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A B S T R A C T   

Due to the rising pressure from governmental regulations, the water recycling rate has increased significantly in 
mining operations over the last decades, resulting in a high variation of process water quality, which could 
potentially impact the plant performance. The current effort to assess water quality in mining is shifting from 
managing water to fulfill environmental regulations (focus on the effluents) to controlling water quality to 
maintain the operating performance (focus on the water within the process). However, minimal effort has been 
made to design a dedicated sampling procedure for process water. This study investigates the use of multivariate 
variography and principal component analysis (PCA) for improving the process water sampling procedure at the 
Kevitsa Mine, Finland. The aim is to design a sampling procedure for evaluating water quality using two different 
types of datasets and illustrating the impact of the dataset structure on the sampling design. The results showed 
that the common spot sampling procedure generated a very high sampling error and was not the best practice for 
process water. The weekly sampling frequency used at the mine site, suitable for fulfilling environmental reg-
ulations was too low to capture the process water variation. Therefore, it is not recommended to use environ-
mental water datasets for operating control purposes. The multivariate variographic analysis revealed the hidden 
cyclic variation through its ability to summarize the time variations and the correlation between multiple var-
iables that were not visible through the classical univariate variogram approach. However, the number of in-
crements recommended by the global multivariogram became impractically high. Hence, an alternative 
approach combining PCA to the mutivariogram was used to filter noise from the data and keep the relevant 
information. This study highlights the benefits of using multivariate variography to improve water sampling 
procedures in the mining industry and to reduce both operational and environmental risks associated with water 
quality variability. Thus, this method has the potential to be used in worldwide mining operations as a standard 
procedure for sampling water to provide reliable results.   

1. Introduction 

Water quality assessment is a critical aspect of mining operations in 
fulfilling environmental regulations and controlling plant performance 
(Mudd, 2010; Kinnunen et al., 2021). It is clear that for an environ-
mental approach, a suitable monitoring program is essential for 
reducing the risks of pollution related to water (Bezuidenhout, 2009; 
Muniruzzaman et al., 2018). For such objectives, the data should be 
collected regularly in order to identify long- term trends, periodic 
changes, and fluctuations in rates of changes (Canada Environment, 
2009). In terms of process control, water quality plays an essential role 

on flotation performance and needs to be monitored carefully, especially 
when process water is reused or recycled (Forssberg and Hallin, 1988; 
Levay et al., 2001; Johnson, 2003; Liu et al., 2013). Nevertheless, efforts 
to build water sampling procedures for process performance control 
remain limited. When performed for process performance purposes, the 
sampling frequency needs to be high enough to capture the variability of 
process water properties that need to be monitored. The latter are 
defined according to their relevance to the process and are often 
case-specific. 

The sampling errors are significant sources of uncertainty when 
reporting a measurement (Holmes, 2004). In the case of process water, 
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collecting a representative sample is a prerequisite to ensure a reliable 
result. The most commonly used method is spot (bottle) sampling 
(Madrid and Zayas, 2007), consisting of collecting a single sample at a 
given time and location in the process. The obtained water sample is 
then stabilized and sent for analysis under appropriate preservation 
conditions, i.e., darkness and low temperature. The information thus 
obtained is unique to the sampled process stream at the time of sam-
pling. Therefore, it seems obvious that such an approach could not give a 
representative picture of the high variation of water quality over time 
(Schumann et al., 2009; Le et al., 2020a). 

The Theory of Sampling (TOS) provides a framework for good 
sampling practice and a set of rules that aim to eliminate sampling biases 
and minimize sampling errors (Gy, 1971, 1992, 1998; Pitard, 1993). 
One of the most important developments of the TOS for the mining in-
dustry is applying the semi-variogram (denoted as variogram in this 
paper) to characterize the autocorrelation and the heterogeneity of 
process streams and to quantify the sampling errors (Saunders et al., 
1989; Minkkinen, 2004). Process water streams moving through a pipe 
could be considered one-dimensional (1D) objects. The most appro-
priate method to capture the distinct spatial or temporal correlation of 
1D object is composite or aggregate sampling. Small increments con-
sisting of a full cross-section of the stream are collected for a fraction of 
time at several time intervals during the sampling period and then 
aggregated to make the final sample (Esbensen et al., 2007). Collection 
of increments can be performed following three different sampling 
modes, i.e., random (R), stratified (SR), or systematic (S) sampling 
(Minkkinen, 2004). The choice of the sampling mode is crucial because 
it changes the variance of the lot’s mean. If the same number of samples 
is extracted from the lot, systematic sampling usually gives the lowest 
variance of the lot mean (Saunders et al., 1989). Sampling program 
designs for variographic data modeling use, as a standard practice, the 
systematic mode and leave each increment as a discrete sample. 

The shape of the variogram provides numerous information on the 
complexity of the sampled lotś variation via three main features: the 
range, the sill, and the nugget effects (Fig. 1). The range indicates the 
limit of the inter-lag distance after which autocorrelation is no longer 
observable. The sill informs on the total variability of the lot for the 
properties considered. Furthermore, the nugget effect estimates the total 
variance not related to the process variability but only to random effects, 
i.e. sampling, preparation, and analytical errors. The shape of the var-
iogram reflects the characteristics of the process. Variograms of pro-
cesses displaying a drift are mostly increasing variogram, which may or 
may not level off after the range (Minkkinen and Esbensen, 2014). 

