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The availability of high bandwidth with low-latency communication in 5G mobile networks enables remote

rendered real-time virtual reality (VR) applications. Remote rendering of VR graphics in a cloud removes

the need for local personal computer for graphics rendering and augments weak graphics processing unit

capacity of stand-alone VR headsets. However, to prevent the added network latency of remote rendering

from ruining user experience, rendering a locally navigable viewport that is larger than the field of view of the

HMD is necessary. The size of the viewport required depends on latency: Longer latency requires rendering a

larger viewport and streaming more content. In this article, we aim to utilize multi-access edge computing to

assist the backend cloud in such remote rendered interactive VR. Given the dependency between latency and

amount and quality of the content streamed, our objective is to jointly optimize the tradeoff between average

video quality and delivery latency. Formulating the problem as mixed integer nonlinear programming, we

leverage the interpolation between client’s field of view frame size and overall latency to convert the problem

to integer nonlinear programming model and then design efficient online algorithms to solve it. The results of

our simulations supplemented by real-world user data reveal that enabling a desired balance between video

quality and latency, our algorithm particularly achieves the improvements of on average about 22% and 12%

in term of video delivery latency and 8% in term of video quality compared to respectively order-of-arrival,

threshold-based, and random-location strategies.
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Computing methodologies→Virtual reality; • Mathematics of computing→ Integer programming;
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1 INTRODUCTION

The goal in virtual reality (VR) is the complete immersion of the user in a virtual world. This
kind of experience is only possible if the visual experience is of high quality and navigation within
the world is as seamless as in the real world. High-quality visual experience in a dynamic VR
scene is nowadays possible only when a dedicated graphics card with hundreds or thousands of
graphics processing unit (GPU) cores is used to render graphics. Traditionally, this is done us-
ing a personal computer (PC) that is cable connected to the VR headset. Cabling and required
close proximity of the PC makes the solutions expensive and cumbersome to setup. Therefore, ap-
proaches to “cut the cord” have been investigated, ranging from using a wireless local link between
the VR headset and PC to offloading all or most of the rendering to a remote GPU cloud alleviating
the need for PC deployment altogether. In this article, we focus on the latter approach. In such
systems, the client device receives a compressed video stream from the remote rendering server
and transmits user controls, such as head motion, to the server.

Multi-access edge computing (MEC) aims to transfer the computing and communication
resources from a far-away central sever to the network edges near the end consumers [13]. Mobile
adaptive video streaming in conjunction with MEC technology has been investigated recently
[20–22]. This prior work has focused on quality of experience (QoE) optimization of video

on demand (VOD) services that stream static two-dimensional (2D) video content from either
a further-away cloud or nearer edge server to mobile clients. Different from these studies, we
consider in this article a real-time remote VR rendering service in a MEC environment. The idea is
that MEC is able to bring rendering service with very short network latency but cannot necessarily
always serve all clients because of limited amounts of GPU hardware. In contrast, a consolidated
GPU cloud offers virtually unlimited amount of GPU resources but with a longer network latency.
These two together can serve all clients but it is unclear what is the best strategy to divide the total
workload between the two. In addition, MEC offers the ability to query the radio network status
in real time, hence enabling bitrate adaptation at the edge. To this end, we design optimization
techniques for maximizing the system delivered user experience given a set of VR clients.

Seamless navigation in the VR world requires that the view drawn on a VR display must react
immediately when the user rotates her/his head, which in turn requires very short latency. How-
ever, it is possible to hide the latency inherent in remote rendering from the user [5, 15, 17, 29].
The specific solution we consider in this article is to render a locally navigable viewport that is
larger than the field-of-view (FOV) of the user’s headmounted display, as presented in Reference
[15]. The larger viewport makes it possible to locally rotate the last received frame when the user’s
head rotates, which prevents the user from getting exposed to unrendered content before an up-
dated frame is received from the server. This approach essentially reduces the perceivable latency
associated with head rotations to a level obtained with local device operation only.

The size of the viewport required to conceal the effect of latency from the user depends naturally
on the end-to-end latency as well as head motion dynamics. This means that when rendering
in a further-away consolidated cloud, it is necessary to compute more compared to rendering
at the network edge, given identical head movements. Furthermore, the amount of total content
transmitted to client in turn affects latency. In other words, the larger the rendered scene with a
constant resolution per visible area or the higher the quality of a video frame, the more they eat up
network resources, which translates into longer latency when transmitted over a radio link with
a specific over-the-air data rate. As wireless network and edge GPU are both bottleneck resources
and the wireless link quality differs between clients, the problem translates into finding the best
possible allocation of clients between edge and cloud as well as selecting streamed video bitrate
for each client so that the quality of user experience is maximized.
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To achieve the above mentioned goal, our optimizations aim to minimize the overall compu-
tational overhead and network traffic considering the amount of rendered content required to
compensate for the resulting end-to-end latency. Although ideally the viewport size should be suf-
ficiently large to conceal latency altogether from the user upon head rotations, it is still desirable
to have as short end-to-end latency as possible from the user experience perspective as well to sup-
port smooth interactions using a handheld controller, for instance. That is why our optimization
algorithms also strive for minimal overall latency. Optimizing VR streaming, or more appropriately
360◦ video streaming, has been studied earlier (e.g., References [1, 10, 26]). However, in our work
we need to consider the computational constraints due to real-time rendering. Although different
aspects of remotely rendered VR have been explored to some extent, combining both edge and
consolidated cloud rendering is still largely to be investigated. Our contributions are therefore as
follows:

• We present an edge accelerated system for real-time cloud rendering for VR. The cornerstone
of the system is client to edge/cloud allocation with adaptive rendering and streaming that
strives for maximal user experience.
• We formulate an optimization problem to maximize user experience in the proposed edge

accelerated cloud rendering system. In particular, we propose joint optimization of clients
perceived quality and latency subject to available processing resources at the edge.
• We design heuristic-based algorithms to solve the optimization problem and evaluate their

performance through simulations supplemented by real-world user data.

2 RELATED WORK

In VOD streaming, several quality adaptation approaches for improving the QoE of mobile users
have been proposed during the past few years [14, 24, 32, 33, 35, 38]. Some studies provide com-
prehensive survey on the factors that affect the QoE of mobile users in dynamic adaptive video

streaming over HTTP (DASH) [3, 16, 25, 27]. The majority of VOD quality adaptation solutions
are client based, in which the quality selection logic is purely run at the client side without collabo-
ration with other network entities. Network-assisted solutions were designed in which the clients,
servers, and the network collaborate with each other through message passing mechanisms to al-
locate fairly the video qualities among the competing clients as well as optimally utilize the limited
resources of the network [8, 18].

The evolution toward the service-based 5G core network architecture, involving software-
defined networking and network function virtualization, has also accelerated the design of
network-assisted quality adaptation solutions. Bentaleb et al. [2] leverage software-defined
networking to optimize video streaming QoE. Concerning edge computing, moving the network
resources (processing, caching) to the edge using MEC unlocks the use of clients contextual infor-
mation within radio access network, which in turn helps the client-side adaptation logic toward
optimal/fair video quality and resource allocation [22, 34, 36]. Tran et al. [34] investigated the
problem of joint collaborative caching and processing for adaptive bitrate video streaming at the
network edge. Mehrabi et al. [22] proposed to use MEC for DASH services. In References [20, 21],
the same authors extended the work with edge caching and device-to-device communication to
optimize jointly users’ QoE and network traffic.

Using MEC is more crucial in real-time video streaming due to the need for low latency, espe-
cially in interactive remote rendering applications, such as cloud gaming and remote rendered VR.
Various strategies have been proposed in previous research to distribute the server infrastructure.

Choy et al. [6] conducted a large-scale measurement study to determine if existing cloud in-
frastructure can meet the requirements of the emerging class of latency-sensitive multimedia
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Fig. 1. MEC-assisted real-time VR rendering system.

applications. They showed that Amazon EC2 data center locations can provide a median latency
of 80 ms to only 70% of the measured end users. Considering client and server-side delays, they
state that a substantial increase is needed in the total number of data centers. Their solution is
to leverage existing content distribution infrastructure by enhancing them with additional pro-
cessing units and GPUs. This leads to an additional 28% of end-users who can meet the required
latency requirements. In a follow-up work, Choy et al. [7] propose a hybrid infrastructure using
both cloud and edge servers. They also show that careful game placement and server selection
schemes can increase the number of end-users who can be served by the system.

