 1-simplex σ1 , and so on. Through varying the scale over which 
the connections between vertices are made, we aim to identify the behavior of defined simplices from one another 
within two networks. In a network of interaction, where the genes are vertices and the interactions between two 
genes are defined as edges, we impose PH to map the network to a weighted clique simplicial complex, use the 
strength of interaction as a varying threshold, and obtain a family of complexes (subcomplexes) as a function of 
the weight. We establish a family of unweighted graphs where their topological features can be examined, and 
their topological evolution as a function of interaction threshold can be studied. This approach can be taken 
as an alternative to assigning a Hamiltonian to a weighted interaction network to compare these two networks 
topologically rather than quantitatively in terms of their energy landscape.

Result and discussion
By analyzing the interaction networks from the topological point of view, we aim to uncover prominent insights 
into cellular gene interaction patterns. To this end, applying the PH technique on the weighted complex networks 
of the normal and cancerous data sets, we analyze the evolution of the dimension of the k-homology group of 
the topological space ( βk ); where these Betti numbers demonstrate the number of k-dimensional topological 
holes. As previously noted, a k-hole of the space, depending on its dimension, is a subspace that has no bound-
ary and is not a boundary of any spaces. From the complex network perspective, the k-holes indicate a lack of 
higher-order connections (links, triangles, ...) between the nodes (agents) of the network, such that by increas-
ing the number of 0-holes β0 (connected components), one can discuss about the lack of links (1-simplices) to 
connect the connected components. Whereas, arising the number of 1-holes β1 (topological loops) implies the 
lack of triangles (2-simplices) to connect the nodes (agents) of a sub-network. Through extracting the homologi-
cal features as a set of evolving 0− 2 dimensional Betti numbers, we compare two gene regulatory networks’ 
interaction patterns topologically. Measuring the number of independent holes of dimension k, plotting their 
persistence barcode and persistence diagrams and their evolution as a function of weight, is our key point to 
analyze the topological features of these two data sets. Figure 3 shows the evolution of the number of connected 
components (0-dimensional holes), its topological barcode, and the persistent diagram for both networks as a 
function of threshold. As the absolute value of the threshold was increased from 0, there was a sudden decrease 
in the number of components for both networks. For the cancer network, this sudden drop appeared to happen 
in a smaller value of interaction.

We then asked whether this apparent separation was due to the variation in the strength and distribution of 
links in those two networks, where the range of weight function seems to be shortened in the cancerous data 
and more scattered in the normal one, Fig. 4. We found that the faster decline of established components of 
gene expression interactions in the cancer network is driven by links with the smaller weight. It is noted that 
gene interactions with higher weight values play a crucial role in the normal case. Conversely, links with the 
lower value of interaction become dominant in the cancerous network. It should also be pointed out that the 
two orange triangles between two dashed-lines of PD0 plot (and equivalently the two orange long bars in PB0 ) 
account for two small persistent clusters in the cancerous network. β0-curve and correspondingly the number 
of arrows in PB0 plot, confirms that both networks are path-connected for high weights. We further tested 
the contribution of gene interaction patterns to cellular networks by comparing the number of 1-dimensional 
holes (loops) in both networks, in which the graph of cancerous and healthy samples appeared to have deviated 
significantly. Figure 5 demonstrates the number of loops as a function of threshold. PD1 and PB1 plot illustrate 
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that the cancerous network contains more persistent loops (persistence pairs between dashed-lines in PD1 and 
long bars in PB1 ) rather than the normal one. In the bottom panel of Fig. 5, β1-curve reveals that the networks 
have reached the loopful regime at a distinct value of thresholds. According to the PB1 plot and β1-curve, there 
are several survived loops (arrows in PB1 and tail of the curves in β1-curve) in the cancerous network, while 
the normal network is almost loopless at the higher thresholds. We noticed that by increasing the weight of the 
interactions to its highest value, the number of loops in cancer samples does not reach zero. Our results suggest 
that studying the pattern of survived 1-dimensional holes can lead to the role of these persistent topological 
spaces in cancer networks.

Figure 6 compares the number of two-dimensional holes (voids) in these networks. The existence of the 
persistence pairs between dashed-lines in PD2 along with the long bars of PB2 suggests that the normal network 
includes more persistent voids compared to the cancerous one. As it can be remarked from this figure, the num-
ber of two-dimensional holes for both networks starts increasing at small values of threshold. The separation 
of the β2-curves, however, illustrates that the statistics of the voids saturation is distinct in these two data sets, 
such that the β2-curve for the cancerous network saturates at the smaller values of interaction.This separation 
of the pattern is evident at the higher value of the threshold where the last stage of filtration shows a prominent 
deviation in the number voids in these two states. According to the number of arrows in PB2 plot and the tail 
of β2-curve, one expects that the number of voids in the normal network is significantly higher. We conclude 
that unlike patterns of loops, voids are more dominant in the normal network in the high threshold region. Our 
weight distribution function analysis implies that the cancerous network includes a total number of links with 
weaker interactions compared to the normal case. The sharper weight distribution function of the cancerous 