The variographic approach used in the mining and mineral pro-
cessing industries has always been limited to one variable at a time 
(Esbensen, 2017). Indeed, even when samples must be representative for 

Fig. 1. Typical positively increasing variogram. The experimental nugget effect 
(V0) is the value of the variogram at the origin, the range is the lag distance 
beyond which no further autocorrelation occurs, and the sill which reflects the 
overall process variance is the flat part of the variogram. 
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a range of properties, the standard solution is to reduce the problem to a 
single variogram by identifying the property with the highest hetero-
geneity contribution and designing the sampling procedure on this 
property only. This approach is known to underestimate the global 
sampling variance by not considering the multivariate aspect of het-
erogeneity and correlations between individual properties (Dehaine 
et al., 2016). In the case there are multiple properties of interest, the use 
of the multivariate variogram (denoted as multivariogram) for sampling 
design is recommended. The application of multivariate variography in 
TOS for temporal data analysis and sampling design was firstly intro-
duced by Dehaine and Filippov (2015). This study showed that the 
multivariogram could complement the univariate variogram by sum-
marizing global time variation for multiple properties of interest. 
However, the resulting multivariate global variance may be relatively 
high and lead to a high number of increments to be sampled to make the 
final representative sample of the lot. Minkkinen and Esbensen (2014) 
have shown that computing the variogram on the first few principal 
components of a Principal Component Analysis (PCA) allows combining 
multivariate and variographic analyses in a way that explains variables 
covariance and the distinct spatial patterns of 1D lots. Therefore, 
another alternative was suggested, combining PCA with the multi-
variogram by applying the latter to the PCA scores instead of the raw 
data (Dehaine et al., 2016). As the PCA reduces the dimensionality of the 
data and filters the noise (random effects), this method reduces the 
global variance while summarizing the essential information about 
variability. 

This paper investigates the application of multivariogram and var-
iographic analysis to design a suitable sampling procedure for water 
quality monitoring and assessment. To do so, two datasets, collected 
from the same active mining operation and representing two distinct 
time scales and applications, e.g., a high-frequency process control 
dataset and a weekly environmental monitoring dataset, have been used 
to illustrate the impact of the initial dataset structure on the sampling 
design. 

2. Materials and methods 

2.1. Datasets 

The data used in this study was obtained from the Boliden Kevitsa 
Mine located in Northern Finland. The plant processes a Ni-Cu(-Co) 
sulfide ore by froth flotation. The mine water handling consists of a 
water recycling circuit recirculating more than 90% of the tailings dam 
water back to the plant. 

Two datasets were provided: a high-frequency (HF) dataset and a 
weekly monitoring dataset (Table 1). It is important to recall that the 
designed sampling procedure will always have a lower frequency than 
the dataset used for the design. For example, the HF dataset (one reading 
every 10 min) could be used to design daily sampling procedures. 
Meanwhile, the weekly sampling dataset is used to design the monthly 
sampling procedures, suitable for environmental monitoring purposes 
only. 

Traditionally, water pollution regulation has predominantly been 
focusing on pH, toxic metals, metalloids, sulfate (Opitz and Timms, 
2016), hardness as given by the calcium and magnesium concentrations 
(Fowlie et al., 2001), nutrients (phosphorus and nitrogen), and lately 
thiosalts due to their capacity of acidifying and reducing dissolved ox-
ygen of the receiving water body (Miranda-Trevino et al., 2013). 
Therefore, the weekly dataset used to design sampling procedures for 
the environmental purpose only considers these properties. The HF 
dataset included all properties that could be monitored at high fre-
quency by implementing the YSI ProDSS multiprobe (Xylem Inc., USA) 
in the water process. In total five properties were monitored: Specific 
Conductance (SPC), pH, Oxidation-Reduction Potential (ORP), 
turbidity, Dissolved Oxygen (DO). 

Both datasets were processed before conducting the multivariate 

analyses. First, each variable was auto-scaled to obtain dimensionless 
values as the results from variographic and PCA analyses depended on 
scaling. Next, as outliers have detrimental effects on variographic ana-
lyses (Esbensen et al., 2007), two methods were used to detect and 
remove outliers from the dataset. The reason for using two different 
methods was the potential seasonal variation of the weekly dataset. As 
long-range variations were expected for the weekly dataset, the method 
for removing outliers in short-range variation was not applicable. For 
the HF dataset, observations outside the range of the mean ± 2σ 
threshold were considered as outliers while for the weekly dataset, ob-
servations with high value of Q-statistics and Hotelling’s T2-statistics 
(see Section 2.3) from the PCA model were considered as outliers. The 
threshold of Q-statistics and Hotelling’s T2-statistics to define outliers 
was set at 95% confidence limits. 

The HF dataset contained a total of 980 observations. Appendix 
Table A1 presents the summary statistics of all properties measured in 
the HF dataset. The weekly monitoring dataset contained 60 observa-
tions. The water samples were taken from the tailing ponds discharge 
stream, which feeds the process water tank supplying the plant, using 
spot sampling. Appendix Table A2 presents the summary statistics of all 
properties measured in the weekly dataset. 