The approach to render additional surroundings of the user to enable local navigation within a
frame has been introduced in multiple papers [15, 28, 29]. Previous studies have also envisioned
edge computing to enable a high-quality wireless VR experience [11, 12]. Shi et al. [29] also provide
initial results that show the benefits of mobile edge rendered VR using a real-world prototype.

Compared to the related work, our work studies the use of edge computing specifically in re-
mote rendering. The novelty lies in considering a multi-tier architecture including both edge and
consolidated cloud and examining the benefits that edge offers over cloud only rendering. Our
system is based on a specific method to anticipate head movements in VR usage to compensate
for latency when the content is remotely rendered in real time. This combined with the multi-tier
architecture gives rise to the problem formulation, which is original. Specifically, we derive an
objective function to jointly optimize quality and latency for remote VR video rendering in the
proposed cloud-edge server system, where the processing resources at the edge are limited, and
solve it through heuristic-based algorithms.

3 EDGE COMPUTING ACCELERATED CLOUD RENDERING FOR VR

3.1 Remote Rendered VR

The computing and rendering power of smart phone-based and stand-alone VR devices is vastly
inferior compared to desktop PC-based systems. Remote rendering can resolve this issue and en-
able high-quality VR content on stand-alone devices. In remote rendering applications, user input
is sent from a thin client device to the server where the input is fed into the application logic with
corresponding frames being sent back to the client as a compressed video stream. The thin client
decodes the video stream and displays the frames on the end user device. Remote rendering has
been mostly commercialized and researched in the form of cloud gaming, where the viewport of
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a game, which is the visible area of the 3D world to the user, is captured and sent to the remote
user.

Remote rendering applications add unavoidable latency to the end-to-end delay, which needs to
be addressed in the system design. In cloud-rendered VR, the latency issues are even more high-
lighted. It has been estimated that the rotation latency from head movement to the corresponding
response should be under 20 ms to avoid simulator sickness caused by the lag between the sensory
inputs from visual and vestibular systems [23]. In addition to rotation latency, separate translation
and interaction latencies are present in a VR application. Translation latency refers to the delay
from a controller command to the user avatar moving in the virtual world and interaction latency
as the delay when moving a game object by moving a hand-held controller. The different latencies
are not equally important for user experience.

As even small amounts of rotation latency can incur motion sickness, the traditional approach
of cloud gaming where only the visible viewport is rendered and sent to the thin client cannot be
used without additionally rendering a portion of the surrounding world in the form of viewport
scaling. In viewport scaling, additional area surrounding the user is rendered and streamed to the
user, allowing the thin client to locally rotate the view based on the most recent head rotation. In
the extreme case, a complete 360◦ view is sent for the user as a panoramic frame. This approach
can mask the latency regarding head rotations in three degrees of freedom (3DOF) systems,
where the head rotations control the rendering camera. A small-scale user study in Reference [15]
suggests that it is effective in hiding the impact of latency from users even when rendering in a
further-away located consolidated cloud server. Additional rendered surroundings do, however,
increase the computational requirements of the server and can lead to unnecessary work and high
bandwidth requirements. The amount of rendered extra viewport can however be optimized based
on the current latency and head rotation speed.

3.2 System Overview

Figure 1 illustrates a schematics view of edge computing assisted real-time remote VR system. We
consider a single-server MEC system that is associated with small cellular base station (SBS)

from where the downlink radio resource blocks are proportionally fair (PF) allocated to the
connected clients at each time slot. The VR clients join and leave the video streaming session at
some random time slots. According to the orientation of the headset, the client sees some portion
of the whole 360◦ scene, which we refer to as FOV. To compensate for rotation latency, the server
renders a viewport that is larger than the FOV of the client so that the user has margin for head
rotations before the next frame arrives. To optimize computational as well as network resources,
the desired viewport size is just enough to compensate for the latency upon motion but not larger.
To know what that size should be, we derive a relationship for the viewport size and latency based
in user data in Section 3.6 that will also be used in the evaluation. At each time slot, the scene
corresponding to the viewport can be rendered either at the cloud or at the edge.

In contrast to the wireless links with constrained capacity at the edge, we assume that the wired
path connecting the network edge to the consolidated cloud is mainly fiber with large capacity
and, hence, is not the bottleneck. We also assume that the delay to deliver video content from the
cloud server to network edge is on average the same (may vary around the mean). However, the
video delivery latency from edge to the client depends on client link quality, resources allocated
to the client by SBS, and the size of rendered video data. The overall latency is defined as the
total time of delivering a frame of rendered video from cloud or edge server to the client. We
exclude the processing delays associated with client device or server as they do not depend on the
server location (edge vs. cloud). The available processing resources of cloud servers are sufficient
to render graphics for all clients at all times. In contrast, the processing resources of edge servers
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are limited. The limited edge processing resources imply that rendering for some clients has to be
performed at origin server due to the saturation of resources at the edge. Although we consider
a single edge server for the sake of model simplicity, the same operations can be replicated to
multi-server systems without any change to the underlying model and analytical derivations.

We also assume that the time taken to render a frame of video is same at either the cloud server
or at an edge server, and, therefore, we do not explicitly account for it in the optimization problem.
In other words, the frame rate is constant, and we require edge servers to be capable of rendering
frames at the required rate for each served client. However, the edge rendering capacity is defined
in terms of the output, i.e., total volume of encoded video per time unit. In this way, we make an
implicit assumption that the rendering quality is linked to video encoding quality (bitrate) so that
if a lower-quality video is delivered to a client, the graphics rendering process is automatically
adjusted in a corresponding manner to avoid consuming unnecessary GPU resources.1

The centralized coordinator obtains the clients contextual information (arrival/departure time
slots, wireless link quality) and the edge server processing status. It then solves a joint optimization
problem to decide on the optimal video quality allocation to connected VR clients at each time slot.
Therefore, bitrate adaptation is purely handled by the coordinators in contrast to traditional HTTP-
based streaming systems in which it is often the client that runs the adaptation logic. Concerning
the bandwidth fluctuation, it should be noted that the drop in network bandwidth simply causes
the reduction in real-time video bitrate assigned to the client and as a result the degradation of
average video quality of client during its VR session.

3.3 System Notations

We consider the scheduling of S mobile VR clients in a single server MEC system during |T | discrete
time slots where each slot has the fixed duration of Δt = 1s . The available bandwidth in time slot
t at SBS associated with edge server is represented byW (t ) . The arrival and departure time slots
of client s ∈ S , i.e., the time that client starts and finishes its VR session, are represented by As

and Ds , respectively. The signal to noise ratio (SNR) received by VR client s at time slot t is

represented by SNR (t )
s . The theoretical throughput of client s at time slot t is denoted by T (t )

s ,
which is computed according to the following approximation of Shannon upper bound [19]:

T (t )
s =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪
⎩

0; if SNR
(t )
s < SNRmin

α · loд2

(
1 + 10

S N R
(t )
s

10

)
; if SNRmin ≤ SNR

(t )
s < SNRmax ,

Tmax ; if SNR
(t )
s ≥ SNRmax

(1)

where path loss parameter α = 0.6 and SNRmin , SNRmax , andTmax are set to respectively −10 dB,
23 dB, and 4.4 bps/Hz according to the LTE downlink specifications reported in Reference [19].

The effective throughput is then obtained as follows: Thr (t )
s = ( T

(t )
s∑

j∈S, j�s T
(t )
j

) ·W (t ) .

The delivered video to the client during its session is divided into fps fixed number of frames
such that the frame size vary depending on the overall video size. The perceived latency of video

delivery from the edge to client s with channel bandwidthC (t )
s at time slot t is represented by l (t )

s .

We also denote by b (t )
s the size of rendered video data of client s at time slot t .