Figure 2.  (a) An example of the adjacency matrix for a weighted network. The shade of each pixel corresponds 
to the weight of the link between the associated nodes. (b) A filtration for the weighted clique simplicial 
complex constructed from the weighted network. (c) Persistence barcode representing the topological evolution 
of k-dimensional topological holes. Evolution (birth-weight and death-weight) of any k-holes in the filtration 
are represented by a horizontal bar ( k = 0, 1, 2 black, orange and blue bar, respectively), starting from its birth-
weight and ending at its death-weight. The arrows indicate the survived holes. (d) Persistence diagram for the 
filtration. Any k-hole in the filtration is shown by a point ( k = 0, 1, 2 black circle, orange triangle, and blue 
square, respectively), called persistence pair, in 2-dimensional Euclidean space, known as birth-death space. 
The first and the second element of the persistence pair equals birth-weight and death weight, respectively. The 
survived holes lie on the horizontal red dashed-line.
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network around smaller absolute values, reveals how this network goes through its topological evolution more 
promptly as their weights are more restricted to smaller values. The number of connected components dropped, 
the number of loops and voids raised, and the saturation all happened at smaller thresholds compared to the 
normal case. One biological interpretation of this result could be that genes in the cancerous cell seem to be 
highly dependent on specific pathways causing them to start interacting at smaller thresholds and finding their 
isolated pathways at smaller values. In this study, according to our results, we propose TDA can be employed to 
associate cancer cell proliferation to numbers and the evolution of topological features, so as to study this disease 
from the viewpoint of patterns of genes’ interaction in order to confirm how local topological modifications may 
contribute to global features and propose examining the patterns of interactions as a general and global picture 
as an alternative to studying single genes and their pairwise interactions.

Figure 3.  (a) Persistence diagram of 0-homology group ( PD0 ) for the normal (blue circles) and the cancer 
(orange triangles) gene interaction network. The cancerous network includes two small persistent clusters 
(orange triangles between dashed-lines). Inset: Corresponding persistence barcode (PB0) for normal (blue 
bars) and cancerous (orange bars) network. The number of survived connected component (arrows) indicate 
that both networks are path-connected, and two orange long bars correspond to the small persistent clusters 
in cancerous network. (b) The number of connected components as a function of threshold ( β0-curve) for the 
normal (blue circle) and the cancer (orange triangle) network. This curves indicate that the cancer network has 
more global accessibility rather than the normal network. The number of connected components in the cancer 
data-set dropped at a smaller value.

Figure 4.  Distribution of weights of links for both normal (blue) and cancerous (orange) networks, where the 
shorter width of the distribution function of cancerous sample compared to the normal one indicates that the 
normal network has high-weighted links (tail of the distribution functions) rather than the cancerous network.
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Figure 5.  (a) Persistence diagram of 1-homology group ( PD1 ) for normal (blue circles) and cancerous (orange 
triangles) interaction network. There are many persistent loops (persistence pairs between dashed-lines) in 
cancerous network rather than normal network. Inset: Corresponding persistence barcode ( PB1 ) for normal 
(blue bars) and cancerous (orange bars) network. The long bars correspond to the persistent loops in normal 
and cancerous networks, and the number of survived loops (arrows) in the cancerous network is more than 
the normal network. (b) The number of topological loops as function of threshold ( β1-curve) for normal (blue 
circle) and cancerous (orange triangle) network. The networks become loop-full at different thresholds (0.02 and 
0.03 respectively), whereas they include the same number of loops almost at 0.02 and 0.10. More importantly, 
the tail of curves show that the cancerous network is loopful, but the normal network is almost loopless.

Figure 6.  (a) Persistence diagram of 2-homology group ( PD2 ) for normal (blue circles) and cancerous (orange 
triangles) interaction network. The normal network contains more persistent voids (persistent pairs between 
dashed-lines) rather than the cancerous one. Inset: Corresponding persistence barcode ( PB2 ) for normal 
(blue bars) and cancerous (orange bars) network. The long bars correspond to the persistent voids, as well, the 
normal network has more survived void (arrows) rather than the cancerous network. (b) β2-curve for normal 
(blue circle) and cancerous (orange triangle) network. The curves illustrate that the statistics of voids of the 
networks saturate in various value of threshold, such that the β2-curve for the cancerous network saturates 
earlier (approximately 0.1) than the normal (approximately 0.5) network, while it saturates to the lower value 
(approximately 5000) than the normal case (approximately 8000).
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Conclusion
Adopting a novel computational approach, we propose that topological data analysis methods, such as Persistent 
Homology can be used to study cancer sample data to gain a better perspective on the complexity of this disease 
at the network level. Cancer is the most common human genetic disease, generated by a number of certain 
modifications into genes that control the way our cells function. Genes interact with each other, which their 
highly correlated expressions, and their interactions within a regulatory frame and leading to the emergence 
of complex structures in the cells, led researchers to investigate the Gene Regulatory Network (GRN) of cells 
in the framework of graph theory. In this study, we found that network structures are distinctive for normal 
and cancer samples in both the number and persistence of topological features. Biologically, it is possible that 
patterns of Betti curves in cancer samples are a manifestation of oncogene addiction at the network level. This 
phenomenon is defined based on experimental observations that cancer cells appear to be highly dependent on 
a specific oncogenic  pathway69. It is plausible that the persistent topological spaces in cancer samples are sets of 
tightly related genes that modulate a specific oncogenic pathway, critical for cellular survival and proliferation. 
Referring back to our building analogy, with its floors and considering its building plan, our question now is if 
there exist some established patterns for the genes in cancerous networks upon which genes interact, or how 
these patterns, deviating significantly from the healthy one develop within the networks.
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