2.2. Multivariate variographic analysis 

The general theoretical methodology for variographic characteriza-
tion, and the relative variogram calculation and sampling errors, have 
been fully described in the literature (Pitard, 1993; Gy, 1998, 2004; 
Petersen and Esbensen, 2005) and will therefore not be described here. 
In multivariate variography, each variable measured is considered 
together in one multivariate dataset and combined in one vector, X, 
which constitutes of the p individual variables. The multivariogram Vj of 
X is then calculated using the Eq. (1) (Dehaine et al., 2016): 

Vj(X) =
1

2(N − j)
∑N−j

i

(
Xi − Xi+j

)
M

(
Xi − Xi+j

)T
, j = 1, ⋯, N/2 (1)  

where the subscript T is the transpose operator, N the total number of 
increments (i.e., samples) collected, j the lag parameter, and M a metric 
(positive definite p × p matrix) which defines the “distances” between 
the units i.e., the relationship between the variables. The Mahalanobis 
distance (MD), for which M is defined as the inverse of the var-
iance–covariance matrix of X , has been used as it takes into account the 
correlation in the data (Bourgault and Marcotte, 1991; De Maesschalck 
et al., 2000) and is considered to be adapted to multivariate variography 
(Dehaine and Filippov, 2015; Dehaine et al., 2016). All (multi-)vario-
grams were calculated using the same algorithm as in Dehaine et al. 
(2016) based on the tutorial by Petersen and Esbensen (2005) for uni-
variate variograms. The algorithm took raw data as input and trans-
formed them into heterogeneity contribution (i.e the matrix X) for 
(multi-) variograms calculation purposes. The definition of heteroge-
neity contribution have been fully described in the literature (Petersen 
and Esbensen, 2005; Esbensen et al., 2007). The nugget effect (V0) was 
estimated by backward extrapolation of the variogram towards the 
origin. 

2.3. Principal component analysis (PCA) 

PCA is a well-known variable reduction and data compression 
method in chemometrics (Wold et al., 1987; Wise & Gallagher, 1996; 
Bro and Smilde, 2014). PCA aims to simplify the dataset by transforming 
the original variables or axes into new uncorrelated principal compo-
nents (PCs). Each PC is a linear combination of the original variables 
(Wold et al., 1987; Omo-Irabor et al., 2008) which means it describes 
potential correlations within the original variables. 

PCA consists of decomposing the initial matrix data to the score, 
loadings, and residual matrixes. The score matrix contains information 
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on how different observations relate to each other while the loadings 
matrix contains information about how variables relate to each other. 
Two diagnostic tools could be calculated from the PCA model, to identify 
potential outliers: the Q-statistics and Hotelling’s T2-statistics (Wise and 
Gallagher, 1996). The multivariate data analysis in this study was per-
formed with Matlab® (version R2017b, MathWorks Inc.) and PLS 
toolbox. 

2.4. Nyquist frequency for sampling 

The Nyquist frequency is the minimum frequency of sampling 
required if the variable of interest possesses a cyclic variation with a 
given frequency. In theory, this frequency is defined as twice as the 
frequency of the cycle of interest. In practice, it is preferable to have a 
sampling frequency of 5–10 times the frequency of the cycle of interest 
(Napier-Munn, 2014). For example, if the cycle of variation is ten weeks, 
the minimum sampling frequency should be about one every 1–2 weeks. 

2.5. Methodology 

Two variographic approaches were used for designing the sampling 
procedure for the mine of interest: The univariate and the multivariate 
approach. The univariate approach consisted of applying variographic 
analysis on the individual properties while the multivariate approach 
consisted of applying the multivariate variographic analysis on multiple 
properties simultaneously or on the first few principal components that 
summarized the variation of the whole dataset. Different approaches 
would provide different possible sampling procedures. However, based 
on the objective of the sampling, the practical constraints, the rela-
tionship between variables, and relations between PCs, a final sampling 
procedure would be selected. 

3. Results 

3.1. HF data for process water control 

3.1.1. Raw data analysis 
The variation over-time of the five properties of interest of the HF 

dataset is illustrated via the auto-scaled data in Fig. 2. Similar trends 
were observed for (1) SPC and pH, and (2) ORP and DO. The correlation 
between pH and SPC will be explained in detail in Section 3.1.3. The 
correlation between ORP and DO was expected as oxygen was the 
strongest oxidant in the media, so DO variation would directly affect the 
redox condition and hence the ORP. Turbidity had a completely 
different behavior than the other four properties with a wide range of 
fluctuations and no noticeable sudden changes as other properties. 

3.1.2. Univariate variographic analysis 
The individual variograms for the five properties of the HF dataset 

are presented in Fig. 3. 

Fig. 2. Variation over time of the 5 properties of the HF dataset (auto-
scaled data). 

Fig. 3. Univariate variograms of the five properties of the HF dataset. Two main groups of variograms were observed: a high-sill variables group (turbidity and ORP) 
and low-sill variables group (SPC, pH, DO). 
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Two main groups of variograms were observed: a high-sill variables 
group (turbidity and ORP) and low-sill variables (SPC, pH, DO). The 
variograms of pH, ORP, and DO showed a typical increasing variogram 
shape while the variogram of SPC displayed cyclic behavior with a 
period of j = 380 = 3800 min = 2.6 days. On another hand, the vario-
gram of turbidity showed a large scale increasing trend over the moni-
toring period. This trend continued out of our study range. In this case, 
de-trending was needed to remove the trend and therefore show possible 
cyclicities. The variogram of the detrended turbidity is found in Ap-
pendix Fig. A3. It showed clearly a typical cyclic variation with the 
periodicity of j = 120–140 = 20–23 hrs. This frequency was clearly 
associated with the daily change of tailings discharge location in the 
pond. In addition, the turbidity de-trended variogram showed a range of 
approximately j = 100 = 1000 min = 16.7hrs while a common range of 
approximately 300–350 lags (2–2.5 days) was observed for SPC, pH, 
ORP, and DO. The shorter range observed for turbidity, suggesting that 
turbidity might require a higher frequency of sampling. 