The video frames are encoded and can be delivered to the client in M different qualities repre-
sented by set R = {q1,q2, . . . ,qM }. The rendered viewport size and the allocated video quality of

1Some game engines allow directly adjusting the graphics quality of rendering process, whereas another possibility is to

control a quality related factor, such as rendering resolution. However, in this work, we do not take a stance on how exactly

it should be done to provide as high visual experience as possible with optimized GPU load and leave it for future work.
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client s at time slot t are represented by respectively r (t )
s and q (t )

s . The rendered viewport size is a
unitless variable, and it is a factor of the FOV in user’s HMD, while video quality has the unit of
Mbps. Further, the variable video delivery delay from the origin server to edge server as network
jitter at time slot t and the maximum tolerable latency by a VR client are represented respectively

by d (t ) and tmax . The edge server has the available processing resources of p (t ) (in Gb) at time
slot t and constant ϕ is also defined, which states the processing weight of edge server. The binary

decision variables x (t )
se and x (t )

sc are also defined, which indicate the rendering of VR scene for client
s at the edge and cloud server, respectively, at time slot t .

3.4 Average Video Quality

The average bitrate at which the rendered scene is encoded into video indicates the quality per-
ceived by the client. Although the relation between the video bitrate and the perceived qual-
ity may not be linear in practice, we consider the direct mapping between them for the sake
of model simplicity. The average video quality of client s during its VR session is given by

Qs = (
∑Ds

t=As
q (t )

s )/(Ds −As ).
Since server switching can negatively impact the viewing experience of VR client, we also define

a penalty term each time server switching happens. In other words, suppose Ψ(t )
s denotes the

average switching frequency caused by VR client s up to time slot t during its video streaming

session. The following relation is obtained: Ψ(t )
s = (

∑t
t ′=As+1 I(x

(t ′)
s ⊕ x (t ′−1)

s = 1))/(t −As ), where

I(.) is the unity function. With the above relation, the average quality penalty during the video

streaming session of VR client s is obviously equal to Ψs =
∑Ds

t=As+1 Ψ(t )
s .

3.5 Average Latency

The overall latency for a client at each time slot depends on the location (the edge or origin server)
from where the scene is rendered at that time slot. If the video is rendered at a cloud server, then
it adds a delay of d (t ) to the latency of video frame delivery to the client at time slot t . The latency

associated to the video frame delivery from the edge to client s at time slot t is given by l (t )
s =

b (t )
s /( fps ·C (t )

s ).
It is noteworthy to mention that with a fixed amount of video data, increasing the number of

frames in the video implies the lesser amount of data per frame to be transmitted over the wireless
link at each time slot. This in turn implies a reduction in video delivery latency per time slot that

is consistent with the relation l (t )
s given above. Considering both edge and cloud rendering, the

average latency during VR session of client s is obtained as Ls = (
∑Ds

t=As
l (t )
s +x

(t )
sc ·d (t ) )/(Ds −As ).

3.6 Size of Rendered Viewport

We also need to know the relationship between latency and the required viewport size to com-
pensate such latency upon motion. In other words, we want to find out how large the frustum
needs to be so that the user does not notice its limited size, yet keeping it constrained for resource
consumption (computing and bandwidth) reasons. We first derive the mathematical notations that
are independent on how this relationship is characterized. After that, we exemplify one way of de-
riving this relationship from real user data that we have used in the system evaluation. We discuss
the limitations and possible extensions to this way of characterizing the required viewport size in
Section 7. Similarly, while in this work we only consider rotational motion, i.e., 3DOF, we discuss
in that section how 6DOF could be supported.

From the mathematical point of view, we express this relationship by defining a single variable

function fr , which states the viewport size in terms of latency as follows: r (t )
s = fr (l (t )

s +x
(t )
sc ·d (t ) ).
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Fig. 2. Quadratic approximation for the relationship between FOV and latency.

The volume of a video frame (in bits) to be delivered to a client depends on the viewport size
and the video encoding parameters, specifically quantization, which determines the bitrate and
quality tradeoff. The volume of rendered video data by client s at time slot t is given as follows:

b (t )
s = fb (r (t )

s ,q
(t )
s ), where fb is a two-variable function that maps the viewport size and the video

quality to the volume of video data that should be transmitted to the client over wireless link.

Combining the above obtained relations r (t )
s and b (t )

s , we can express the size of rendered video

data in terms of latency and quality as follows: b (t )
s = fb ( fr (l (t )

s + x
(t )
sc · d (t ) ),q (t )

s ).

Now, from the equation for l (t )
s obtained in Section 3.5, we derive the following relation between

latency and video quality: l (t )
s = fb ( fr (l (t )

s + x
(t )
sc · d (t ) ),q (t )

s )/( fps ·C (t )
s ).

To characterize function fr , which states the viewport size in terms of latency, we analyzed head
movements from two VR usage datasets presented in References [9, 37], similarly to our earlier
work in Reference [15]. We calculated samples indicating the total amount of rotation observed
around the y-axis (pitch) and z-axis (yaw) within a specific time window, i.e., latency. From this,
we inferred the fraction of peripheral faces (in addition to the front face that is always rendered
entirely) that need to be rendered so that the user’s head movements according to the datasets
would not exceed the viewport size before a new frame arrives. We plot the 99th percentile of these
samples as a function of latency in Figure 2. The curve tells us the viewport size that is sufficient in
99% of time to compensate for rotations given specific amount of latency according to the datasets.
In here, we only plot yaw, because it is more prevalent in the traces. Pitch can be analyzed in the
same way, but for simplicity, in this article, we assume that rotations around the horizontal axis
exhibit the same relationship. The figure also shows a polynomial curve that we fit to these samples.
In this way, we characterize the relationship as a quadratic function r = fr (l ) = p1l

2 + p2l + p3.
Furthermore, we derive function b = fb (r ,q) = 4(r − 0.5)2 · q for mapping the viewport size and
video quality (bitrate) to the video stream volume (in Mbps).

4 JOINT OPTIMIZATION PROBLEM FOR MAXIMAL USER EXPERIENCE

The problem of jointly optimizing average video quality and latency for each individual client s ∈ S
is formulated as the following mixed integer nonlinear programming (MINLP) optimization
model:

Maximize
xse ,xsc ,qs

αw1Qs − (1 − α )w2Ls −w3Ψs , (2)
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subject to

C (t )
s +

∑
∀j ∈S, j�s

C (t )
j ≤W

(t ), ∀1 ≤ t ≤ |T |, (3)

x (t )
jc · d

(t ) + l (t )
s ≤ tmax , ∀1 ≤ t ≤ |T |, (4)

x (t )
se · ϕ fb

(
fr

(
l (t )
s + x

(t )
jc · d

(t )
)
,q (t )

j

)
+

∑
∀j ∈S, j�s

x (t )
je · ϕ fb

(
fr

(
l (t )
s + x

(t )
jc · d

(t )
)
,q (t )

j

)
≤ p (t ), (5)

∀1 ≤ t ≤ |T |

Equation l (t )
s obtained in Section 3.6

x (t )
se + x

(t )
sc = 1, As ≤ t ≤ Ds , (6)

q (t )
s ∈ R, x (t )

se ,x
(t )
sc ∈ {0, 1}, ∀1 ≤ t ≤ |T |. (7)

In the above MINLP problem, the variables q (t )
s , x (t )

se , and x (t )
sc are the only decision variables, l (t )

s is
the dependent variable, and the values of other parameters are known in advance. The weighting
parameter 0 ≤ α ≤ 1 is defined in the objective function to control the quality–latency tradeoff.
Since the video quality and latency have different scales and units, we further define the parameters
w1, w2 in the objective function to balance the quantitative values of video quality and latency.
Depending on the scale of video quality, the actual values of these two parameters are set later in
the simulation results. It is noted that w1 is unitless while w2 takes the unit of Mb/s2. Further, we
define the weighting w3 as a coefficient of third term in the objective function that accounts for
server switching penalty and scales up in accordance with the average server switching frequency
value Ψs . Parameter w3 has the unit of Mbps and we investigate its impact later in simulations.