Because ORP was the property displaying the highest variability, the 
common procedure for the univariate variographic approach was to 
design the sampling protocol based on this property only. The corre-
sponding standard deviation of sampling error (SDSE) for ORP was 
calculated to get information on the sampling strategy and the number 
of increments that should be sampled (Appendix Fig. A1). In terms of 
sampling mode, systematic sampling gave the lowest variance. Two or 
three increments were already enough to reduce the SDSE to below 10% 
(Appendix Fig. A1). The ORP variogram range suggested that samples 
must be collected at least every 2.5 days systematically, or more often if 
more resolved insights into the process variation are deemed of interest. 

This sampling protocol, while being optimum to monitor ORP, was 
certainly not optimum for the other properties. Indeed, this univariate 
analysis deliberately ignored the other properties, particularly turbidity, 
the variogram of which has a shorter range and, along with the one of 
SPC, shows signs of potential cyclic variations. Therefore, designing the 
process water sampling campaign solely on ORP will ultimately result in 
underestimating the overall global sampling variance for all the other 
properties that may not contribute as much as ORP to the latter but 
which may well be more important in terms of process control. Thus, in 
such cases, the use of multivariate approaches such as PCA and multi-
variograms must be applied (Dehaine et al., 2016). 

3.1.3. Multivariate variographic analysis 
PCA was used to summarize the overall variability of the dataset in a 

reduced number of components, to identify trends in the variations of 
the studied physico-chemical properties and their relations. The two first 
PCs, which explained more than 95% of the overall variability (77% and 
18%, respectively), were chosen to build the model (Fig. A2). 

Fig. 4 shows the PCA loadings and scores plot along with the two first 
PCs. PC1 mostly captured the changes in process water quality around 
observation 500. The loading plot indicated that PC1 accounts for the 
variability of all the properties (in particular pH, ORP and DO). Pre-
cisely, ORP and DO display positive loadings, which was expected based 
on the previously observed correlation between these variables, while 
SPC, pH, and, turbidity display negative loadings on PC1. The negative 
correlation between ORP and pH was in agreement with the Pourbaix 
diagram of water indicating that in an equilibrium state of water, pH, 
and ORP had a negative correlation (Greet, 2010). The positive corre-
lation between SPC, pH, and turbidity was frequently observed during 
wintertime for this specific mine site. During that time of the year, the 
ice cap blocked the majority of the tailings pond, the residence time of 
the water in the pond could oscillate between long and short in several 
days. When the residence time was short (due to the change in discharge 
point or shortcut channel created in the pond), the tailings water which 
was high in pH, suspended solids, and dissolved solids returned quickly 
to the processing plant. Therefore, those parameters often varied 
together and were positively correlated. The score value on the PC1 
experienced a sudden jump from a negative value to a positive value 
around observation 500. Then it decreased slowly to a near-zero nega-
tive value around observation 800. Some events had impacted the 
process-water quality after observation 500. This event was mostly 
characterized by an increase of ORP, DO, and a decrease of SPC, pH, and 
turbidity. PC2 mainly describes variation in SPC and turbidity. The 
loading plot showed that turbidity had positive loadings while SPC had 
negative loadings on PC2. At least three cycles of variations can be 
observed in the PC2 score plot, from observation 0 to observation 600. 
After that, the scores tended to decrease. The negative correlation be-
tween turbidity and SPC was unexpected and the reason behind 
remained unclear. However, the most likely reason was the precipitation 
due to sudden changes in thermodynamic conditions, which decreased 
the dissolved matter in the stream and at the same time increased the 
turbidity. 

The PCA scores can be used to perform the variographic analysis in 
fewer variograms instead of calculating a variogram separately for each 
property as done before. It benefits from highlighting hidden trends in 
the data which are not visible with the individual variograms. The 

Fig. 4. Scores (left), variable loadings (middle), and score variograms (right) of the first two PCs explaining more than 95% of the variability of the HF dataset.  
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variograms of the individual PC1 and PC2 scores are shown in Fig. 4. The 
comparison between the scores plot and the corresponding variogram 
suggested that the variograms filtered out the random variance (the 
short-range variations visible in Fig. 4) while modeling mainly the long- 
range phenomena (drift and periodic events). Both variograms showed 
increasing trends, indicating that their scores differed from random (i.e., 
flat variogram). The PC1 scores variogram reflected the global trend for 
all physico-chemical properties in the process (the non-random contin-
uous part of variation). The PC2 scores variogram described the long- 
range periodic fluctuation trend (the non-random, continuous, cyclic 
part of the variation) of SPC and turbidity. Three local minimums were 
observed at around j = 220–230, 420–440, and 580–600. Such obser-
vations suggested a potential cyclic phenomenon with a period of 
approximately 220–270 lags = 2200–2500 min ≈ 1.5–1.7 days. There 
were no other obvious changes in operational practices at the mine site 
that can explain a cyclic phenomenon for such a short period than the 
effect of residence time in tailing ponds. 

The multivariograms applied to the whole HF dataset, referred to as 
global multivariogram in Dehaine et al. (2016), and the scores of the two 
first PCs are shown in Fig. 5 along with the corresponding SDSE profile 
as a function of the sampling mode and the number of increments 
collected. 

Both multivariograms displayed a higher sill than any of the uni-
variate variograms in Fig. 3. It is a known consequence of considering 
multiple properties for the variographic analysis with metrics taking 
into account correlations between the variables (Dehaine et al., 2016). 
The global multivariogram displayed a classical increasing variogram 
shape with a range around j = 250 = 1.7 days. In winter, the global 
composition of the process-water may change every 1.7 days, which may 
relate to the residence time of water in the tailings pond. This residence 
time is shorter in winter since the pond’s available volume gets reduced 
by the formation of the ice cap. Fig. 5 shows that the SDSE associated 
with the spot sample (i.e., only one increment collected) is relatively 
high. An aggregate sample with only two increments could reduce the 
SDSE by almost 60%, and with four increments, the SDSE was decreased 
by 80%. However, to reduce the SDSE to below 10%, at least 15 in-
crements must be taken to make the final sample, which was relatively 
high and difficult to implement in practice. Additionally, the global 
multivariogram (upper-right) did not clearly capture cyclic variation 
observed on the SPC and turbidity individual variogram and the PC2 

scores variogram. 
Applying the multivariogram to PC1 and PC2 scores (referred to as a 

multivariogram of PC1-2 in the text) decreased the multivariogram sill 
for the HF data by half (Fig. 5, bottom). Additionally, the nugget effect, 
which was quite significant in the global multivariogram, was reduced 
to near-zero with the multivariogram of PC1-2. In TOS, the nugget effect 
reflects the short-scale process variability and includes all of the sam-
pling, analytical and sample preparation variances (François-Bongar-
çon, 2004). This result must be related to the nature of the dataset which 
only contains the most significant and important variance of the original 
dataset since PCA acted as a filter on the raw data to retain only relevant 
information on the global variability of the dataset. Hence, the multi-
variogram applied to the first PCs provides a more representative, i.e., 
noiseless, summary of the structure of variability than multivariogram 
applied to raw data (Dehaine et al., 2016). In a TOS point of view, the 
assumption of using only few PCs to modeling is that they represented 
the variation that purely attributed to 1D process variation (i.e Time 
fluctuation error and cyclic fluctuation error). The remaining variance 
from the PCs that are not taken into consideration is considered as 
related to 0D variation (f.ex. incorrect sampling error, total analytical 
error, etc.) The addition of those “noise” elements in the modeling will 
only increase the nugget but did not affect the general shape of the 
multivariogram. 

Another interesting point was that the PCs scores multivariogram 
captured the cyclic phenomenon observed previously in the variogram 
of PC2 and that can be attributed to SPC and turbidity. According to the 
range of multivariogram of PC1-2, at least one sample must be collected 
during a period of j = 380 = 3800 min = 2.6 days. As suggested by the 
SDSE profile, this sample must be aggregated from five increments to 
decrease the standard deviation below 10% (Fig. 5, bottom). 

3.2. Weekly sampling data for environmental monitoring 

3.2.1. Raw data analysis 
Fig. 6 shows the variation over-time of the 12 properties of interest of 

the weekly dataset. A tendency of seasonal variation was observed for 
most properties, particularly for sulfate, thiosulfate, pH, and metal 
contents. High short-scale variability was observed for nitrogen, phos-
phorus, calcium, and magnesium. These four properties were all greatly 
influenced by the flotation process in the plant since most of the 

Fig. 5. Multivariogram applied to the whole HF dataset (top left) and to the PC1-2 scores (bottom left). The corresponding sampling error associated with the three 
sampling modes (R: Random, SR: Stratified random, S: Systematic) is expressed as the standard deviation of the sampling error (SDSE, middle) and decrease of SDSE 
(left) as a function of the number of increments collected (Nu) for the HF data. 
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phosphorus, calcium, and magnesium content of the process-water was 
coming from the reagent used during flotation. Nitrogen is a known 
residue from ore blasting. 

3.2.2. Variogram on raw data 
The individual variograms for all the properties of the weekly dataset 

are presented in Fig. 7. In practice, it is not recommended to compute 
the variogram further than j = N/2 (Esbensen et al., 2007). However, 
some of the variograms displayed a potential cyclic fluctuation over j =
35 = N/2. Therefore, to capture the full cycle, the authors chose to 
display the variogram until N-j = 20 (i.e., 50 lags). The cyclic fre-
quencies (long and short) of each element/compound are summarized in 
Table 2. 

Results indicated a high-sill variables group composed of thiosulfate, 
nitrogen, manganese, nickel, and iron. Variograms for thiosulfate, ni-
trogen, magnesium, manganese, nickel, and silica displayed a very 
similar tendency, characterized by a long-range cyclic variogram shape 
with a period around j = 45 lags = 11 months. Among them, magnesium 
had an additional shorter-range cyclic variation with a period of j = 10 
lags = 2.3 months. 

Variograms for SPC, pH, sulfate, phosphorus, and calcium suggested 
a common cyclic phenomenon with a shorter-range period around j =
15–25 weeks ≈ 4–6 months. Since calcium and phosphorus levels in 
process-water were directly linked to the reagents used in the flotation 

plant, this medium-range cyclic fluctuation could be a consequence of 
adapting the operating conditions in the plant with the seasonal varia-
tions and the storage time in the main tailings pond. Additionally, 
phosphorus and calcium possessed an additional short-range cyclic 
variation characterized by a j = 2.5 = 17.5 days. Those variations might 
reflect the adjustments of operating conditions due to ore variation. 