Constraint (3) ensures that the summation of allocated bandwidth to client s and the other con-
nected VR clients at each time slot does not exceed the available bandwidth. Constraint (4) guaran-
tees that the total latency perceived by client s at each time slot is no more than the upper bound.
It is noted that this constraint is enforced to make sure that one time slot scheduling of clients is
feasible in our system. Constraint (5) ensures that the summation of workload caused by client s
and the workload of other connected VR clients at the edge does not exceed the rendering capacity

of edge server. The equation l (t )
s that states the relation between latency and video quality is also

added to the set of constraints. Constraint (6) states that each client must be served either by the
edge or by the cloud. Finally, constraints (7) determine the range of decision variables.

It is worth pointing out that the size of optimization problem (2)–(7) depends on the number
of VR clients and the number of deployed edge servers in the system. More precisely, the opti-
mization problem has the size of |T | · (2S + S + S ) where S is the number of VR clients in the
system. Here, the first term is for the number of quality and latency decision variables (variables

q (t )
s and l (t )

s ) for every client in all time slots, the second term is the number of decision variables

for clients to cloud allocation during all time slots (binary variables x (t )
sc . Note that there is only

one cloud server) and the third term is the number of decision variables for clients to edge server

allocation during all time slots (binary variables x (t )
se . Note that there is only one edge server in the

system).

5 ONLINE HEURISTIC SOLUTIONS

The problem formulation (2)–(7) belongs to the class of NP-hard problems due to the existence
of integer decision variables in the model. The problem formulation is also non-convex due to
the combination of both integer and continues constraints in the model. Using offline solutions
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such as the combination of integer relaxation and branch and bound technique can find the op-
timal solutions to the offline problem (2)–(7). But these techniques suffer from high complexity,
and also the implementation of offline solutions is not applicable in practice, since the information
of VR clients are not available in advance. However, some techniques may try to relax the set of
discrete constraints to continues ones and then solve the resulted problem. However, designing
effective heuristics to round the continues variables to the original integer ones is a challeng-
ing task, since the returned solutions should guarantee some degree of closeness to the optimal
solutions.

To overcome the above challenges, we design in this section online greedy-based algorithms to
obtain high-quality solutions with low computational complexity. In other words, our solutions
are based on greedy algorithms that directly solve the decision variables and are implemented in
an online manner, which make them feasible for practical applications.

Before designing the algorithms, we convert first the MINLP problem (2)–(7) to an INLP problem

by taking advantage of the equation l (t )
s , which was obtained in Section 3.6. More precisely, we

derive the latency of the client at each time slot in term of its video quality at that time slot by

solving the equation l (t )
s in term of q. Suppose д is the function mapping the video quality to the

latency, i.e., l (t )
s = д(q (t )

s ), which is derived by solving the equation l (t )
s from Section 3.6. Replacing

latency using the quality function д, the MINLP problem (2)–(7) for each individual client s ∈ S is
converted to the following INLP problem:

Maximize
xse ,xsc ,qs

αw1Qs − (1 − α )w2д(Qs ) −w3Ψs , (8)

subject to

C (t )
s +

∑
∀j ∈S, j�s

C (t )
j ≤W

(t ), ∀1 ≤ t ≤ |T |, (9)

д(q (t )
s ) + x (t )

sc · d (t ) ≤ tmax , ∀1 ≤ t ≤ |T |, (10)

x (t )
se · ϕ fb ( fr (д(q (t )

s ) + x (t )
sc · d (t ) ),q (t )

s ) +
∑

∀j ∈S, j�s

x (t )
je · ϕ fb ( fr (д(q (t )

j ) + x (t )
jc · d

(t ) ),q (t )
j ) ≤ p (t ),

(11)

∀1 ≤ t ≤ |T |

x (t )
se + x

(t )
sc = 1, As ≤ t ≤ Ds , (12)

q (t )
s ∈ R, x (t )

se ,x
(t )
sc ∈ {0, 1}, ∀1 ≤ t ≤ |T |. (13)

Next, we introduce two variations of low complexity online greedy-based algorithms to solve
the optimization problem, both of which are designed to be run by a centralized coordinator. Note
that the coordinator is edge location (i.e., base station) specific, which means that the approach
scales to larger systems by replicating the coordinators as more edge locations are added.

5.1 Link-based Greedy Quality Assignment

The first proposed algorithm is called Link-based Greedy Quality Assignment (LGQA). The
name comes from the fact that it specifically considers the wireless link quality of each clients in
decision making. The rationale is that it is preferable to serve a client with a relatively poor link
quality from the edge. The reason is that a lower latency of edge rendering allows smaller viewport
size, which is especially important when the wireless link quality is poor and each bit transmitted
consumes more network resources compared to a situation when the wireless connectivity is good.
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ALGORITHM 1: Link-based Greedy Quality Assignment (Run by the centralized coordinator)

1: Input: |T |, S, R : Number of time slots, number of VR clients, set of available video qualities

2: Output: Binary allocations x
(t )
se , x

(t )
sc and the integer video quality q

(t )
s for each client s ∈ S and time slot 1 ≤ t ≤ |T |

3: for each time slot 1 ≤ t ≤ |T | do
4: Allocate RBs to connected clients according to PF policy;

5: Compute the effective throughputs T hr
(t )
s (using the equations given in Section 3.3)

for all clients s ∈ S such that As ≤ t ≤ Ds ;
6: Sort the clients in increasing order of throughput for all clients put;
7: Insert the sorted clients into set S ′;
8: for each client s ∈ S ′ do
9: maxObject ive = 0;

10: for each video quality q ∈ R do

11: if q ≤ T hr
(t )
s then

12: x
(t )
se = 1; x

(t )
sc = 0;

13: if the allocation of q satisfies constraints (10), (11)
14: AND αw1q − (1 − α )w2д (q ) −w3ψ > maxObject ive then

15: maxObject ive = αw1q − (1 − α )w2д (q ) −w3ψ ;

16: q
(t )
s = q; temp

(t )
se = 1; temp

(t )
sc = 0;

17: x
(t )
se = 0; x

(t )
sc = 1;

18: if the allocation of q satisfies constraint (10)
19: AND αw1q − (1 − α )w2д (q ) −w3ψ > maxObject ive then

20: maxObject ive = αw1q − (1 − α )w2д (q ) −w3ψ ;

21: q
(t )
s = q; temp

(t )
se = 0; temp

(t )
sc = 1;

22: x
(t )
sc = temp

(t )
sc ; x

(t )
se = temp

(t )
se ;

23: if x
(t )
se == 1 then Update p (t ) ;

24: if for each q ∈ R : q > T hr
(t )
s then

25: x
(t )
se = 1; x

(t )
sc = 0;

26: q
(t )
s = qmin ; Update p (t ) ;

27: Return x
(t )
se , x

(t )
sc , q

(t )
s ∀s ∈ S, 1 ≤ t ≤ |T |;

The pseudo-code of the algorithm is presented in Algorithm 1. At each time slot and in online
manner, the radio resources of SBS are first allocated to the connected VR clients in proportionally
fair manner (line 4). After computing the effective throughput (line 5), the algorithm then sorts the
clients in increasing order of their throughput (wireless link quality) at the current time slot (lines
6 and 7). The rationale behind such pre-ordering of clients is that those with poor link quality are
prone to obtain higher video qualities with less perceived latency when allocated to the edge. The
algorithm then checks the available video qualities (in set R) in a greedy manner and decides on
the location (edge or cloud server) and the most suitable video quality that maximizes the client’s
objective function (8) and satisfies the constraints, i.e., constraints (10) and (11), if the client is
assigned to edge (lines (12)–(15)) and only constraint (10) if the client is assigned to the cloud
(lines (16)–(18)). Mathematically speaking, the allocated quality to client s ∈ S at time slot t , i.e.,

q (t )
s after sorting the clients is obtained by solving the following local optimizer:

q (t )
s = arд

∀q∈R
maximize{αw1Q

(t )
s − (1 − α )w2д(Q (t )

s ) −w3Ψ(t )
s }, (14)

subject to constraints (9)–(13)

where Q (t )
s and Ψ(t )

s are respectively the average video quality obtained and the average server
switching penalty incurred by client s up to (including) time slot t .