The variogram for iron showed only a short period cyclic variation of 
j = 4–5 ≈ 1 month. The Kevitsa mine feeds the processing plant on an 
ore-block by ore-block basis, each block taking a week or more to be 
processed. Some ore is temporarily stored (over one month) at the ROM 
(Run Of Mine) pad. This observed cyclic variation may have been due to 
changes in ore mineralogy and varying state of oxidation of ore coming 
from the ROM pad and storage stockpiles. 

As total iron assays displayed the highest variability, the recom-
mended sampling protocol for iron was to use stratified random sam-
pling or systematic sampling with at least 5 increments (to reduce the 
SDSE to below 10%) and a sampling frequency at a rate of one sample 
per week due to its short cyclic behavior. 

3.2.3. Multivariate variographic analysis 
The three first PCs were chosen to build the model as they explained 

more than 81% of the variation of the dataset (44%, 30%, and 7%, 
respectively) while the remaining PCs did not provide any meaningful 
interpretation of the data (Fig. 8). 

The 3D scores plot (Fig. 8) showed a tendency of clustering between 
summer and winter observation (i.e., from June to September vs the rest 
of the year). In summer, the concentration of metals tended to increase 
in the process-water while the SPC and concentration other compounds 
concentration tended to decrease. An opposite trend was observed for 
winter, characterized by an increase in pH, SPC, and decreased the metal 
concentration. The 3D loadings plot indicated a negative correlation 
between metals, metalloids, and pH. This correlation was consistent 
with the thermodynamic relation between metal-hydroxide solubility 
and pH (Boardman et al., 2004; Kuyucak, 2006). The correlations be-
tween SPC, calcium, and sulfate were expected since calcium and sulfate 
were among the major compounds found in the process-water. A posi-
tive correlation between magnesium, nitrogen, and thiosulfate was 
observed. However, the reason underlying this correlation remained 
unclear. 

Fig. 9 shows the scores and loadings plot for the three first PCs. 
As suggested by the loadings, PC1 mostly captured the changes in 

thiosulfate, nitrogen, metals, and metalloids concentrations. Precisely, 
nitrogen and thiosulfate displayed strong positive loadings while metals 
and metalloids displayed negative loadings for PC1. The scores of PC1 
showed a gradual decrease during the summer-autumn time and 
increased again during winter-spring. It suggested that, during the 
summer-autumn period, the concentration of nitrogen and pH in the 
process-water decreased gradually and increased again during the 
winter-spring period. The opposite tendency was observed for variations 
in metals and metalloids concentration. The latter was explained by 
higher temperatures favoring the oxidation of the ore and the activities 
of bacteria resulting in higher levels of dissolved metals and metalloids 
in the process-water. The variable profile (Fig. 6) confirmed the thio-
sulfate concentration decrease over the summer-autumn period and 
increased again during the winter-spring time. This result may seem 
counter-intuitive as the literature indicates that the oxidation of sulfide 
to thiosalts is enhanced by temperature (Miranda-Trevino et al., 2013). 
However, it is important to note that since the speciation of other thi-
osalts was not analyzed, it was impossible to conclude that the overall 
thiosalt concentration decreased during summertime. Additionally, as 
thiosalts speciation strongly depends on pH, the pH variations can also 
affect thiosulfate concentration (Miranda-Trevino et al., 2013). Besides 
that, thiosulfate is not the only thiosalt compounds present in the mine 
waters, and it is even not the major one (Whaley-Martin et al., 2020). 

PC2 mainly described variation in sulfate, phosphorus, calcium, 
magnesium, and SPC, all positively loading PC2. The score plot 

Fig. 6. Variation over time of the 12 properties of the weekly dataset (auto-
scaled data) with the corresponding temperature profile (background). (A) 
Reagents related elements. (B) Anions and SPC. (C) Metals, metalloid, and pH. 
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Fig. 7. Univariate variograms of the 12 properties monitored in the weekly data.  

Table 2 
Difference cycle of variation observed in the univariate variogram of the 12 properties monitored in the weekly data. The sampling frequency is 5 times the frequency 
of the cycle of interest.   

SO4
2- S2O3

2- N P Ca Mg Mn Ni Si Fe pH SPC 

Long cycle frequency Lag 23 40 45 15 25 45 45 45 45  – 25 24 
Month 5 9 11 4 6 11 11 11 11  – 6 5 
Sampling Frequency (weeks) 5 8 9 3 5 9 9 9 9  5 5 

Short cycle frequency Lag – – – 2.5 2.5 10 – – –  4.5 – – 
Month – – – 0.6 0.6 2.3 – – –  1.1 – – 
Sampling Frequency (Days) – – – 3.5 3.5 14 – – –  6.3 – –  

Fig. 8. PCA analysis of the weekly dataset. Eigenvalues of the principal components (left), 3D plot of loadings (middle), and scores (right) projected on the PC1 vs 
PC2 vs PC3 component plane. 

T.M.K. Le et al.                                                                                                                                                                                                                                 



Minerals Engineering 172 (2021) 107136

9

indicated a slow increase in the value of the scores from May to March 
2017, followed by a sharp decrease from March to May 2018, and an 
increase again (Fig. 9). This result was believed to be the direct 

consequence of the formation of an ice cap at the top surface of the 
tailings ponds surface, reducing the availability of water in the tailings 
pond. During the summer, the ice melted down and diluted the tailing 

Fig. 9. Scores with background temperature profile (left) and variable loadings (middle) and score variogram of the first three PCs explaining more than 81% of the 
data variability of the weekly dataset. 