At each time slot, the rendering resources of edge server are updated (line 19). Finally, if the
effective throughput of the client at that time slot is below every video quality in set R, then
the client is then assigned to edge server at that time slot with minimum video quality (lines 20
and 21).
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5.1.1 Computational Complexity. It is seen from Algorithm 1 that at every time slot, the allo-
cation of video quality to the active clients is performed by first sorting the clients based on their
link quality and then checking all the possible video qualities and corresponding latency, which is

obtained by solving equation l (t )
s from Section 3.6.

In the worst case, S clients are active at every time slot and the sorting of clients based on link
quality can be performed inO (S · loд(S )). Then for each client, the allocation of |R | available video
qualities at two different locations (edge and cloud) should be checked in the greedy manner. Also,

solving the equation l (t )
s using bisection method for finding the corresponding latency for each

video quality takes Tbisect ion time. In the case that the effective throughput of client falls below
every available video quality assuming with probability p, the allocation of client to the edge with
minimum video quality is performed in O (1). Now, considering the total number of |T | streaming
time slots, the above complexities together yield: TLGQA ∈ O ( |T | · S · (loд(S ) + 2|R |Tbisect ion + p))

It is seen that Tbisect ion ∈ O (loд(tmax/δ )) where tmax is the upper bound on the latency per-

ceived by VR clients and δ is the error tolerance in solving equation l (t )
s using bisection method.

Since p ≤ 1 and Tbisect ion >> p, it results in the following worst-case time complexity for LGQA
algorithm: TLGQA ∈ O ( |T | · S · (loд(S ) + 2|R |loд(tmax/δ ))) = O ( |T | · S · loд(S (tmax/δ )2 |R | )).

5.2 Augmented Greedy Quality Assignment

The second variant of a greedy algorithm uses a different logic for the allocation of video qualities
to clients at each time slot. We term it Augmented Greedy Quality Assignment (AGQA), and
the rationale is to select the most appropriate video quality and the optimal location (edge or
cloud) for the client at each time slot, which yields higher utility (objective value (2)) with lower
edge rendering occupation. The pseudo-code of the algorithm is presented in Algorithm 2.

More formally, the AGQA algorithm aims to improve the solutions of LGQA on objective value
(8) by first constituting the set of all feasible quality levels and corresponding latency from both
edge and cloud at each time slot. The algorithm then sorts all quality and latency pairs for each

client in decreasing order of
αw1q−(1−α )w2l−w3ψ

p
. Here, variables q, l , ψ , and p are respectively the

quality, the corresponding latency, the server switching penalty, and the required rendering re-
sources when a particular quality q is allocated to the client. After sorting, the algorithm allocates
the first quality level in the sorted list to each client. Then, the rendering location is decided. The
edge rendering capacity is occupied each time the selected video quality is rendered at the edge
server until edge rendering capacity is fully saturated. Finally, those clients that have not been as-
signed any quality level are allocated to the edge server with minimum quality level at the current
time slot.

5.2.1 Computational Complexity. We now derive the worst-case computation complexity of
AGQA algorithm. The Algorithm 2 suggests that finding the latency corresponding to maximum
2|R | feasible quality levels (from both edge and cloud server) using bisection method takesO ((2S ·
|R |)loд(tmax/δ )) time at every time slot and for at most S active VR clients. Then, the worst-case
time complexity of sorting set S ′ in decreasing order of ratio between the utility value and resource
consumption is of order O ((2S · |R |)loд(2S · |R |)). Finally, the allocation of quality levels to clients
according to the sorted list S ′ (including the allocation of those clients with no feasible quality
level to edge with probability p < 1) takesO (2S · |R |) time. Now, putting all the above complexities
together and with |T | time slots, we obtain the following: TAGQA ∈ O ((2|T | · S · |R |)loд(2S · |R | ·
tmax/δ )).

In practical scenarios, the time complexity of both LGQA and AGQA algorithms grow with the
order of S .loд(S ) when the number of VR clients, S , increases, which is obviously less than the
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ALGORITHM 2: Augmented Greedy Quality Assignment (Run by the centralized coordinator)

1: Input: |T |, S, R : Number of time slots, number of VR clients, set of available video qualities

2: Output: Binary allocations x
(t )
se , x

(t )
sc and the integer video quality q

(t )
s for each client s ∈ S and time slot 1 ≤ t ≤ |T |

3: Create empty set S ′;
4: for each time slot 1 ≤ t ≤ |T | do
5: Allocate RBs to connected clients according to PF policy;

6: Compute the effective throughputs T hr
(t )
s (using the equations given in Section 3.3)

7: for all clients s ∈ S such that As ≤ t ≤ Ds ;
8: for each client s ∈ S, As ≤ t ≤ Ds do
9: for each video quality q ∈ R do

10: if q ≤ T hr
(t )
s then

11: Compute corresponding latency l = д (q )

12: when x
(t )
se = 1;

13: if allocation of q satisfies constraint (10) then

14: Append value
α w1q−(1−α )w2д (q )−w3ψ

ϕq
to set S ′;

15: Compute corresponding latency l = д (q )

16: when x
(t )
sc = 1;

17: if allocation of q satisfies constraint (10) then

18: Append value
α w1q−(1−α )w2д (q )−w3ψ

ϕq
to set S ′;

19: Sort set S ′ in decreasing order of
α w1q−(1−α )w2д (q )−w3ψ

ϕq
;

20: for each client s ∈ S, As ≤ t ≤ Ds do
21: Select the first quality q in set S ′;

22: if the corresponding x
(t )
se == 1 AND

23: constraint (11) is satisfied then

24: Allocate q
(t )
s = q; Update p (t ) ;

25: if the corresponding x
(t )
sc == 1 then

26: Allocate q
(t )
s = q;

27: for each client s ∈ S, As ≤ t ≤ Ds do

28: if q
(t )
s == ∅ then

29: x
(t )
se = 1; q

(t )
s = qmin ; Update p (t ) ;

30: Return x
(t )
se , x

(t )
sc , q

(t )
s ∀s ∈ S, 1 ≤ t ≤ |T |;

quadratic order. Therefore, the algorithms scale with the number of clients reasonably well when
considering larger scale deployments.

We also note that the proposed greedy-based algorithms fail to return feasible solutions under
the scenario when the consumed wireless resources by the allocation of minimum video quality
to all VR clients exceed the available resources at SBS. This could happen due to the poor wireless
link quality of clients; for instance, they are physically located far from the SBS.

5.3 Optimality Analysis

In this section, the optimality performance of the proposed quality allocation algorithms are dis-
cussed. More precisely, we aim to derive lower bound on the solutions returned by algorithms with
respect to the optimal solutions of problem (8)–(13). Since analyzing the optimality gap of the al-
gorithms for this general problem is not straightforward, we first study the optimality of AGQA
algorithm for a special case of the problem. We have detailed the optimality analysis of AGQA
algorithm for the special case of problem (8)–(13) in the appendix. Later, we study the optimality
performance of LGQA algorithm through simulations.

Indeed, the approximation factors are some rigorous lower bounds on the solutions generated
by our algorithms. However, deriving a strict upper bound on the solutions returned by our al-
gorithms, which is less useful compared to the lower bound, is not straightforward. It is also
worth pointing out that the proposed algorithms do not work based on any iterative procedure
which incur high complexity. In regard to convergence to the sub-optimal solutions, our algorithms
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provide guaranteed approximation bound with respect to the optimal solutions (optimality gap)
as evidenced by rigorous analytical analysis given in appendix as well as in Section 6.12.

6 EVALUATION

In this section, we perform simulations supplemented with real-world user data to evaluate the
performance of two proposed algorithms compared to some baseline solutions.

6.1 Experiment Setup

We consider a single server MEC system and video streaming of |S | = 100 mobile VR clients during
|T | = 300 time slots where Δt = 1s . Although we study a single edge location system for simplicity
reasons, we note that the results are applicable also to a larger scale system having several edge
locations. As link quality affects the optimization, we obtain downlink SNR traces of mobile clients
using the full-fledged simulator SimuLTE [31]. The available resource blocks of SBS at each time
slot is also fixed at 100. The effective throughput of the clients are then obtained using the equations
given in Section 3.3. Unless explicitly mentioned, the arrival time of VR clients is randomly chosen
from the uniform interval U [0, 20s]. Also, the clients remain active in the system until the end of
their session, which is equal to the simulation time, i.e., they have the same constant departure
time.

To make the optimization feasible, we define 10 discrete bitrates (and qualities) for the real-time
video streamed to the clients: R = {10, 12, 15, 20, 22, 25, 28, 30, 32, 35 Mbps}. The viewport size is
bound between 1 ≤ r ≤ 1.5 and the upper bound of the latency is set to tmax = 0.2s . The number
of delivered video frames per time slot is fixed at fps = 60, which provides a reasonably good VR
experience. We scale viewport size with latency according to the relationship derived in Section 3.6.

As default, the delay of video frame delivery from origin server to the edge is constant at 50
ms across the scheduling time slots. In addition, we consider the default server switching penalty
of w3 = 0 in the following simulations, while the impact of both origin to edge server latency
variation and varying the server switching penalty are investigated in Sections 6.9 and 6.10.

The bisection method [4] with error tolerance of δ = 0.001 is also implemented to solve the
equation l = д(q). Unless explicitly mentioned, the edge can render graphics worth of 1.5 Gb per
second of compressed video (i.e., per time slot) while, the cloud processing resources are sufficient
to support the rendering graphics for all clients. We also set the optimization weighting parameter
α = 0.5 unless mentioned otherwise. The quantitative scaling parameters in the objective function
are also set to w1 = 1 and w2 = 1 Mb/s2. Finally, we note that the results presented are averages
taken over 20 runs of simulation with confidence interval of 95%. We compare the performance of
AGQA and LGQA against the following video quality assignment strategies.

• Order of Arrival Quality Assignment (OAQA): Using this strategy, the clients who arrive
to the system first are served from the network edge. Once the edge processing resources are
saturated, the subsequent clients are served from the cloud. At both locations, the graphics
are rendered and encoded with the highest possible sustainable quality.
• Throughput Threshold Quality Assignment (TTQA): In this strategy, the VR client is as-

signed to the edge if its effective throughput is below some pre-defined threshold, otherwise,
it is assigned to the origin server. The allocated video quality to the client at either the edge
or origin server is decided using the greedy approach. We consider the default throughput
threshold of 25 Mbps unless mentioned otherwise.
• Random Location Quality Assignment (RLQA): In this strategy, the VR client is ran-

domly assigned to either the origin or edge server. After the server assignment, the output
video quality is selected using the greedy heuristic.
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Fig. 3. (a) Comparison between five strategies in term of average edge server processing utilization per
time slot and allocated clients to edge server using (b) AGQA, LGQA, and OAQA and (c) TTQA and RLQA
strategies.

6.2 Edge Processing Utilization

We first study the edge processing resources used over time (Figure 3(a)). The results indicate that
after the first few seconds, all the strategies lead to a similar constantly full utilization of the edge
resources except for TTQA. TTQA causes the edge resources to be used increasingly toward the
end of the simulated time period. The reason is that it uses the effective throughput as the threshold
to decide on the allocation between edge and cloud, and this threshold starts to make a difference
toward the end of the simulated period where the link qualities become worse. So, in a sense it is
an artifact of the simulated scenario.

Figure 3(b) and (c) show the patterns of client allocation to edge during the simulations. The
patterns are qualitatively similar with all strategies except for TTQA. The reason is the same reason
as in the case of edge utilization described above.

6.3 Video Quality

Next, we investigate the average video quality delivered to clients using different strategies. Fig-
ure 4(a) shows the results as a function of weighting parameter α that controls the optimization
target.

We note that the OAQA strategy allocates a consistent video quality to the clients during whole
video streaming session. In contrast to OAQA, which cannot adopt to clients preference, the other
strategies offer different video qualities depending on whether quality or latency is preferred. We
also note that RLQA solution results in lowest average video qualities among all the strategies.
LGQA slightly improves the average quality (roughly 1 Mbps higher bitrate) compared to OAQA
when α ≥ 0.4 by taking into account not only the alpha value but also the link quality of clients.
AGQA further improves the average bitrate by about 6.65 Mbps compared to LGQA by sorting the
clients in term of utility/processing ratio before the bitrate selection.

6.4 Latency

Figure 4(b) plots results pertaining to latency with the different strategies. As expected, RLQA,
TTQA, and LGQA result in latency that is in accordance to the weighting parameter α . In other
words, a lower latency is obtained with smaller values of parameter α and vice versa. AGQA’s
utility/processing ratio sorting of clients helps achieve the lowest average latency when α ≥ 0.4.
The throughput-threshold server location logic used by TTQA also cannot efficiently optimize for
latency as it causes higher latency compared to our algorithms. The reason is that selecting the
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Fig. 4. Comparison between five strategies in term of average (a) video quality and (b) latency per client and
the impact of arrival interval on (c) average video quality and (b) average video delivery latency per client.

Fig. 5. Impact of throughput threshold in TTQA algorithm on average (a) video quality and (b) latency per
client and the impact of edge processing resources on average (c) video quality and (d) latency per client.

rendering location (edge or cloud) merely based on the throughput threshold results in situations
when some clients with poor link quality are allocated to the cloud server. This in turn increases
the latency that the clients perceive when they download high video qualities from the cloud
server. Furthermore, although LGQA causes a bit higher latency compared to OAQA and RLQ
when α ≥ 0.4, it results in higher average video quality for those alpha values.

Overall, the latency differences are notable: LGQA improves latency on average by 22% and 12%
compared to OAQA and TTQA strategies, respectively. Although RLQA provides latency that is
on par with our optimization algorithms, it cannot deliver similar video quality with that latency.
Finally, we observe that AGQA reduces latency on average by 12% compared to LGQA when α ≥
0.4. As a conclusion, AGQA algorithm outperforms in overall all other quality assignment solutions
in terms of both average video quality and latency per client.

6.5 Impact of Arrival Interval

As the performance of some of the strategies is dependent on how the clients arrive to the system,
we now turn our attention to that. To do this, we consider five different uniform intervals for the
arrival time slot and a fixed alpha value α = 0.5.

The results with LGQA and TTQA algorithms are shown in Figure 4(c) and (d). Increasing the
interval length decreases the average video quality and latency with both algorithms. The reason is
that as the arrival interval duration increases, more clients are simultaneously being served, which
reduces resources available per client. With lower effective throughput, our algorithm allocates
lower video quality to clients and with fixed weighting parameter α , it also results in lower aver-
age latency. However, with lower effective throughput on average and fixed throughput thresh-
old, TTQA algorithm allocates the majority of clients to the edge, which results in lower average
latency.
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6.6 Impact of Throughput Threshold in TTQA Algorithm

We next investigate the impact of different throughput thresholds on the performance of TTQA
strategy and compare the results to those achieved with our optimization algorithms. The results
for three thresholds, 15, 25, 35 Mbps, are plotted in Figure 5(a) and Figure 5(b).

The results indicate that increasing the value of throughput threshold in TTQA algorithm may
either increase or decrease the average video quality as the relationship between the throughput
threshold and average perceived video quality per client is not straightforward. But, the aver-
age latency slightly decreases by increasing the throughput threshold. The reason is that as the
throughput threshold increases, TTQA allocates larger number of clients to edge server and the
average video quality that clients obtain merely depends on clients link quality and the available
processing resources at the edge. However, using a higher throughput threshold in TTQA helps to
perform most of video rendering tasks at edge server and, hence, reduce the average latency. We
also note that overall LGQA performs better than TTQA with all the three threshold values. It is
noted that we compared TTQA against LGQA algorithm rather than AGQA due to the fact that
superiority of AGQA over LGQA has been justified as discussed in Sections 6.3 and 6.4.

6.7 Impact of Edge Processing Resources

We next investigate the impact of increasing the edge processing resources on the performance
of algorithms. We simulated scenarios with different amounts of edge processing resources and
α = 0.5. The results are shown in Figure 5(c) and Figure 5(d).