Fig. 10. Multivariogram applied to the whole weekly dataset (top left) and to the PC1-3 scores (bottom left). The corresponding sampling error is expressed as the 
standard deviation of the sampling error (SDSE, middle) and decrease of SDSE (left) as a function of the number of increments collected (Nu) for the weekly data. 
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water again. The positive correlation between sulfate, calcium, mag-
nesium, and SPC was expected since they are the major compounds/ 
elements of the water matrix. It is important to note that even if both 
PC1 and PC2 described a seasonal variation, their phases of variation 
were not identical. The local minimums were observed around 
September for the PC1 while they were in May for the PC2. Therefore, 
the mechanisms that were responsible for those cyclic variations were 
not similar. 

PC3 was mostly positively loaded by iron and pH and thus repre-
sented the variations of these properties. The PC3 scores plot was noisier 
than the PC1 and PC2 score plots, but a short-period cyclic tendency can 
still be observed (Fig. 9). 

All the variograms, the PC1, PC2, and PC3 showed cyclic behaviors 
with distinct characteristic periods. All scores variograms reflected the 
long-range (yearly) periodic fluctuation. However, the PC2 variogram 
showed an additional medium-range (j = 20–22 ≈ 6 months) and PC3 

variogram described an additional shorter-range (j = 8–9 ≈ 2 months) 
periodic variation trend. According to the PCA results, all properties 
were affected by a long-range cyclic variation (loading PC1 and PC2) 
while iron and pH displayed an additional short-range variation 
component as they were loading both PC1 and PC3. The shortest cyclic 
variation of the PC3 variogram confirmed that pH and iron required a 
higher sampling frequency than other elements/compounds. 

The global multivariograms and the multivariogram of the three first 
PCs scores are shown in Fig. 10, along with the corresponding SDSE 
profiles. 

As before with the HF dataset, the multivariograms of the PCs scores 
showed a much lower sill compared to the global multivariogram. It 
resulted in a lower number of increments required to minimize the SDSE 
of the sampling. Both multivariograms displayed a classical increasing 
variogram shape. However, the PC1-3 multivariogram captured the 
long-range periodic variation (j = 45–47 ≈ 11–12 months) while the raw 

Fig. 11. PCA analysis of the univariate variogram. 2D plot of loadings projected on the PC1 vs PC2 factorial plane (left). Scores (middle), and variable loadings 
(right) of the first two PCs explain more than 85% of the data variability of the univariate variogram. 

Fig. 12. Multivariogram applied to different group of parameters: Iron, Phosphorus, Calcium (top left), SPC, Sulphate, Nickel (middle left), other parameters (bottom 
left). The corresponding sampling error is expressed as the standard deviation of the sampling error (SDSE, middle) and decrease of SDSE (left) as a function of the 
number of increments collected (Nu) for the weekly data. 
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data multivariogram captured the noisier, shorter periodic variation of 
the raw data. 

The SDSE profiles associated with both variograms indicate that 
aggregate sampling reduces the SDSE of the final samples significantly 
compared to spot sampling. The SDSE profile of the global multivario-
gram suggested that taking only two increments instead of one reduced 
the SDSE by almost 55% for all three sampling methods. However, the 
SDSE remained very high. The SDSE profile indicated that even when 20 
increments were collected, the SDSE still higher than 40%. Since the 
range of global multivariogram was around eight weeks or two months, 
the sampling frequency must be higher than one every eight weeks. 
However, the high amount of increments that needed to be collected to 
minimize the SDSE made such a sampling scheme impractical. 

As said, the multivariogram of the first three PCs captured the long- 
range (yearly variation). Due to this cyclic variation, the required 
sampling frequency should be at least one every nine weeks, similar to 
the global variogram’s sampling frequency. However, the SDSE profile 
for the PCs multivariogram suggested that only 10 to 15 increments 
were needed to reduce the SDSE to less than 10%. 

Nevertheless, both PCs and global multivariograms did not capture 
the six months variation observed in the variogram of certain variables 
(Fig. 7). The PCA analysis on the univariate variogram of the 12 prop-
erties monitored in the weekly data confirmed that the half-year cyclic 
variation existed and mostly concerned phosphorus, calcium, and iron 
(Fig. 11). Among them, calcium and phosphorus were directly linked to 
operating conditions. The half-year cyclic variation of operating-related 
variables could relate to the different modes operating modes in summer 
and winter. The projection of the loadings on the PC1 and PC2 plan 
indicated a clustering trend characterized by three groups of variables: 
(1) phosphorus, iron, calcium, (2) SPC, sulfate, nickel, and (3) the 
remaining variable (Fig. 11). The fact that the variograms of phos-
phorus, calcium, and Iron were highly loaded in the PC2 confirmed that 
they were similar to each other and different from other variograms. 
They all possessed a pronounced half-year cyclic variation. 