Increasing edge processing resources helps to improve the average video quality per client up
to a certain point, regardless of the strategy used. This result is expected, since more processing
power at the edge allows more clients to be served from the edge, and those clients can get a higher-
quality video stream, because the shorter latency compared to cloud enables compensating for the
latency using a smaller viewport size. The reason why 5 Gb of edge resources no longer improves
the situation compared to 4 Gb of resources is simply that 4 Gb of resources is sufficient to serve
all the clients from the edge considering the constraint on their wireless link quality.

Also average latency can be reduced by increasing the amount of edge processing power when
using LGQA and OAQA algorithms. Similar to video quality, this stems from the fact that with
more edge processing power, more clients are served from the edge, which provides a shorter
latency than the cloud. In contrast, TTQA and RLQA behave in a different way as the average
latency tends to increase when more processing power is allocated to the edge. The reason is that
although TTQA and RLQA utilize the greedy video quality allocation logic, the allocation of clients
to edge/origin server is performed in somewhat an uncontrolled way using these approaches.

The zero Gb worth of resources corresponds to the cloud only deployment case. Hence, in the
simulated scenarios, edge acceleration can improve both video quality and latency by at most 16%
compared to cloud only setup. The threshold value of 4 Gb worth of resources beyond which we
no longer gain in terms of video quality and latency depends obviously on system parameters and
cannot be a basis for decision making on dimensioning edge capacity for this type of services. How-
ever, perhaps a more interesting takeaway is that the curves are not linear but instead sublinear,
which suggests that majority of gains are achieved well before the threshold limit is reached.

6.8 Impact of Available Network Bandwidth

Next, we investigate the impact of varying the available network bandwidth. To do this, we have
varied the network bandwidth from 10 to 30 MHz and have shown the corresponding average
video quality and delivery latency per client in Figure 6(a) and Figure 6(b), respectively.
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Fig. 6. Impact of network bandwidth on (a) average video quality and (b) average video delivery latency per
client and (c) comparison between algorithms under uniform latency from origin to edge server.

Fig. 7. Average (a) video quality and (b) latency per client and (c) the pattern of allocated clients to edge server
under different server switching penalty. (d) Average video quality under millisecond bandwidth fluctuation.

As we can see from the results, the average video quality returned by LGQA algorithm increases
with higher available bandwidth, which is due to the fact that the performance of this algorithm
depends on wireless link quality of VR clients. However, the available bandwidth does not have
much impact on average video quality of clients when using the AGQA algorithm. The reason is
that this algorithm assigns high quality for video rendering of VR clients regardless of the location,
i.e., the rendering could be at origin or edge server despite of some increase in latency.

Considering the average video delivery latency, we observe from the results in Figure 6(b) that
with higher available bandwidth and better channel quality, the clients perceive lower latency. It
is also observed that despite of no change in average video quality of AGQA algorithm, the clients
perceive lower latency with high bandwidth under this algorithm. However, the latency of AGQA
algorithm is higher than LGQA, which is due to the allocation of high video qualities to the clients.

6.9 Origin to Edge Server Latency Variation

To evaluate the impact of origin to edge server latency variation, we have compared the proposed
algorithms with baseline solutions when the origin to edge server latency is a random variable
chosen from the uniform interval U [40 ms,60 ms]. The comparison results in terms of average
video quality per client for different values of parameter α have been illustrated in Figure 6(c).

As it is observed from the results, the proposed algorithms outperform the baseline solutions in
terms of average video quality per client for different values of weighting parameter α . In turn, this
reveals the robustness of the proposed algorithms under stochastic origin to edge server latency.

6.10 Server Switching Effect

We have further investigated the impact of server switching on average video quality and delivery
latency per VR client. For the purpose of this simulation, we have considered three different values
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Fig. 8. Comparison between LGQA and AGQA in terms of average (a) video quality, (b) latency, and (c) utility
per client for special case of video quality assignment problem.

for penalty weighting w3 in the objective function (2) with setting α = 0.5. For each weighting
value, the corresponding average video quality and latency per client using our algorithms have
been shown in Figure 7(a) and (b), respectively. Also, the pattern of number of clients allocated to
edge server under different switching penalty has been illustrated in Figure 7(c).

As we can see from the results, by increasing the switching penalty, average video quality re-
duces, since it prevents the clients to switch more frequently for obtaining higher video quality.
However, the reduction in average latency per client is negligible compared to reduction in video
quality meaning that server switching has mainly impact on average video quality per client un-
der the given setting. Although the reduction in average latency is negligible for this case, we
achieve more noticeable reduction in average latency when optimization parameter α approaches
to zero, because in such situations, the optimization considers higher priority on the latency term
in the objective function than the quality term. As a result, it yields a more noticeable reduction
in average latency by increasing the quality switching penalty.

As the observation from the results in Figure 7(c), less server switching is visible where the
pattern of allocated clients to edge gets smoother with increase in switching penalty specifically
between time slots 100 and 200. Similarly, it should be noted that we observe larger fluctuation in
the number of clients assigned to edge server under smaller server switching penalty when the
weighting parameter α approaches 1. The reason is that when α approaches 1, the optimization
considers higher priority on the quality term in the objective function, and, therefore, the clients
will have more switching between the servers under lower server switching penalty to achieve
high video qualities.

6.11 Fine-grained Bandwidth Fluctuation

In the above simulations, we have considered the time slot scale of bandwidth fluctuation every 1 s.
To show the robustness of the proposed model under fine-grained bandwidth fluctuation scale,
we have further compared the proposed quality allocation algorithms with the baseline solutions
when network bandwidth fluctuates every 1 ms with uniform distribution. For different values of
weighting parameter α , the comparison results have been shown in Figure 7(d) in terms of average
video quality per VR client.

As we can see from the results, the same pattern of improvements is observed as before,
which in turn confirms the robustness of our proposed algorithms under fine-grained bandwidth
fluctuation.

6.12 Optimality Performance through Comparison with AGQA

In this section, we aim to derive an approximate upper bound on the solutions of LGQA for the
special case of video quality assignment problem (optimization problem (8)–(13)), which was dis-
cussed in Section 5.3. To achieve this, we compare LGQA with AGQA in terms of average video
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quality, average latency, and utility per client. Figure 8 plots these metrics computed over all values
of the alpha parameter (α from 0 to 1) and edge processing resources (from 0 to 5 Gb).

The figure tells us that, for this special case of the problem, AGQA delivers about 60% higher
video bitrate on average compared to LGQA. At the same time, it causes about 35% longer average
latency and outperforms LGQA by only 6% in terms of average utility per client. According to the
analytical derivations in Appendix, AGQA achieves the approximation factor of min(1/2, 1 − ϵ ),
which implies that LGQA yields the approximate upper bound of min(1/2, 1 − ϵ )/1.06 (where
0 < ϵ < 1 such that (3 − 2ϵ )ϵ ≤ 1/S) for the considered optimization problem. With regard
to our discussions, it is obvious that under the case when ϵ < 1/2, algorithm AGQA achieves
the approximation factor of 1/2, which means the solutions returned by AGQA algorithm for the
special case of problem are greater than or equal to 1/2 of optimal solutions. This implies that the
solutions returned by LGQA algorithm are greater than or equal to 0.5/1.06 ≈ 0.47 of optimal
ones.

7 DISCUSSION AND FUTURE WORK

Concerning real-world deployment, the edge accelerated system for real-time cloud rendering
for VR in this article requires real-time streaming and as such is not compatible with existing
on-demand video services. However, the system could be integrated directly into cloud gaming
services that have emerged in recent years (Google Stadia, Nvidia GeForce Now, Microsoft xCloud)
provided that the required edge computing infrastructure is in place. Edge computing deployments
are expected to happen in larger scale in conjunction with the deployment of stand-alone 5G
networks.

The optimization scheme presented in this article allocates resources fairly to all users and ap-
plications. The system could be further extended to take into account the latency requirements
of different application and game types and even the temporal variations in latency requirements
between different phases of a VR application. Moreover, the viewport size–latency relationship
that we characterized with the help of external datasets could also be application specific and
something that the system could learn online or at least refine based on observed behaviour. The
system model itself can accommodate any type of characterization of this relationship.