The multivariate variogram for these different groups of variables 
were computed separately (Fig. 12). The multivariogram of phosphorus, 
calcium, and iron indicated a range of j = 5 weeks. The short-range of 
periodic variation had a frequency j = 3–4 weeks while the frequency of 
the long-range periodic variation is j = 20–25 = 5–6 months. The exis-
tence of a short-range frequency suggested that the sampling frequency 
for those three parameters must be at least one per 4–6 days. The SDSE 

plot indicated that an aggregate sample made of ten increments was 
needed to decrease the SDSE to below 10%. The multivariogram of SPC, 
sulfate, and nickel was a typical increasing variogram with a range j =
15 ≈ 3 months. The SDSE plot suggested that the SDSE would be lower 
than 10% if eight increments were collected systematically to make the 
aggregate sample. The multivariogram of the remaining variables was a 
typical cyclic variogram with a periodic variation of j = 45–47 ≈ 11–12 
months which indicated a sampling frequency of one every 2.4 months. 

4. Discussion 

The methodology used in this study to design a sampling protocol for 
the Kevitsa mine could be generalized as a decision-making procedure 
which could be further used for other mine sites/mineral processing 
plants. This procedure is based on a thorough variographic and multi-
variate data analysis that helps identify the main features in the dataset 
and other criteria. These can be compared to pre-defined criteria such as 
sampling objectives, practical, economical, or environmental con-
straints to define tailored water sampling procedures satisfying all 
criteria. Precisely, the step-by-step procedure for the general decision- 
making process for water sampling could be (Fig. 13):  

• Step 1: Data collection (sampling, probe measurement, historical 
dataset)  

• Step 2: Modeling  
– Preprocessing data for further analysis  
– Basic statistical data analysis of the preprocessed data (range of 

variation, mean, standard deviation for obtaining variation range 
of the dataset  

– Variographic approaches: 
• PCA of pre-processed data to investigate the potential correla-

tion between variables, reduce the number of variables and filter 
noise from the data, 

• Variograms of pre-processed data to obtain the unique individ-
ual characteristics of all parameters and designing the optimal 
sampling protocol for univariable,  

• Variogram of PCA scores to investigate the hidden structures and 
patterns through variables grouping,  

• Multivariogram of pre-processed data to design a sampling 
protocol that takes into consideration of the overall variability of 
the data in one variogram, 

Fig. 13. Decision making procedure proposal for water sampling in mining.  
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• Multivariogram of PCA scores to design a sampling protocol that 
takes into consideration the relevant component of the overall 
variability of the data in one variogram,  

• Multivariogram of grouped variables sharing similar spatial 
characteristics to design sampling protocol for different groups 
of variables.  

• Step 3: Criteria definition 
– Define different sampling protocols and the associated character-

istics (frequency, SDSE, number of increments, etc.),  
– Defining the pros and cons of each protocol suggested by the 

previous approaches,  
• Step 4: Decision on the final water sampling procedures based on the 

pre-defined criteria such as sampling objectives, practical con-
straints, etc., and the criteria defined in step 3. For example, when 
dealing with a multivariate problem, univariate variogram must not 
be followed. 

In practice, the sampling procedure comprises bottles used in taking 
increments from the entire stream at different time intervals during the 
sampling period. However, due to the high instability of water 
(Miranda-Trevino et al., 2013; Le et al., 2020b), the increments must be 
stabilized right after sampling, e.g. filtration and freezing. At the end of 
the sampling period, the increments are aggregated as a final sample 
sent for analysis. This paper described a procedure to design a water 
sampling scheme. The next step is to investigate the methodology to 
preserve the increment so that its properties remain constant until the 
analysis is performed (Le et al., 2020b) Such a procedure of sampling 
and preserving water sample should be used in the future as a standard 
procedure for water quality evaluation on-site both in term of perfor-
mance improvement and environmental regulations. 

5. Conclusions 

The variogram analysis was used to study the variability in the water 
property matrix and to investigate the origin of the variations. The re-
sults showed that the variations of water-related parameters can be both 
correlated and independent, depending on the factors that govern the 
variations. The range and frequency of variations are not similar for all 
variables. Unstable variables or operation-related variables can change 
very fast. Meanwhile, stable and season-related variables can change 
much slower. 

The variogram work confirmed that the sampling frequency for 
process water must be tailored and customized based on the water 
composition. The procedure is very mine-specific. While this paper 
proposed a decision-making protocol applicable to any mine site to ease 
the sampling design process, the final decision is case-dependent. 

The results obtained for the case study investigated confirmed that 
the SDSE associated with spot sampling is relatively high. Hence, the 
current practice of spot sampling in the mine is not optimal. However, 
here, a simple two-increment sample could decrease the SDSE by 60%, 

and with a four-increment sample by 90%. These values are based on the 
variability of only five physicochemical properties that could be moni-
tored with high frequency (HF dataset). In reality, other chemical 
properties should be added to the monitoring program. Therefore, the 
final SDSE would be higher, and the number of increments needed to 
decrease the SDSE would increase accordingly. 

The weekly sampling dataset could help to design a monthly sam-
pling procedure for environmental control purposes. The results showed 
that the best sampling choice is to group variables with a similar ten-
dency of variation overtime via PCA analysis on the univariate vario-
grams which allows to group the variables into three major clusters: (1) 
phosphorus, iron, calcium, (2) SPC, sulfate, nickel, and (3) the remain-
ing variables. For environmental purposes, the multivariogram of 
phosphorus, iron, and calcium indicates that those variables require a 
higher sampling frequency compared to other variables (i.e., 4–6 days 
instead of 2.4 months).” 
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Appendix A 

See Figs. A1–A3 and Tables A1 and A2. 

Fig. A1. Univariate variograms of the ORP of the HF dataset (left). The corresponding SDSE profile (right).  
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