In this work, we focus on 3DOF use cases, which is reflected by how the the viewport size –
latency relationship is characterized. Remote rendering with 6DOF VR headsets requires also the
ability to reproject, or 3D warp, the incoming video frames to the new viewpoint upon translational
motion [30]. The proposed system could be extended to support 6DOF by adding two features:
(1) by streaming depth in addition to the RGB video (i.e., RGB-D) and (2) by considering motion
in lateral, vertical, and longitudinal directions in addition to rotations when characterizing the
viewport size–latency relationship. The latter feature stems from the observation that to produce
a 3D warped view that fills the entire FOV, a larger than FOV size viewport is necessary.

We consider latency and visual quality as the two main factors that affect the quality of experi-
ence for a user in a cloud-rendered application compared to a locally run application. However, it
should noted that there are some other factors that may affect the QoE of clients. Some of these
could be controlled by the system, such as framerate and resolution, while others not, such as
application engagement, VR headset specifics (FOV size, inherent latency, etc.), and user environ-
ment. Considering the other factors that could be controlled by the system is a potential avenue
for extending the proposed system.

Concerning the optimality gap of the proposed algorithms, it should be noted that in large-scale
VR remote rendered systems, the algorithms preserve the similar approximation factor based on
the analysis given in the appendix despite of increase in the number of clients. It is also noteworthy
to mention that although the optimality performance of algorithms is analyzed for a special case,
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we expect that algorithms achieve slightly bigger approximation factor for general video quality
assignment problem. Finally, we consider in this work that the centralized coordinator allocates
the video quality to the VR clients merely with the objective of maximizing average video quality
and minimizing the latency. This may compromise fairness in video quality allocation among the
clients that compete for the shared bandwidth. Designing network-assisted solutions that also
provide some level of fairness in quality allocation among the competing clients can be considered
as another interesting future work.

8 CONCLUSION

This article focuses on the use of multi-access edge computing to accelerate remote cloud rendering
of interactive VR. The core idea is that edge provides a limited amount of rendering resources with
lower latency than cloud that has unlimited resources with longer latency. To cope with latency in
remotely real-time-rendered VR, a viewport that is larger than the client device’s FOV is rendered.
The required size of the viewport depends on the latency and it affects the amount of video data
that needs to be streamed to the client. We solve the problem of allocating clients to edge vs. cloud
when edge resources are constrained and to optimize the resulting video quality, at which the
graphics are rendered and streamed to the client, as well as latency in a parameter controlled way.

Due to the complexity, we utilize the relationship between the size of client’s viewport and the
perceived latency to simplify the optimization. Then, we design two variations of greedy-based al-
gorithms for video quality assignment problem and further analyze their optimality performance.
Through simulations using SNR traces and a quadratic approximation of viewpoint size and la-
tency relationship obtained through real data from VR headset usage, we show that the proposed
algorithms outperform baseline solutions in terms of average video quality and latency per client.
Our results further reveal how increasing the amount of edge processing resources affects the
average video quality and latency.

APPENDIX

A OPTIMALITY ANALYSIS OF AGQA ALGORITHM FOR SPECIAL CASE OF

PROBLEM (8)–(13)

To proceed with the special case of problem, suppose P is the available processing resources of
edge server at a given time slot and the client s ∈ S with allocated quality level qs at that time slot
consumes the amount of ps = ϕqs processing power. We define the special case of the problem
considering the following assumptions.

• All the clients are served from the edge server that has the limited processing resources.
• For every client s ∈ S , the required edge processing power satisfies the condition ps ≤ ϵP

where 0 < ϵ < 1 is a small constant such that (3 − 2ϵ )ϵ ≤ 1/S .

Note that deriving a constant approximation factor for AGQA algorithm that holds for all problem
(special case) instances is infeasible. Therefore, we relate the optimality bound of algorithm to the
structure of the problem by defining the small constant ϵ in the second assumption.

At each time slot, the set of available quality levels for each client depending on its link quality
corresponds to multiple variations of each item in 0/1 KP. The achievable utility of joint quality and
latency for each quality level of client equals the profit obtained by inserting that variation of item
into the knapsack in 0/1 KP. Furthermore, the amount of consumed edge resources by allocating
a quality level to the client is equivalent to the weight of corresponding variation of item in KP.
Allocating the minimum quality level to a client (e.g., its link capacity is below the minimum
available quality in set R) is also matched with no selection of any variation of corresponding item
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in KP. Now, the problem of selecting quality levels for all the clients at the given time slot in our
problem with the objective of maximizing joint quality and latency subject to the available edge
processing resources translates to the problem of selecting maximum one variation of each item
with the objective of maximizing the obtainable profit subject to the knapsack capacity in 0/1 KP.

We show now that AGQA algorithm achieves an approximation factor ofmin(1/2, 1−ϵ ) for the
special case of video quality assignment problem where 0 < ϵ < 1 is a small constant such that
(3 − 2ϵ )ϵ ≤ 1/S . Suppose {q1,q2, . . . ,qj } is the set of quality levels allocated to first j clients until
the edge processing resources are fully utilized. Obviously, the remaining clients are allocated with
the minimum quality level due to the lack of edge processing resources. Furthermore, suppose set
{(u1,p1), (u2,p2), . . . , (uj ,pj )} indicates the associated utility (objective value ) and edge processing
resources corresponding to the allocated quality levels. To proceed with the proof, we need to show
that the following inequality holds: u1 + u2 + . . . + uj ≥ min(1/2, 1 − ϵ )OPT .

Where OPT is the utility value obtained by the optimal algorithm for the special case of video
quality assignment problem. Since AGQA algorithm allocates the quality levels to the clients in
decreasing order of utility/processing ratio, that means the inequality ur /pr ≥ ut/pt for all clients
1 ≤ r ≤ j and j + 1 ≤ t ≤ S holds. This in turn implies the following:

u1 + u2 + · · · + uS

p1 + p2 + · · · + pS
≥

uj+1 + uj+2 + · · · + uS

pj+1 + pj+2 + · · · + pS
, (15)

which is further simplified to the following inequality:

u1 + u2 + · · · + uS ≥ (p1 + p2 + · · · + pS ) ·
(
uj+1 + uj+2 + · · · + uS

pj+1 + pj+2 + · · · + pS

)
. (16)

It is straightforward that p1+p2+ · · ·+pS ≥ P , because otherwise, the solution returned by AGQA
is optimal, which completes the proof. From this, the inequality (16) yields the following:

uj+1 + uj+2 + · · · + uS ≤ (u1 + u2 + · · · + uS ) · (pj+1 + pj+2 + · · · + pS )/P . (17)

Now, since under the special case of problem, ps ≤ ϵP for every client 1 ≤ s ≤ S , we obtain the
following inequality from Equation (17):

uj+1 + uj+2 + · · · + uS ≤ (S − j )ϵ (u1 + u2 + · · · + uS ). (18)

According to the pigeon hole principle, one of the following two conditions must hold:

u1 + u2 + · · · + uj ≥
OPT

2
uj+1 + uj+2 + · · · + uS ≥

OPT

2
. (19)

Otherwise, u1 +u2 + · · · +uS ≤ OPT , which is a contradiction, since the optimal utility cannot be
more than the utility value obtained by allocating the quality levels to all the clients. If the first
(left side) inequality in Equation (19) holds, then the algorithm achieves an approximation factor
of 1/2. However, if the second inequality (right side) in Equation (19) holds, then, by combining
inequalities (18) and this second inequality, we obtain the following: u1 + u2 + · · · + uj ≥ OPT

2 ·
1−(S−j )ϵ

(S−j ) .

Since (3 − 2ϵ )ϵ ≤ 1/S , we have OPT
2 · 1−(S−j )ϵ

(S−j )ϵ ≥ (1 − ϵ )OPT .

From these last two inequalities, we then obtain u1 + u2 + · · · + uj ≥ (1 − ϵ )OPT .
Therefore, we conclude that AGQA algorithm achieves an approximation factor ofmin(1/2, 1−ϵ )

for the special case of video quality assignment problem where (3 − 2ϵ )ϵ ≤ 1/S .
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